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Physical clocks
• tough in distributed system
• NTP, spanner, etc
Logical clocks
• Timestamps 
• conservatively respect causality
• A’s timestamp is later than any event A knows about
Vector clocks
• O (N) timestamps that say what A knows about events elsewhere
Matrix clocks
• O(N^2) timestamps showing pairwise knowledge of event orders



Causality
• Need to maintain causality
• If a -> b then a is casually related to b
• Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
• Capture causal relationships between groups of processes
• Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B



Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p 
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1
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Vector Clocks
• Each process i maintains a vector Vi
• Vi[i] : number of events that have occurred at i
• Vi[j] : number of events I knows have occurred at process j

• Update vector clocks:
• On local-event: increment Vi[I]
• On send-message: increment, piggyback entire local vector V
• On recv-message: Vj[k] = max( Vj[k],Vi[k] )

• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of events sender knows occurred elsewhere

• Exercise: prove that if V(A)<V(B), then A causally precedes B 
and the other way around.
• Under what conditions are V(A) and V(B) not ordered (concurrent)?



Vector Clock Example

Vi[i] : #events occurred at i

Vi[j] : #events i knows occurred at j

Update
• On local-event: increment Vi[I]
• On send-message: increment, 

piggyback entire local vector V
• On recv-message: Vj[k] = max( 

Vj[k],Vi[k] )
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of 

events sender knows occurred 
elsewhere
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• Vi[i] : number of events that have occurred at i
• Vi[j] : number of events I knows have occurred at 

process j
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• Local event: increment Vi[I]
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• Also Vj[i] = Vj[i]+1



Vector Clock Example

Each process i maintains a vector Vi

• Vi[i] : number of events that have occurred at i
• Vi[j] : number of events I knows have occurred at 

process j

Update
• Local event: increment Vi[I]
• Send a message :piggyback entire vector V
• Receipt of a message: Vj[k] = max( Vj[k],Vi[k] )

• Receiver is told about how many events the 
sender knows occurred at another process k

• Also Vj[i] = Vj[i]+1

• Need to order operations
• Can’t rely on real-time
• Vector clock: timestamping algorithm s.t. 

• TS(A) < TS(B) à A happens before B
• Independent ops remain unordered

                    See any drawbacks?



Races

1 Lock(lock);
2 Read-Write(X);
3 Unlock(lock);

1
2 Read-Write(X);
3

• Is there a race here?
• What is a race?
• Informally: accesses with missing/incorrect synchronization
• Formally: 

• >1 threads access same item
• No intervening synchronization
• At least one access is a write

Thread 1 Thread 2
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Detecting Races

• Static
• Run a tool that analyses just code
• Maybe code is annotated to help
• Conservative: detect races that never occur

• Dynamic
• Instrument code
• Check synchronization invariants on accesses
• More precise
• Difficult to make fast
• Lockset vs happens-before

How to detect races: 
forall(X) {
   if(not_synchronized(X)) 
      declare_race()
}

1 Lock(lock);
2 Read-Write(X);
3 Unlock(lock);

1
2 Read-Write(X);
3



Lockset Algorithm

• Locking discipline
• Every shared variable is protected by some locks

• Core idea
• Track locks held by thread t
• On access to var v, check if t holds the proper locks
• Challenge: how to know what locks are required?

• Infer protection relation
• Infer which locks protect which variable from execution history.
• Assume every lock protects every variable
• On each access, use locks held by thread to narrow that assumption



Lockset Algorithm

EECS 582 – W16 13

Narrow down set of 
locks maybe 
protecting v



Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}
 
{}

{lockB}

{}

{lockA, lockB}
 
{lockA}
 

{}

thread t locks_held(t) C(v)
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Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}
 
{}

{lockB}

{}

{lockA, lockB}
 
{lockA}
 

{}

thread t locks_held(t) C(v)

ACK! race
Pretty clever!
Why isn’t this 

a complete 
solution?



Group activity

• Analyze figure 3 to determine why the lockset algorithm would report 
a spurious race



Improving over lockset

1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2  
3  read-write(X);
4  
5 }

Lockset detects a race
There is no race: why not?
• A-1 happens before B-3
• B-3 happens before A-6
• Insight: races occur when “happens-before” cannot be known

thread A thread B



Happens-before

• Happens-before relation
• Within single thread
• Between threads

• Accessing variables not ordered  
by “happens-before” is a race
• Captures locks and dynamism
• How to track “happens-before”?
• Sync objects are ordering events
• Generalizes to fork/join, etc
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Thread 2

Happens-before

• Happens-before relation
• Within single thread
• Between threads

• Accessing variables not ordered  
by “happens-before” is a race
• Captures locks and dynamism
• How to track “happens-before”?
• Sync objects are ordering events
• Generalizes to fork/join, etc

Thread 1

T1 access to V
“Happens-before”
T2 access to V



Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving 
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize 
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Dynamic Race Detection Summary

l Lockset: verify locking discipline for 
shared memory
ü Detect race regardless of thread scheduling
û False positives because other 

synchronization primitives (fork/join, 
signal/wait) not supported

l Happens-before: track partial order of 
program events
ü Supports general synchronization primitives
û Higher overhead compared to lockset
û False negatives due to sensitivity to thread 

scheduling 

RaceTrack = Lockset + Happens-before



False positive using Lockset  

Inst State Lockset 
1 Virgin { }
3 Exclusive:t { }
6 Shared Modified {a}

9 Report race { }

Tracking accesses to X



RaceTrack Notations
Notation Meaning

Lt Lockset of  thread t

Cx Lockset of memory x

Bu Vector clock of thread u

Sx Threadset of memory x

ti Thread t at clock time i



RaceTrack Algorithm
Notation Meaning

Lt Lockset of  thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1 



Avoiding Lockset's false positive (1)

Inst Cx Sx Lt Bt Lu Bu
0 All { } { } {t1} - -

1 {t2} { } { t1,u1 }

2 {a}

3 {a} {t2}

4 { }
5 {a}
6 {t2,u1}

7 { }
8 {t2,u1} - -

Notation Meaning

Lt Lockset of  thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1 



Avoiding Lockset's false positive (2)

Inst Cx Sx Lt Bt Lv Bv
8 {a} {t2,u1} { } {t2,u1} - -

9 { } {t2}
10 {t3,u1} { } {t2,v1}

11 {a}

12 {a} {t3}
13 { }
14 {a}

15 {t3,v1}
16 { }

Notation Meaning

Lt Lockset of  thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1 



Avoiding Lockset's false positive (2)

Inst Cx Sx Lt Bt Lv Bv
8 {a} {t2,u1} { } {t2,u1} - -

9 { } {t2}
10 {t3,u1} { } {t2,v1}

11 {a}

12 {a} {t3}
13 { }
14 {a}

15 {t3,v1}
16 { }

Notation Meaning

Lt Lockset of  thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1 

Only one thread!
Are we done? 



RaceTrack's state machine



RaceTrack's state machine

Deal with 
outrageous 

proliferation of 
mechanism with 

adaptivity



Performance & Conclusions

l 3X slowdown on memory intensive 
programs
l < 2X on other programs

l 1.2X memory usage

Key ideas recap
l Eliminate Lockset false positives 

using happens-before
l Refine state machine based on 

common coding style
l Trade off accuracy for 

performance/scalability
l Detail slides moved to end



Additional ideas from paper

l Accuracy vs performance & scalability tradeoff
l Object granularity tracking
l Track subset of (array) objects
l Prune vector clock

l Annotations to eliminate false positives
l Warnings report analysis

l Ranking and classification
l Multiple stack traces



Microsoft CLR Implementation

•.NET framework



RaceTrack Object Layout



RaceTrack Encodings



Evaluation

l CLR Regression tests
l 2122 tests (0.5 MLOC)
l 48 warnings

l Performance
l 5 real world programs


