
File Systems
LFS

Emmett Witchel

CS380L

LFS faux quiz (any 2, 5 min):

1. Why would anyone optimize a file system for writes?

2. Why is/isn’t an imap + “mobile” inodes better than a fixed array?

3. Why are segments better than threading or compaction?

4. What workloads will be slower for LFS than FFS?

5. Why clean hot and cold segments at different thresholds?

6. How do crash recovery techniques differ between LFS and a journaling FS?

7. Compare and contrast FFS and LFS from a mechanical sympathy perspective.

8. FreeBSD and LFS deal with multiple allocation sizes (superpages/segments).
How are the problems and solutions similar and/or different?

9. Why doesn’t LFS have to completely replay the log at initialization time?

10. How does LFS handle a crash that occurs during a checkpoint. Is it always
guaranteed to have a consistent checkpoint?

Crash Consistency—refresher

• Crash consistency:
• File system is in a “consistent” state after crash

• File system is in a “recoverable” state?

• User data is consistent?

• Difficulty: multiple meta-data updates must appear atomic

The three consistency commandments

NEVER:
• … point to a structure before it

has been initialized.
• … reuse a resource before

nullifying all previous pointers
to it.

• … reset last pointer to live
resource before new pointer is
set.

(Adapted from soft updates
[McKusick et al.])

LFS: …why?

• Technology trends

• Implications

• Growing DRAM

• RAID, network RAID, transfer bandwidth/access time relative to CPU

• All reads served from cache

• Can’t we serve writes from cache?

• Most disk traffic is writes

• RAID5 makes small writes s*&k

LFS: Some important questions

• Why is an imap necessary for LFS? Is it clearly better?

• Why doesn’t LFS compact segments based on “age-sort” alone? What
does it do instead?

• For what operations will LFS be faster/better than FFS? Vice-versa?

• How does LFS deal with the consistency challenges above? Does LFS
do the kind of logging we saw in the previous slides?

Motivation: creating two files

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

What are the basic file system structures that get updated?

How would FFS allocate disk space for this?

Motivation: creating two files

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

What are the basic file system structures that get updated?

How would FFS allocate disk space for this?

1. Inodes for dir1, dir2 updated to include pointers to blocks for file1, file2 dentries
2. Data blocks created for file1, file2 data
3. Inodes for file1, file2 created, point to datablocks.

Motivation: creating two files

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

What are the basic file system structures that get updated?

How would FFS allocate disk space for this?

1. Inodes for dir1, dir2 updated to include pointers to blocks for file1, file2 dentries
2. Data blocks created for file1, file2 data
3. Inodes for file1, file2 created, point to datablocks.

Using heuristics to preserve locality (e.g. cylinder groups, etc.)

8

LFS Motivation: FFS

file1 file2

dir1 dir2

Unix File
System

inode

directory

data

inode map

How many seeks in FFS?

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

8

LFS Motivation: FFS

file1 file2

dir1 dir2

Unix File
System

inode

directory

data

inode map

How many seeks in FFS?
(Yes, it depends)
So…worst case?

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

8

LFS Motivation: FFS

file1 file2

dir1 dir2

Unix File
System

inode

directory

data

inode map

How many seeks in FFS?
(Yes, it depends)
So…worst case?

5 disk I/Os per create:
• 2 access to file attrs (inode)

• why 2?

• Data block
• Dentry block
• Dir attrs

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

9

LFS Motivation

file1 file2

dir1 dir2

Unix File
System

inode

directory

data

inode map

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

9

LFS Motivation

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

inode

directory

data

inode map

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

9

LFS Motivation

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log
How many I/Os in LFS?

inode

directory

data

inode map

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

9

LFS Motivation

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log
How many I/Os in LFS?

• Replace sync writes with async
• Batch → few large writes
• buffer in memory, write segs to disk
• append only, no overwrite in place

inode

directory

data

inode map

:> echo “quack” > dir1/file1

:> echo “quack again” > dir2/file2

• Metadata design
• No update in place

• Nothing has a permanent home

• How do we find anything?

• Free space management
• We need large extents of free space

• How do we ensure we always have it?

LFS Challenges

• No update in place

• Nothing has a permanent home

• How do we find anything?

• We need large extents of free space

• How do we ensure we always have it?

OK then…how do we find things?

• How are FS metadata organized in FFS?
• How do we find an inode?
• From mkfs.ext4

• -N number-of-inodes
• Overrides the default calculation of the number of inodes that should be reserved for the

filesystem (which is based on the number of blocks and the bytes-per-inode ratio). This allows
the user to specify the number of desired inodes directly.

• How do we find inodes in LFS?

• I-node map maintains the location of all i-node blocks
• I-node map blocks stored on the log

• Along with data blocks/i-node blocks

• Active blocks cached in main memory

• Fixed checkpoint region
• on each disk
• contains the addresses of all i-node map blocks

• at checkpoint time (when is that?)

Index structures: FFS
inode(inum)

inodes

Index structures: FFS

f(inum)

inode(inum)

inodes

Index structures: LFS

f(inum)

inode(inum)

log

Index structures: LFS

f(inum)

inode(inum)

log

imap

Index structures: LFS

f(inum)

inode(inum)

log

imap

Is this obviously better?
Why doesn’t this break sequential writes?

Accessing an i-node

Fixed location

but not up to date

I-node map blocks

spread on the log

I-node blocks also

spread on the log

Log

Log

Checkpoint Area

The way it works

Fixed location

but not up to date

I-node map blocks

spread on the log

I-node blocks also

spread on the log

Log

Log

Checkpoint Area

Active blocks

cached in RAM

Active blocks

cached in RAM

Cleaning

• Option 1: threading

• Option 2: compact/copy

• Put new blocks wherever there are holes

• Blocks point to next block

• Pro: doesn’t waste time R/W live data

• Con: storage system entropy: fragmentation!

• Move live blocks to smaller area

• Pro: create large extents reliably

• Con: RW same data over and over

Problem with threaded log—fragmentation
Problem with copy and compact—cost of copying data

Segments: benefits of both

• Chop disk into large segments

• When to use compaction?
• Compact within segments

• When to use threading?
• Thread among segments

• Always write to current clean segment before moving on

• How to deal with finite-ness of log?

• Needs a “segment cleaner”

Segment cleaning

• Old segments contain
• live data
• “dead data” → files overwritten/deleted

• Segment cleaning → compact/write out live data

• Segment summary block → per-segment metadata

Algorithm:
Read segments into memory
Identify the live data
Write live data (contiguously) to clean segments

Key issues: where/when to write?
• Want to avoid repeated moves of stable files
• Minimize overhead for writes: “write cost”

Write Cost and Cleaning Policy
• No variance→ write cost

computed with formula (all
segments have same u (?!))

• LFS uniform→ greedy policy
(always clean least util)

• LFS hot-and-cold → greedy
policy + sorts blocks by age

• FFS improved → estimate of
best possible FFS performance

Write Cost and Cleaning Policy
• No variance→ write cost

computed with formula (all
segments have same u (?!))

• LFS uniform→ greedy policy
(always clean least util)

• LFS hot-and-cold → greedy
policy + sorts blocks by age

• FFS improved → estimate of
best possible FFS performance

Observations:

• Write cost very sensitive to u
• High disk util→ in more

frequent cleaning

• Free space
• valuable in cold segments
• Not valuable hot segments
• Value depends on stability of

live blocks in segment

Segment cleaning policies (II)

Segment cleaning policies (II)

Without cost-benefit:

• Locality skews
distribution toward
cleaning

• Segments cleaned at
higher utilizations than
optimal

With cost-benefit:

• different thresholds
• 75% for cold
• 15% for hot

75%

15%

Crash-recovery: Checkpoints/Roll-forward
Checkpoint = log position s.t. all FS metadata consistent

• Create:
• 1. Write out all dirty info to log, including metadata
• 2. Write checkpoint region to special place on disk

• On reboot:
• read checkpoint region to init in-memory data structures
• 2 checkpoints handles checkpoint write crash

Roll-Forward: try to recover as much data as possible

• Look at segment summary blocks
• if new inode and data blocks, but no inode map entry → update inode map
• if only data blocks, ignore

• Need special record for directory change
• avoids problems with inode but not directory written
• appears before the corresponding directory block or inode
• again, roll-forward

Crash-recovery: Checkpoints/Roll-forward
Checkpoint = log position s.t. all FS metadata consistent

• Create:
• 1. Write out all dirty info to log, including metadata
• 2. Write checkpoint region to special place on disk

• On reboot:
• read checkpoint region to init in-memory data structures
• 2 checkpoints handles checkpoint write crash

Roll-Forward: try to recover as much data as possible

• Look at segment summary blocks
• if new inode and data blocks, but no inode map entry → update inode map
• if only data blocks, ignore

• Need special record for directory change
• avoids problems with inode but not directory written
• appears before the corresponding directory block or inode
• again, roll-forward

• Crash in UNIX is a mess
• disk DS maybe inconsistent

• fsck slow

• A mess in LFS?
• find end of log

• scan backward to last
consistent state

22

When is LFS better?

• LFS wins, relative to FFS
• metadata-heavy workloads

• small file writes
• deletes

(metadata requires an additional write, and FFS does this synchronously)

• LFS loses, relative to FFS
• many files are partially over-written in random order

• file gets splayed throughout the log

• LFS vs. JFS
• JFS is “robust” like LFS, but data must eventually be written back “where it

came from” so disk bandwidth is still an issue

• LFS wins relative to FFS
• metadata-heavy workloads

• small file writes
• deletes

(metadata requires an additional write, and FFS does this synchronously)

• LFS loses relative to FFS
• many files are partially over-written in random order, then read

• file gets spread throughout the log

• LFS vs. JFS
• JFS is “robust” like LFS but data must eventually be written back “where it

came from” so disk bandwidth is still an issue

LFS: key takeaways

• Big memory → reads served from cache, optimize for writes

• Take journaling to logical extreme

• Hard problems:
• Find data in the log

• Cleaning

• Key ideas:
• Log your writes, log is ground truth

• Indexing: imap→ data can live anywhere

Seltzer v Ousterhout: what a kerfuffle!

• What did you think?

• Could you extract what the controversy was?
• Why it occurred?

• Seltzer papers: intentional challenge of LFS hypothesis?
• Implement LFS in BSD

• Validate by comparing against sprite-LFS

• Explore file size / access pattern (seq/rand) vs. perf

• Characterize disk fullness impact on LFS

• Characterize fragmentation impact on FFS

FFS v LFS

FFS v LFS

FFS v LFS

CreateRead

“m” == maxcontig, “r” == rotdelay

FFS v LFS

FFS v LFS

FFS v LFS

Large FilesSmall files

“m” == maxcontig, “r” == rotdelay

FFS v LFS

FFS v LFS

FFS v LFS

Transaction Processing:
TPC-B, database over FS

FFS v LFS

FFS v LFS• LFS order of magnitude faster (small creates/del)
• LFS+FFS comparable on large file create (>= .5MB).
• LFS+FFS comparable on reads (<=64 KB).
• LFS read faster [64KB..4MB]
• LFS+FFS comparable on reads >= 4MB.
• LFS write superior (<=256KB)
• FFS write superior (>256KB)

LFS Legacy: SSDs and FTLs
(and many other acronyms…)

Discussion:

• What workloads will be slower for LFS than FFS?

• Compare and contrast FFS and LFS from a mechanical sympathy
perspective.

• FreeBSD and LFS deal with multiple allocation sizes
(superpages/segments). How are the problems and solutions similar
and/or different?

	Slide 1: File Systems LFS
	Slide 2: LFS faux quiz (any 2, 5 min):
	Slide 3: Crash Consistency—refresher
	Slide 4: The three consistency commandments
	Slide 5: LFS: …why?
	Slide 6: LFS: Some important questions
	Slide 7: Motivation: creating two files
	Slide 8: Motivation: creating two files
	Slide 9: Motivation: creating two files
	Slide 10: LFS Motivation: FFS
	Slide 11: LFS Motivation: FFS
	Slide 12: LFS Motivation: FFS
	Slide 13: LFS Motivation
	Slide 14: LFS Motivation
	Slide 15: LFS Motivation
	Slide 16: LFS Motivation
	Slide 17: LFS Challenges
	Slide 18: OK then…how do we find things?
	Slide 19: Index structures: FFS
	Slide 20: Index structures: FFS
	Slide 21: Index structures: LFS
	Slide 22: Index structures: LFS
	Slide 23: Index structures: LFS
	Slide 24: Accessing an i-node
	Slide 25: The way it works
	Slide 26: Cleaning
	Slide 27: Segments: benefits of both
	Slide 28: Segment cleaning
	Slide 29: Write Cost and Cleaning Policy
	Slide 30: Write Cost and Cleaning Policy
	Slide 31: Segment cleaning policies (II)
	Slide 32: Segment cleaning policies (II)
	Slide 33: Crash-recovery: Checkpoints/Roll-forward
	Slide 34: Crash-recovery: Checkpoints/Roll-forward
	Slide 35: When is LFS better?
	Slide 36: LFS: key takeaways
	Slide 38: Seltzer v Ousterhout: what a kerfuffle!
	Slide 39: FFS v LFS
	Slide 40: FFS v LFS
	Slide 41: FFS v LFS
	Slide 42: FFS v LFS
	Slide 43: FFS v LFS
	Slide 44: FFS v LFS
	Slide 45: FFS v LFS
	Slide 46: FFS v LFS
	Slide 47: FFS v LFS
	Slide 48: FFS v LFS
	Slide 49: FFS v LFS
	Slide 50: LFS Legacy: SSDs and FTLs (and many other acronyms…)
	Slide 51: Discussion:

