
Arrakis

Emmett Witchel

CS380L

Arrakis faux quiz (pick 2, 5 min)
• Compare and contrast interposition techniques in ESX, Xen, Arrakis

• What is the difference between Arrakis/P and Arrakis/N?

• How much control does the OS have over I/O scheduling in Arrakis?

• How would you implement a MLFQ I/O scheduler in Arrakis? An
priority aging I/O scheduler?

• What new abstractions does Arrakis suggest for user-space I/O?

• Compare/contrast Arrakis with Exokernel.

• How are file systems shared across processes in Arrakis?

Box drawing Potpourri: OSes, VMs, Containers

Hardware

[Host OS]

Hypervisor

Guest
OS

Bins/Libs

App A

Guest
OS

Bins/Libs

App B

Hardware

Host OS

Bins/Libs

App A

Bins/Libs

App B

Hardware
Exokernel

LibOS

App A

LibOS

App B

Hardware

SPIN

Bins/Libs

App A

Bins/Libs

App B

Extensions

Hardware

Microkernel

Bins/Libs

App A

Bins/Libs

App B

OS Services

Microkernels Extensible OSes VMs Containers

Box drawing Potpourri: OSes, VMs, Containers

Hardware

[Host OS]

Hypervisor

Guest
OS

Bins/Libs

App A

Guest
OS

Bins/Libs

App B

Hardware

Host OS

Bins/Libs

App A

Bins/Libs

App B

Hardware
Exokernel

LibOS

App A

LibOS

App B

Hardware

SPIN

Bins/Libs

App A

Bins/Libs

App B

Extensions

Hardware

Microkernel

Bins/Libs

App A

Bins/Libs

App B

OS Services

Microkernels Extensible OSes VMs Containers

Today’s papers are
about design tradeoffs
for these boxes

Arrakis

• Background
• I/O Architecture

• DMA

• I/O Virtualization

• SR-IOV

• Arrakis
• Some slides adapted (with thanks!) from:

web.eecs.umich.edu/~mosharaf/Slides/EECS582/2016.../101916-JimmyArrakis.pptx

Some slide materials adapted from Simon’s OSDI talk

cs380L

I/O Architecture

cs380L

Traditional
w/ Northbridge/Southbridge

Modern:
QPI or HyperTransport

PCIe 4.0 reaches 2 GB/s per lane

I/O Architecture

cs380L

Traditional
w/ Northbridge/Southbridge

Modern:
QPI or HyperTransport

Things to observe:
• Significant evolution of path from

devices to memory
• Significant diversity in I/O

architectures/chipsets
• DMA dominant data movement

primitive

PCIe 4.0 reaches 2 GB/s per lane

DMA evolution

cs380L

• Device can read/write memory
• CPU sets up DMA transfers
• Device uses physical address space

• When is/isn’t that OK?

• Device uses translated device addresses
• DMA mappings must be configured
• What mappings to use?
• Who configures IOMMU mappings?
• How many device address spaces?

• Simple if OS mediates access to device
• How to virtualize in VMM?

I/O Virtualization Techniques
• A - Software only

• B - Directed I/O (enhance performance)

• C – Directed I/O and Device Sharing (resource saving)

Virtual MachineVirtual Machine

I/O Driver

Virtual Machine

I/O Driver

Virtual Machine Monitor

A – Software only

Virtual Machine

I/O Driver

Virtual Machine

I/O Driver

Virtual Machine
Monitor

B – Directed I/O

Virtual Machine

I/O Driver

Virtual Machine

I/O Driver

Virtual Machine
Monitor

Virtual Function

Physical Function

C – Directed I/O &
Device Sharing

I/O Virtualization Techniques

cs380L

I/O Virtualization Techniques

cs380L

SR-IOV
• Illusion of multiple virtual devices supported in HW
• Simplifies sharing for VMM
• Enables direct VM → device communication
• Drawbacks?
• MR-IOV?

Storage
vritualization

Modern HW is fast

Typical commodity desktop (Dell PowerEdge R520 ~$1000):

cs380L

10G NIC
~2us / 1KB pkt

6-core CPU RAID w/ 1G cache
~25 us / 1KB write

Background
• Balance between I/O and CPU speeds has shifted

• CPUs can’t keep up!

0% 20% 40% 60% 80% 100%

write

read

% of processing time (Redis NoSQL)

Hardware Kernel App

8.7 us

163 us

Where are all the in-kernel cycles going?

Where are all the in-kernel cycles going?

System Calls are slow:
epoll : 27% time of read
recv : 11% time of read
send : 37% time of read
fsync : 84% time of write

Where are all the in-kernel cycles going?

System Calls are slow:
epoll : 27% time of read
recv : 11% time of read
send : 37% time of read
fsync : 84% time of write

Arrakis→I/O centric design
• Bypass kernel
• Abstractions: user-space device access
• SR-IOV higher in stack

• Leverage packet filter/load-
balance/scheduling support

Traditional OS

Apps

Kernel

Hardware

Libs

Traditional OS

Apps

Kernel

Hardware

Libs

API Multiplexing

Resource limitNaming

Access Ctrl I/O Scheduling

Protection I/O Processing

Kernel bypass

Apps

Kernel

Hardware

Libs

API Multiplexing

Resource limitNaming

Access Ctrl I/O Scheduling

Protection I/O Processing

Kernel bypass

Apps

Kernel

Hardware

Libs

API Multiplexing

Resource limitNaming

Access Ctrl I/O Scheduling

Protection I/O Processing

Kernel bypass

Apps

Kernel

HardwareLibs

API Multiplexing

Resource limitNaming

Access Ctrl I/O Scheduling

Protection I/O Processing

Kernel bypass

Apps

Kernel

HardwareLibs

API Multiplexing

Resource limitNaming

Access Ctrl I/O Scheduling

Protection I/O Processing

Kernel bypass

Apps

Kernel

HardwareLibs

API Multiplexing

Resource limitNaming

Access Ctrl

I/O Scheduling

Protection I/O Processing

Kernel bypass

Apps

Kernel

HardwareLibs

API Multiplexing

Resource limitNaming

Access Ctrl

I/O Scheduling

Protection

I/O Processing

Kernel bypass

Apps

Kernel

HardwareLibs

API Multiplexing

Resource limitNaming

Access Ctrl

I/O Scheduling

Protection

I/O Processing

Kernel bypass

Apps

Kernel

HardwareLibs

API Multiplexing

Resource limitNaming

Access Ctrl

I/O Scheduling

Protection

I/O Processing

Kernel bypass. The OS is the control plane.

Apps

Kernel

Hardware

libos

Virtual Interface

Control Plane Data Plane

User Space

HW Space Data

Data

Control

Control

Hardware Model

• NICs (Multiplexing, Protection, Scheduling)

• Storage
• VSIC (Virtual Storage Interface Controller)

• each w/ queues etc.

• VSA (Virtual Storage Areas)

• mapped to physical devices

• associated with VSICs

• VSA & VSIC : many-to-many mapping

Control Plane Interface

• VIC (Virtual Interface Card)
• Apps can create/delete VICs, associate them to doorbells

• doorbells (like interrupt?)
• associated with events on VICs

• filter creation
• e.g. create_filter(rx,*,tcp.port == 80)

cs380L

Control Plane Features

• Access control
• enforced by filters
• infrequently invoked (during set-up etc.)
• Can export an entire VSA

• Resource limiting
• send commands to hardware I/O schedulers

• Naming
• VFS in kernel
• actual storage implemented in apps
• “By default, the Arrakis application library managing the VSA exports a file server

interface; other applications can use normal POSIX API calls via user-level RPC to the
embedded library file server. This library can also run as a standalone process to
provide access when the original application is not active” What does this sound like?

cs380L

Network Data Interface

• Apps send/receive directly through sets of queues

• filters applied for multiplexing

• doorbell used for asynchronous notification (e.g. packet arrival)

• both native (w/ zero-copy) and POSIX are implemented

cs380L

Storage Data Interface

• VSA supports read, write, flush

• persistent data structure (log, queue)
• modified Redis by 109 LOC

• operations immediately persistent on disk

• eliminate marshaling (layout in memory = in disk)

• data structure specific caching & early allocation

cs380L

Evaluation

1. UDP echo server

2. Memcached key-value store

3. Redis NoSQL store

4. HTTP load balancer (haproxy)

5. IP-layer middle box

6. Performance isolation (rate limiting)

Performance

UDP Echo

memcached

Load balancer IP middlebox

Performance

UDP Echo

memcached

Load balancer IP middlebox

Why is Arrakis/N faster than Arrakis/P?

Case 6: Performance Isolation

cs380L

Case 6: Performance Isolation

cs380L

What mechanism(s) enable(s) Arrakis to
achieve proportionality?

Discussion

• Pros:
• much better raw performance (for I/O intensive Data Center apps)

• Redis: up to 9x throughput and 81% speedup
• Memcached: scales to 3x throughput

• Cons:
• some features require hardware functionality that is not yet available

• will other device classes follow suit?

• requires modification of applications
• not clear about storage abstractions
• not easy to track behaviors inside the hardware

• Is Arrakis trading “OS features” for raw performance?

cs380L

IX, Arrakis, Exokernel, Multikernel

cs380L

• Arrakis is like Exokernel built on Barrelfish (multikernel)

IX Arrakis

Reduce SysCall overhead Adaptive batching
Run to completion

No SysCall in data-plane

Hardware virtualization No IOMMU
No SR-IOV

Expect more than what we
have

Enforcement of
network I/O policy

Under software control Rely on hardware

	Slide 1: Arrakis
	Slide 2: Arrakis faux quiz (pick 2, 5 min)
	Slide 3: Box drawing Potpourri: OSes, VMs, Containers
	Slide 4: Box drawing Potpourri: OSes, VMs, Containers
	Slide 5: Arrakis
	Slide 6: I/O Architecture
	Slide 7: I/O Architecture
	Slide 8: DMA evolution
	Slide 9: I/O Virtualization Techniques
	Slide 10: I/O Virtualization Techniques
	Slide 11: I/O Virtualization Techniques
	Slide 12: Storage vritualization
	Slide 13: Modern HW is fast
	Slide 14: Background
	Slide 15: Where are all the in-kernel cycles going?
	Slide 16: Where are all the in-kernel cycles going?
	Slide 17: Where are all the in-kernel cycles going?
	Slide 18: Traditional OS
	Slide 19: Traditional OS
	Slide 20: Kernel bypass
	Slide 21: Kernel bypass
	Slide 22: Kernel bypass
	Slide 23: Kernel bypass
	Slide 24: Kernel bypass
	Slide 25: Kernel bypass
	Slide 26: Kernel bypass
	Slide 27: Kernel bypass
	Slide 28: Kernel bypass. The OS is the control plane.
	Slide 29: Hardware Model
	Slide 30: Control Plane Interface
	Slide 31: Control Plane Features
	Slide 32: Network Data Interface
	Slide 33: Storage Data Interface
	Slide 34: Evaluation
	Slide 35: Performance
	Slide 36: Performance
	Slide 38: Case 6: Performance Isolation
	Slide 39: Case 6: Performance Isolation
	Slide 40: Discussion
	Slide 42: IX, Arrakis, Exokernel, Multikernel

