Arrakis

Emmett Witchel
CS380L

Arrakis faux quiz (pick 2, 5 min)

 Compare and contrast interposition techniques in ESX, Xen, Arrakis
 What is the difference between Arrakis/P and Arrakis/N?
 How much control does the OS have over I/O scheduling in Arrakis?

* How would you implement a MLFQ |/O scheduler in Arrakis? An
priority aging 1/O scheduler?

* What new abstractions does Arrakis suggest for user-space 1/0?
 Compare/contrast Arrakis with Exokernel.
* How are file systems shared across processes in Arrakis?

Box drawing Potpourri: OSes, VMSs, Containers

AppA | AppB |: AppA | AppB
Bins/Libs | | Bins/Libs Bins/Libs | | Bins/Libs
OS Services |

Microkernel SPIN
Hardware W Hardware

Microkernels

App A

LibOS

App B

LibOS

Exokernel
Hardware

Extensible OSes

App A

Bins/Libs

Guest
ON)

App B

Bins/Libs

Guest
ON)

Hypervisor

[Host OS]
Hardware

VMs

App A

Bins/Libs

App B

Bins/Libs

i Hardware

| Host OS

Containers

Box drawing Potpourri: OSes, VMSs, Containers

Today’s papers are
about design tradeoffs

App A App B E for these boxes

AppA || AppB |i AppA | AppB | Bins/Libs || Bins/Libs |,

Bins/Libs | | Bins/Libs Bins/Libs || Bins/Libs || App A | App B Guest ’/G,y,%! ApPA | App B

05 | os | N

OS Services LibOS LibOS ” : Bins/Libs | | Bins/Libs

Hardware @ Hardware Hardware | ardware ardware

Microkernels Extensible OSes VMs Containers

Arrakis

* Background
* |/O Architecture
* DMA
* |/O Virtualization
* SR-IOV

e Arrakis

* Some slides adapted (with thanks!) from:
web.eecs.umich.edu/~mosharaf/Slides/EECS582/2016.../101916-JimmyArrakis.pptx
Some slide materials adapted from Simon’s OSDI talk

cs380L

/O Architecture

Graphics nt-side

card slot

Chipse

High-speed

graphics bus

(AGP or PCI
Express)

Northbridge

Memory Slots

(memory
controller hub)

Southbridge

(1/O controller

Ethernet
Audio Codec
CMOS Memory

PCI Slots

Super I/O

Serial Port
Parallel Port
Floppy Disk

Flash ROM oppy Disk
eyboart
(BIOS) "Mouse,

Traditional

Onboard
graphics
controller

Cables and
ports leading
off-board

w/ Northbridge/Southbridge

cs380L

1x16 lanes
PCl Express* 3.0 Graphics

(

2x8 lanes
PCl Express 3.0 Graphics

OR 4th Generation and

1x8 and 2x4 lanes 5th Generation Intel”
PCI Express 3.0 Graphics

Core™ Processors
Three Independent

Display Support

ntel® FDI DMI 2.0

Up to 8 x PCI Express 2.0

Up to 6 x USB 3.0 Ports
14 x USB 2.0 Ports
XHCI; USB Port Disable

Intel® 297
Chipset

Intel® Integrated
10/100/1000 MAC

Intel® Eth I . Intel® ME 9.1 Firmware

ntel” Ethernet Connection and BIOS Support

Intel® Extreme Tuning
Utility Support

Intel® Device Protection
Technology with Boot Guard

Modern:
QPI or HyperTransport

PCle 4.0 reaches 2 GB/s per lane

DDR3/3L
Up to 1600 MHz

DDR3/3L
Up to 1600 MHz

Intel® High
Definition Audio
b/ 6 x SATA ports, eSATA;
- Port Disable

Intel® Rapid Storage
Technology for
PCl Express Storage

Intel® Rapid Storage
Technology with RAID

Intel® Smart Connect

Technology

Intel® Rapid Start

Technology

/O Architecture

! i
Graphics weeeneeeo-- il Front side

card slot

Chipset ;
High-speed
graphics bus
(AGP or PCI
Express)

Northbridge

Memory Slots

(memory
controller hub)

Bus
Southbridge

(1/O controller
hub)

Onboard
graphics
controller

Things to observe:

1x16 lanes
PCl Express* 3.0 Graphics

OR

2x8 lanes
PCl Express 3.0 Graphics
OR

4th Ger and

Significant evolution of path from
devices to memory

Significant diversity in I/O
architectures/chipsets

DMA dominant data movement
primitive

5th Generation Intel®
Core™ Processors

1x8 and 2x4 lanes
PCI Express 3.0 Graphics

Processor Graphics

Three Independent
Display Support

Up to 8 x PCI Express 2.0
5 Gbys each x1

Up to 6 x USB 3.0 Ports
14 x USB 2.0 Ports
XHCI; USB Port Disable

ntel® FDI DMI 2.0

Intel® 297
Chipset

Up to 5 Gb/s

Intel® Integrated
10/100/1000 MAC

DDR3/3L
Up to 1600 MHz

DDR3/3L
Up to 1600 MHz

Intel® High
Definition Audio
- 6 x SATA ports, eSATA;
pens ‘

Intel® Rapid Storage
Technology for
PCI Express Storage

Ethernet — Cables and Intel® Rapid Storage
Audio Codec i PCIExpressxi SMBus Technology with RAID
CMOS Memory — off-board

. . Intel® ME 9.1 Firmware Intel® Smart Connect

PCI Slots Intel® Ethernet Connection and BIOS Support Technology

Intel® Extreme Tuning Intel® Rapid Start
Su REl ’I";O Utility Support Technology
Serial Port
Flash ROM Paraneiort I Intel” Device Protection
Y B optional Technology with Boot Guard

(BIOS)

Traditional

Modern:

QPI or HyperTransport
PCle 4.0 reaches 2 GB/s per lane

w/ Northbridge/Southbridge

cs380L

DMA evolution

CPU L1 e
Core Cache g L E —»| Device
= O o
CPU Memo . S 2 =
ry Device S E
Core Controller L2 Cache o8
22
8 < Memory
‘ 3] .
CPU L1 o Controller
Core Cache
Memory Memory

* Device can read/write memory

 CPU sets up DMA transfers

* Device uses physical address space
* When is/isn’t that OK?

* Device uses translated device addresses
« DMA mappings must be configured
 What mappings to use?

* Who configures IOMMU mappings?
* How many device address spaces?
e Simple if OS mediates access to device

e How to virtualize in VMM?
cs380L

/O Virtualization Techniques

* A - Software only
* B - Directed 1/O (enhance performance)
* C— Directed I/O and Device Sharing (resource saving)

Virtual Machine | Virtual Machine Virtual Machine | Virtual Machine Virtual Machine § Virtual Machine

Virtual Machine Monitor

Virtual Machine
Monitor

u
Vv -
u
|

PCle* Card

Virtual Machine
Monitor

v\

I Virtual Function I

| Physical Function [€———
PCle* Card

C — Directed 1/0 &
Device Sharing

v
PCle* Card

PCle* Card

A — Software only B — Directed 1/0

/O Virtualization Techniques

irtual Ethernet Bridge & Classifier

Network Data -
Network Data

cs380L

/O Virtualization Techniques

- -

SR-IOV
lllusion of multiple virtual devices supported in HW
Simplifies sharing for VMM
Enables direct VM = device communication

Drawbacks?
MR-IOV?

irtual Ethernet Bridge & Classifier

Network Data

cs380L

Storage
vritualization

VM

NVMe
Driver

DMA
Buffer

VM

Front-end

DMA
Buffer
X

X

Host

VFIO-pci

L]

Host

4

Back-end

Data
Buffer

QEMU/ KVM

[

VFS/File System

Block Layer

I/O Scheduler

NVMe Driver

f

NVMe Storage Device

SR-10V

L]
NVMe Storage Device

Common software approach

Modern HW is fast

Typical commodity desktop (Dell PowerEdge R520 ~$1000):

w1 e e |
10G NIC 6-core CPU RAID w/ 1G cache
~2us / 1KB pkt ~25 us / 1KB write

cs380L

Background

* Balance between |/O and CPU speeds has shifted

* CPUs can’t keep up!
% of processing time (Redis NoSQL)

read [87 us
wite [163 us

0% 20% 40% 60% 80% 100%
B Hardware M Kernel m App

Where are all the in-kernel cycles going?

Read hit Durable write
Linux Arrakis/P Linux Arrakis/P
epoll 2.42 (27.91%) 1.12 (27.52%) 2.64 (1.62%) 1.49 (4.73%)
recv 0.98 (11.30%) 0.29 (7.13%) 1.55 (0.95%) 0.66 (2.09%)
Parse input 0.85 (9.80%) 0.66 (16.22%) 2.34 (1.43%) 1.19 (3.78%)
Lookup/set key 0.10 (1.15%) 0.10 (2.46%) 1.03 (0.63%) 0.43 (1.36%)
LLog marshaling - - 3.64 (2.23%) 2.43 (7.71%)
write - - 6.33 (3.88%) 0.10 (0.32%)
fsync - - 137.84 (84.49%) 24.26 (76.99%)
Prepare response 0.60 (6.92%) 0.64 (15.72%) 0.59 (0.36%) 0.10 (0.32%)
send 3.17 (36.56%) 0.71 (17.44%) 5.06 (3.10%) 0.33 (1.05%)
Other 0.55 (6.34%) 0.46 (11.30%) 2.12 (1.30%) 0.52 (1.65%)
Total 8.67 (0=2.55) 407 (c=044) 163.14 (o0=13.68) 31.51 (oc=1.91)

99th percentile 15.21 4.25 188.67 35.76

Where are all the in-kernel cycles going?

Read hit Durable write
Linux Arrakis/P Linux Arrakis/P
epoll 242 (27.91%) 1.12 (27.52%) 2.64 (1.62%) 1.49 (4.73%)
recv 0.98 (11.30%) 0.29 (7.13%) 1.55 (0.95%) 0.66 (2.09%)
Parse input 0.85 (9.80%) 0.66 (16.22%) 2.34 (1.43%) 1.19 (3.78%)
Lookup/set key 0.10 (1.15%) 0.10 (2.46%) 1.03 (0.63%) 0.43 (1.36%)
LLog marshaling - - 3.64 (2.23%) 2.43 (7.71%)
write - - 6.33 (3.88%) 0.10 (0.32%)
fsync - - 137.84 (84.49%) 24.26 (76.99%)
Prepare response 0.60 (6.92%) 0.64 (15.72%) 0.59 (0.36%) 0.10 (0.32%)

send 3.17 (36.56%) 0.71 (17.44%) 5.06 (3.10%) 0.33 (1.05%)

046 (11.30%) 2.12 (1.30%) 0.52 (1.65%)
SyStem ca"S dre SIOW' 407 (c=0.44) 163.14 (o=13.68) 3151 (o=1.9I)

epoll : 27% time of read 4.25 188.67 35.76

recv 11% time of read
send : 37% time of read
fsync : 84% time of write

Where are all the in-kernel cycles going?

Read hit Durable write
Linux Arrakis/P Linux Arrakis/P

epoll 242 (2791%) 1.12 (27.52%) 2.64 (1.62%) 1.49 (4.73%)

recv 098 (11.30%) 0.29 (7.13%) 1.55 (0.95%) 0.66 (2.09%)

Parse input 0.85 (9.80%) 0.66 (16.22%) 2.34 (1.43%) 1.19 (3.78%)

Lookup/set key 0.10 (1.15%) 0.10 (2.46%) 1.03 (0.63%) 0.43 (1.36%)

Log marshaling - - 3.64 (2.23%) 2.43 (7.71%)

write 6.33 (3.88%) 0.10 (0.32%)

fsync - - 137.84 (84.49%) 24.26 (76.99%)

Prepare response 0.60 (6.92%) 0.64 . . .

m—— 317 (36.36%) 071 Arrakis=21/0 centric design
System Calls are slow: o iﬁpfss |t<,eme| v

. ' StracCtions: user-space daevice access
epoll : 27% time of read 4.25 P

recv
send
fsync

11% time of read
37% time of read
84% time of write

SR-IOV higher in stack
* Leverage packet filter/load-
balance/scheduling support

Traditional OS

Apps

Libs

] ||]] ||]] ||]
v

[

Kernel

Hardware

Traditional OS

Apps

Libs

[

API
Naming
Access Ctrl

Protection

Multiplexing

Resource limit

|/O Scheduling

/O Processing

Kernel

Hardware

Kernel bypass

Apps

Libs

[

API
Naming
Access Ctrl

Protection

Multiplexing

Resource limit

|/O Scheduling

/O Processing

Kernel

Hardware

Kernel bypass

Apps

Libs

API Multiplexing

Naming Resource limit

Access Ctrl |/O Scheduling

Protection /O Processing

Kernel

Hardware

Kernel bypass

Apps

Libs

API
Naming
Access Ctrl

Protection

Multiplexing

Resource limit

|/O Scheduling

/O Processing

Kernel

Hardware

Kernel bypass

Apps

Libs

API

Naming
Access Ctrl

Protection

Resource limit

|/O Scheduling

/O Processing

Kernel

Multiplexing

Hardware

Kernel bypass

Apps

Libs

API

Naming

Protection

Access Ctrl

|/O Processing

Kernel

|/O Scheduling

Multiplexing

Hardware

Kernel bypass

Apps

Libs

API
Naming

Access Ctrl

/O Processing

Kernel

Multiplexing

|/O Scheduling

Protection

Hardware

Kernel bypass

Apps

Libs

/O Processing

Kernel

Access Ctrl

Multiplexing

|/O Scheduling

Protection

Hardware

Kernel bypass

API

Multiplexing

|/O Scheduling

Access Ctrl

Apps Libs Hardware

Protection

Kernel

Kernel bypass. The OS is the control plane.

Control Plane [Data Plane
[

A
Control .pps
I libos
] User Space
IHW Space Data

I
Kernel | \/irtual Interface

Control
t Data

Hardware

Hardware Model

* NICs (Multiplexing, Protection, Scheduling)

* Storage
 VSIC (Virtual Storage Interface Controller)
* each w/ queues etc.
e VSA (Virtual Storage Areas)
* mapped to physical devices
 associated with VSICs
* VSA & VSIC : many-to-many mapping

Control Plane Interface

 VIC (Virtual Interface Card)
* Apps can create/delete VICs, associate them to doorbells

* doorbells (like interrupt?)
e associated with events on VICs

* filter creation
e e.g. create_filter(rx,*,tcp.port == 80)

cs380L

Control Plane Features

e Access control
» enforced by filters
 infrequently invoked (during set-up etc.)
* Can export an entire VSA

* Resource limiting

* send commands to hardware I/O schedulers
* Naming

* VFSin kernel

 actual storage implemented in apps

* “By default, the Arrakis application library managing the VSA exports a file server
interface; other apPIications can use normal POSIX API calls via user-level RPC to the
embedded library file server. This library can also run as a standalone process to
provide access when the original application is not active” What does this sound like?

cs380L

Network Data Interface

* Apps send/receive directly through sets of queues
* filters applied for multiplexing
* doorbell used for asynchronous notification (e.g. packet arrival)

* both native (w/ zero-copy) and POSIX are implemented

cs380L

Storage Data Interface

* \VSA supports read, write, flush

* persistent data structure (log, queue)
* modified Redis by 109 LOC
e operations immediately persistent on disk
 eliminate marshaling (layout in memory = in disk)
 data structure specific caching & early allocation

cs380L

Evaluation

UDP echo server
Memcached key-value store
Redis NoSQL store

HTTP load balancer (haproxy)
IP-layer middle box

o Uk wh e

Performance isolation (rate limiting)

Performance

Throughput [k packets / s]

1200 r
1000 ¢
800
600
400 r
200 r

160
140
120
100
80
60
40
20

Throughput [k transactions / s]

2 4 8 16 32 64

Processing time [us]

UDP Echo

T T T]
L|nux I:I

Arrakls/N I
Driver

Linux (SEPOLL) mmommms
Arrakis/P

Llnux e

dd

Number of CPU cores

Load balancer

6

Throughput [k transactions / s]

1200
1000
800
600
400
200

Throughput [k transactions / g]

Llnux threads T
Linux procs @
Arrakis/P

250
200
150
100

50

Number of CPU cores
memcached

Llnux —
Arrakis/P

1
Numberof CPU cores

IP middlebox

Performance

Throughput [k packets / s]

1200
1000
800
600
400
200

1

Throughput [k transactions / s]

160
140
120

00
80
60
40
20

Arrakls/N I
Driver

O 1 2 4 8 16 aYi
Processing time |

UDP Echo

T T T]
L|nux I:I

Llnux e

Linux (SEPOLL) mmommms
Arrakis/P

dd

Number of CPU cores

6

Load balancer

Throughput [k transactions / s]

1200 F
1000 r
800 r
600
400
200

Llnux threads T
Linux procs @
Arrakis/P

C
S
5 200
©
=
S 150
X100
3
& 50
S
© 0
L
|_

Number of CPU cores
memcached

Lmux —
Arrakis/P

1
Numberof CPU cores

IP middlebox

Case 6: Performance Isolation

1400
1200 -
1000 -

800

B _
2 Qulls

Arrakis/P Linux Arrakis/P Linux
No limit 100Mbit/s limit

Throughput [k transactions / s]

cs380L

Case 6: Performance Isolation

1400
1200 -
1000
800
600
400
200

Il What mechanism(s) enable(s) Arrakis to
H sl achieve proportionality?

Arrakis/P Linux Arrakis/P Linux
No limit 100Mbit/s limit

Throughput [k transactions / s]

cs380L

Discussion

* Pros:
* much better raw performance (for I/O intensive Data Center apps)
e Redis: up to 9x throughput and 81% speedup
* Memcached: scales to 3x throughput

 Cons:

* some features require hardware functionality that is not yet available
* will other device classes follow suit?

* requires modification of applications
* not clear about storage abstractions
* not easy to track behaviors inside the hardware

* Is Arrakis trading “OS features” for raw performance?

cs380L

X, Arrakis, Exokernel, Multikernel

 Arrakis is like Exokernel built on Barrelfish (multikernel)

Reduce SysCall overhead Adaptive batching No SysCall in data-plane
Run to completion

Hardware virtualization No IOMMU Expect more than what we
No SR-IOV have
Enforcement of Under software control Rely on hardware

network |/O policy

cs380L

	Slide 1: Arrakis
	Slide 2: Arrakis faux quiz (pick 2, 5 min)
	Slide 3: Box drawing Potpourri: OSes, VMs, Containers
	Slide 4: Box drawing Potpourri: OSes, VMs, Containers
	Slide 5: Arrakis
	Slide 6: I/O Architecture
	Slide 7: I/O Architecture
	Slide 8: DMA evolution
	Slide 9: I/O Virtualization Techniques
	Slide 10: I/O Virtualization Techniques
	Slide 11: I/O Virtualization Techniques
	Slide 12: Storage vritualization
	Slide 13: Modern HW is fast
	Slide 14: Background
	Slide 15: Where are all the in-kernel cycles going?
	Slide 16: Where are all the in-kernel cycles going?
	Slide 17: Where are all the in-kernel cycles going?
	Slide 18: Traditional OS
	Slide 19: Traditional OS
	Slide 20: Kernel bypass
	Slide 21: Kernel bypass
	Slide 22: Kernel bypass
	Slide 23: Kernel bypass
	Slide 24: Kernel bypass
	Slide 25: Kernel bypass
	Slide 26: Kernel bypass
	Slide 27: Kernel bypass
	Slide 28: Kernel bypass. The OS is the control plane.
	Slide 29: Hardware Model
	Slide 30: Control Plane Interface
	Slide 31: Control Plane Features
	Slide 32: Network Data Interface
	Slide 33: Storage Data Interface
	Slide 34: Evaluation
	Slide 35: Performance
	Slide 36: Performance
	Slide 38: Case 6: Performance Isolation
	Slide 39: Case 6: Performance Isolation
	Slide 40: Discussion
	Slide 42: IX, Arrakis, Exokernel, Multikernel

