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Arrakis faux quiz (pick 2, 5 min)

 Compare and contrast interposition techniques in ESX, Xen, Arrakis
 What is the difference between Arrakis/P and Arrakis/N?
 How much control does the OS have over I/O scheduling in Arrakis?

* How would you implement a MLFQ |/O scheduler in Arrakis? An
priority aging 1/O scheduler?

* What new abstractions does Arrakis suggest for user-space 1/0?
 Compare/contrast Arrakis with Exokernel.
* How are file systems shared across processes in Arrakis?
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Box drawing Potpourri: OSes, VMSs, Containers

Today’s papers are
about design tradeoffs
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Arrakis

* Background
* |/O Architecture
* DMA
* |/O Virtualization
* SR-IOV

e Arrakis

* Some slides adapted (with thanks!) from:
web.eecs.umich.edu/~mosharaf/Slides/EECS582/2016.../101916-JimmyArrakis.pptx
Some slide materials adapted from Simon’s OSDI talk
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/O Architecture
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DMA evolution
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* Device can read/write memory

 CPU sets up DMA transfers

* Device uses physical address space
* When is/isn’t that OK?

* Device uses translated device addresses
« DMA mappings must be configured
 What mappings to use?

* Who configures IOMMU mappings?
* How many device address spaces?
e Simple if OS mediates access to device

e How to virtualize in VMM?
cs380L



/O Virtualization Techniques

* A - Software only
* B - Directed 1/O (enhance performance)
* C— Directed I/O and Device Sharing (resource saving)
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/O Virtualization Techniques
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/O Virtualization Techniques

- -

SR-IOV
lllusion of multiple virtual devices supported in HW
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cs380L



Storage
vritualization

VM

NVMe
Driver

DMA
Buffer

VM

Front-end

DMA
Buffer
X

X

Host

VFIO-pci

L]

Host

4

Back-end

Data
Buffer

QEMU/ KVM

[

VFS/File System

Block Layer

I/O Scheduler

NVMe Driver

f

NVMe Storage Device

SR-10V

L ]
NVMe Storage Device

Common software approach




Modern HW is fast

Typical commodity desktop (Dell PowerEdge R520 ~$1000):

w1 e e |
10G NIC 6-core CPU RAID w/ 1G cache
~2us / 1KB pkt ~25 us / 1KB write
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Background

* Balance between |/O and CPU speeds has shifted

* CPUs can’t keep up!
% of processing time (Redis NoSQL)

read [ 87 us
wite [ 163 us

0% 20% 40% 60% 80% 100%
B Hardware M Kernel m App



Where are all the in-kernel cycles going?

Read hit Durable write
Linux Arrakis/P Linux Arrakis/P
epoll 2.42 (27.91%) 1.12 (27.52%) 2.64 (1.62%) 1.49 (4.73%)
recv 0.98 (11.30%) 0.29 (7.13%) 1.55 (0.95%) 0.66 (2.09%)
Parse input 0.85 (9.80%) 0.66 (16.22%) 2.34 (1.43%) 1.19 (3.78%)
Lookup/set key 0.10 (1.15%) 0.10 (2.46%) 1.03 (0.63%) 0.43 (1.36%)
LLog marshaling - - 3.64 (2.23%) 2.43 (7.71%)
write - - 6.33 (3.88%) 0.10 (0.32%)
fsync - - 137.84 (84.49%) 24.26 (76.99%)
Prepare response 0.60 (6.92%) 0.64 (15.72%) 0.59 (0.36%) 0.10 (0.32%)
send 3.17 (36.56%) 0.71 (17.44%) 5.06 (3.10%) 0.33 (1.05%)
Other 0.55 (6.34%) 0.46 (11.30%) 2.12 (1.30%) 0.52 (1.65%)
Total 8.67 (0=2.55) 407 (c=044) 163.14 (o0=13.68) 31.51 (oc=1.91)

99th percentile 15.21 4.25 188.67 35.76




Where are all the in-kernel cycles going?

Read hit Durable write
Linux Arrakis/P Linux Arrakis/P
epoll 242 (27.91%) 1.12 (27.52%) 2.64 (1.62%) 1.49 (4.73%)
recv 0.98 (11.30%) 0.29 (7.13%) 1.55 (0.95%) 0.66 (2.09%)
Parse input 0.85 (9.80%) 0.66 (16.22%) 2.34 (1.43%) 1.19 (3.78%)
Lookup/set key 0.10 (1.15%) 0.10 (2.46%) 1.03 (0.63%) 0.43 (1.36%)
LLog marshaling - - 3.64 (2.23%) 2.43 (7.71%)
write - - 6.33 (3.88%) 0.10 (0.32%)
fsync - - 137.84 (84.49%) 24.26 (76.99%)
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epoll : 27% time of read 4.25 188.67 35.76

recv 11% time of read
send : 37% time of read
fsync : 84% time of write




Where are all the in-kernel cycles going?

Read hit Durable write
Linux Arrakis/P Linux Arrakis/P

epoll 242 (2791%) 1.12  (27.52%) 2.64 (1.62%) 1.49 (4.73%)

recv 098 (11.30%) 0.29 (7.13%) 1.55 (0.95%) 0.66 (2.09%)

Parse input 0.85 (9.80%) 0.66 (16.22%) 2.34 (1.43%) 1.19 (3.78%)

Lookup/set key 0.10 (1.15%) 0.10 (2.46%) 1.03 (0.63%) 0.43 (1.36%)

Log marshaling - - 3.64 (2.23%) 2.43 (7.71%)

write 6.33 (3.88%) 0.10 (0.32%)

fsync - - 137.84 (84.49%) 24.26 (76.99%)

Prepare response 0.60 (6.92%) 0.64 . . .

m—— 317 (36.36%) 071 Arrakis=21/0 centric design
System Calls are slow: o iﬁpfss |t<,eme| v

. ' StracCtions: user-space daevice access
epoll : 27% time of read 4.25 P

recv
send
fsync

11% time of read
37% time of read
84% time of write

SR-IOV higher in stack
* Leverage packet filter/load-
balance/scheduling support
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Kernel bypass
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Kernel bypass. The OS is the control plane.

Control Plane [ Data Plane
[

A
Control .pps
I libos
] User Space
IHW Space Data
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Kernel | \/irtual Interface

Control
t Data

Hardware




Hardware Model

* NICs (Multiplexing, Protection, Scheduling)

* Storage
 VSIC (Virtual Storage Interface Controller)
* each w/ queues etc.
e VSA (Virtual Storage Areas)
* mapped to physical devices
 associated with VSICs
* VSA & VSIC : many-to-many mapping



Control Plane Interface

 VIC (Virtual Interface Card)
* Apps can create/delete VICs, associate them to doorbells

* doorbells (like interrupt?)
e associated with events on VICs

* filter creation
e e.g. create_filter(rx,*,tcp.port == 80)
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Control Plane Features

e Access control
» enforced by filters
 infrequently invoked (during set-up etc.)
* Can export an entire VSA

* Resource limiting

* send commands to hardware I/O schedulers
* Naming

* VFSin kernel

 actual storage implemented in apps

* “By default, the Arrakis application library managing the VSA exports a file server
interface; other apPIications can use normal POSIX API calls via user-level RPC to the
embedded library file server. This library can also run as a standalone process to
provide access when the original application is not active” What does this sound like?
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Network Data Interface

* Apps send/receive directly through sets of queues
* filters applied for multiplexing
* doorbell used for asynchronous notification (e.g. packet arrival)

* both native (w/ zero-copy) and POSIX are implemented

cs380L



Storage Data Interface

* \VSA supports read, write, flush

* persistent data structure (log, queue)
* modified Redis by 109 LOC
e operations immediately persistent on disk
 eliminate marshaling (layout in memory = in disk)
 data structure specific caching & early allocation
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Evaluation

UDP echo server
Memcached key-value store
Redis NoSQL store

HTTP load balancer (haproxy)
IP-layer middle box

o Uk wh e

Performance isolation (rate limiting)



Performance
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Case 6: Performance Isolation
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Case 6: Performance Isolation
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Discussion

* Pros:
* much better raw performance (for I/O intensive Data Center apps)
e Redis: up to 9x throughput and 81% speedup
* Memcached: scales to 3x throughput

 Cons:

* some features require hardware functionality that is not yet available
* will other device classes follow suit?

* requires modification of applications
* not clear about storage abstractions
* not easy to track behaviors inside the hardware

* Is Arrakis trading “OS features” for raw performance?
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X, Arrakis, Exokernel, Multikernel

 Arrakis is like Exokernel built on Barrelfish (multikernel)

Reduce SysCall overhead  Adaptive batching No SysCall in data-plane
Run to completion

Hardware virtualization No IOMMU Expect more than what we
No SR-IOV have
Enforcement of Under software control Rely on hardware

network |/O policy
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