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GFS faux quiz (any 2, 5 min):

• Why does GFS not need to hook into the VFS layer?

• Do GFS clients cache data or metadata? Why/why not?

• What is GFS’ replication factor? How was it chosen?

• Does GFS support hard links? Why/why not?

• What are some tradeoffs around having the location of GFS chunk 
replicas be persistent or non-persistent?

• What is the relationship between master RAM capacity and GFS 
capacity? 
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Goals/Design Determinants

• Optimized for: 
• Large files

• Access bandwidth

• Sequential reads

• Appends (atomic!)

• Huge files (multi-GB) common

• Files are only appended and then read

• Snapshot support for files and directories

Why not use an existing file system? 
• Large files spread over multiple machines
• Different workload and design priorities 
• GFS designed for Google apps/workloads 
• Google apps designed for GFS 



GFS architecture

• How many masters? Is that enough?

• Master/servers → classic metadata/data distinction

• POSIX semantics not necessary → VFS layer unnecessary



GFS Architecture Revisited



Chunks

• Fixed size (64MB) chunks:
• easy translation from offset → chunk ID (done by client)

• Lazy chunk allocation justifies large size
• What is largest source of fragmentation?

• Each chunk can be served by different chunkservers

• Identifier == 64-bit chunk handle

• Client chunk access
• contact master for chunk server
• Contact chunk server directly for data
• No client data cache (why not?)
• Clients do cache metadata (why?)



Master
In memory:

1. File and chunk namespace
• Changes logged to disk for persistence
• RW locks for name space management

2. Mapping of files to chunks

3. Locations of chunk replicas. 
Why isn’t this persisted?

Log is vital: master op log serializes all 
namespace operations

Namespace mutations are synchronous

Responsibilities

• Metadata storage

• Locking

• Chunkserver communication

• Chunk CRUD, replication, balance
• Balance capacity/throughput

• Replicas must cross racks

• Re-replicate when low redundancy

• Rebalance chunk locations for load
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Write control and data flow

• What is #1 asking?
• What is in reply #2?

• Why ok to cache it?
• bold #3? (one way?)
• #4? How associated with #3?
• Alternatives for #5?
• What if master fails?

• Data moved in any order
• Committed in order set by primary
• Durability means writes to multiple racks
• Lazy GC of deleted files

• Deleted files renamed 
• space reclaimed after 3 days (why?)

• Shadow master for fast failover
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Atomic Append

• “At least once” semantics
• GFS picks offset

• Retry on failure

• Good for concurrent writes

• Used heavily by Google apps
• Files that server as MPSC queues

• Merge multiple results to single file

Algorithm
1. Client push to all replicas
2. Primary: record fits current chunk?
3. No: 

A. Pad chunk
B. Secondaries pad chunk
C. Error → client → retry

4. Yes:
A. Append record
B. Instruct secondaries: append record
C. Collect secondary resps, → send to 

client
Do secondaries always 

succeed in 4.b.?
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Aggregate Throughput



HDFS comparison (for hoots)

What differences do you see from GFS?

How might GFS be better/worse?

Read Write



GFS Evolution

• 64 MB chunks make it hard to support small files (gmail) 
• 1MB new design target

• Master memory limits number of files in a GFS FS

• Trade latency for bandwidth
• poor choice for user-visible apps (gmail)

• File content inconsistencies are a pain point 
• What causes this again?

• Support for multiple masters is desirable but difficult

• Erasure coding and/or Reed Solomon: 3x overhead → 2.1x



Distributed FS dimensions

Dimension Examples NFS GFS

Architecture Central/Distributed

Naming Index/DB/Log/…

API FUSE/CLI/POSIX

Fault-detection Fully-connected/P2P/manual

System availability Failover/…

Data availability Replication/RAID/…

Placement Auto/manual

Replication Sync/Async

Consistency Lock/WORM/…



Thoughts on the Master

• Single master → simple → short time to deploy
• Small metadata → fits on one machine (IN RAM)
• Metadata: file id, chunks
• Fast scans (gc, recovery)
• 100s TB → 10s PB → orders magnitude metadata increase
• “Open” talks to master
• MR jobs thousands of jobs come alive simultaneously → all want to open 

something…
• By 2009, master per cell, multi-masters on cell of chunkservers, 

application-level partitioning. 
• GFS: team of 3 people under 1 year



• Write-to-read semantics too expensive
• Give up caching, require server-side state, or …

• Close-to-open “session” semantics
• Ensure an ordering, but only between application close 

and open, not all writes and reads.

• If B opens after A closes, will see A’s writes

• But if two clients open at same time?  No guarantees
• And what gets written? “Last writer wins”

24

Exploring the consistency tradeoffs
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