Superpages

Emmett Witchel
CS380L

Virtualization/Superpages faux quiz (pick 2, 5 min)

Define PTE replication? Do we still need it?

2. FreeBSD always breaks superpages on a write. What are the
alternatives/tradeoffs?

3. Define reference/dirty bit emulation.
4. What is a population map?
5. Why super-pages instead of big segments?

Virtual Memory: Goals...what are they again?

* Abstraction: contiguous, isolated memory
* Remember overlays?

* Prevent illegal operations
* Access to others/OS memory
* Fail fast (e.g. segv on *(NULL))
* Prevent exploits that try to execute program data

* Sharing mechanism/IPC substrate

Address Translation with Segments

Address Translation with Segments

Oxdeadbeef

Virtual Address

Address Translation with Segments

Oxdeadbeef [5egmentaﬁnn>

Virtual Address

Address Translation with Segments

Virtual Address Linear Address Physical Address

| J
|

Protected/Long mode only

Address Translation with Segments

Virtual Address Linear Address Physical Address

| J
|

Protected/Long mode only

* Segmentation cannot be disabled
e Can be made a no-op (flat mode)

Address Translation with Segments

Virtual Address Linear Address Physical Address

| J
|

Protected/Long mode only

* Segmentation cannot be disabled
e Can be made a no-op (flat mode)

* Segment = <base,len,type(code,data,stack)>
* AS = 6 segments: regs cs, ds, ss, es, fs, gs

Address Translation with Segments

Virtual Address Linear Address Physical Address
\)
|

Protected/Long mode only

* Segmentation cannot be disabled
e Can be made a no-op (flat mode)

* Segment = <base,len,type(code,data,stack)>
* AS = 6 segments: regs cs, ds, ss, es, fs, gs

* Programming model: prefix refs with segment

Address Translation with Segments

Virtual Address Linear Address Physical Address

| J
|

Protected/Long mode only

* Segmentation cannot be disabled // global int x =1 |ds:x = 1; // data
int y; // stack ss:y; // stack
Can be made a no-op (flat mode) if (%) { if (ds:x) {
* Segment = <base,len,type(code,data,stack)> y =L ssiy = 1i
printf (“Boo”); cs:printf{ds:“Boo”);
* AS = 6 segments: regs cs, ds, ss, es, fs, gs } else el
else

* Programming model: prefix refs with segment y =0 ssty = 0;

Address Translation with Segments

| l _

Virtual Address Linear Address Physical Address
|

Protected/Long mode only

Segmentation

* Segmentation cannot be disabled // global int x =1 |ds:x = 1; // data
int y; // stack ss:y; // stack
Can be made a no-op (flat mode) if (%) { if (ds:x) {
* Segment = <base,len,type(code,data,stack)> y =1 ss:y = i
printf (“Boo”); cs:printf{ds:“Boo”);
* AS = 6 segments: regs cs, ds, ss, es, fs, gs } else el
else

* Programming model: prefix refs with segment v =0 ssty = 0;

Address Translation with Segments

WGEELLEEE | Segmentation “
Virtual Address Linear Address Physical Address
)

|
Protected/Long mode only

* Segmentation cannot be disabled // global int x = 1 |ds:x = 1; // data

e Can be made a no-op (flat mode) i:t(z) :/ stack ji”:;gf;f:“k
* Segment = <base,len,type(code,data,stack)> y = bi ssiy = Li

* AS = 6 segments: regs cs, ds, ss, es, fs, gs } elseprmtf Leeny cssprintr(ds:thoon);
* Programming model: prefix refs with segment y =0 } elsess=y - 0,

FFFFFFFF.

»

C0400000

1 GB

C0000000

—

Y

P1

Process Address Space

—_—

access requires kernel mode

free

used

—_—

access possible in user mode

FFFFFFFF £
Pl

Process Address Space

—_—

access requires kernel mode

Ay
C0000000_,
R ustack (1)
m
(N
Q: How to manage mapping (VA/LA/PA)?
Q: How to enforce access restrictions?

| ‘n— access pOSSIb|e in user mode
o _, ’

C0400000 [~

1 GB

free

used

Linear = Physical Translation

[#PML4 | #PDPT | #PGD #PGT | Offset
47 5 38 i 29 : 20 5 11 i
~ 9 x 9 x 9 ¥ 9 &4 12
PME4E 0 L] L
| PTE
prTE Physical Address
|_._PDE_ |
29
PMIL4 PDPT PGD PGT

Linear = Physical Translation

virtual address

Level 4 idx

Level 3 idx

Level 2 idx

Level 1 idx

offset

entry

entry

L.

entry

address

entry

Linear = Physical Translation

virtual address
| Level4idx | Level3idx | Level2idx | Level1idx | offset |

—p address

entry 'y
entry
7'y
entry - T~
entry - \-L E
A - -
_ i 3
’_-g ,—E = L
i 7
e 1 2 A4
il i ¥ '
;] i
] a ¥ & A i
‘rg 1 ! d
j ! -
| | A——t
A :f \ A=
| A——i

Linear = Physical Translation

virtual address
| Level4idx | Level3idx | Level2idx | Level1idx | offset |

—p address

entry 'y
entry -
entry \.L
entry . \,__L 1 : '—-g
3 E :
— —] :
i i
'_% 1 23 \ 4
i \f]
i | L I
" ml: 1 i I— ! * Q: how many ops to translate?
f ! L
| —
-

Linear = Physical Translation

virtual address
| Level4idx | Level3idx | Level2idx | Level1idx | offset |

—p address
entry 'y
entry "
entry \.L
entry . \,__L 1 : '—-g
3 E :
— - ; :
i 7
'_% 1 23 \ 4
i i " |
1] 3 :
" ml: 1 I— ! * Q: how many ops to translate?
Ire Vo — * Q: why does this perform at all?
v U]

Handle a page fault

Kernel or User-
space address?

Kernel User

Kernel mode? No Segmentation Fault I

No
Sufficient privileges? | Segmentation Fault |
Synchronize with Yes No
reference page table -
‘ Handle request I ‘ Segmentation Fault I

Demand Paging/Allocation,
Swapping or COW

Mapping exists?

fault, more
detall

Handle a page

do_page_faultl

| Save faulting address |

vmalloc-Handler I

Interrupt handler I . .
fixup exception

Address > TASK _SIZE
and no protection fault
and kernel mode?

No find_vmal

: No
Vm_area_structemsm?l

Yes

unsuccesssful

No

SMEELFEEexpand_stack

Usermode access

Segmentation Fault

L

fixup_exception

fixup_exception]

| successsful |

Allowed read access,
page not present

Alllowed write access
page not present

Not allowed
write access

Not allowed
read access

Lﬂhandle_mm_faultl

Sidebar: KASLR, KPTI

e KASLR > Kernel address
space layout randomization

* KPTI/KAISER = Kernel page-
table isolation separates
most kernel memory from
user

* In user-space, map only
information needed for
interrupts, sys enter/exit

Kernel page-table isolation

Kernel space Kernel space

Kernel space

User space User space

User space

User mode Kernel mode
Kernel mode

User mode

TLB organization

* How big does TLB actually have to be?

e Usually small: 128-512 entries

* Not very big, can support higher associativity

e TLB usually organized as fully-associative cache
* Lookup is by Virtual Address

* Returns Physical Address + other info

* Recent architectures: set associativity in multi-level TLBs

Virtual Address Physical Address | Dirty | Ref | Valid |Access |ASID
OxFAO0O0 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Example: MIPS R3000

|t’S a I | a b O Ut th e T I_ B l Front End I e e e

Branch HOP Cache 32KB 8-Way Instruction
Predicition 1] TLB

T 16 Bytes
e Instruction Fetch
Virtual address | & PreDecode ‘
31 30 29 crerrrriiiniianeniiiiin 14 13 12 11 10 9--++--+ 3240
€ |4 Instructions.
| Virtual page number Page offset |

Instruction Queue
420 1 12 (50, 2x25 entries)

5 1A Instructisns

Valid Dirty Tag Physical page number 4-Way Decode
(Micro-Fusian & Macro-Fusion)
TLB @ MicroCode Complex|[simple |[Simple |[Simple
[Cham ROM Decoder || Decoder || Decoder || Decoder
TLB hit -t i Upto 4
8 Niil. 4 Fused pOFs
@ UOP Cache / ‘ Allocation Queue (56, 2x28 POPs) |
(Ol (1.5k HOPs; B8-Way)| 32 Bytes 4 Fused LOPs
J20
l [Rename / Allocate / Retirement = H
2 | ReQrder Buffer (192 entries)
Physical page number Page offset
Physical address B | | B | | | |
Physical address tag Cache index Blogk Byte M H & x i » " B
offset offset
Scheduler
+18 N \\4 2 Unified Reservation Station (RS)
integer Physical Register Ale 164 entries] Vector Physical Register fls o
(168 Registers) (168 Registers) w
Fort 0 Port 1 Fort 5 Fort 6 Fort 2 Fort 3 Fort 4 Fort 7 - % %)
e
\\8 ALU & Shift ALU ALU LU & Shil Store tore Addr: 5 90 3
12 Data Branch LEA LEA Branch |Etore AddrgBtore Addr Data é =
i N Divide Multij wect Shuffle a o
Valid Tag 256b FMA |[256b FMA | [Vect Int ALU <
256b FP Mul | |256b FP Add]||Vector Legic
Vect Int Mul | [Vect Int ALU
Vector Logic | [Vector Logic|
Vector Shift
Cache
B
Store Buffer & Forwarding
(42 entries)
- 32B/Cycle store
Data TLB
Cache hit L1 Data Cache 4
Load Buffer 32KB 8-Way 64B/C
e i cle
2x32B/Cycle load (72 entries) -
)) Memory
Je2 Execution Engine
Data

Broadwell

£1

It’s all about the TLB!

Virtual address
31 30 29 crerrrriiiniianeniiiiin 14 13 12 11 10 9--++--+ 3240

| Virtual page number

Jd20 1 12
Valid Dirty Tag Physical page number
TLB Q
[Che=
TLB hit =—e [Cham

[Cham

[©)

O+

420
Physical page number | Page offset
Physical address
; : Block Byte
Physical address tag I Cache index ofisot offsot
~|JB Js J4 ‘lg
48
Jd42 Data
Valid Tag
Cache
— L
(=
Cache hit
L
432
Data

Front End Instruction i
cacheTag| L1 Instruction Cache
Branch HOP Cache 32KB 8-Way Instruction
Predicition =0 TLB
T 16 Bytes
Instruction Fetch
& PreDecode
&1A Instructions
Instruction Queue
(50, 2x25 entries)
5 1A Instructions
4-Way Decode
{Micro-Fusion & Macro-Fusian)
MicroCode Complex|[simple |[Simple |[Simple
ROM Decoder || Decoder || Decoder || Decoder
Uptos
N1 4 Fused LOF's
UOP Cache / ‘ Allocation Queue (56, 2x28 POPs) |

(1.5k uOPs; B-Way)| 32 Bytes

4 Fused pOPs

Rename / Allocate / Retirement
ReQrder Buffer (192 entries)

Zeroing Idioms

T = E E E T b= E

5] a 1 8 5] 51 8 1

w o W " W w " W
Scheduler

Unified Reservation Station (RS)
integer Physical Register Ale 164 entries] Vector Physical Register fls
(168 Registers) (168 Registers)
| Port 0 Port1 Port 5 Port & Port 2 Port 3 Port 4 |

ALU & Shift ALU ALU
Branch LEA LEA
Divide Multi wect Shuffle

256b FMA 256b FMA || Vect Int ALU

256b FP Mul][256b FP Add
Vect Int Mul| [Vect Int ALU
Vector Logic | [Vector Logic|
Vector Shift

Vector Logic

Store Buffer & Forwarding
(42 entries)

32B/Cycle store

L1 Data Cach M

32KB 8-Way

Load Buffer
(72 entries)

2x32B/Cycle load

Execution Engine

Broadwell

-
N
0
[
[s]
=
(U]
/Cycle
Memory

£1

It’s all about the TLB

Front End Instruction i
cacheTag| L1 Instruction Cache
Branch | [uop cache 32KB 8-Way Instruction
Predicition =0 TLB
16 Bytes
e Instruction Fetch
Virtual address O e———_
31 180 DO AT s 14 13 12 11 10 Q:-+:--- 3210
| Virtual page number Page offset |
420 12
S 1:
Valid Dirty Tag Physical page number " :-\ﬁ_favf;wdeF o
TLB | M‘CTOCﬂdE Complex|[Simple |[Simple | Simple
ROM Decoder || Decoder || Decoder || Decoder
TLB hit <o | [l | "u’ l 4Fusl wops
UOP Cache Allocation Queue (56, 2x28 POPs)
(1.5k uOPs; B-Way) 32 Bytes Fusad po|
420
I l Rename / Allocate [Hetirgment

Physical page number | Page offset e ENir (2P e

Physical address l l l l l l l
Physical address tag Cache index Blogk Bye
offset offset
Scheduler
+18 \\8 \~4 2 Unified Reservation Station (RS]
integer Physical Register Ale 164 entries] Vector Physical Register fls
(168 Registers) (168 Registers)
Port 1 Fort 5 Fort 3 Fort 4
48
N

8yoed z1

Cache

(42 entries)

| Store Buffer & Forwarding

32 B,,'Cy!e store

i)

L1 Data Cache] [°*= ™8

Cache hit
32KB 8-Way

2x32B/Cycle load (72 entries)

. Memory
on Engine

Broadwell

£1

TLB coverage trend
TLB coverage as percentage of main memory

Factor of 1000 10.0%
decrease in
15 years 1.0%

0.1%

0.01%

0.001%
1985 1990 1995 2000

TLB coverage trend
TLB coverage as percentage of main memory

Factor of 1000
decrease in
15 years

" TLB miss

overhead:
<%

0.001%
1985 1990 1995 2000

TLB coverage trend
TLB coverage as percentage of main memory

Factor of 1000
decrease in
15 years

" TLB miss

overhead:
<%

0.001%
1985 1990 1995 2000

How to increase TLB coverage

* Typical TLB coverage =~ 1 MB (before ~2015)
* Use superpages!

* large and small pages
* Increase TLB coverage

* noincrease in TLB size
* no internal fragmentation

* Paper covers the challenges

Superpage Concepts

* Memory pages of larger sizes

supported by most modern CPUs via MMU

e Otherwise, same as normal pages

power of 2 size

use only one TLB entry
contiguous

aligned (physically and virtually)
uniform protection attributes
one reference bit, one dirty bit

Issue 1: superpage allocation

B virtual memory

superpage boundaries

_
—

B physical memory

+ How / when / what size to allocate?

Issue 1: superpage allocation

Afefcfo

_
—

superpage boundaries

virtual memory

physical memory

+ How / when / what size to allocate?

Issue 1: superpage allocation

Afefcfo

_
—

superpage boundaries

Afefcfo

virtual memory

physical memory

+ How / when / what size to allocate?

Issue 1: superpage allocation

mann

AZBgZC%ZDZ% virtual memory

superpage boundaries

A

Z A% n%c % physical memory

+ How / when / what size to allocate?

Issue 2: promotion

* Promotion: create a superpage out of a set of
smaller pages

* mark page table entry of each base page

* When to promote?

Issue 2: promotion

* Promotion: create a superpage out of a set of

smaller pages

* mark page table entry of each base page

* When to promote?

7.
7.
.

_

Wait for app to touch pages? May lose
opportunity to increase TLB coverage.

~

)

Issue 2: promotion

* Promotion: create a superpage out of a set of
smaller pages

* mark page table entry of each base page

* When to promote?

Create small superpage?
May waste overhead.

Issue 2: promotion

* Promotion: create a superpage out of a set of
smaller pages

* mark page table entry of each base page

* When to promote?

Eagerly promote?
May cause internal fragmentation.

Issue 3: demotion

Demotion: “splinter” superpage into smaller pages

When?

e page attributes of base pages in superpage
become non-uniform

* during partial pageouts

Group activity

 Summarize the paper’s policy for
* Allocation
* Promotion
* Demotion

* Give a specific example of where each would happen

Issue 4: fragmentation

* Memory becomes fragmented due to
* use of multiple page sizes
» persistence of file cache pages
» scattered wired (non-pageable) pages

* Contiguity: contended resource

* OS must

* use contiguity restoration techniques
* trade off impact of contiguity restoration against superpage benefits

Issue 4: fragmentation m

. allocated memory

* Memory becomes fragmented due to extarnal fragmented memory
* use of multiple page sizes [interal fragmented memory
» persistence of file cache pages
» scattered wired (non-pageable) pages

* Contiguity: contended resource

* OS must

* use contiguity restoration techniques
* trade off impact of contiguity restoration against superpage benefits

FreeBSD Design

Superpage allocation

Preemptible reservations

n virtual memory

superpage boundaries

-
—

n physical memory

S G

frames

Superpage allocation

Preemptible reservations

A/B/C/Dé

virtual memory

superpage boundaries

\

?Aé B%C é 2 physical memory

Superpage allocation

Preemptible reservations

A/B/C/Dé

virtual memory

superpage boundaries

\

?Aé B%C é 2 physical memory

How much do we reserve?
Goal: good TLB coverage,
without internal fragmentation.

Superpage allocation

Preemptible reservations

A/B/C/Dé

virtual memory

superpage boundaries

\

?Aé B%C é 2 physical memory

\

How much do we reserve?
Goal: good TLB coverage,
without internal fragmentation.

Superpage allocation

Preemptible reservations

? é B é C % D g virtual memory

superpage boundaries

T F

physical memory

\&\

7AafBZC/D

rrrrs. /IIIIIJIIIIIJIIII

— Allocation: reservation size

HOW mUCh dO we reserve? ° Opportunistic pollcy
Goal: good TLB coverage,

without internal fragmentation. ° Choose biggest size no larger than object (e.g., file)

* Size not available =2 preempt or resign to a smaller size

Allocation: managing reservations

largest unused (and aligned) chunk

\m
[N

]

N — N

Y

Ll

Allocation: managing reservations

largest unused (and aligned) chunk

& ER RN
Ol —C0m N
= | B I

best candidate for preemption at front:

¢ reservation whose most recently populated
frame was populated the least recently

Incremental promotions

Promotion policy: opportunistic

LN

\

o \“““ o \“““ o
ERRRRRN

\ \

Speculative demotions

* One reference bit per superpage
 How do we detect portions of a superpage not referenced anymore?

* On memory pressure, demote superpages when resetting ref bit
* Re-promote (incrementally) as pages are referenced

Demotions: dirty superpages

* One dirty bit per superpage
e what’s dirty and what’s not?
* page out entire superpage

 Demote on first write to clean superpage

* Re-promote (incrementally) as other
pages are dirtied

Fragmentation control

* Low contiguity: modified page daemon
* restore contiguity
* move clean, inactive pages to the free list
* minimize impact
» prefer pages that contribute the most to contiguity

» keep contents for as long as possible
(even when part of a reservation:
if reactivated, break reservation)

* Cluster wired pages

Intel’s Sunny Cove 2019

e 5-Level Paging
 Large virtual address (57 bits, up from 48 bits)
e Large virtual address space (128 PiB, up from 256 TiB)

* DTLB Load (DTLB split for loads and stores)

* 4KB; 64 entries; 4-way set associative
* 2MB; 32 entries; 4-way set associative
* 1GB; 8 entries; 8-way set associative

* DTLB Stores
* 4KB, 2MB, 1GB; 16 entries; 16-way set associative

 STLB, 2048 entries

* 2,048 entries; 16-way set associative

https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove

Huge pages improve TLB coverage

Architecture supports larger page size (e.g., 2MB page)
Intel: O to 1,536 entries in 2 years (2013 ~ 2015)

Operating system has the burden of better huge page support

TLB coverage proportional to 64 GB DRAM

. B 4KB page B 2MB page
5% 4.6%

4% —
3.2%
3%

2%
1%

0.01% 0.1% 0.01% 0.1% 0.05%

Sandy Bridge Ivy Bridge Haswell Skylake
201 2013 2014 2015

0%

High address translation cost

+ Virtualization requires additional address translation

% of cpu cycles spent by page walk

Virtual address 70%
50% B Host page table walk
Guest page table B Guest page table walk
G) g 50%
uest physical B 4o
address >
30%
Host page table a
i Pag Q 20% -
Host physical 10%
ddr
d 55 0%

429.mcf Graph analytics SVM MongoDB

Workloads hBgH hHgB hHgH

Guest superpages 429.mcf 1.18 1.13 1.43
O Canneal 1.11 1.10 1.32
r SVM 1.14 1.17 1.53
Host superpages? Tunkrank 1.11 1.11 1.30
Nutch 1.01 1.07 1.12

e Need both! MovieRecmd 1.03 1.02 1.11
Olio 1.43 1.08 1.46

Redis 1.12 1.04 1.20

MongoDB 1.08 1.22 1.37

Table 3: Application speed up for huge page (2 MB)
support relative to host (h) and guest (g) using base (4 KB)
pages. For example, h_B means the host uses base pages
and h_H means the host uses both base and huge pages.

Operating system support for huge pages

« User-controlled huge page management

« Admin reserves huge page in advance
 New APIs for memory allocation/deallocation

It could fail to reserve huge pages when memory is fragmented

 Transparent huge page management

« Developers do not know about huge page
« OS Transparently allocates/deallocates huge pages

« OS manages memory fragmentation

Hu

oe pages improve performance

Better

« Application speed up over using base pages only

60%
50% o [
o
340% g B
3
230 Mmoo
JoaEe [N BEE BEE B BE—— .
10% B . ---------------- I ---------------------
0% | | | e | | |
e N N T S D o
& Y oy & & Qgp S R
o & W O ¢ O &
v S N
3

Redis 3.1.103 (3bba4842/1) 64 bit

Running in standalone mode
Port: 6379
PID: 30064

http://redis.io

30064:M @4 Aug 17:19:08.927 # WARNING: The TCP backlog setting of 511 cannot be enfor

ced because /proc/sys/net/core/somaxconn 1s set to the 1ower value of 128.

30064:M 04 Aug 17:19:08.927 £ _Se

30064:M 04 Aug 17:19:08.927 § support e

nabled in your kernel. This willL create Latency and memory usage issues with Redis. T

o fix this issue run the command 'echo never > /sys/kernel/mm/transparent_hugepage/en
etc/rc.local in order to retain the setting after

a reboot.j Redis must be restarted after THP 1is disabled.

f mongoDB

Introduction

Installation

The mongo Shell

MongoDB CRUD Operations

Aggregation

Text Search

Data Models

Administration
Production Notes
Operations Checklist
Development Checklist

= Performance

+ Database Prafiler

30064 M 04 Aug 17 19 08.927
nabled in your kernel. This will create Latency
o fix this issue run the command
abled’
a reboot.

as root

and add it to vour

Redis must be restarted after THP is disabled.

| DOCUMENTATION SERVER DRIVERS CLOUD SERVICES

Was this page helpful? Yes Mo

Administration > MongoDB Performance > Disable Transparent Huge Pages (THPF)

Disable Transparent Huge Pages (THP)

On this page

s |nit Script
* Using tuned and ktune
* Test Your Changes

Transparent Huge Pages (THP) is a Linux memory management system that reduces the overhead of
Translation Lookaside Buffer (TLB) lookups on machines with large amounts of memory by using larger
memory pages.

However, database workloads often perform poorly with THP, because they tend to have sparse rather than
contiguous memory access patterns. You should disable THP on Linux machines to ensure best performance
with MongoDB.

WARNING you have Transparent Huge Pages (THP)Jsupport e
and memory usage i1ssues with Redis. T
'echo never > /sys/kernel/mm/transparent_hugepage/en
etc/rc.local in order to retain the setting after

1

mongo DB. | DOCUMENTATION SERVER DRIVERS CLOUD SERVICES

Was this page helpful? Yes Mo
(Introduction Administration > MongoDB Performance > Disable Transparent Huge Pages (THF) @
| Installati
nstallation .
| Disable Transparent Huge Pages (THP)
The mongo Shell
I
| Mongo Services = Software « Solutions - Community - Resources - About Percona -
| Aggrec I I‘
| Text Se \ -
Data M
aminie WhHhy TOkuDB hates Transparent HugePages Subscribe
Produ . . , -
Opera Peter Zaitsev MySQL, TokuDB Want to get weekly updates listing the
st ? i
3 /) Develd If you try to install the TokuDB storage engine on a modern Linux distribution it might fail with following error message: itesit blog posta? Subscribe now and
cells Periar we'll send you an update every Friday
+ Dat: at 1pm ET.
3 JI0% 2014-07-17 19:02:55 13865 [ERRCR] TokuDE will not run with transparent huge pages enabled.
30064 : 2014-07-17 19:02:55 13865 [ERROR] Please disable them to continue. Subscribe to our blog
nabl ed 2014-07-17 19:02:55 13865 [ERRCHR] (echo never > /sys/kermel/mm/transparent_hugepage/enabled)
O.F.i_x AT LA - LJ LA L4 - LJ =V T W N - LA oy - "_"'_ -

abled'

as root. and add it to vour /etc/rc.local in order to retain the setting after

a reboot.j Redis must be restarted after THP 1is disabled.

Disable Transparent Huge Pages (THP)

2.3.2. Disable Transparent Huge Pages

)

n IBM Support

c splunk':, docs PRODUCTS ~ SOLUTIONS ~ CUSTOMERS ~ COMMUNITY ~ SPLEXICON Support & Service My Account Search D

1

. CIOUdera Why Cloudera Products Services & Support Solutions Get Started

°kta PRODUCT DOCS DISCUSSION supPorT Q) GET STARTE

Transparent Huge Pages: Thanks for your help...please don’t help

By the next morning CPU contention was worse.

The alarmingly high system CPU usage that we'd seen in the previous 3 months was always due to MySQL using kernel mutex. But since we'd fixed that

problem, what the heck was this?

We discussed turning off TCMalloc, but that would've been a mistake. Implementing TCMalloc was a critical link in the chain of problems and solutions that

ultimately strengthened our platform.

We discovered very quickly that the culprit this time was a khugepaged enabled by a Linux kernel flag called Transparent Huge Pages (THP; turned on by
default in most Linux distributions). Huge pages are designed to improve performance by helping the operating system manage large amounts of memory.
They effectively increase the page size from the standard 4kb to 2MB or 1Gb (depending on how it is configured).

THP makes huge pages easier to use by, among other things, arranging your memory into larger chunks. It works great for app servers that are not performing

memeory-intensive operations.
» High Availability B} . .
|
= > Backup and Disaster Recovery Disabling Transparent Hugepage Compaction
» Cloudera Manager Administration Most Linux platforms supported by CDH 5 include a feature called transparent hugepage compaction which

» Cloudera Navigator Data Management interacts poorly with Hadoop workloads and can seriously degrade performance.
Component Administration

Huge page pathologies in Linux

* High page fault latency
* Due to synchronous allocation in fault handler
* Memory bloating

* Huge pages greedily allocated

» Unfair huge page allocation

* E.g., one VM gets huge pages, maintains
Improved performance

Page fault latency

» Fault handler gets huge page from allocator and
zeroes It (terrible for application tail latency)
- 4KB page : 3.6 us
- 2MB page : 378.0 us (mostly from page zeroing)
 Fault handler can trigger memory compaction

« 2 minutes to fragment 24 GB
« All memory sizes eventually fragment

Memory bloating

« Greedy allocation in Linux

« Allocate a huge page on first fault to
huge page region

 The huge page region may not be fully
used

« Greedy allocation causes
severe internal fragmentation

« Memory use often sparse

« What kind of fragmentation is
this?

- Used virtual address

Unused virtual address

Huge page -
boundary %1
Huge page -
region
Virtual Physical

address address

- Used virtual address

Memory bloating

Unused virtual address

« Greedy allocation in Linux B

» Allocate a huge page on first fault to
huge page region Huge page [
 The huge page region may not be fully boundary
used Huge page -
« Greedy allocation causes region
severe internal fragmentation

° Mem(\r\l 1ea nftan enarco

« What
this?

.] allocated memory

external fragmented memory

-,
I

Virtual Physical
address address

. internal fragmented memory

	Slide 1: Superpages
	Slide 2: Virtualization/Superpages faux quiz (pick 2, 5 min)
	Slide 3: Virtual Memory: Goals…what are they again?
	Slide 4: Address Translation with Segments
	Slide 5: Address Translation with Segments
	Slide 6: Address Translation with Segments
	Slide 7: Address Translation with Segments
	Slide 8: Address Translation with Segments
	Slide 9: Address Translation with Segments
	Slide 10: Address Translation with Segments
	Slide 11: Address Translation with Segments
	Slide 12: Address Translation with Segments
	Slide 13: Address Translation with Segments
	Slide 14: Process Address Space
	Slide 15: Process Address Space
	Slide 16: Linear  Physical Translation
	Slide 17: Linear  Physical Translation
	Slide 18: Linear  Physical Translation
	Slide 19: Linear  Physical Translation
	Slide 20: Linear  Physical Translation
	Slide 21: Handle a page fault
	Slide 22: Handle a page fault, more detail
	Slide 23: Sidebar: KASLR, KPTI
	Slide 24: TLB organization
	Slide 25: It’s all about the TLB!
	Slide 26: It’s all about the TLB!
	Slide 27: It’s all about the TLB!
	Slide 28: TLB coverage trend
	Slide 29: TLB coverage trend
	Slide 30: TLB coverage trend
	Slide 31: How to increase TLB coverage
	Slide 32: Superpage Concepts
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Issue 2: promotion
	Slide 38: Issue 2: promotion
	Slide 39: Issue 2: promotion
	Slide 40: Issue 2: promotion
	Slide 41: Issue 3: demotion
	Slide 42: Group activity
	Slide 43: Issue 4: fragmentation
	Slide 44: Issue 4: fragmentation
	Slide 45: FreeBSD Design
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Allocation: managing reservations
	Slide 52: Allocation: managing reservations
	Slide 53: Incremental promotions
	Slide 54: Speculative demotions
	Slide 55: Demotions: dirty superpages
	Slide 56: Fragmentation control
	Slide 57: Intel’s Sunny Cove 2019
	Slide 58
	Slide 59
	Slide 60: Guest superpages Or Host superpages?
	Slide 61: Operating system support for huge pages
	Slide 62: Huge pages improve performance
	Slide 63: Are huge pages a free lunch?
	Slide 64: Are huge pages a free lunch?
	Slide 65: Are huge pages a free lunch?
	Slide 66: Are huge pages a free lunch?
	Slide 67: Huge page pathologies in Linux
	Slide 68: Page fault latency
	Slide 69: Memory bloating
	Slide 70: Memory bloating

