
Superpages

Emmett Witchel

CS380L

Virtualization/Superpages faux quiz (pick 2, 5 min)

1. Define PTE replication? Do we still need it?

2. FreeBSD always breaks superpages on a write. What are the
alternatives/tradeoffs?

3. Define reference/dirty bit emulation.

4. What is a population map?

5. Why super-pages instead of big segments?

Virtual Memory: Goals…what are they again?

• Abstraction: contiguous, isolated memory
• Remember overlays?

• Prevent illegal operations
• Access to others/OS memory

• Fail fast (e.g. segv on *(NULL))

• Prevent exploits that try to execute program data

• Sharing mechanism/IPC substrate

Address Translation with Segments

Address Translation with Segments

Address Translation with Segments

Address Translation with Segments

Address Translation with Segments

• Segmentation cannot be disabled
• Can be made a no-op (flat mode)

Address Translation with Segments

• Segmentation cannot be disabled
• Can be made a no-op (flat mode)

• Segment = <base,len,type(code,data,stack)>
• AS → 6 segments: regs cs, ds, ss, es, fs, gs

Address Translation with Segments

• Segmentation cannot be disabled
• Can be made a no-op (flat mode)

• Segment = <base,len,type(code,data,stack)>
• AS → 6 segments: regs cs, ds, ss, es, fs, gs

• Programming model: prefix refs with segment

Address Translation with Segments

• Segmentation cannot be disabled
• Can be made a no-op (flat mode)

• Segment = <base,len,type(code,data,stack)>
• AS → 6 segments: regs cs, ds, ss, es, fs, gs

• Programming model: prefix refs with segment

Address Translation with Segments

• Segmentation cannot be disabled
• Can be made a no-op (flat mode)

• Segment = <base,len,type(code,data,stack)>
• AS → 6 segments: regs cs, ds, ss, es, fs, gs

• Programming model: prefix refs with segment

Q: How to make segmentation a
no-op?

Address Translation with Segments

• Segmentation cannot be disabled
• Can be made a no-op (flat mode)

• Segment = <base,len,type(code,data,stack)>
• AS → 6 segments: regs cs, ds, ss, es, fs, gs

• Programming model: prefix refs with segment

Q: How to make segmentation a
no-op?

Q: How to implement TLS?

ustack (1)

Process Address Space

kernel

kernel

kernel

kernel

ucode (1)

kcode

kdata

kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
 G

B
1

 G
B

used

free

user (1)

user (1)

udata (1)

user (1)

user (2)

user (2)

user (2)

access possible in user mode

access requires kernel mode

P1

ustack (1)

Process Address Space

kernel

kernel

kernel

kernel

ucode (1)

kcode

kdata

kbss

kheap

0

C0000000

C0400000

FFFFFFFF

3
 G

B
1

 G
B

used

free

user (1)

user (1)

udata (1)

user (1)

user (2)

user (2)

user (2)

access possible in user mode

access requires kernel mode

P1

Q: How to manage mapping (VA/LA/PA)?
Q: How to enforce access restrictions?

Linear → Physical Translation

Linear → Physical Translation

Level 4 idx Level 3 idx Level 2 idx Level 1 idx offset

entry
entry

entry
entry

address

virtual address

Linear → Physical Translation

Linear → Physical Translation

• Q: how many ops to translate?

Linear → Physical Translation

• Q: how many ops to translate?

• Q: why does this perform at all?

Handle a page fault

Handle a page
fault, more
detail

Sidebar: KASLR, KPTI

• KASLR → Kernel address
space layout randomization

• KPTI/KAISER → Kernel page-
table isolation separates
most kernel memory from
user

• In user-space, map only
information needed for
interrupts, sys enter/exit

TLB organization

• How big does TLB actually have to be?
• Usually small: 128-512 entries
• Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
• Lookup is by Virtual Address
• Returns Physical Address + other info
• Recent architectures: set associativity in multi-level TLBs

Example: MIPS R3000

0xFA00 0x0003 Y N Y R/W 34

0x0040 0x0010 N Y Y R 0

0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

It’s all about the TLB!

Broadwell

It’s all about the TLB!

Broadwell

It’s all about the TLB!

Broadwell

Q: What fraction of a 4GB memory can a
128-entry TLB “cover”/”reach”?
Q: Why are the TLBs so small?

TLB coverage trend

0.001%

0.01%

0.1%

1.0%

10.0%

1985 1990 1995 2000

TLB coverage as percentage of main memory

Factor of 1000

decrease in

15 years

TLB coverage trend

0.001%

0.01%

0.1%

1.0%

10.0%

1985 1990 1995 2000

TLB coverage as percentage of main memory

Factor of 1000

decrease in

15 years

TLB miss

overhead:

5% 5-10%

30%

TLB coverage trend

0.001%

0.01%

0.1%

1.0%

10.0%

1985 1990 1995 2000

TLB coverage as percentage of main memory

Factor of 1000

decrease in

15 years

TLB miss

overhead:

5% 5-10%

30%

Now 60-90%!

How to increase TLB coverage

• Typical TLB coverage  1 MB (before ~2015)

• Use superpages!
• large and small pages

• Increase TLB coverage
• no increase in TLB size

• no internal fragmentation

• Paper covers the challenges

Superpage Concepts

• Memory pages of larger sizes
• supported by most modern CPUs via MMU

• Otherwise, same as normal pages
• power of 2 size

• use only one TLB entry

• contiguous

• aligned (physically and virtually)

• uniform protection attributes

• one reference bit, one dirty bit

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

 How / when / what size to allocate?

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D

 How / when / what size to allocate?

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D A B C D

 How / when / what size to allocate?

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D A B C D

 How / when / what size to allocate?

Issue 2: promotion

• Promotion: create a superpage out of a set of
smaller pages

• mark page table entry of each base page

• When to promote?

Issue 2: promotion

• Promotion: create a superpage out of a set of
smaller pages

• mark page table entry of each base page

• When to promote?

Wait for app to touch pages? May lose

opportunity to increase TLB coverage.

Issue 2: promotion

• Promotion: create a superpage out of a set of
smaller pages

• mark page table entry of each base page

• When to promote?

Create small superpage?

May waste overhead.

Issue 2: promotion

• Promotion: create a superpage out of a set of
smaller pages

• mark page table entry of each base page

• When to promote?

Eagerly promote?

May cause internal fragmentation.

Issue 3: demotion

When?

• page attributes of base pages in superpage
become non-uniform

• during partial pageouts

Demotion: “splinter” superpage into smaller pages

Group activity

• Summarize the paper’s policy for
• Allocation

• Promotion

• Demotion

• Give a specific example of where each would happen

Issue 4: fragmentation

• Memory becomes fragmented due to
• use of multiple page sizes

• persistence of file cache pages

• scattered wired (non-pageable) pages

• Contiguity: contended resource

• OS must
• use contiguity restoration techniques

• trade off impact of contiguity restoration against superpage benefits

Issue 4: fragmentation

• Memory becomes fragmented due to
• use of multiple page sizes

• persistence of file cache pages

• scattered wired (non-pageable) pages

• Contiguity: contended resource

• OS must
• use contiguity restoration techniques

• trade off impact of contiguity restoration against superpage benefits

FreeBSD Design

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved

frames

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved

frames

D

D

A

A

C

C

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved

frames

D

D

A

A

C

C

How much do we reserve?

Goal: good TLB coverage,

without internal fragmentation.

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved

frames

D

D

A

A

C

C

How much do we reserve?

Goal: good TLB coverage,

without internal fragmentation.

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved

frames

D

D

A

A

C

C

How much do we reserve?

Goal: good TLB coverage,

without internal fragmentation.

Allocation: reservation size

• Opportunistic policy

• Choose biggest size no larger than object (e.g., file)

• Size not available → preempt or resign to a smaller size

Allocation: managing reservations

largest unused (and aligned) chunk

1

2

4

Allocation: managing reservations

largest unused (and aligned) chunk

best candidate for preemption at front:

 reservation whose most recently populated

frame was populated the least recently

1

2

4

Incremental promotions

Promotion policy: opportunistic

2

4

4+2

8

Speculative demotions

• One reference bit per superpage
• How do we detect portions of a superpage not referenced anymore?

• On memory pressure, demote superpages when resetting ref bit

• Re-promote (incrementally) as pages are referenced

Demotions: dirty superpages
• One dirty bit per superpage

• what’s dirty and what’s not?

• page out entire superpage

• Demote on first write to clean superpage

write

 Re-promote (incrementally) as other

pages are dirtied

Fragmentation control

• Low contiguity: modified page daemon
• restore contiguity

• move clean, inactive pages to the free list

• minimize impact
• prefer pages that contribute the most to contiguity

• keep contents for as long as possible
(even when part of a reservation:
if reactivated, break reservation)

• Cluster wired pages

Intel’s Sunny Cove 2019

• 5-Level Paging
• Large virtual address (57 bits, up from 48 bits)
• Large virtual address space (128 PiB, up from 256 TiB)

• DTLB Load (DTLB split for loads and stores)
• 4KB; 64 entries; 4-way set associative
• 2MB; 32 entries; 4-way set associative
• 1GB; 8 entries; 8-way set associative

• DTLB Stores
• 4KB, 2MB, 1GB; 16 entries; 16-way set associative

• STLB, 2048 entries
• 2,048 entries; 16-way set associative

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove

Guest superpages
Or
Host superpages?

• Need both!

• User-controlled huge page management

• Admin reserves huge page in advance

• New APIs for memory allocation/deallocation

• It could fail to reserve huge pages when memory is fragmented

• Transparent huge page management

• Developers do not know about huge page

• OS Transparently allocates/deallocates huge pages

• OS manages memory fragmentation

31

Operating system support for huge pages

Huge pages improve performance
• Application speed up over using base pages only

3
2

0%

10%

20%

30%

40%

50%

60%

Are huge pages a
free lunch?

3
3

Are huge pages a
free lunch?

3
3

Are huge pages a
free lunch?

3
3

Are huge pages a
free lunch?

3
3

Huge page pathologies in Linux

• High page fault latency

• Due to synchronous allocation in fault handler

• Memory bloating

• Huge pages greedily allocated

• Unfair huge page allocation

• E.g., one VM gets huge pages, maintains

improved performance

3
4

Page fault latency

• Fault handler gets huge page from allocator and

zeroes it (terrible for application tail latency)

• 4KB page : 3.6 us

• 2MB page : 378.0 us (mostly from page zeroing)

• Fault handler can trigger memory compaction

• 2 minutes to fragment 24 GB

• All memory sizes eventually fragment

3
5

Memory bloating

• Greedy allocation in Linux

• Allocate a huge page on first fault to
huge page region

• The huge page region may not be fully
used

• Greedy allocation causes
severe internal fragmentation

• Memory use often sparse

• What kind of fragmentation is
this?

3
6

Virtual

address
Physical

address

Huge page

boundary

H

H
Huge page

region

H

Used virtual address

Unused virtual address

Memory bloating

• Greedy allocation in Linux

• Allocate a huge page on first fault to
huge page region

• The huge page region may not be fully
used

• Greedy allocation causes
severe internal fragmentation

• Memory use often sparse

• What kind of fragmentation is
this?

3
6

Virtual

address
Physical

address

Huge page

boundary

H

H
Huge page

region

H

Used virtual address

Unused virtual address

	Slide 1: Superpages
	Slide 2: Virtualization/Superpages faux quiz (pick 2, 5 min)
	Slide 3: Virtual Memory: Goals…what are they again?
	Slide 4: Address Translation with Segments
	Slide 5: Address Translation with Segments
	Slide 6: Address Translation with Segments
	Slide 7: Address Translation with Segments
	Slide 8: Address Translation with Segments
	Slide 9: Address Translation with Segments
	Slide 10: Address Translation with Segments
	Slide 11: Address Translation with Segments
	Slide 12: Address Translation with Segments
	Slide 13: Address Translation with Segments
	Slide 14: Process Address Space
	Slide 15: Process Address Space
	Slide 16: Linear  Physical Translation
	Slide 17: Linear  Physical Translation
	Slide 18: Linear  Physical Translation
	Slide 19: Linear  Physical Translation
	Slide 20: Linear  Physical Translation
	Slide 21: Handle a page fault
	Slide 22: Handle a page fault, more detail
	Slide 23: Sidebar: KASLR, KPTI
	Slide 24: TLB organization
	Slide 25: It’s all about the TLB!
	Slide 26: It’s all about the TLB!
	Slide 27: It’s all about the TLB!
	Slide 28: TLB coverage trend
	Slide 29: TLB coverage trend
	Slide 30: TLB coverage trend
	Slide 31: How to increase TLB coverage
	Slide 32: Superpage Concepts
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Issue 2: promotion
	Slide 38: Issue 2: promotion
	Slide 39: Issue 2: promotion
	Slide 40: Issue 2: promotion
	Slide 41: Issue 3: demotion
	Slide 42: Group activity
	Slide 43: Issue 4: fragmentation
	Slide 44: Issue 4: fragmentation
	Slide 45: FreeBSD Design
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Allocation: managing reservations
	Slide 52: Allocation: managing reservations
	Slide 53: Incremental promotions
	Slide 54: Speculative demotions
	Slide 55: Demotions: dirty superpages
	Slide 56: Fragmentation control
	Slide 57: Intel’s Sunny Cove 2019
	Slide 58
	Slide 59
	Slide 60: Guest superpages Or Host superpages?
	Slide 61: Operating system support for huge pages
	Slide 62: Huge pages improve performance
	Slide 63: Are huge pages a free lunch?
	Slide 64: Are huge pages a free lunch?
	Slide 65: Are huge pages a free lunch?
	Slide 66: Are huge pages a free lunch?
	Slide 67: Huge page pathologies in Linux
	Slide 68: Page fault latency
	Slide 69: Memory bloating
	Slide 70: Memory bloating

