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Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost



create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost
Canonical examples:
move(file, old-dir, new-dir) {

delete(file, old-dir)
add(file, new-dir)

}



create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost

Can we use messages? E.g. 
with retries over unreliable 
medium to synchronize with 
guarantees?

Canonical examples:
move(file, old-dir, new-dir) {

delete(file, old-dir)
add(file, new-dir)

}



create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost

Can we use messages? E.g. 
with retries over unreliable 
medium to synchronize with 
guarantees?

No. 
Not even if all messages get 
through!

Canonical examples:
move(file, old-dir, new-dir) {

delete(file, old-dir)
add(file, new-dir)

}



create(file, dir) {
alloc-disk(file, header, data)
write(header)
add (file, dir)

}

Problem: Unreliability

• Want reliable update of two resources (e.g. in two disks, machines…)
• Move file from A to B
• Create file (update free list, inode, data block)
• Bank transfer (move $100 from my account to VISA account)
• Move directory from server A to B

• Machines can crash, messages can be lost

Can we use messages? E.g. 
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• Transactions: solve 
weaker problem: 
• 2 things will either 

happen or not
• not necessarily at the 

same time
• Core idea
• one entity: yes or no 

for all



Transactional Programming Model

begin transaction;
x = read(“x-values”, ....);
y = read(“y-values”, ....);
z = x+y;
write(“z-values”, z, ....);

commit transaction;



Review: ACID Semantics

• Atomic – all updates happen or none do
• Consistent – system invariants maintained across updates
• Isolated – no visibility into partial updates
• Durable – once done, stays done
• Are subsets ever appropriate? begin transaction;

x = read(“x-values”, ....);
y = read(“y-values”, ....);
z = x+y;
write(“z-values”, z, ....);

commit transaction;



Transactions: Implementation

• Key idea: turn multiple updates into a single one
• Many implementation Techniques
• Two-phase locking
• Timestamp ordering
• Optimistic Concurrency Control
• Journaling
• 2,3-phase commit
• Speculation-rollback
• Single global lock
• Compensating transactions
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Review: Two-phase locking

• Phase 1 (acquire): only acquire locks in order
• Phase 2: unlock (after first unlock, no more locks)
• +avoids deadlock
• - can hold locks longer than necessary

Lock x, y
x = x + 1
y = y – 1
unlock y, x

Lock x
x = x + 1
Lock y
y = y – 1
unlock y, x



Using two-phase locking for transactions
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y = y – 1
COMMIT_TXN();
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Using two-phase locking for transactions

BEGIN_TXN();
x = x + 1
y = y – 1
COMMIT_TXN();

BEGIN_TXN() {

}

COMMIT_TXN() {

}

BEGIN_TXN() {
rwset = Union(rset, wset);
rwset = sort(rwset);
forall x in rwset

LOCK(x);
}

COMMIT_TXN() {
forall x in rwset

UNLOCK(x);
}

Pros/Cons?
What happens on failures?



Two-phase commit (distributed transactions)

• N participants agree or don’t (atomicity)
• Phase 1: everyone “prepares”
• Phase 2: Master decides and tells everyone to actually commit
• What if the master crashes in the middle?



Review: 2PC
Phase 1
1. Coordinator sends REQUEST to all participants
2. Participants receive request and
3. Execute locally
4. Write VOTE_COMMIT or VOTE_ABORT to local 

log
5. Send VOTE_COMMIT or VOTE_ABORT to 

coordinator

Example—move: CàS1: delete foo from /, 
CàS2: add foo to /

Failure case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 decides permission problem
S2 writes/sends VOTE_ABORT

Success case:
S1 writes rm /foo, VOTE_COMMIT to log
S1 sends VOTE_COMMIT
S2 writes add foo to /
S2 writes/sends VOTE_COMMIT

Phase 2
• Case 1: receive VOTE_ABORT or timeout

• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants receive decision, write 
GLOBAL_* to log



2PC corner cases
Phase 1

1. Coordinator sends REQUEST to all participants

2. Participants receive request and

3. Execute locally

4. Write VOTE_COMMIT or VOTE_ABORT to local log

5. Send VOTE_COMMIT or VOTE_ABORT to coordinator

Phase 2

• Case 1: receive VOTE_ABORT or timeout
• Write GLOBAL_ABORT to log
• send GLOBAL_ABORT to participants

• Case 2: receive VOTE_COMMIT from all
• Write GLOBAL_COMMIT to log
• send GLOBAL_COMMIT to participants

• Participants recv decision, write GLOBAL_* to log

• What if participant crashes at X?
• Coordinator crashes at Y?
• Participant crashes at Z?
• Coordinator crashes at W?

Z

X
Y

W



2PC limitation(s)

• Coordinator crashes at W, never wakes up
• All nodes block forever!
• Can participants ask each other what happened?
• 2PC: always has risk of indefinite blocking
• Solution: (yes) 3 phase commit!
• Reliable replacement of crashed “leader”
• 2PC often good enough in practice



Problems with locks (pessimistic sync)

Locks: a litany of problems
• Deadlock
• Priority inversion
• Convoys
• Fault Isolation
• Preemption Tolerance
• Performance

Solution: don’t use locks



Non-Blocking Synchronization

• Lock-free à Subset of a broader: Non-blocking Synchronization
• Thread-safe access shared mutable state without mutual exclusion
• Possible without HW support
• E.g. Lamport’s Concurrent Buffer
• But not really practical

• Built on atomic instructions like CAS + clever algorithmic tricks
• Lock-free algorithms are hard, so
• General approach: encapsulate lock-free algorithms in data structures
• Queue, list, hash-table, skip list, etc.
• New LF data structure à research result



Example: List Append
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• What property do the locks enforce?

• What does the mutual exclusion ensure?

• Can we ensure consistent view (invariants hold) sans mutual exclusion?

• Key insight: allow inconsistent view and fix it up algorithmically
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We use pre-conditions and post-conditions.
• Pre-condition defines the state of the object before method.
• Post-condition defines the state of the object after the method.  Also 
defines returned value and thrown exception.

Sequential Specification

33
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Sequential Specification

Pre-condition:
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• Returns first item in queue.
• Removes first item in queue.deq 
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We use pre-conditions and post-conditions.
• Pre-condition defines the state of the object before method.
• Post-condition defines the state of the object after the method.  Also 
defines returned value and thrown exception.

Sequential Specification

Pre-condition:
queue is not empty.

Post-condition:
• Returns first item in queue.
• Removes first item in queue.

Pre-condition:
queue is empty.

Post-condition:
•Throws EmptyException.
• Queue state is unchanged.

deq 
method

33



We use pre-conditions and post-conditions.
• Pre-condition defines the state of the object before method.
• Post-condition defines the state of the object after the method.  Also 
defines returned value and thrown exception.
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•Methods here “take time”. 
• In sequential computing, methods take time also, but we don’t care.
• In sequential:  method call is an event.
• In concurrent:  method call is an interval.

•Methods intervals can overlap

Concurrent Specifications

34
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Concurrent objects
• An object in languages such as Java and C++ is a container for data.

•Methods are the only way to access state 

• Each object has a class which describes how its methods behave.
• Can have a list that allows append only, or allows insert.  Different APIs

• Given object, is its behavior correct during concurrent execution?
• Sequential consistency – good for some things, but weak

• Respects program order
• Linearizability

•Composable: If all objects are linearlizable, system is linearizable
•Core idea: each operation
• 1. takes effect instantaneously 
• 2. at some point between its invocation and its response.

35



Correctness criteria

36

Look at the behaviour of the data structure 
• what operations are called on it 
• what their results are

If behaviour is indistinguishable from atomic calls to a 
sequential implementation then the concurrent 
implementation is correct.



Sequential consistency definition

37

• Method calls should appear to happen in a one-at-
a-time, sequential order

• Method calls should appear to take effect in 
program order.

• NB: Says nothing of ordering of methods from 
different threads/programs.



Sequential consistency example

time

Thread B:

Thread A:

q.enq(x)

q.enq(y)

38

q.deq(x)

q is a FIFO queue



Sequential consistency example

time

Thread B:

Thread A:

q.enq(x)

q.enq(y)

38

q.deq(x)

Total Order: 
1. A: q.enc(x)
2. B: q.enq(x)
3. A: q.deq(x)
• Total order follows real-time order

q is a FIFO queue



Sequential consistency more complexity
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q.deq(y)

q is a FIFO queue



Sequential consistency more complexity

time

Thread B:

Thread A:

q.enq(x)

q.enq(y)

39

q.deq(y)

Total Order: 
1. B: q.enc(y)
2. A: q.enq(x)
3. A: q.deq(y)
• Even though q.enq(y) starts in real 

time after q.enq(x) finishes

q is a FIFO queue



Linearizable definition

40

• Method calls should appear to happen in a one-at-
a-time, sequential order

• Method calls should appear to take effect in 
program order.

• Each method call should appear to take effect 
instantaneously at some moment between its 
invocation and response.
• Often called its linearization point



Linearizability
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• Start/end impose ordering constraints
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Linearizability
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Total Order: 
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order

Linearizability:
• Is there a correct sequential history:

• Same results as the concurrent one
• Consistent with the timing of the 

invocations/responses?
• Start/end impose ordering constraints

1 2 3

q is a FIFO queue
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Not linearizable
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q is a FIFO queue



Not linearizable

time

Thread B:

Thread A:

q.enq(x)

q.enq(y)

43

q.deq(y)

Total Order: 
1. A: q.enc(x)
2. A:q.deq(y) implies 

q.enq(y) -> q.enq(x)
3. ????????

1

q is a FIFO queue



Recurring technique

• For updates:
• Perform an essential step of an operation by a single atomic instruction
• E.g. CAS to insert an item into a list
• This forms a “linearization point”

• For reads: 
• Identify a point during the operation’s execution when the result is valid 
• Not always a specific instruction

44



Linearizability vs. Sequential consistency

45

• So far, sequential consistency is weaker
• SC allows more interleavings than linearizability
• Higher performance, so why not always use it?



Sequential consistency not composable
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Total Order: 
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3. Program order
• Cycle!
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p.enq(y) q.deq(x)
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Sequential consistency

47

• SC is not composable.
• A program that uses multiple SC objects is not 

necessarily SC
• So what is it good for? 
• When there is only 1 resource
• E.g., DRAM
• E.g., Fault-tolerant, distributed log

• Nothing to compose
• Violation of real-time order does not cause problems
• Often because it is not “visible”



• Need a way to specify a concurrent queue object. 
• Need a way to prove algorithms implement the specification.
• Concurrent specification imposes two new properties: 
• safety 
• liveness

Defining concurrent queue  implementations:

48



Sequential vs. Concurrent
ConcurrentSequential

Need to describe all possible
interactions between methods.
(what if enq and deq overlap? …)

Methods described independently.

Because methods can overlap, the 
object may never be between 
method calls…

Object’s state is defined between 
method calls.

Need to think about all possible 
interactions with the new method.

Adding new method does not 
affect older methods.

49


