
Concurrency Continued:
RaceTrack

Emmett Witchel
CS380L

Ordering and Causality

• A, B, C have local orders
• Why do we care about

total order across all?
• Why is it hard to define

such an order?
• What is causality?
• How does causality

inform order?

Ordering and Causality

• A, B, C have local orders
• Why do we care about

total order across all?
• Why is it hard to define

such an order?
• What is causality?
• How does causality

inform order?

Physical clocks
• tough in distributed system
• NTP, spanner, etc
Logical clocks
• Timestamps
• conservatively respect causality
• A’s timestamp is later than any event A knows about
Vector clocks
• O (N) timestamps that say what A knows about events elsewhere
Matrix clocks
• O(N^2) timestamps showing pairwise knowledge of event orders

Causality
• Need to maintain causality
• If a -> b then a is casually related to b
• Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
• Capture causal relationships between groups of processes
• Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1 LC=2

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1 LC=2 LC=3

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1 LC=2 LC=3 LC=4

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1 LC=2 LC=3 LC=4 LC=5

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Logical Clocks

• Each process maintains a local value of a logical clock LC

• Logical clock of p à how many events causally preceded the current event at p
• (including the current event).
• Conservative approximation: why?

• LC(ei) – the logical clock value at process pi at event ei
• Each message m that is sent contains a timestamp TS(m)
• Update rules:

• Send: TS(m) (logical clock value at process) sending event at the sending process
• Recv: process receives message m, it updates its logical clock to: max{LC, TS(m)} + 1

e11 e12 e13 e14 e15 e16

LC=1 LC=2 LC=3 LC=4 LC=5 LC=6

Illustration of a Logical Clock

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1

1

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1

1

1

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2

1

1

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2

1

1 2

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2

1

1 2

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2

1

1 2

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2

1

1 2 3

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4

1

1 2 3

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4

1

1 2 3 4

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4

1 5

1 2 3 4

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4

1 5

1 2 3 4 5

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4 5

1 5

1 2 3 4 5

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4 5

1 5 6

1 2 3 4 5

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4 5 6

1 5 6

1 2 3 4 5

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4 5 6

1 5 6

1 2 3 4 5 7

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4 5 6 7

1 5 6

1 2 3 4 5 7

3\p1

p2

p3

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4 5 6 7

1 5 6

1 2 3 4 5 7

3\p1

p2

p3

Awesome, right?
Any drawbacks?

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4 5 6 7

1 5 6

1 2 3 4 5 7

3\p1

p2

p3

Awesome, right?
Any drawbacks?

Are these events
ordered?

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4 5 6 7

1 5 6

1 2 3 4 5 7

3\p1

p2

p3

Awesome, right?
Any drawbacks?

Guarantees: a < b àTS(a) < TS(b)
Does not guarantee: TS(a) < TS(b) à a < b

Are these events
ordered?

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Illustration of a Logical Clock

1 2 4 5 6 7

1 5 6

1 2 3 4 5 7

3\p1

p2

p3

Awesome, right?
Any drawbacks?

Not strong enough…so
Replace Single Logical value

with Vector!

Guarantees: a < b àTS(a) < TS(b)
Does not guarantee: TS(a) < TS(b) à a < b

Are these events
ordered?

Update Rules:
• on-send: LC++
• on-recv: LC = max(LC, TS(m))+1

0

0

0

Vector Clocks
• Each process i maintains a vector Vi
• Vi[i] : number of events that have occurred at i
• Vi[j] : number of events I knows have occurred at process j

• Update vector clocks:
• On local-event: increment Vi[I]
• On send-message: increment, piggyback entire local vector V
• On recv-message: Vj[k] = max(Vj[k],Vi[k])

• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of events sender knows occurred elsewhere

• Exercise: prove that if V(A)<V(B), then A causally precedes B
and the other way around.
• Under what conditions are V(A) and V(B) not ordered (concurrent)?

Vector Clock Example

Vi[i] : #events occurred at i

Vi[j] : #events i knows occurred at j

Update
• On local-event: increment Vi[I]
• On send-message: increment,

piggyback entire local vector V
• On recv-message: Vj[k] = max(

Vj[k],Vi[k])
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock Example

Vi[i] : #events occurred at i

Vi[j] : #events i knows occurred at j

Update
• On local-event: increment Vi[I]
• On send-message: increment,

piggyback entire local vector V
• On recv-message: Vj[k] = max(

Vj[k],Vi[k])
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock Example

Vi[i] : #events occurred at i

Vi[j] : #events i knows occurred at j

Update
• On local-event: increment Vi[I]
• On send-message: increment,

piggyback entire local vector V
• On recv-message: Vj[k] = max(

Vj[k],Vi[k])
• Vj[i] = Vj[i]+1 (increment local clock)
• Receiver learns about number of

events sender knows occurred
elsewhere

Vector Clock Example

Each process i maintains a vector Vi

• Vi[i] : number of events that have occurred at i
• Vi[j] : number of events I knows have occurred at

process j

Update
• Local event: increment Vi[I]
• Send a message :piggyback entire vector V
• Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the
sender knows occurred at another process k

• Also Vj[i] = Vj[i]+1

Vector Clock Example

Each process i maintains a vector Vi

• Vi[i] : number of events that have occurred at i
• Vi[j] : number of events I knows have occurred at

process j

Update
• Local event: increment Vi[I]
• Send a message :piggyback entire vector V
• Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the
sender knows occurred at another process k

• Also Vj[i] = Vj[i]+1

• Need to order operations
• Can’t rely on real-time
• Vector clock: timestamping algorithm s.t.

• TS(A) < TS(B) à A happens before B
• Independent ops remain unordered

 See any drawbacks?

Races

1 Lock(lock);
2 Read-Write(X);
3 Unlock(lock);

1
2 Read-Write(X);
3

• Is there a race here?
• What is a race?
• Informally: accesses with missing/incorrect synchronization
• Formally:

• >1 threads access same item
• No intervening synchronization
• At least one access is a write

Thread 1 Thread 2

Races
1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Is there a race here?
How can a race detector tell?

Thread 1 Thread 2

Races
1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

• Benign due to fork/join

• Benign due to view serializability
• Benign due to application-level constraints

• E.g. approximate stats counters

Thread 1 Thread 2

Races
1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

• Benign due to fork/join

• Benign due to view serializability
• Benign due to application-level constraints

• E.g. approximate stats counters

Thread 1 Thread 2

Races
1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

• Benign due to fork/join

• Benign due to view serializability
• Benign due to application-level constraints

• E.g. approximate stats counters

Thread 1 Thread 2

Races
1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

• Benign due to fork/join

• Benign due to view serializability
• Benign due to application-level constraints

• E.g. approximate stats counters

Thread 1 Thread 2

Races
1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

• Benign due to fork/join

• Benign due to view serializability
• Benign due to application-level constraints

• E.g. approximate stats counters

Thread 1 Thread 2

Races
1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Is there a race here?
How can a race detector tell?

Unsynchronized access can be

• Benign due to fork/join

• Benign due to view serializability
• Benign due to application-level constraints

• E.g. approximate stats counters

Thread 1 Thread 2

Detecting Races

• Static
• Run a tool that analyses just code
• Maybe code is annotated to help
• Conservative: detect races that never occur

• Dynamic
• Instrument code
• Check synchronization invariants on accesses
• More precise
• Difficult to make fast
• Lockset vs happens-before

How to detect races:
forall(X) {
 if(not_synchronized(X))
 declare_race()
}

1 Lock(lock);
2 Read-Write(X);
3 Unlock(lock);

1
2 Read-Write(X);
3

Lockset Algorithm

• Locking discipline
• Every shared variable is protected by some locks

• Core idea
• Track locks held by thread t
• On access to var v, check if t holds the proper locks
• Challenge: how to know what locks are required?

• Infer protection relation
• Infer which locks protect which variable from execution history.
• Assume every lock protects every variable
• On each access, use locks held by thread to narrow that assumption

Lockset Algorithm

EECS 582 – W16 13

Narrow down set of
locks maybe
protecting v

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

ACK! race

Lockset Algorithm Example

14

lock(lockA);
v++;
unlock(lockA);

lock(lockB);
v++;
unlock(lockB);

{}
{lockA}

{}

{lockB}

{}

{lockA, lockB}

{lockA}

{}

thread t locks_held(t) C(v)

ACK! race
Pretty clever!
Why isn’t this

a complete
solution?

Group activity

• Analyze figure 3 to determine why the lockset algorithm would report
a spurious race

Improving over lockset

1 read-write(X);
2 fork(thread-proc);
3 do_stuff();
4 do_more_stuff();
5 join(thread-proc);
6 read-Write(X);

1 thread-proc() {
2
3 read-write(X);
4
5 }

Lockset detects a race
There is no race: why not?
• A-1 happens before B-3
• B-3 happens before A-6
• Insight: races occur when “happens-before” cannot be known

thread A thread B

Happens-before

• Happens-before relation
• Within single thread
• Between threads

• Accessing variables not ordered
by “happens-before” is a race
• Captures locks and dynamism
• How to track “happens-before”?
• Sync objects are ordering events
• Generalizes to fork/join, etc

Happens-before

• Happens-before relation
• Within single thread
• Between threads

• Accessing variables not ordered
by “happens-before” is a race
• Captures locks and dynamism
• How to track “happens-before”?
• Sync objects are ordering events
• Generalizes to fork/join, etc

Thread 1

Happens-before

• Happens-before relation
• Within single thread
• Between threads

• Accessing variables not ordered
by “happens-before” is a race
• Captures locks and dynamism
• How to track “happens-before”?
• Sync objects are ordering events
• Generalizes to fork/join, etc

Thread 1 Thread 2

Thread 2

Happens-before

• Happens-before relation
• Within single thread
• Between threads

• Accessing variables not ordered
by “happens-before” is a race
• Captures locks and dynamism
• How to track “happens-before”?
• Sync objects are ordering events
• Generalizes to fork/join, etc

Thread 1

T1 access to V
“Happens-before”
T2 access to V

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize

y := y+1;

Lock(mu);

v := v+1;

Unlock(mu);

Lock(mu);

v := v+1;

Unlock(mu);

y := y+1;

Thread 1

Thread 2

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize

y := y+1;

Lock(mu);

v := v+1;

Unlock(mu);

Lock(mu);

v := v+1;

Unlock(mu);

y := y+1;

Thread 1

Thread 2

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize

Flaws of Happens-before

• Difficult to implement
• Requires per-thread information

• Dependent on the interleaving
produced by the scheduler

• Example
• T1-acc(v) happens before T2-acc(v)
• T1-acc(y) happens before T1-acc(v)
• T2-acc(v) happens before T2-acc(y)
• Conclusion: no race on Y!
• Finding doesn’t generalize

y := y+1;

Lock(mu);

v := v+1;

Unlock(mu);

Thread 1

Lock(mu);

v := v+1;

Unlock(mu);

y := y+1;

Thread 2

Dynamic Race Detection Summary

l Lockset: verify locking discipline for
shared memory
ü Detect race regardless of thread scheduling
û False positives because other

synchronization primitives (fork/join,
signal/wait) not supported

l Happens-before: track partial order of
program events
ü Supports general synchronization primitives
û Higher overhead compared to lockset
û False negatives due to sensitivity to thread

scheduling

RaceTrack = Lockset + Happens-before

False positive using Lockset

Inst State Lockset
1 Virgin { }
3 Exclusive:t { }
6 Shared Modified {a}

9 Report race { }

Tracking accesses to X

RaceTrack Notations
Notation Meaning

Lt Lockset of thread t

Cx Lockset of memory x

Bu Vector clock of thread u

Sx Threadset of memory x

ti Thread t at clock time i

RaceTrack Algorithm
Notation Meaning

Lt Lockset of thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1

Avoiding Lockset's false positive (1)

Inst Cx Sx Lt Bt Lu Bu
0 All { } { } {t1} - -

1 {t2} { } { t1,u1 }

2 {a}

3 {a} {t2}

4 { }
5 {a}
6 {t2,u1}

7 { }
8 {t2,u1} - -

Notation Meaning

Lt Lockset of thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1

Avoiding Lockset's false positive (2)

Inst Cx Sx Lt Bt Lv Bv
8 {a} {t2,u1} { } {t2,u1} - -

9 { } {t2}
10 {t3,u1} { } {t2,v1}

11 {a}

12 {a} {t3}
13 { }
14 {a}

15 {t3,v1}
16 { }

Notation Meaning

Lt Lockset of thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1

Avoiding Lockset's false positive (2)

Inst Cx Sx Lt Bt Lv Bv
8 {a} {t2,u1} { } {t2,u1} - -

9 { } {t2}
10 {t3,u1} { } {t2,v1}

11 {a}

12 {a} {t3}
13 { }
14 {a}

15 {t3,v1}
16 { }

Notation Meaning

Lt Lockset of thread t

Cx Lockset of memory x

Bt Vector clock of thread t

Sx Threadset of memory x

t1 Thread t at clock time 1

Only one thread!
Are we done?

RaceTrack's state machine

RaceTrack's state machine

Deal with
outrageous

proliferation of
mechanism with

adaptivity

Performance & Conclusions

l 3X slowdown on memory intensive
programs
l < 2X on other programs

l 1.2X memory usage

Key ideas recap
l Eliminate Lockset false positives

using happens-before
l Refine state machine based on

common coding style
l Trade off accuracy for

performance/scalability
l Detail slides moved to end

Additional ideas from paper

l Accuracy vs performance & scalability tradeoff
l Object granularity tracking
l Track subset of (array) objects
l Prune vector clock

l Annotations to eliminate false positives
l Warnings report analysis

l Ranking and classification
l Multiple stack traces

Microsoft CLR Implementation

•.NET framework

RaceTrack Object Layout

RaceTrack Encodings

Evaluation

l CLR Regression tests
l 2122 tests (0.5 MLOC)
l 48 warnings

l Performance
l 5 real world programs

