
Data Centers:
MapReduce

Emmett Witchel

CS380L

Data Centers:
MapReduce

Emmett Witchel

CS380L

MapReduce faux quiz (5 min, any 2):

• What phenomena can slow down a map task?

• Do reducers wait for all their mappers before starting? Why/why not?

• What machine resources does the shuffle phase consume most?

• Is it safe to re-execute a failed map/reduce job sans cleanup? Why [not]?

• How does MR handle master failure? What are the alternatives?

• Why is[n’t] MR a “step backwards” relative to DBMSs?

• How does MR tolerate failures in 3rd party libraries?

• What is a straggler and how does MR deal with them?

• How are mappers scheduled onto cluster machines?

• In what ways does MR use sorting to improve efficiency?

• How would you design MR differently for a high bisection bandwidth cluster?

• List some aspects of GFS and MR that represent “mechanical sympathy” in design.

• What is a combiner? Why does it need to be associative and commutative? Provide an example.

What is GroupBy?
• Group a collection by key

• Lambda function maps elements → key

var res = ints.GroupBy(x => x);

10 30 20 10 20 30 10

101010 202030 30

foreach(T elem in ints)

{

 key = KeyLambda(elem);

 group = GetGroup(key);

 group.Add(elem);

}

foreach(T elem in PF(ints))

{

 key = KeyLambda(elem);

 group = GetGroup(key);

 group.Add(elem);

}

3

101010 2020 30 30 Note: sorting is VERY similar

GroupBy example

• df_grouped is an object that groups the data in a DataFrame by the
country column

• df_grouped.mean() would compute the mean per-country

import pandas as pd

df = pd.DataFrame({'country': ['US', 'Canada', 'Mexico’],

 'population': [100, 50, 100]})

df_grouped = df.groupby('country')

What is Join?

• Equi-join / Inner-join: “workhorse”

• Note similarity to GroupBy

• Lots of implementations

• How to do this at scale?

foreach(T a in A) {

 foreach(T b in B) {

 if(joinkey(a) == joinkey(b)){

 rs.add(joinfields(a,b));

 }

 }

}

Note:
• same idea hashes data onto cluster nodes

• removes all:all data exchange
• Alternative for SORTED tables: merge join

You are an engineer at:
Hare-brained-scheme.com

Your boss, comes to your office and says:

 “We’re going to be hog-nasty rich! We just need a
program to search for strings in text files...”

Input: <search_term>, <files>

Output: list of files containing <search_term>

http://tbn3.google.com/images?q=tbn:JDdT6JPRmgp_BM:http://www.sqlservercentral.com/Images/1889.jpg

http://images.google.com/imgres?imgurl=http://www.sqlservercentral.com/Images/1889.jpg&imgrefurl=http://www.sqlservercentral.com/NewsletterArchive/2008/09/30/1593216&usg=__lHBcT-DUPIjHt4ySvqc72fMOLbw=&h=204&w=196&sz=8&hl=en&start=1&um=1&tbnid=JDdT6JPRmgp_BM:&tbnh=105&tbnw=101&prev=/images?q=Dilbert's+boss&hl=en&rls=com.microsoft:*&sa=N&um=1

One solution
public class StringFinder {

 int main(…) {

 foreach(File f in getInputFiles()) {

 if(f.contains(searchTerm))

 results.add(f.getFileName());

 }

 }

 System.out.println(“Files:” + results.toString());
}

Infrastructure is hard to get right

Web Server
StringFinder
Indexed data

Search
query

1. How do we distribute the searchable files on our machines?

2. What if our webserver goes down?

3. What if a StringFinder machine dies? How would you know it was dead?

4. What if marketing comes and says, “well, we also want to show pictures of the
earth from space too! Ooh..and the moon too!”

StringFinder
Indexed data

StringFinder
Indexed data

Infrastructure is hard to get right

Web Server
StringFinder
Indexed data

Search
query

1. How do we distribute the searchable files on our machines?

2. What if our webserver goes down?

3. What if a StringFinder machine dies? How would you know it was dead?

4. What if marketing comes and says, “well, we also want to show pictures of the
earth from space too! Ooh..and the moon too!”

StringFinder
Indexed data

StringFinder
Indexed data

StringFinder was the easy part!

You really need general infrastructure.

• Many different tasks

• Want to use hundreds or thousands of PC’s

• Continue to function if something breaks

• Must be easy to program…

MapReduce

• Programming model + infrastructure

• Write programs that run on lots of machines

• Automatic parallelization and distribution

• Fault-tolerance

• I/O and jobs Scheduling

• Status and monitoring

MapReduce Programming Model

• Input & Output: sets of <key, value> pairs

• Programmer writes 2 functions:
map (in_key, in_value) -> list(out_key,

intermediate_value)

• Processes <k1,v1> pairs

• Produces intermediate pairs: list(k2, v2)

 reduce (out_key, list(interm_val)) ->

list(out_value)

• list(k2, v2) -> list(v2)

• Combines intermediate values for a key

• Produces a merged set of outputs

Example: Counting Words…
map(String input_key, String input_value):

 // input_key: document name

 // input_value: document contents

 for each word w in input_value:
EmitIntermediate(w, "1");

MapReduce handles all the other details!

“map” each word to its count:
”never say never...” -->
never 1
say 1
never 1

“reduce” each word group:
never: {1, 1}
say: {1} -->
never: 2
say: 1

shuffle == groupby
reduce(String output_key,

 Iterator intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;

 for each v in intermediate_values:

 result += ParseInt(v);

 Emit(AsString(result));

Example (2): Indexing
public void map() {

 String line = value.toString();

 StringTokenizer itr = new StringTokenizer(line);

 if(itr.countTokens() >= N) {

 while(itr.hasMoreTokens()) {

 word = itr.nextToken()+“|”+key.getFileName();

 output.collect(word, 1);

 }

 }

}

Input: a line of text, e.g. “mistakes were made” from myfile.txt
Output:

mistakes|myfile.txt
were|myfile.txt
made|myfile.txt

Example (3): Indexing

public void reduce() {

 int sum = 0;

 while(values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, sum);

} Input: a <term,filename> pair, list of occurrences (e.g. {1, 1,..1})
Output:

mistakes|myfile.txt 10
were|myfile.txt 45
made|myfile.txt 2

How does parallelization work?

INPUT
FILE(s)

Implementation

• 1000s of 2 core x86, machines 2-4GB RAM

• Limited bisection bandwidth
• What’s bisection bandwidth?

• Why is it relevant?

• Local IDE disks + GFS

• Scheduling: job = set of task, scheduler assigns to machines

Execution

Group
by!

Parallel Execution

Task Granularity And Pipelining

|map tasks| >> |machines| -- why?

Task Granularity And Pipelining

|map tasks| >> |machines| -- why?

• Minimize fault recovery time

• Pipeline map with other tasks

• Easier to load balance dynamically

• What is straggler mitigation (redundant execution)?
• How much does it help? Why?

• How does MapReduce handle
• Mapper failures

• Reducer failures

• Master failures

• What is the problem of data skew?
• How does MapReduce deal with it?

Fault Tolerance

• What failures to handle?

• How to detect failures?

• How to respond?
• For workers?

• For master?

• How to know tasks complete?

Fault Tolerance

• What failures to handle?

• How to detect failures?

• How to respond?
• For workers?

• For master?

• How to know tasks complete?

• Worker failures:
• Detect via heartbeat

• Re-execute completed, in-progress map

• Re-execute in-progress reducers (why?)

Fault Tolerance

• What failures to handle?

• How to detect failures?

• How to respond?
• For workers?

• For master?

• How to know tasks complete?

• Worker failures:
• Detect via heartbeat

• Re-execute completed, in-progress map

• Re-execute in-progress reducers (why?)

• Master failures: re-execute all!

Fault Tolerance

• What failures to handle?

• How to detect failures?

• How to respond?
• For workers?

• For master?

• How to know tasks complete?

• Worker failures:
• Detect via heartbeat

• Re-execute completed, in-progress map

• Re-execute in-progress reducers (why?)

• Master failures: re-execute all!

• Task completion committed through
master

Redundant Execution (straggler mitigation)

• Slow worker can throttle performance: why?

• What makes a worker slow?
• Other Jobs on machine (how could we fix)

• Bad disks, soft errors

• Exotica (processor caches disabled!)

• Solution: spawn backups near end of phase

Redundancy performance
Normal No backups 200 processes killed

Scheduling for Locality

• Ask GFS for locations of
replicated input blocks

• Map task splits: 64MB == GFS
block size

• Schedule so that input blocks
are on local machine or local
rack

• Otherwise rack switch becomes
read rate bottleneck

Master policy:

• What does “locality” mean here?

• How to tailor for GFS?

Skipping Bad Records

For Failures on specific inputs

• Can’t always fix/debug

• Seg Fault:
• Inform master with UDP packet

• Include record identifier

• If master sees multiple failures for a record, subsequent workers skip it

• Claim this tolerates bugs in 3rd party libraries

• Is correctness guaranteed?

Other cool stuff

• Sorting guaranteed in reduce partitions: why?

• Compression of intermediate data

• Combiners: what do they do?

• Local execution: anyone debugged an MR program?

• User-defined counters: what for?

The end of your career at:
Hare-brained-scheme.com

Your boss, comes to your office and says:

 “I can’t believe you used MapReduce!!!

 You’re fired...”

 Why might he say this?

http://tbn3.google.com/images?q=tbn:JDdT6JPRmgp_BM:http://www.sqlservercentral.com/Images/1889.jpg

http://images.google.com/imgres?imgurl=http://www.sqlservercentral.com/Images/1889.jpg&imgrefurl=http://www.sqlservercentral.com/NewsletterArchive/2008/09/30/1593216&usg=__lHBcT-DUPIjHt4ySvqc72fMOLbw=&h=204&w=196&sz=8&hl=en&start=1&um=1&tbnid=JDdT6JPRmgp_BM:&tbnh=105&tbnw=101&prev=/images?q=Dilbert's+boss&hl=en&rls=com.microsoft:*&sa=N&um=1

Why is MapReduce backwards?

• Backwards step in programming paradigm

• Sub-optimal: brute force, no indexing

• Not novel: 35 year-old ideas from DBMS lit

• Missing most DBMS features

• Incompatible with most DBMS tools

What’s the problem with MR?

• Map == group-by

• Reduce == aggregate

SELECT job, COUNT(*) as “numemps"
FROM employees
WHERE salary > 1000
GROUP BY job;

• Where is the aggregate in this example?

• DBMS analog make sense? (hello, Lisp?)

Backwards programming model

• Schemas are good (what’s a schema?)

• Separation of schema from app is good (why?)

• High-level access languages are good (why?)
File:ER Diagram MMORPG.png

http://upload.wikimedia.org/wikipedia/commons/7/72/ER_Diagram_MMORPG.png

MapReduce is sub-optimal

• Modern DBMSs: hash + B-tree indexes to accelerate data access.
• Indexes are user-defined
• Could MR do this?

• No query optimizer! (oh my, terrible…but good for researchers! ☺)

• Skew: wide variance in distribution of keys
• E.g. “the” more common than “zyzzyva”

• Materializing splits
• N=1000 mappers → M=500 keys = 500,000 local files
• 500 reducer instances “pull” these files
• DBMSs push splits to sockets (no local temp files)

MapReduce: !novel

• Partitioning data sets (map) == Hash join

• Parallel aggregation == reduce

• User-supplied functions differentiates from SQL:
• POSTGRES user functions, user aggregates

• PL/SQL: Stored procedures

• Object databases

MapReduce is feature-poor

Absent features:
• Bulk-loading
• Indexing
• Update operator
• Transactions
• Integrity constraints, referential integrity
• Views

Which of these are important?
Why is it OK for MR to elide them?

MapReduce incompatible with tools

• Report writers

• Business intelligence tools

• Data-mining tools

• Replication tools

• Design tools (UML, embarcadero)

 How important are these?

 Are these accusations fair?

MapReduce and Dataflow

• MR is a dataflow engine

• Lots of others
• Dryad

• DryadLINQ

• Dandelion

• CIEL

• GraphChi/PowerGraph/Pregel

• Spark

• Keep this in mind over next
few papers

Discussion Questions
(repeated from faux-quiz)

• What phenomena can slow down a map task?

• Do reducers wait for all their mappers before starting? Why/why not?

• What machine resources does the shuffle phase consume most?

• Is it safe to re-execute a failed map/reduce job sans cleanup? Why [not]?

• How does MR handle master failure? What are the alternatives?

• Why is[n’t] MR a “step backwards” relative to DBMSs?

• How does MR tolerate failures in 3rd party libraries?

• What is a straggler and how does MR deal with them?

• How are mappers scheduled onto cluster machines?

• In what ways does MR use sorting to improve efficiency?

• How would you design MR differently for a high bisection bandwidth cluster?

• List some aspects of GFS and MR that represent “mechanical sympathy” in design.

• What is a combiner? Why does it need to be associative and commutative? Provide an example.

	Slide 1: Data Centers: MapReduce
	Slide 2: Data Centers: MapReduce
	Slide 3: MapReduce faux quiz (5 min, any 2):
	Slide 4: What is GroupBy?
	Slide 5: GroupBy example
	Slide 6: What is Join?
	Slide 7
	Slide 8
	Slide 9
	Slide 10: You are an engineer at: Hare-brained-scheme.com
	Slide 11: One solution
	Slide 12: Infrastructure is hard to get right
	Slide 13: Infrastructure is hard to get right
	Slide 14: MapReduce
	Slide 15: MapReduce Programming Model
	Slide 16: Example: Counting Words…
	Slide 17: Example (2): Indexing
	Slide 18: Example (3): Indexing
	Slide 19: How does parallelization work?
	Slide 20: Implementation
	Slide 21: Execution
	Slide 22: Parallel Execution
	Slide 23: Task Granularity And Pipelining
	Slide 24: Task Granularity And Pipelining
	Slide 25
	Slide 26: Fault Tolerance
	Slide 27: Fault Tolerance
	Slide 28: Fault Tolerance
	Slide 29: Fault Tolerance
	Slide 30: Redundant Execution (straggler mitigation)
	Slide 31: Redundancy performance
	Slide 32: Scheduling for Locality
	Slide 33: Skipping Bad Records
	Slide 34: Other cool stuff
	Slide 36: The end of your career at: Hare-brained-scheme.com
	Slide 37: Why is MapReduce backwards?
	Slide 38: What’s the problem with MR?
	Slide 43: Backwards programming model
	Slide 44: MapReduce is sub-optimal
	Slide 45: MapReduce: !novel
	Slide 46: MapReduce is feature-poor
	Slide 47: MapReduce incompatible with tools
	Slide 48: MapReduce and Dataflow
	Slide 49: Discussion Questions (repeated from faux-quiz)

