
GFS
Emmett Witchel

cs380L

GFS faux quiz (any 2, 5 min):

• Why does GFS not need to hook into the VFS layer?

• Do GFS clients cache data or metadata? Why/why not?

• What is GFS’ replication factor? How was it chosen?

• Does GFS support hard links? Why/why not?

• What are some tradeoffs around having the location of GFS chunk
replicas be persistent or non-persistent?

• What is the relationship between master RAM capacity and GFS
capacity?

(Recall) a (seemingly) very simple problem

My computer Some other computer

(Recall) a (seemingly) very simple problem

My computer Some other computer

file I want

(Recall) a (seemingly) very simple problem

My computer Some other computer

file I want

Gimme it!

(Recall) a (seemingly) very simple problem

My computer Some other computer

file I want

Gimme it!

(Recall) a (seemingly) very simple problem

My computer

Some other computer(s)

(Recall) a (seemingly) very simple problem

My computer

Some other computer(s)

file I want

(Recall) a (seemingly) very simple problem

My computer

Some other computer(s)

file I want

Gimme it!

(Recall) a (seemingly) very simple problem

My computer

Some other computer(s)

file I want

Gimme it!

Give you what?
Which part?
How soon?
Can it be stale?

(Recall) a (seemingly) very simple problem

My computer

Some other computer(s)

file I want

Gimme it!

Give you what?
Which part?
How soon?
Can it be stale?

???

Networked storage design space

file I want

remote machinelocal machine

Networked storage design space

file I want

remote machine

Application

FS

Block

SCSI

Drivers

NIC

Application

FS

Block

SCSI

Drivers

NIC

local machine

Networked storage design space

file I want

remote machineAll user-level
???

Application

FS

Block

SCSI

Drivers

NIC

Application

FS

Block

SCSI

Drivers

NIC

local machine

Networked storage design space

file I want

remote machineAll user-level
???

VFS layer
???

Application

FS

Block

SCSI

Drivers

NIC

Application

FS

Block

SCSI

Drivers

NIC

local machine

Networked storage design space

file I want

remote machineAll user-level
???

VFS layer
???

Block layer
???

Application

FS

Block

SCSI

Drivers

NIC

Application

FS

Block

SCSI

Drivers

NIC

local machine

Networked storage design space

file I want

remote machineAll user-level
???

VFS layer
???

Block layer
???

Protocol layer
???

Application

FS

Block

SCSI

Drivers

NIC

Application

FS

Block

SCSI

Drivers

NIC

local machine

Networked storage design space

file I want

remote machineAll user-level
???

VFS layer
???

Block layer
???

Protocol layer
???

Driver layer
???

Application

FS

Block

SCSI

Drivers

NIC

Application

FS

Block

SCSI

Drivers

NIC

local machine

Networked storage design space

file I want

remote machineAll user-level
???

VFS layer
???

Block layer
???

Protocol layer
???

Driver layer
???

Application

FS

Block

SCSI

Drivers

NIC

Application

FS

Block

SCSI

Drivers

NIC

local machine

Where is GFS?

Goals/Design Determinants

• Optimized for:
• Large files

• Access bandwidth

• Sequential reads

• Appends (atomic!)

• Huge files (multi-GB) common

• Files are only appended and then read

• Snapshot support for files and directories

Why not use an existing file system?
• Large files spread over multiple machines
• Different workload and design priorities
• GFS designed for Google apps/workloads
• Google apps designed for GFS

GFS architecture

• How many masters? Is that enough?

• Master/servers → classic metadata/data distinction

• POSIX semantics not necessary → VFS layer unnecessary

GFS Architecture Revisited

Chunks

• Fixed size (64MB) chunks:
• easy translation from offset → chunk ID (done by client)

• Lazy chunk allocation justifies large size
• What is largest source of fragmentation?

• Each chunk can be served by different chunkservers

• Identifier == 64-bit chunk handle

• Client chunk access
• contact master for chunk server
• Contact chunk server directly for data
• No client data cache (why not?)
• Clients do cache metadata (why?)

Master
In memory:

1. File and chunk namespace
• Changes logged to disk for persistence
• RW locks for name space management

2. Mapping of files to chunks

3. Locations of chunk replicas.
Why isn’t this persisted?

Log is vital: master op log serializes all
namespace operations

Namespace mutations are synchronous

Responsibilities

• Metadata storage

• Locking

• Chunkserver communication

• Chunk CRUD, replication, balance
• Balance capacity/throughput

• Replicas must cross racks

• Re-replicate when low redundancy

• Rebalance chunk locations for load

Write control and data flow

Write control and data flow

• What is #1 asking?
• What is in reply #2?

• Why ok to cache it?
• bold #3? (one way?)
• #4? How associated with #3?
• Alternatives for #5?
• What if master fails?

Write control and data flow

• What is #1 asking?
• What is in reply #2?

• Why ok to cache it?
• bold #3? (one way?)
• #4? How associated with #3?
• Alternatives for #5?
• What if master fails?

• Data moved in any order
• Committed in order set by primary
• Durability means writes to multiple racks
• Lazy GC of deleted files

• Deleted files renamed
• space reclaimed after 3 days (why?)

• Shadow master for fast failover

Atomic Append

• “At least once” semantics
• GFS picks offset

• Retry on failure

• Good for concurrent writes

• Used heavily by Google apps
• Files that server as MPSC queues

• Merge multiple results to single file

Atomic Append

• “At least once” semantics
• GFS picks offset

• Retry on failure

• Good for concurrent writes

• Used heavily by Google apps
• Files that server as MPSC queues

• Merge multiple results to single file

Algorithm
1. Client push to all replicas
2. Primary: record fits current chunk?

Atomic Append

• “At least once” semantics
• GFS picks offset

• Retry on failure

• Good for concurrent writes

• Used heavily by Google apps
• Files that server as MPSC queues

• Merge multiple results to single file

Algorithm
1. Client push to all replicas
2. Primary: record fits current chunk?
3. No:

Atomic Append

• “At least once” semantics
• GFS picks offset

• Retry on failure

• Good for concurrent writes

• Used heavily by Google apps
• Files that server as MPSC queues

• Merge multiple results to single file

Algorithm
1. Client push to all replicas
2. Primary: record fits current chunk?
3. No:

A. Pad chunk
B. Secondaries pad chunk
C. Error → client → retry

Atomic Append

• “At least once” semantics
• GFS picks offset

• Retry on failure

• Good for concurrent writes

• Used heavily by Google apps
• Files that server as MPSC queues

• Merge multiple results to single file

Algorithm
1. Client push to all replicas
2. Primary: record fits current chunk?
3. No:

A. Pad chunk
B. Secondaries pad chunk
C. Error → client → retry

4. Yes:

Atomic Append

• “At least once” semantics
• GFS picks offset

• Retry on failure

• Good for concurrent writes

• Used heavily by Google apps
• Files that server as MPSC queues

• Merge multiple results to single file

Algorithm
1. Client push to all replicas
2. Primary: record fits current chunk?
3. No:

A. Pad chunk
B. Secondaries pad chunk
C. Error → client → retry

4. Yes:
A. Append record
B. Instruct secondaries: append record
C. Collect secondary resps, → send to

client

Atomic Append

• “At least once” semantics
• GFS picks offset

• Retry on failure

• Good for concurrent writes

• Used heavily by Google apps
• Files that server as MPSC queues

• Merge multiple results to single file

Algorithm
1. Client push to all replicas
2. Primary: record fits current chunk?
3. No:

A. Pad chunk
B. Secondaries pad chunk
C. Error → client → retry

4. Yes:
A. Append record
B. Instruct secondaries: append record
C. Collect secondary resps, → send to

client
Do secondaries always

succeed in 4.b.?

When you’re Google…

When you’re Google…

• …You can define your own meaning of “consistent”

When you’re Google…

• …You can define your own meaning of “consistent”

• Region States after mutation

When you’re Google…

• …You can define your own meaning of “consistent”

• Region States after mutation

When you’re Google…

• …You can define your own meaning of “consistent”

• Region States after mutation

Consistent: all clients see same data
Defined: All clients see all of the latest write
• App-level checksums for integrity
• Applications tolerate duplicate chunks
• Writes ordered by lease for primary data

node

When you’re Google…

• …You can define your own meaning of “consistent”

• Region States after mutation

Consistent: all clients see same data
Defined: All clients see all of the latest write
• App-level checksums for integrity
• Applications tolerate duplicate chunks
• Writes ordered by lease for primary data

node

How can this happen? What does
it mean to be defined but

inconsistent? How can it happen?

When you’re Google…

• …You can define your own meaning of “consistent”

• Region States after mutation

Consistent: all clients see same data
Defined: All clients see all of the latest write
• App-level checksums for integrity
• Applications tolerate duplicate chunks
• Writes ordered by lease for primary data

node

When you’re Google…

• …You can define your own meaning of “consistent”

• Region States after mutation

Consistent: all clients see same data
Defined: All clients see all of the latest write
• App-level checksums for integrity
• Applications tolerate duplicate chunks
• Writes ordered by lease for primary data

node

Given the write protocol, how
does concurrency arise?

When you’re Google…

• …You can define your own meaning of “consistent”

• Region States after mutation

Consistent: all clients see same data
Defined: All clients see all of the latest write
• App-level checksums for integrity
• Applications tolerate duplicate chunks
• Writes ordered by lease for primary data

node

Given the write protocol, how
does concurrency arise?

Aggregate Throughput

HDFS comparison (for hoots)

What differences do you see from GFS?

How might GFS be better/worse?

Read Write

GFS Evolution

• 64 MB chunks make it hard to support small files (gmail)
• 1MB new design target

• Master memory limits number of files in a GFS FS

• Trade latency for bandwidth
• poor choice for user-visible apps (gmail)

• File content inconsistencies are a pain point
• What causes this again?

• Support for multiple masters is desirable but difficult

• Erasure coding and/or Reed Solomon: 3x overhead → 2.1x

Distributed FS dimensions

Dimension Examples NFS GFS

Architecture Central/Distributed

Naming Index/DB/Log/…

API FUSE/CLI/POSIX

Fault-detection Fully-connected/P2P/manual

System availability Failover/…

Data availability Replication/RAID/…

Placement Auto/manual

Replication Sync/Async

Consistency Lock/WORM/…

Thoughts on the Master

• Single master → simple → short time to deploy
• Small metadata → fits on one machine (IN RAM)
• Metadata: file id, chunks
• Fast scans (gc, recovery)
• 100s TB → 10s PB → orders magnitude metadata increase
• “Open” talks to master
• MR jobs thousands of jobs come alive simultaneously → all want to open

something…
• By 2009, master per cell, multi-masters on cell of chunkservers,

application-level partitioning.
• GFS: team of 3 people under 1 year

• Write-to-read semantics too expensive
• Give up caching, require server-side state, or …

• Close-to-open “session” semantics
• Ensure an ordering, but only between application close

and open, not all writes and reads.

• If B opens after A closes, will see A’s writes

• But if two clients open at same time? No guarantees
• And what gets written? “Last writer wins”

24

Exploring the consistency tradeoffs

	Slide 1: GFS
	Slide 2: GFS faux quiz (any 2, 5 min):
	Slide 3: (Recall) a (seemingly) very simple problem
	Slide 4: (Recall) a (seemingly) very simple problem
	Slide 5: (Recall) a (seemingly) very simple problem
	Slide 6: (Recall) a (seemingly) very simple problem
	Slide 7: (Recall) a (seemingly) very simple problem
	Slide 8: (Recall) a (seemingly) very simple problem
	Slide 9: (Recall) a (seemingly) very simple problem
	Slide 10: (Recall) a (seemingly) very simple problem
	Slide 11: (Recall) a (seemingly) very simple problem
	Slide 12: Networked storage design space
	Slide 13: Networked storage design space
	Slide 14: Networked storage design space
	Slide 15: Networked storage design space
	Slide 16: Networked storage design space
	Slide 17: Networked storage design space
	Slide 18: Networked storage design space
	Slide 19: Networked storage design space
	Slide 20: Goals/Design Determinants
	Slide 21: GFS architecture
	Slide 22: GFS Architecture Revisited
	Slide 23: Chunks
	Slide 24: Master
	Slide 25
	Slide 26
	Slide 27: Write control and data flow
	Slide 28: Write control and data flow
	Slide 29: Write control and data flow
	Slide 30: Atomic Append
	Slide 31: Atomic Append
	Slide 32: Atomic Append
	Slide 33: Atomic Append
	Slide 34: Atomic Append
	Slide 35: Atomic Append
	Slide 36: Atomic Append
	Slide 37: When you’re Google…
	Slide 38: When you’re Google…
	Slide 39: When you’re Google…
	Slide 40: When you’re Google…
	Slide 41: When you’re Google…
	Slide 42: When you’re Google…
	Slide 43: When you’re Google…
	Slide 44: When you’re Google…
	Slide 45: When you’re Google…
	Slide 46: Aggregate Throughput
	Slide 47: HDFS comparison (for hoots)
	Slide 51: GFS Evolution
	Slide 52: Distributed FS dimensions
	Slide 53: Thoughts on the Master
	Slide 54: Exploring the consistency tradeoffs

