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Virtualization/Superpages faux quiz (pick 2, 5 min)

1. Define PTE replication? Do we still need it?

2. FreeBSD always breaks superpages on a write. What are the 
alternatives/tradeoffs?

3. Define reference/dirty bit emulation. 

4. What is a population map?

5. Why super-pages instead of big segments? 



Virtual Memory: Goals…what are they again?

• Abstraction: contiguous, isolated memory
• Remember overlays?

• Prevent illegal operations
• Access to others/OS memory

• Fail fast (e.g. segv on *(NULL))

• Prevent exploits that try to execute program data

• Sharing mechanism/IPC substrate
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Address Translation with Segments

• Segmentation cannot be disabled
• Can be made a no-op (flat mode)

• Segment = <base,len,type(code,data,stack)>
• AS → 6 segments: regs cs, ds, ss, es, fs, gs

• Programming model: prefix refs with segment

Q: How to make segmentation a 
no-op?

Q: How to implement TLS?
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Q: How to manage mapping (VA/LA/PA)?
Q: How to enforce access restrictions?
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Linear → Physical Translation

Level 4 idx Level 3 idx Level 2 idx Level 1 idx offset
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Linear → Physical Translation

• Q: how many ops to translate?

• Q: why does this perform at all?



Handle a page fault



Handle a page 
fault, more 
detail



Sidebar: KASLR, KPTI

• KASLR → Kernel address 
space layout randomization

• KPTI/KAISER → Kernel page-
table isolation separates 
most kernel memory from 
user

• In user-space, map only 
information needed for 
interrupts, sys enter/exit



TLB organization

• How big does TLB actually have to be?
• Usually small: 128-512 entries
• Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
• Lookup is by Virtual Address
• Returns Physical Address + other info
• Recent architectures: set associativity in multi-level TLBs

Example: MIPS R3000

0xFA00 0x0003 Y N Y R/W 34

0x0040 0x0010 N Y Y R 0

0x0041 0x0011 N Y Y R 0

Virtual Address       Physical Address     Dirty   Ref   Valid   Access   ASID
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It’s all about the TLB!

Broadwell

Q: What fraction of a 4GB memory can a 
128-entry TLB “cover”/”reach”?
Q: Why are the TLBs so small?
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How to increase TLB coverage

• Typical TLB coverage  1 MB (before ~2015)

• Use superpages!
• large and small pages

• Increase TLB coverage
• no increase in TLB size

• no internal fragmentation

• Paper covers the challenges



Superpage Concepts

• Memory pages of larger sizes
• supported by most modern CPUs via MMU

• Otherwise, same as normal pages
• power of 2 size

• use only one TLB entry

• contiguous

• aligned (physically and virtually)

• uniform protection attributes

• one reference bit, one dirty bit
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Issue 2: promotion

• Promotion: create a superpage out of a set of 
smaller pages

• mark page table entry of each base page

• When to promote?

Eagerly promote?

May cause internal fragmentation.



Issue 3: demotion

When?

• page attributes of base pages in superpage
become non-uniform

• during partial pageouts

Demotion: “splinter” superpage into smaller pages



Group activity

• Summarize the paper’s policy for
• Allocation

• Promotion

• Demotion

• Give a specific example of where each would happen
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FreeBSD Design
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Superpage allocation
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Goal: good TLB coverage,

without internal fragmentation.

Allocation: reservation size

• Opportunistic policy

• Choose biggest size no larger than object (e.g., file)

• Size not available → preempt or resign to a smaller size



Allocation: managing reservations

largest unused (and aligned) chunk
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Allocation: managing reservations

largest unused (and aligned) chunk

best candidate for preemption at front:

 reservation whose most recently populated 

frame was populated the least recently

1

2

4



Incremental promotions

Promotion policy: opportunistic

2

4

4+2

8



Speculative demotions

• One reference bit per superpage
• How do we detect portions of a superpage not referenced anymore?

• On memory pressure, demote superpages when resetting ref bit

• Re-promote (incrementally) as pages are referenced



Demotions: dirty superpages
• One dirty bit per superpage

• what’s dirty and what’s not?

• page out entire superpage

• Demote on first write to clean superpage

write

 Re-promote (incrementally) as other 

pages are dirtied



Fragmentation control

• Low contiguity: modified page daemon
• restore contiguity

• move clean, inactive pages to the free list

• minimize impact 
• prefer pages that contribute the most to contiguity

• keep contents for as long as possible
(even when part of a reservation: 
if reactivated, break reservation)

• Cluster wired pages



Intel’s Sunny Cove 2019

• 5-Level Paging
• Large virtual address (57 bits, up from 48 bits)
• Large virtual address space (128 PiB, up from 256 TiB)

• DTLB Load (DTLB split for loads and stores)
• 4KB; 64 entries; 4-way set associative
• 2MB; 32 entries; 4-way set associative
• 1GB; 8 entries; 8-way set associative

• DTLB Stores
• 4KB, 2MB, 1GB; 16 entries; 16-way set associative

• STLB, 2048 entries
• 2,048 entries; 16-way set associative

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove







Guest superpages
Or
Host superpages?

• Need both!



• User-controlled huge page management

• Admin reserves huge page in advance

• New APIs for memory allocation/deallocation

• It could fail to reserve huge pages when memory is fragmented

• Transparent huge page management

• Developers do not know about huge page

• OS Transparently allocates/deallocates huge pages

• OS manages memory fragmentation

31

Operating system support for huge pages



Huge pages improve performance
• Application speed up over using base pages only
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Huge page pathologies in Linux

• High page fault latency

• Due to synchronous allocation in fault handler

• Memory bloating

• Huge pages greedily allocated

• Unfair huge page allocation

• E.g., one VM gets huge pages, maintains 

improved performance

3
4



Page fault latency

• Fault handler gets huge page from allocator and 

zeroes it (terrible for application tail latency)

• 4KB page :     3.6 us

• 2MB page : 378.0 us (mostly from page zeroing)

• Fault handler can trigger memory compaction

• 2 minutes to fragment 24 GB 

• All memory sizes eventually fragment 

3
5



Memory bloating

• Greedy allocation in Linux

• Allocate a huge page on first fault to 
huge page region

• The huge page region may not be fully 
used

• Greedy allocation causes 
severe internal fragmentation

• Memory use often sparse

• What kind of fragmentation is 
this?

3
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