File Systems
LFS

Emmett Witchel
CS380L

LFS faux quiz (any 2, 5 min):

O NOLUhAEWDNRE

Why would anyone optimize a file system for writes?

Why is/isn’t an imap + “mobile” inodes better than a fixed array?

Why are segments better than threading or compaction?

What workloads will be slower for LFS than FFS?

Why clean hot and cold segments at different thresholds?

How do crash recovery techniques differ between LFS and a journaling FS?
Compare and contrast FFS and LFS from a mechanical sympathy perspective.

FreeBSD and LFS deal with multiple allocation sizes (su#oerpages/segments).
How are the problems and solutions similar and/or different:

Why doesn’t LFS have to completely replay the log at initialization time?

. How does LFS handle a crash that occurs during a checkpoint. Is it always

guaranteed to have a consistent checkpoint?

Crash Consistency—refresher

* Crash consistency:
* File system s in a “consistent” state after crash
* File system isin a “recoverable” state?
* User data is consistent?

* Difficulty: multiple meta-data updates must appear atomic

The three consistency commandments

N EV E R . 3.6. Dependency Tracking for new Indirect Blocks 3.7. New Directory Entry Dependency Tracking
[]

* ... point to a structure beforeit 7T

inodedep (bar) parent dir pagedep —= worklist %
. . [(]
has been initialized e o V|
° state (see below) state (see below) I next diradd
deps list hash list dir offset
¢ reuse a resource before it s B i B depp o pr oo fnode omber
eee L . L . hash list inode number previous dirrem
inodedep allocdirect indirdep i dir
null |fy| ng all previous pointers e S T [e g bl my gt —
- state (see below) state (see below) state (see below) state (see below) inode number dirrem head ATTACHED
tO I t ddepslljlst = d;ps}l)isl Q7 sa\;‘ed damftr = d:ps :St . link delta diradd head | DEPCOMPLETE
. ep bp s ep bp safe copy bp 1 lep bp .
hash list logical blkno done head offset in indir blk saved inode ptr pending ops head [— diradd (bar)
° ° filesystem ptr new blkno allocindir head new blkno " saved size no ﬂags f worklist
o Ve re S et I a St O I n t e r to I I Ve inode number old blkno ATTACHED old blkno pending ops head ym— state (see below)
nlink delta new size freefrag - inode: ep gg) \ ¢ diradd
e e saved inode ptr old size bmsafemap “1 next allocindir Q; buf wait head . next dira
saved size freefra, vorklist indird 1 e it he: : dir offset
g worklis 'Q7 my indirdep mode wait head
pending ops head P mnext allocdirect Q? cylgrp_bp T ATTACHED buffer updatc head buf wait head | new inode number
S et buf wait head my inodedep allocindir head [~ e prcvious dirrem
. inode wait head ATTACHED inodedep head incore update head : »
buffer update head [F’ cylgm bp=b dep new blk head ATTACHED - my pangcp
inereupine b | — allocdirect head DEPCOMPLETE ATTACHED ATTACHED
ATTACHED COMPLETE DEPCOMPLETE DEPCOMPLETE
DEPCOMPLETE COMPLETE

Figure 6: Dependencies for a File Expanding into an Figure 7: Dependencies Associated with Adding New

EAdapted from soft updates Indirect Block Directory Eniies
McKusick et al.])

LFS: ...why?

* Technology trends
* Growing DRAM
* RAID, network RAID, transfer bandwidth/access time relative to CPU

* Implications
* All reads served from cache
* Can’t we serve writes from cache?
* Most disk traffic is writes
* RAID5 makes small writes s*&k

LFS: Some important questions

 Why is an imap necessary for LFS? Is it clearly better?

* Why doesn’t LFS compact segments based on “age-sort” alone? What
does it do instead?

* For what operations will LFS be faster/better than FFS? Vice-versa?

* How does LFS deal with the consistency challenges above? Does LFS
do the kind of logging we saw in the previous slides?

Motivation: creating two files

:> echo “quack” > dirl/filel
:> echo “quack again” > dir2/file2

What are the basic file system structures that get updated?

How would FFS allocate disk space for this?

Motivation: creating two files

:> echo “quack” > dirl/filel
:> echo “quack again” > dir2/file2

What are the basic file system structures that get updated?

How would FFS allocate disk space for this?

Motivation: creating two files

:> echo “quack” > dirl/filel
:> echo “quack again” > dir2/file2

What are the basic file system structures that get updated?

How would FFS allocate disk space for this?

:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

LFS Motivation: FFS

inode
filel file2
l l . directory
F ! data
dirl dir2
Unix File
System . inode map

How many seeks in FFS?

:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

LFS Motivation: FFS

inode
filel file2
l l . directory
F ! data
dirl dir2
Unix File
System . inode map

How many seeks in FFS?
(Yes, it depends)
So...worst case?

:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

LFS Motivation: FFS

inode
file1 file2
1 . directory
F ! data
dirl dir2
Unix File
System . inode map

How many seeks in FFS?
(Yes, it depends)
So...worst case?

LFS Motivation

filel file2
dirl dir2
Unix File
System

:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

inode

. inode map

:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

LFS Motivation

inode
filel file2
l l . directory
data
dirl dir2
Unix File
System . inode map
dirl dir2
Log >

Log-Structured

:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

LFS Motivation

inode

filel file2
l l . directory
F ! data
dirl dir2
Unix File
System . inode map
dirl dir2
Log > .
How many I/Os in LFS?

Log-Structured
File System

filel file2

:> echo “quack” > dirl/filel

:> echo “quack again” > dir2/file2

LFS Motivation

inode
filel file2
] 1l . directory
F ! data
dirl dir2
Unix File
System . inode map
dirl dir2

Log

L L Log-S

LFS Challenges

* Metadata design
* No update in place
* Nothing has a permanent home
 How do we find anything?

* Free space management
 We need large extents of free space
 How do we ensure we always have it?

OK then...how do we find things?

How are FS metadata organized in FFS?
* How do we find an inode?

* From mkfs.ext4
* -N number-of-inodes

e Overrides the default calculation of the number of inodes that should be reserved for the
filesystem (which is based on the number of blocks and the bytes-per-inode ratio). This allows
the user to specify the number of desired inodes directly.

How do we find inodes in LFS?

I-node map maintains the location of all i-node blocks

* |-node map blocks stored on the log
* Along with data blocks/i-node blocks
* Active blocks cached in main memory

Fixed checkpoint region
* on each disk

e contains the addresses of all i-node map blocks
* at checkpoint time (when is that?)

Index structures: FFS

inode(inum)

mode

owners (2)

timestamps (4)

size

direct blocks

single indirect

data

double indirect

triple indirect

block count

reference count

flags (2)

generation number

blocksize

extended attr. size

data

data

extended _
attribute

blocks I

inodes

data

data

— data

i E 18

= data

B

data

data

data

Index structures: FFS

inode(inum)

f(inum)

inodes

mode

owners (2)

timestamps (4)

size

direct blocks

[data |
[data |

]

single indirect

E

ata

double indirect

triple indirect

block count

reference count

Y
Y

flags (2)

generation number

blocksize

extended attr. size

extended _
attribute
blocks I

i

ata

data

il

Index structures: LFS

f(inum) ———

inode(inum)

f

mode

owners (2)

timestamps (4)

size

direct blocks

[data |
[data |

]

single indirect

E

ata

double indirect

triple indirect

block count

reference count

Y
Y

flags (2)

generation number

blocksize

extended attr. size

extended _
attribute

blocks I

i

ata

data

e ¢

Index structures: LFS

f(inum) ———

imap

inode(inum)

f

mode

owners (2)

timestamps (4)

size

direct blocks

single indirect

[data |
[data |

]

E

ata

double indirect

triple indirect

block count

reference count

flags (2)

generation number

blocksize

extended attr. size

extended _
attribute
blocks I

data

Y
Y

data
data

data

e B

data

i

data

feel]

ata

data

il

Index structures: LFS

inode(inum)

mode

T owners (2)
timestamps (4)

size

f(inum) ———

direct blocks

single indirect

double indirect

RN
[e
e B

e]
triple indirect .
block count B | =] data |
reference count b e W g [P
L] - -
I I I Ia p flags (2) . A i Gata |
generation number :] _m
blocksize .
[

extended attr. size

extended data
attribute
blocks I data

i

Accessing an i-node

I-node map blocks
spread on the log

I-node blocks also
spread on the log

The way it works

I-node map blocks
spread on the log

I-node blocks also
spread on the log

Cleaning

e Option 1: threading

* Put new blocks wherever there are holes

* Blocks point to next block

* Pro: doesn’t waste time R/W live data

* Con: storage system entropy: fragmentation!
e Option 2: compact/copy

* Move live blocks to smaller area

* Pro: create large extents reliably

e Con: RW same data over and over

Block Key:
Old data block

New data block

Previously deleted

Threaded log
Old log end New log end

-

Copy and Compact
Old log end New log end

¥

Problem with threaded log—fragmentation
Problem with copy and compact—cost of copying data

Segments: benefits of both

* Chop disk into large segments

* When to use compaction?
* Compact within segments

* When to use threading?
* Thread among segments

* Always write to current clean segment before moving on
* How to deal with finite-ness of log?
* Needs a “segment cleaner”

Segment cleaning

* Old segments contain

* live data
* “dead data” = files overwritten/deleted

* Segment cleaning 2 compact/write out live data
e Segment summary block 2 per-segment metadata

Algorithm:
Read segments into memory : total bytes read and written
)) write cost = .
|dentify the live data new data written

Write live data (contiguously) to clean segments . '
__ read segs + write live + write new

Key issues: where/when to write?
* Want to avoid repeated moves of stable files
* Minimize overhead for writes: “write cost” N+Nu+N+(l-p) 2

N*(1-u) 1-u

new data written

Write Cost and Cleaning Policy

Write cost * No variance = write cost
: . , ,) . computed with formula (all
14.0 e b L N Variance segments have same u (?!))
E ___________ * LFS uniform - greedy policy
12.0 ‘ ;o LFS hot-and-cold (always clean least util)
10.0 "'E—-——' i - * LFS hot-and-cold - greedy
5 | FFS toda policy + sorts blocks by age
8.0 ' 4
' : '* iform * FFS improved -> estimate of
6.0 - i--fLFS unif best possible FFS performance
4.0 —
20 N . FFS improved

0.0 2
0. 0 02 04 06 08 1.0
Disk capacity utilization

Write Cost and Cleaning Policy

Write cost * No variance = write cost
: : . , . . computed with formula (all
14.0 B e T E——— --------.NO variance segments have same u (?!))
E ___________ LFS uniform > greedy policy
12.0 . ;o LFS hot-and-cold (always clean least util)
10.0 - i H—————— * LFS hot-and-cold —> greedy
: i FFS toda policy + sorts blocks by age
. , Y
8.0 ' LFS uniform * FFS improved -> estimate of

6.0 -
4.0
201

best possible FFS performance

._FFS improved

0.0 2
0. 0 02 04 06 08 1.0
Disk capacity utilization

Segment cleaning policies (1)

Fraction of segments _ ' Fraction of segments | |
0.008 '_ __________ e ' 0.008 --------- I CCTTI -
0.007 - 0.007 - :
0.006 - 0.006
o |
0.003 - S 0.003 :__LFS Cost-Benefit
0.002 4 - 0.002
0.001 . | f 0.001 E'"LFS Greedy
P00 02 04 o6 o8 10 0000 el

') ’ ’ : : 00 02 04 O. 08 1.0
Segment utilization Segment utilization

benefit free space generated*age of data (1 — u)*age

——

cost cost __1_ -;_u

Segment cleaning policies (Il)

Fraction of segments _ , Fraction of segments

0.008 ---------- e hooer ot 0.008
0.007 - 0.007 -
0.006 - 0.006
0.005 - - 0.005
0.004 Hot-and-cold 0.004 - 159)
0.003 - S 0.003 :__LF S Cost-Benefit
0.002 - - 0.002 -
0.001 i } f 0.001 - E___LFS Greedy
0000 = T o o8 1o 0.000 -

00 02 04 06 08 10 00 02 04 06 08 10

Segment utilization Segment utilization

benefit free space generated*age of data (1 — u)*age

f—
—_—

cost. cost 1 4+ u

Crash-recovery: Checkpoints/Roll-forward

Checkpoint = log position s.t. all FS metadata consistent

* Create:
e 1. Write out all dirty info to log, including metadata
» 2. Write checkpoint region to special place on disk

* On reboot:
* read checkpoint region to init in-memory data structures
e 2 checkpoints handles checkpoint write crash

Roll-Forward: try to recover as much data as possible

* Look at segment summary blocks
 if new inode and data blocks, but no inode map entry = update inode map
* if only data blocks, ignore

* Need special record for directory change
e avoids problems with inode but not directory written
* appears before the corresponding directory block or inode
e again, roll-forward

Crash-recovery: Checkpoints/Roll-forward

Checkpoint = log position s.t. all FS metadata consistent

* Create:
e 1. Write out all dirty info to log, including metadata
» 2. Write checkpoint region to special place on disk

* On reboot:
* read checkpoint region to init in-memory data structures
e 2 checkpoints handles checkpoint write crash

e Crash in UNIX is a mess
e disk DS maybe inconsistent
* fsck slow

Roll-Forward: try to recover as much data as possible

* Look at segment summary blocks
 if new inode and data blocks, but no inode map entry = update

* if only data blocks, ignore e A messin LFS?
* Need special record for directory change + find end of log

e avoids problems with inode but not directory written
* appears before the corresponding directory block or inode e scan backward to last

e again, roll-forward consistent state

When is LFS better?

* LFS wins, relative to FFS

* metadata-heavy workloads
* small file writes
* deletes

(metadata requires an additional write, and FFS does this synchronously)

* LFS loses, relative to FFS

* many files are partially over-written in random order, then read
* file gets spread throughout the log

e LFS vs. JFS

* JFSis “robust” like LFS but data must eventually be written back “where it
came from” so disk bandwidth is still an issue

LFS: key takeaways

* Big memory =2 reads served from cache, optimize for writes
* Take journaling to logical extreme

* Hard problems:
* Find data in the log
* Cleaning

* Key ideas:
* Log your writes, log is ground truth
* Indexing: imap = data can live anywhere

Seltzer v Ousterhout: what a kerfuffle!

* What did you think?

* Could you extract what the controversy was?
* Why it occurred?

* Seltzer papers: intentional challenge of LFS hypothesis?
* Implement LFS in BSD

Validate by comparing against sprite-LFS

Explore file size / access pattern (seq/rand) vs. perf

Characterize disk fullness impact on LFS

Characterize fragmentation impact on FFS

FFS v LFS

Transactions per second

1200 = ~ B
< 1000 ? ’g 20 1
& 800 - @
® . = —
] % : 15 :
g o s 10 THI
45.00 I I 8 400 — « z .
3 T8 S s, 3 = 5
40.00 = W W L L, W W W L I, WL WL WL N % Y 200 : V\: : ; g 0.5 &
35.00 0 S == - 00 -
30.00 Create Read Delete seq_write rand_read
25.00
. Sprite-LFS B sunOS-FFs BSD-FFS-m8r2 Sprite-LFS BSD-FFS-m8r2
15.00 BSD-LFS B BSD-FFS-m1r2 BSD-LFS Bl BsD-FFs-m1-12
10.00
5.00 N 25 56
0.00 Q Fa ol ®
2 20 sy P— 2 op
40.00 60.00 70.00 80.00 90.00 o8] e 7 /i‘" m :
2 ,‘ i '-‘1 .,.‘.rr 2 mr.,l£
P £ 15 N = = 45 = ———]
Disk utilization (percent) = / = » = ;
a 1.0 / ' 3 1.0
< K]
P &)
@ | FS wicleaner ™ LFS w/out cleaner 8 Frs |-E |-E _
0.0 TTT] TT1T] 1] TT1 0.0 T 1T
1 16 256 4096 65536 1 65536
File Size (in KB) File Size (in KB)
LFS — FFS-m8&r0 — FFS-m8r2 LFS — FFS-m8r0 T FFS-m8r2

Throughput (in MB/sec)

FFS v LFS

2.5

2.0 A A
N + b

15 oy
. ¥ 4'

1.0 /

0.5 =1/

0.0] T T TTT
1 16 256 4096 65536

File Size (in KB)

LFS — FFS-m8r0 ~™ FFS-m8r2

Throughput (in MB/sec)

2.5
2.0
1.5 e
1.0 /
05—
0.0 — |.||| 1T T TTT
1 16 256 4096 65536
File Size (in KB)
LFS — FFS-m8r0 ™™ FFS-m8r2

Throughput (in MB/sec)

” == maxcontig, rotdelay

FFS v LFS

2.5

2.0 [A e
o Aad
| ¥ %

15 ey
) : g

1.0 /

0.5 =1/

Throughput (in MB/sec)

0.0] T T
1 16 256 4096

File Size (in KB)

LFS — FFS-m8r0 ~™ FFS-m8r2

Create
2.5
2.0
15 e
1.0 /
0.5 =
0.0 — l.ll| LA | T 1T

1 16 256 4096
File Size (in KB)

LFS — FFS-m8r0 ™ FFS-m8r2

FFS v LFS

Transactions per second

1200 = ~ B
< 1000 ? ’g 20 1
& 800 - @
® . = —
] % : 15 :
g o s 10 THI
45.00 I I 8 400 — « z .
3 T8 S s, 3 = 5
40.00 = W W L L, W W W L I, WL WL WL N % Y 200 : V\: : ; g 0.5 &
35.00 0 S == - 00 -
30.00 Create Read Delete seq_write rand_read
25.00
. Sprite-LFS B sunOS-FFs BSD-FFS-m8r2 Sprite-LFS BSD-FFS-m8r2
15.00 BSD-LFS B BSD-FFS-m1r2 BSD-LFS Bl BsD-FFs-m1-12
10.00
5.00 N 25 56
0.00 Q Fa ol ®
2 20 sy P— 2 op
40.00 60.00 70.00 80.00 90.00 o8] e 7 /i‘" m :
2 ,‘ i '-‘1 .,.‘.rr 2 mr.,l£
P £ 15 N = = 45 = ———]
Disk utilization (percent) = / = » = ;
a 1.0 / ' 3 1.0
< K]
P &)
@ | FS wicleaner ™ LFS w/out cleaner 8 Frs |-E |-E _
0.0 TTT] TT1T] 1] TT1 0.0 T 1T
1 16 256 4096 65536 1 65536
File Size (in KB) File Size (in KB)
LFS — FFS-m8&r0 — FFS-m8r2 LFS — FFS-m8r0 T FFS-m8r2

Files per second

1200
1000
800
600
400
200

FFS

v LFS

Sprite-LFS
BSD-LFS

25
? g 2.0 14
- 2)
& 2 5 H/r g = "
’, £ d g
5 £ 1014
it s -
- 'f '8 -
4 % g 05 &
5 W : :
- ﬁ r | s | i
et . B 0.0 1
Create Read Delete seq_write seq_read rand_write rand_read re-read
B sunOS-FFS BSD-FES-m8r2 Sprite-LFS M sunos-FFs BSD-FFS-m8r2
B3 BSD-FFS-m1r2 BSD-LFS Bl BSD-FFS-m1-12

14

m

” == maxcontig,

", n
r

rotdelay

Files per second

1200
1000
800
600
400
200

FFS v LFS

V\:

. [

<] mem PR L]

Create

Sprite-LFS
[BSD-LFs

B sunOS-FFs

Read

Bl BSD-FFS-m1r2
Small files

Delete

BSD-FFS-m8r2

Bandwidth (in MB/sec)

= *
seq_write seq_read rand_write rand_read re-read
Sprite-LFS B Sunos-FFs BSD-FFS-m8r2
[BsD-LFs Bl BsD-FFs-m1-r2

Large Files

FFS v LFS

Transactions per second

1200 = ~ B
< 1000 ? ’g 20 1
& 800 - @
® . = —
] % : 15 :
g o s 10 THI
45.00 I I 8 400 — « z .
3 T8 S s, 3 = 5
40.00 = W W L L, W W W L I, WL WL WL N % Y 200 : V\: : ; g 0.5 &
35.00 0 S == - 00 -
30.00 Create Read Delete seq_write rand_read
25.00
. Sprite-LFS B sunOS-FFs BSD-FFS-m8r2 Sprite-LFS BSD-FFS-m8r2
15.00 BSD-LFS B BSD-FFS-m1r2 BSD-LFS Bl BsD-FFs-m1-12
10.00
5.00 N 25 56
0.00 Q Fa ol ®
2 20 sy P— 2 op
40.00 60.00 70.00 80.00 90.00 o8] e 7 /i‘" m :
2 ,‘ i '-‘1 .,.‘.rr 2 mr.,l£
P £ 15 N = = 45 = ———]
Disk utilization (percent) = / = » = ;
a 1.0 / ' 3 1.0
< K]
P &)
@ | FS wicleaner ™ LFS w/out cleaner 8 Frs |-E |-E _
0.0 TTT] TT1T] 1] TT1 0.0 T 1T
1 16 256 4096 65536 1 65536
File Size (in KB) File Size (in KB)
LFS — FFS-m8&r0 — FFS-m8r2 LFS — FFS-m8r0 T FFS-m8r2

Transactions per second

45.00
40.00 =

%

o WL L L L

o T W W LT

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

40.00

W LFS w/cleaner

50.00

60.

00 70.

00 80.00 90.00

Disk utilization (percent)

™ |FS w/out cleaner & FFs

FFS v LFS

Transactions per second

45.00
40.00 =

%

N N W W P WL, L L WL LW i WL L, W J

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

40.00

W LFS w/cleaner

50.00 60.00 70.00

Disk utilization (percent)

™ |FS w/out cleaner

80.00

& FFs

90.00

FFS v LFS

Transaction Processing:
TPC-B, database over FS

FFS v LFS

Transactions per second

1200 = ~ B
< 1000 ? ’g 20 1
& 800 - @
® . = —
] % : 15 :
g o s 10 THI
45.00 I I 8 400 — « z .
3 T8 S s, 3 = 5
40.00 = W W L L, W W W L I, WL WL WL N % Y 200 : V\: : ; g 0.5 &
35.00 0 S == - 00 -
30.00 Create Read Delete seq_write rand_read
25.00
. Sprite-LFS B sunOS-FFs BSD-FFS-m8r2 Sprite-LFS BSD-FFS-m8r2
15.00 BSD-LFS B BSD-FFS-m1r2 BSD-LFS Bl BsD-FFs-m1-12
10.00
5.00 N 25 56
0.00 Q Fa ol ®
2 20 sy P— 2 op
40.00 60.00 70.00 80.00 90.00 o8] e 7 /i‘" m :
2 ,‘ i '-‘1 .,.‘.rr 2 mr.,l£
P £ 15 N = = 45 = ———]
Disk utilization (percent) = / = » = ;
a 1.0 / ' 3 1.0
< K]
P &)
@ | FS wicleaner ™ LFS w/out cleaner 8 Frs |-E |-E _
0.0 TTT] TT1T] 1] TT1 0.0 T 1T
1 16 256 4096 65536 1 65536
File Size (in KB) File Size (in KB)
LFS — FFS-m8&r0 — FFS-m8r2 LFS — FFS-m8r0 T FFS-m8r2

LFS order of magnitude faster (small creates/del) F FS V L FS
LFS+FFS comparable on large file create (>= .5MB).

LFS+FFS comparable on reads (<=64 KB).

LFS read faster [64KB..4MB]
LFS+FFS comparable on reads >= 4MB.

2:5
LFS write superior (<=256KB) 200 R]
i A 000 = T 20]) H
FFS write superior (>256KB) 0 $ '
s : - [— ! 1
5 600 o = 3 B]
a - £ 10T :
45.00 o 400 - - H ::
- w ” 3 2 c]
3 40.00 —4——== W W WL L, L WL WL LI, nnnninnnnJ 200 e : - & 05 E:
= | . . &
% 35.00 0 0 coo: M | 0.0 — : :
» 30.00 Create Delete seq_write seq_read rand_write rand_read re-read
g 25.00 B B T
0
S 20.00 Sprite-LFS B sunOS-FFS BSD-FFS-m8r2 Sprite-LFS B sunos-Frs BSD-FFS-m8r2
g 15.00 BSD-LFS Bl BSD-FFS-m1r2 BSD-LFS & Bsp-Frs-m12
& 10.00
a 5.00
: = 2.5 Y-
0.00 9 o
40.00 50.00 60.00 70.00 80.00 90.00 m m :
= = ! ,
£ 1.5 c 15 y o ye— S
Disk utilization (percent) = i, I~ : it
_§- 1 .0 8‘ 1 ‘0 ,;.":'7 - V/
5 0.5 g 05—
® LFS w/cleaner " LFS w/out cleaner 8 FFs ,-E |-E '
0.0 TTT] TTT] T TTT 0.0 TTT] 1T 1T TTT
1 16 256 4096 65536 1 16 256 4096 65536
File Size (in KB) File Size (in KB)

'LFS — FFS-m8r0 = FFS-m8r2 - LFS — FFS-m8r0 =~ FFS-m8r2

LFS Legacy: SSDs and FTLs

(and many other acronymes...)

Host Syst
[e oF Syvem Rend } File System
rites cads . .

g v N\ Block Device Driver m:apfll:\?‘;l?na;bage Collechion

Cooperative Buffer Management]

FTL (Flash Translation Layey tad Block M .
Write Buffer Read Cache) ad Block Managemen
(NVM)] [(DRAM)] STL (Sector Translation) o] W/ Error Handling
‘L - * d BML (Block Management) o Flash Interface
Flash Translation Layer L |

\Ef:}ffel ?;{‘;Z'Ql T;ﬁﬁz \w\ LD (Low Level Driven .__‘__M (Flash Recovery Algorithm)

H
i NAND Flash Device (Flash Interface)

e - Raw NAND + NAND Ctrl'r + (/W) | (Flash Recovery Algorithm)
\ Solid State Drive)

Discussion:

 What workloads will be slower for LFS than FFS?

 Compare and contrast FFS and LFS from a mechanical sympathy
perspective.

* FreeBSD and LFS deal with multiple allocation sizes
(superpages/segments). How are the problems and solutions similar
and/or different?

	Slide 1: File Systems LFS
	Slide 2: LFS faux quiz (any 2, 5 min):
	Slide 3: Crash Consistency—refresher
	Slide 4: The three consistency commandments
	Slide 5: LFS: …why?
	Slide 6: LFS: Some important questions
	Slide 7: Motivation: creating two files
	Slide 8: Motivation: creating two files
	Slide 9: Motivation: creating two files
	Slide 10: LFS Motivation: FFS
	Slide 11: LFS Motivation: FFS
	Slide 12: LFS Motivation: FFS
	Slide 13: LFS Motivation
	Slide 14: LFS Motivation
	Slide 15: LFS Motivation
	Slide 16: LFS Motivation
	Slide 17: LFS Challenges
	Slide 18: OK then…how do we find things?
	Slide 19: Index structures: FFS
	Slide 20: Index structures: FFS
	Slide 21: Index structures: LFS
	Slide 22: Index structures: LFS
	Slide 23: Index structures: LFS
	Slide 24: Accessing an i-node
	Slide 25: The way it works
	Slide 26: Cleaning
	Slide 27: Segments: benefits of both
	Slide 28: Segment cleaning
	Slide 29: Write Cost and Cleaning Policy
	Slide 30: Write Cost and Cleaning Policy
	Slide 31: Segment cleaning policies (II)
	Slide 32: Segment cleaning policies (II)
	Slide 33: Crash-recovery: Checkpoints/Roll-forward
	Slide 34: Crash-recovery: Checkpoints/Roll-forward
	Slide 35: When is LFS better?
	Slide 36: LFS: key takeaways
	Slide 38: Seltzer v Ousterhout: what a kerfuffle!
	Slide 39: FFS v LFS
	Slide 40: FFS v LFS
	Slide 41: FFS v LFS
	Slide 42: FFS v LFS
	Slide 43: FFS v LFS
	Slide 44: FFS v LFS
	Slide 45: FFS v LFS
	Slide 46: FFS v LFS
	Slide 47: FFS v LFS
	Slide 48: FFS v LFS
	Slide 49: FFS v LFS
	Slide 50: LFS Legacy: SSDs and FTLs (and many other acronyms…)
	Slide 51: Discussion:

