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LFS faux quiz (any 2, 5 min):

O NOLUhAEWDNRE

Why would anyone optimize a file system for writes?

Why is/isn’t an imap + “mobile” inodes better than a fixed array?

Why are segments better than threading or compaction?

What workloads will be slower for LFS than FFS?

Why clean hot and cold segments at different thresholds?

How do crash recovery techniques differ between LFS and a journaling FS?
Compare and contrast FFS and LFS from a mechanical sympathy perspective.

FreeBSD and LFS deal with multiple allocation sizes (su#oerpages/segments).
How are the problems and solutions similar and/or different:

Why doesn’t LFS have to completely replay the log at initialization time?

. How does LFS handle a crash that occurs during a checkpoint. Is it always

guaranteed to have a consistent checkpoint?



Crash Consistency—refresher

* Crash consistency:
* File system s in a “consistent” state after crash
* File system isin a “recoverable” state?
* User data is consistent?

* Difficulty: multiple meta-data updates must appear atomic



The three consistency commandments
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LFS: ...why?

* Technology trends
* Growing DRAM
* RAID, network RAID, transfer bandwidth/access time relative to CPU

* Implications
* All reads served from cache
* Can’t we serve writes from cache?
* Most disk traffic is writes
* RAID5 makes small writes s*&k



LFS: Some important questions

 Why is an imap necessary for LFS? Is it clearly better?

* Why doesn’t LFS compact segments based on “age-sort” alone? What
does it do instead?

* For what operations will LFS be faster/better than FFS? Vice-versa?

* How does LFS deal with the consistency challenges above? Does LFS
do the kind of logging we saw in the previous slides?



Motivation: creating two files

:> echo “quack” > dirl/filel
:> echo “quack again” > dir2/file2

What are the basic file system structures that get updated?

How would FFS allocate disk space for this?
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Motivation: creating two files

:> echo “quack” > dirl/filel
:> echo “quack again” > dir2/file2

What are the basic file system structures that get updated?

How would FFS allocate disk space for this?



:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

LFS Motivation: FFS

inode
filel file2
l l . directory
F ! data
dirl dir2
Unix File
System . inode map

How many seeks in FFS?



:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

LFS Motivation: FFS

inode
filel file2
l l . directory
F ! data
dirl dir2
Unix File
System . inode map

How many seeks in FFS?
(Yes, it depends)
So...worst case?



:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

LFS Motivation: FFS
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dirl dir2
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System . inode map

How many seeks in FFS?
(Yes, it depends)
So...worst case?




LFS Motivation
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:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2
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:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2
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:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2
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LFS Challenges

* Metadata design
* No update in place
* Nothing has a permanent home
 How do we find anything?

* Free space management
 We need large extents of free space
 How do we ensure we always have it?



OK then...how do we find things?

How are FS metadata organized in FFS?
* How do we find an inode?

* From mkfs.ext4
* -N number-of-inodes

e Overrides the default calculation of the number of inodes that should be reserved for the
filesystem (which is based on the number of blocks and the bytes-per-inode ratio). This allows
the user to specify the number of desired inodes directly.

How do we find inodes in LFS?

I-node map maintains the location of all i-node blocks

* |-node map blocks stored on the log
* Along with data blocks/i-node blocks
* Active blocks cached in main memory

Fixed checkpoint region
* on each disk

e contains the addresses of all i-node map blocks
* at checkpoint time (when is that?)



Index structures: FFS
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Index structures: FFS
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Index structures: LFS
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Index structures: LFS
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Index structures: LFS
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Accessing an i-node

I-node map blocks
spread on the log

I-node blocks also
spread on the log




The way it works

I-node map blocks
spread on the log

I-node blocks also
spread on the log



Cleaning

e Option 1: threading

* Put new blocks wherever there are holes

* Blocks point to next block

* Pro: doesn’t waste time R/W live data

* Con: storage system entropy: fragmentation!
e Option 2: compact/copy

* Move live blocks to smaller area

* Pro: create large extents reliably

e Con: RW same data over and over

Block Key:
Old data block

New data block

Previously deleted

Threaded log
Old log end New log end

-

Copy and Compact
Old log end New log end

¥

Problem with threaded log—fragmentation
Problem with copy and compact—cost of copying data




Segments: benefits of both

* Chop disk into large segments

* When to use compaction?
* Compact within segments

* When to use threading?
* Thread among segments

* Always write to current clean segment before moving on
* How to deal with finite-ness of log?
* Needs a “segment cleaner”



Segment cleaning

* Old segments contain

* live data
* “dead data” = files overwritten/deleted

* Segment cleaning 2 compact/write out live data
e Segment summary block 2 per-segment metadata

Algorithm:
Read segments into memory : total bytes read and written
) ) write cost = .
|dentify the live data new data written

Write live data (contiguously) to clean segments . '
__ read segs + write live + write new

Key issues: where/when to write?
* Want to avoid repeated moves of stable files
* Minimize overhead for writes: “write cost” N+Nu+N+(l-p) 2

N*(1-u) 1-u

new data written




Write Cost and Cleaning Policy

Write cost * No variance = write cost
: . , , ) . computed with formula (all
14.0 e b L N Variance segments have same u (?!))
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8.0 ' 4
' : '* iform * FFS improved -> estimate of
6.0 - i--fLFS unif best possible FFS performance
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20 N . FFS improved
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Disk capacity utilization



Write Cost and Cleaning Policy

Write cost * No variance = write cost
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Segment cleaning policies (1)

Fraction of segments _ ' Fraction of segments | |
0.008 '_ __________ e ' 0.008 --------- I CCTTI -
0.007 - 0.007 - :
0.006 - 0.006
o |
0.003 - S 0.003 :__LFS Cost-Benefit
0.002 4 - 0.002
0.001 . | f 0.001 E'"LFS Greedy
P00 02 04 o6 o8 10 0000 el

' ) ’ ’ : : 00 02 04 O. 08 1.0
Segment utilization Segment utilization

benefit  free space generated*age of data (1 — u)*age

——

cost cost __1_ -;_u



Segment cleaning policies (Il)
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Crash-recovery: Checkpoints/Roll-forward

Checkpoint = log position s.t. all FS metadata consistent

* Create:
e 1. Write out all dirty info to log, including metadata
» 2. Write checkpoint region to special place on disk

* On reboot:
* read checkpoint region to init in-memory data structures
e 2 checkpoints handles checkpoint write crash

Roll-Forward: try to recover as much data as possible

* Look at segment summary blocks
 if new inode and data blocks, but no inode map entry = update inode map
* if only data blocks, ignore

* Need special record for directory change
e avoids problems with inode but not directory written
* appears before the corresponding directory block or inode
e again, roll-forward



Crash-recovery: Checkpoints/Roll-forward

Checkpoint = log position s.t. all FS metadata consistent

* Create:
e 1. Write out all dirty info to log, including metadata
» 2. Write checkpoint region to special place on disk

* On reboot:
* read checkpoint region to init in-memory data structures
e 2 checkpoints handles checkpoint write crash

e Crash in UNIX is a mess
e disk DS maybe inconsistent
* fsck slow

Roll-Forward: try to recover as much data as possible

* Look at segment summary blocks
 if new inode and data blocks, but no inode map entry = update

* if only data blocks, ignore e A messin LFS?
* Need special record for directory change + find end of log

e avoids problems with inode but not directory written
* appears before the corresponding directory block or inode e scan backward to last

e again, roll-forward consistent state



When is LFS better?

* LFS wins, relative to FFS

* metadata-heavy workloads
* small file writes
* deletes

(metadata requires an additional write, and FFS does this synchronously)

* LFS loses, relative to FFS

* many files are partially over-written in random order, then read
* file gets spread throughout the log

e LFS vs. JFS

* JFSis “robust” like LFS but data must eventually be written back “where it
came from” so disk bandwidth is still an issue



LFS: key takeaways

* Big memory =2 reads served from cache, optimize for writes
* Take journaling to logical extreme

* Hard problems:
* Find data in the log
* Cleaning

* Key ideas:
* Log your writes, log is ground truth
* Indexing: imap = data can live anywhere



Seltzer v Ousterhout: what a kerfuffle!

* What did you think?

* Could you extract what the controversy was?
* Why it occurred?

* Seltzer papers: intentional challenge of LFS hypothesis?
* Implement LFS in BSD

Validate by comparing against sprite-LFS

Explore file size / access pattern (seq/rand) vs. perf

Characterize disk fullness impact on LFS

Characterize fragmentation impact on FFS
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FFS v LFS
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LFS order of magnitude faster (small creates/del) F FS V L FS
LFS+FFS comparable on large file create (>= .5MB).

LFS+FFS comparable on reads (<=64 KB).

LFS read faster [64KB..4MB]
LFS+FFS comparable on reads >= 4MB.
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LFS Legacy: SSDs and FTLs

(and many other acronymes...)
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Discussion:

 What workloads will be slower for LFS than FFS?

 Compare and contrast FFS and LFS from a mechanical sympathy
perspective.

* FreeBSD and LFS deal with multiple allocation sizes
(superpages/segments). How are the problems and solutions similar
and/or different?
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