Concurrency Continued:
RaceTrack

Emmett Witchel
CS380L

Ordering and Causality

Time
—
A - = - - A, B, C have local orders

* Why do we care about
B - = - - - s , total order across all?

* Why is it hard to define
such an order?

* What is causality?

* How does causality
inform order?

Ordering and Causality

Time
—
A - = - - A, B, C have local orders

* Why do we care about

* ?
B Physical clocks stal order across all:

e tough in distributed system - - .
e ———o 'hy is it hard to define
C = Logical clocks iIch an order?

* Timestamps

e conservatively respect causality

e A’s timestamp is later than any event A knows about ow does c3 usality
Vector clocks

* O (N) timestamps that say what A knows about events elsewhere form order?

Matrix clocks

* O(N~2) timestamps showing pairwise knowledge of event orders

‘hat is causality?

Causality

* Need to maintain causality
* Ifa->bthenais casually relatedto b
* Causal delivery:lf send(m) -> send(n) => deliver(m) -> deliver(n)
e Capture causal relationships between groups of processes

* Need a time-stamping mechanism such that:
* If T(A) < T(B) then A should have causally preceded B

Logical Clocks

Logical Clocks

* Each process maintains a local value of a logical clock LC

Logical Clocks

* Each process maintains a local value of a logical clock LC

Logical Clocks

* Each process maintains a local value of a logical clock LC

Logical Clocks

* Each process maintains a local value of a logical clock LC

Logical Clocks

* Each process maintains a local value of a logical clock LC

LC=1 LC=2 LC=3

Logical Clocks

* Each process maintains a local value of a logical clock LC

LC=1 LC=2 LC=3 LC=4

Logical Clocks

* Each process maintains a local value of a logical clock LC

311 812 813 314 315 316
o o o o o o
LC=1 LC=2 LC=3 LC=4 LC=5

Logical Clocks

* Each process maintains a local value of a logical clock LC

311 812 813 314 315 316

o o o o o o

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks

* Each process maintains a local value of a logical clock LC

* Logical clock of p > how many events causally preceded the current event at p
* (including the current event).
* Conservative approximation: why?

311 312 813 314 315 316

o o o o o o

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks

* Each process maintains a local value of a logical clock LC

* Logical clock of p > how many events causally preceded the current event at p
* (including the current event).
* Conservative approximation: why?

* LC(e;) —the logical clock value at process p; at event e;

311 312 813 314 315 316

o o o o o o

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of p > how many events causally preceded the current event at p
* (including the current event).
* Conservative approximation: why?

LC(ey) —the logical clock value at process p; at event ¢;

Each message m that is sent contains a timestamp TS(m)

311 312 813 314 315 316

o o o o o o

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks

Each process maintains a local value of a logical clock LC

Logical clock of p > how many events causally preceded the current event at p
* (including the current event).
* Conservative approximation: why?

LC(ey) —the logical clock value at process p; at event ¢;

Each message m that is sent contains a timestamp TS(m)

Update rules:

* Send: TS(m) (logical clock value at process) sending event at the sending process
* Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

311 312 813 314 315 316

o o o o o o

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

P2

Ps

// \

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P
0 \\
P2
Awesome right?
0 Any drawbacks?
Ps
Update Rules:
e on-send: LC++

* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

P

>

Are these events
ordered?

P2

Ps

>

Awesome, right?
Any drawbacks?

J

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

>

[llustration of a Logical Clock suarantees:a<b 515t < st

Does not guarantee: TS(a) < TS(b) 2> a<b

P, JA S

Are these events
ordered?

>

Awesome, right? }

Any drawbacks?

>

0 1 5
Update Rules:

P2 9
0 1 2 3/ 4/
Ps o o o ‘
e on-send: LC++

* on-recv: LC = max(LC, TS(m))+1

llustration of a Logical Clock

Guarantees: a < b =2TS(a) < TS(b)
Does not guarantee: TS(a) < TS(b) 2> a

Are these events
ordered?

0 1
Pi

0 1
P2 9

0 1
Ps3 9

>

Awesome, right?
. Any drawbacks?

J

Update Rules:
e on-send: LC++
* on-recv: LC = max(LC, TS(m))+1

>

P

Not strong enough...so

N

Vector Clocks

* Each process i maintains a vector V,
* V[i] : number of events that have occurred at i
* V[j] : number of events | knows have occurred at process j

e Update vector clocks:
* On local-event: increment V[I]
* On send-message: increment, piggyback entire local vector V
* On recv-message: V/[k] = max(V,[k],Vi[k])
* V/[i] = V[i]+1 (increment local clock)
* Receiver learns about number of events sender knows occurred elsewhere
e Exercise: prove that if V(A)<V(B), then A causally precedes B
and the other way around.

* Under what conditions are V(A) and V(B) not ordered (concurrent)?

Vector Clock Example

Vector Clock

A2 A2
B:3 B:5 B:5
C:3 C:4 C:5

Vi[i] : #events occurred at i
V.[j] : #events i knows occurred at j

Update
* On local-event: increment V;[l]

* On send-message: increment,
piggyback entire local vector V
* On recv-message: V[k] = max(
Vilk[,Vilk])
* V[i] = V[i]+1 (increment local clock)

e Receiver learns about number of
events sender knows occurred
elsewhere

Vector Clock Example

Vector Clock

Vi[i] : #events occurred at i
V.[j] : #events i knows occurred at j

Update
* On local-event: increment V;[l]

* On send-message: increment,
piggyback entire local vector V
* On recv-message: V[k] = max(
Vilk[,Vilk])
* V[i] = V[i]+1 (increment local clock)

e Receiver learns about number of
events sender knows occurred
elsewhere

Vector Clock Example

6 k.
Vector Clock

Vi[i] : #events occurred at i

V.[j] : #events i knows occurred at j

Time | Update
A * On local-event: increment V;[l]
A0 Not ordered! * On send-message: increment,
A:3>2 piggyback entire local vector V
B:3<4 * On recv-message: Vi[k] = max(
B s — Vi[k],Vilk])
B4l |B: * V[i] = V[i]+1 (increment local clock)
-] [C * Receiver learns about number of
events sender knows occurred
C - elsewhere
B:3
C:1 C:2
C:0

Vector Clock Example

Time

Each process i maintains a vector V;

* V/[i] : number of events that have occurred at i
* V[j] : number of events | knows have occurred at

process j
- Update
A:2] AN & * Local event: increment V,[I]
(B:‘ll (B:’i ,g-' * Send a message :piggyback entire vector V
- ' 27 * Receipt of a message: V,[k] = max(V[k],V,[k])
* Receiveris told about how many events the
sender knows occurred at another process k
A2 A2 . Also Vil = Vil
B:3| B:3 B:5||B:5 so Vifi] = Vilil+
C:2| [C:3 C:4(|C:5

Vector Clock Example

Each process i maintains a vector V;,

-] .
% * V/[i] : number of events that have occurred at i

* V/[j] : number of events | knows have occurred at
process j

Update

* Local event: increment V[l]

* Need to order operations

 Can’trely on real-time

e Vector clock: timestamping algorithm s.t.
e TS(A) < TS(B) = A happens before B
* Independent ops remain unordered

See any drawbacks?

Races

Thread 1 Thread 2

1 Lock(lock) ; 1

2 Read-Write (X); 2 Read-Write (X);
3 Unlock (lock); 3

* |s there a race here?
* What is a race?
* Informally: accesses with missing/incorrect synchronization

* Formally:
e >1 threads access same item
* No intervening synchronization
e At least one access is a write

Races

Thread 1 Thread 2

Is there a race here?
How can a race detector tell?

Races

Thread 1 Thread 2

Is there a race here?
How can a race detector tell?

Races

Thread 1 Thread 2

1 read-write(X); 1 thread-proc() {
2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);
4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);

Is there a race here? Unsynchronized access can be
How can a race detector tell?

Races

Thread 1 Thread 2

1 read-write(X); 1 thread-proc() {
2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);
4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);

Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

Races

Thread 1

auvih WNEER

read-write(X);
fork(thread-proc);
do_stuff();
do_more_stuff();
join(thread-proc);
read-Write(X);

Thread 2

1 thread-proc() {
2
3 read-write(X);
4

5 }

Is there a race here?

Unsynchronized access can be

How can a race detector tell? * Benign due to fork/join

e Benign due to view serializability

Races

Thread 1 Thread 2

1 read-write(X); 1 thread-proc() {

2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);

4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

e Benign due to view serializability

* Benign due to application-level constraints

Races

Thread 1 Thread 2

1 read-write(X); 1 thread-proc() {

2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);

4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);
Is there a race here? Unsynchronized access can be
How can a race detector tell? * Benign due to fork/join

e Benign due to view serializability
* Benign due to application-level constraints

* E.g. approximate stats counters

Detecting Races

* Static
* Run a tool that analyses just code
* Maybe code is annotated to help
* Conservative: detect races that never occur

How to detect races:
forall(X) {

* Dynamic

* Instrument code
Check synchronization invariants on accesses
More precise
Difficult to make fast
Lockset vs happens-before

if(not_synchronized(X))
declare_race()

1 Lock(lock); 1
2 Read-Write (X); 2 Read-Write (X);

Lockset Algorithm

* Locking discipline
* Every shared variable is protected by some locks

* Core idea
* Track locks held by thread t
* On access to var v, check if t holds the proper locks
* Challenge: how to know what locks are required?

* Infer protection relation
* Infer which locks protect which variable from execution history.
* Assume every lock protects every variable
* On each access, use locks held by thread to narrow that assumption

Lockset Algorithm

Let locks held(t) be the set of locks held by thread ¢.
For each v, initialize C(v) to the set of all locks.

On each access to v by thread ¢,

set C(v) := C(v) N locks_held(t); Narrow down set of
if C(v) = { }, then issue a warning. locks maybe
protecting v

EECS 582 - W16 13

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}

lock(lockA);
V++;
unlock(lockA);

lock(lockB);
V++;
unlock(lockB);

Lockset Algorithm Example

ad

lock(lockA);
V++;
unlock(lockA);

lock(lockB);
V++;
unlock(lockB);

locks_held(t)
{1}

C(v)
{lockA, lockB}

14

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
=) lock(lockA); {lockA}
V++;
unlock(lockA);
lock(lockB);
V++;

unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
) VA {1lockA} C) N'locks_held(t)
unlock(lockA);
lock(lockB);
V++;

unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}

m=) unlock(lockA); {}

lock(lockB);
V++;
unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}
unlock(lockA); {3}

m==)> lock(lockB); {lockB}

V++;
unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}
unlock(lockA); {3}

lock(lockB); {lockB}

) VAt {}

unlock(lockB);

Lockset Algorithm Example

locks_held(t) C(v)

{} {lockA, lockB}
lock(lockA); {lockA}
V++; {lockA}
unlock(lockA); {3}

lock(lockB); {lockB}

) VAt {} cw) Niocks held(t)
unlock(lockB); {}

Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB);

) Ve

unlock(lockB);

locks_held(t) C(v)

1}
{lockA}

1}

{lockB}

1}

{lockA, lockB}

{lockA}

@ACK! race

14

Lockset Algorithm Example

lock(lockA);
V++;
unlock(lockA);

lock(lockB);

) Ve

unlock(lockB);

locks_held(t) C(v)
{lockA, lockB}

1}
{lockA}

1}

{lockB}

1}

{lockA}

@ACK! race

e

<

Pretty clever!

Why isn’t this

a complete
solution?

4

Group activity

* Analyze figure 3 to determine why the lockset algorithm would report
a spurious race

Improving over lockset

1 read-write(X); 1 thread-proc() {
2 fork(thread-proc); 2

3 do_stuff(); 3 read-write(X);
4 do_more_stuff(); 4

5 join(thread-proc); 5 }

6 read-Write(X);

Lockset detects a race

There is no race: why not?

* A-1happens before B-3

* B-3 happens before A-6

* Insight: races occur when “happens-before” cannot be known

Happens-before

* Happens-before relation
* Within single thread
* Between threads

* Accessing variables not ordered
by “happens-before” is a race

* Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread 1

f/
* Happens-before relation Locki(mu);
* Within single thread V= v
e Between threads |
]] Unlock(mu);
* Accessing variables not ordered |
_

by “happens-before” is a race
* Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread 1 Thread 2

N\ e N
* Happens-before relation Locki(mu); Locki(mu);
* Within single thread vi=vi: vi= v
* Between threads ! .
]] Unlock(mu); Unlock(mu);
* Accessing variables not ordered | | |
/ _ /

by “happens-before” is a race
* Captures locks and dynamism

* How to track “happens-before”?
* Sync objects are ordering events
* Generalizes to fork/join, etc

Happens-before Thread 1

N\
* Happens-before relation Locki(mu);
* Within single thread V= v
* Between threads !
]] Unlock(mu);
* Accessing variables not ordered 4
“« ” T_ll‘ead 2
by “happens-before” is a race p N
* Captures locks and dynamism TlaccesstoV [~
“Happens-before” | Lock (mu);
* How to track “happens-before”? T2 access to V 1
vV =vtl;
* Sync objects are ordering events |
* Generalizes to fork/join, etc Unlock(mu);

N /

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example

Thread 1

y =yl
'

Lock(mu);

|

v :=v+l;

|

Unlock(mu);

Thread 2

Lock(mu);

|

v =v+l;

|

Unlock(mu);

|

y =ytl;

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example
e T1-acc(v) happens before T2-acc(v)
T1-acc(y) happens before T1-acc(v)

T2-acc(v) happens before T2-acc(y)
Conclusion: no race on Y!

Finding doesn’t generalize

Thread 1

y =yl
'

Lock(mu);

|

v :=v+l;

|

Unlock(mu);

Thread 2

Lock(mu);

|

v =v+l;

|

Unlock(mu);

|

y =ytl;

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example
e T1-acc(v) happens before T2-acc(v)
e T1-acc(y) happens before T1-acc(v)

e T2-acc(v) happens before T2-acc(y)
e Conclusion: noraceon!

* Finding doesn’t generalize

Flaws of Happens-before

* Difficult to implement
e Requires per-thread information

* Dependent on the interleaving
produced by the scheduler

* Example
e T1-acc(v) happens before T2-acc(v)
e T1-acc(y) happens before T1-acc(v)

e T2-acc(v) happens before T2-acc(y)
e Conclusion: noraceon!

* Finding doesn’t generalize

Thread 2

Lock(mu);
V= v+l;

Unlock(mu);

Thread 1 / y =yt
y=y*th /
:

Lock(mu);

v =v+l;

Unlock(mu);

Dynamic Race Detection Summary

o Lockset: verify locking discipline for

shared memory
v" Detect race regardless of thread scheduling

Happens

Before
[Lamport 78]

Vector Clocks [M 88]

x False positives because other
synchronization primitives (fork/join,
signal/wait) not supported

RaceTrack [YRC 05]
MultiRace [PS 03]
Hybrid Race Detector [OC 03]

Precision

o Happens-before: track partial order of
program events
v' Supports general synchronization primitives [SEBrE
x Higher overhead compared to lockset

Initialization v

x False negatives due to sensitivity to thread Cost

scheduling

False positive using Lockset

1
S 1 t:Fork(u) u Tracking accesses to X
2 il — 1V_
3 :Wr(x) 6 u:Wr(x) Irgin {}
2| 4 t:Unlock(a) 7 u:Unlock(a) 3 Exclusive:t {}

............... 6 Shared Modified | {a}

“8 t:Join(u)
9t:Wr(x)
10 t:Fork(v) L 9 Report race {}
11 t:Lock(a) T 14 v:Lock(a)
12 t:Wr(x) 15 v:Wr(x)
3 13 t:Unlock(a) N 16 v:Unlock(a)

“17 t-Join(v)

NV

RaceTrack Notations
Notation | Meaning |

A e T. v

L Lockset of thread t ," A e ‘_T Ve > 0] . i

t Inc(V,t) = wwif u=1 then V(u)+ 1 else V(u)
C Lockset of memory x Merge(V,W) = ur— maz(V(u), W (u))

X Remove(V, W) 2w if V(u) < W(u) then 0 else V(u)
B, Vector clock of thread u
SX Threadset of memory x
t Thread t at clock time i

RaceTrack Algorithm

L, Lockset of thread t L = LUl
At t:Unlock(l):
C, Lockset of memory x L — L — {1}
Bt Vector clock of thread t At t:Fork(u):
Ly —{}
S Threadset of memory x B, «— Merge({{u,1)}, B;)
X B; — Inc(By,t)
t Thread t at clock time 1
1 At t:Join(u):
B; — Merge(B:, By)
J é - -V |
'L N {teT:V(t)>0; ' ' At t:Rd(z) or t:Wr(z):
Inc(Vit) = uw— if u=1tthen V(u)+1 else V(u) Sz « Merge(Remove(Sz, Bt), {(t, B:(t))})
Merge(V,W) 2y mazx(V(u), W(u)) if |Sz| >1
Remove(V,W) 2 uif V(u) < W(u) then 0 else V(u) then Cz — Cz M Ly
else C; «— Ly

if |Sz| > 1 A C; = {} then report race

Avoiding Lockset's false positive (1)

N

‘__

2 t:Lock(a) 5 u:Lock(a)
3t:Wr(x) 6 u:Wr(x)
2! 4 t:Unlock(a) \ 7 w:Unlock(a)
‘8..t.::1.oin(u)
9t:Wr(x)
NZ10 t:Fork(v) U
11 t:Lock(a) o

= 14 v:Lock(a)
12 t:Wr(x) 15 v:Wr(x)
13 t:Unlock(a) 16 v:Unlock(a)

L, Lockset of thread t

C, Lockset of memory x
B, Vector clock of thread t
S, Threadset of memory x
t, Thread t at clock time 1

0 Al {3y {F] {t - -

1 {t,} {} | {tpuy}
2 {a}

3 {a} {t}

4 {}

5 {a}

6 {ty,uq}

7 {}

8 {tyud - -

Avoiding Lockset's false positive (2)

V

‘\-‘

2 t:Lock(a) - 5 u:Lock(a)
3t:Wr(x) 6 u:Wr(x)
4 t:Unlock(a) v w:Unlock(a)

9 t:Wr(x)

10 t:Fork(v) U

11 t:Lock(a) P 14 v:Lock(a)
12 t:Wr(x) 15 v:Wr(x)
13 t:Unlock(a) 16 v:Unlock(a)

{a}

{t2!u1}

{}

{t2!u1}

L, Lockset of thread t

C, Lockset of memory x
B, Vector clock of thread t
S, Threadset of memory x
t, Thread t at clock time 1

{}

{ta}

10

{t3!u1}

{}

{tyvq}

11

{a}

12

{a}

{ts}

13

{}

14

{a}

15
16

{t3,V1}

{}

Avoiding Lockset's false positive (2)

N

‘\‘_

2 t:Lock(a)
3t:Wr(x)
4 t:Unlock(a)

9t:Wr(x)

N\Z10 t:Fork(v) D

11 t:Lock(a)
12 t:Wr(x)
13 t:Unlock(a)

) 5 u:Lock(a)
6 u:Wr(x)
_7 T u:Unlock(a)

14 v:Lock(a)
15 v:Wr(x)
16 v:Unlock(a)

L, Lockset of thread t

C, Lockset of memory x
B, Vector clock of thread t
S, Threadset of memory x
t, Thread t at clock time 1

{a}

{}

{t2!u1}

{t3!u1}

{} {tovy}

11

{a}

12

{a}

{ts}

13

{}

14

{a}

15
16

{t3,V1}

{}

Only one thread!
Are we done?

RaceTrack's state machine

ﬁrst access same thread

@ eecond thread

S.>1ARd(x
Rcdg Wr(r)/\(20

Wr(x)AC={}

S = 1AWTr(x)
\#l]

=t

CHF NS>

Otrack threadset S, only
(Dtrack lockset C, only
Otrack both lockset C, and threadset S,

RaceTrack's state machine

ﬁrst access same thread

@ 9econd thread

S.\- =1

S /=1AWTr(x) / Deal W|th \

S, Pl/\ljd(//
Rd(x) NG CA{)
C& WrGACet) outrageous
- C proliferation of

Wrx)AC= S T EOAIS > meChan|Sm Wlth
_ adaptivity

Otrack threadset S, only
(Dtrack lockset C, only
Otrack both lockset C, and threadset S,

program
lines of code
active threads

no RaceTrack
lockset
+threadset
+granularity

o 3X slowdown on memory intensive

Performance & Conclusions

Boxwood
8579
10

slowdown memory
(sec) ratio (MB) ratio

312 1.00 11.5 1.00
366 1.17 154 1.34
407 1.30 16.5 1.43
378 1.21 11.9 1.03

programs
e < 2Xon other programs

SATsolver
10,883
1

slowdown memory
(sec) ratio (MB) ratio

713 1.00 102 1.00
1974 277 170 1.67
2123 298 222 2.18
1822 2.56 155 1.52

e 1.2X memory usage

SpecJBB Crawler
31,405 7246
various 19

slowdown

(ops/s) ratio (MB) ratio

19174 1.00
6732 2.85
6678 2.87
6029 3.18

memory slowdown memory
(pages) ratio (MB) ratio
373 1.00| 2364 1.00 639 1.00
655 1.76| 2189 1.08 848 1.33
752 2.02| 2214 1.07 108.0 1.69
441 1.18| 2212 1.07 65.0 1.02

Key ideas recap

Veclient
165,192
69
slowdown memory
(Y%cpu) ratio (MB) ratio

6.4 1.00 63.9 1.00
125 195 744 1.17
12.8 2.00 75.6 1.19
12.8 2.00 74.7 1.18

Eliminate Lockset false positives
using happens-before

Refine state machine based on
common coding style

Trade off accurac
performance/sca

f

for
bility

Detail slides moved to end

Additional ideas from paper

o Accuracy vs performance & scalability tradeoff
o Object granularity tracking
o Track subset of (array) objects
o Prune vector clock

o Annotations to eliminate false positives

o Warnings report analysis
o Ranking and classification
o Multiple stack traces

Microsoft CLR Implementation

Common Language Runtime

 NET framework

RaceTrack Object Layout

Original object

RaceTr_ack
extension

layout

A

Ve

method table pointer

mnstance field

object RaceTrack state

field-level state
information chunk.

allocated when needed

D rmmmmmmmmmmmmeee- -
{
-
|
|
b e
| ["s RaceTrack state
t. ________________
|
lL.
\ |
.
|
|
-
|
|
|

RaceTrack Encodings

first word second word
0 0 .. Virgin

thread 1d 0 . Exclusivel

thread id | clock Exclusivel
lockset index 2 . Shared-Read
lockset index 3 Shared-Modify1

thread id 1 clock Exclusive?2
lockset index |5 threadset index Shared-Modify2

thread id 6

Race-Detected
chunk address 7

Evaluation

e CLR Regression tests
e 2122 tests (0.5 MLOC)
e 48 warnings

o Performance
o 5real world programs

Category
6 A. false alarm - fork/join
2 B. false alarm - user defined locking
5 C. performance counter / inconsequential
4 D. locked atomic mutate, unlocked read
4 E. double-checked locking
2 F. cache semantics
2 G. other correct lock-free code
7 H. unlocked lazy initialization
8 I too complicated to figure out
8 J. potentially serious bug
48 total

