
Security:
Trusted execution environments

Ryoan
Emmett Witchel

CS380L

Big tech has a poor track record for trust

• Administrators have a lot of control and sometimes misbehave

• Cloud providers have competing interests

• Data is valuable and there are buyers

• Cloud providers are a high value target for attacks

7/28/20 2

But public clouds are useful

• Provide rapid, elastic access to resources

• Handle administration

• Ensure resources are available reliably

• Have large machines and accelerators like GPUs

7/28/20 3

The market agrees; public clouds made $105 billion last year

Objective: make cloud computing an option
for users with sensitive data

Trusted Execution
Environments

7/28/20 4

System design

Requirements:

• Do not trust the cloud provider
• History tells us the cloud provider is not trustworthy

• Performance must be reasonable
• Users can always buy their own machines

• Support common/important use cases
• Niche applications have niche appeal

Trusted Execution Environments (TEEs)
• Hardware isolation mechanism that cannot be bypassed by software

• Necessary since the cloud provider controls the OS and Hypervisor

• Existing CPU TEEs: Intel SGX, Arm TrustZone, RISC-V Keystone

• Proposed GPU TEEs: Graviton [Volos et. al, OSDI`18], HIX [Jang et. al, ASPLOS`19]

7/28/20 5

Keystone

TEEs are a performant mechanism for keeping
secrets from the cloud provider

• Memory is isolated from all external code
• I.e., only code inside a TEE can access or modify its state

• TEEs operate at near-native speeds

• Trusted attestation prevents hardware spoofing

7/28/20 6

TEEs are not the silver bullet

• Micro-architectural side channels

• Memory limits

7/28/20 7

Hardware
oversights

Fundamental
design issues

• Users must vet TEE code
- TEE code can misbehave and leak secrets

• TEE guarantees end at the device boundary
- Workloads with accelerators must compose TEEs

Te
le

ki
n

e
R

yo
an

Our contribution: Augment TEE security with
systems designed to protect applications

7/28/20 8

• Users must vet TEE code
- TEE code can misbehave and leak secrets

• TEE guarantees end at the device boundary
- Workloads with accelerators must compose TEEs

Applications are
often proprietary

Communication
exposes new timing

channels

Micro-architectural side-channel attacks

• Micro-architectural side-channel attacks refer to a side-channel attack
that exploits information leakage from the hardware infrastructure
itself.
• The attacks can be found in a large scope of devices - servers, workstations,

laptops, smart-phones, etc.

• A side-channel attack is any attack based on extra information that
can be gathered because of the fundamental way a computer
protocol or algorithm is implemented (e.g., time, power
consumption, sound), rather than flaws in the design of the protocol
or algorithm itself.

• TEEs allow you to run trusted code on untrusted
infrastructure
• Give an example of where a TEE would be useful to a computation

• What security guarantee does Ryoan provide?

Ryoan: A Distributed sandbox for
Untrusted Computation on Secret Data

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu,

Simon Peter, Emmett Witchel

OSDI 2016 (Best Paper)

Disease risk assessment: Trust
issues

14

Disease risk assessment: Trust
issues

15

Classification
Result

Disease risk assessment: Trust
issues

16

Classification
Result

Disease risk assessment: Trust
issues

17

Classification
Result

Disease risk assessment: Trust
issues

18

Classification
Result

Disease risk assessment: Trust
issues

19

Classification
Result

Talk outline

Introduction

Controlling untrusted modules

Covert and side channels

Evaluation

20

Ryoan’s goals

21

◎ Provide user data secrecy
○ Without trusting the application
○ Without trusting the platform (OS, Hypervisor)

◎ Support cooperation between service providers

Userspace

Platform ()

Ryoan Sandbox

Ryoan’s goals

22

◎ Provide user data secrecy
○ Without trusting the application
○ Without trusting the platform (OS, Hypervisor)

◎ Support cooperation between service providers

Userspace

Platform ()

Threat model

Users

◎ Don’t trust
service providers
for secrecy

◎ Don’t trust
platforms for
secrecy

23

Everyone

◎ Trusts Ryoan
◎ Trusts Intel SGX

- User

- User Data

- Untrusted Code - Ryoan

- SGX- Untrusted Platform

Service Providers

◎ Control platforms
◎ Don’t trust other

service provides
for secrecy

Threat model

Users

◎ Don’t trust
service providers
for secrecy

◎ Don’t trust
platforms for
secrecy

24

Everyone

◎ Trusts Ryoan
◎ Trusts Intel SGX

- User

- User Data

- Untrusted Code - Ryoan

- SGX- Untrusted Platform

Service Providers

◎ Control platforms
◎ Don’t trust other

service provides
for secrecy

Threat model

Users

◎ Don’t trust
service providers
for secrecy

◎ Don’t trust
platforms for
secrecy

25

Everyone

◎ Trusts Ryoan
◎ Trusts Intel SGX

- User

- User Data

- Untrusted Code - Ryoan

- SGX- Untrusted Platform

Service Providers

◎ Control platforms
◎ Don’t trust other

service provides
for secrecy

Threat model

Users

◎ Don’t trust
service providers
for secrecy

◎ Don’t trust
platforms for
secrecy

26

Service Providers

◎ Control platforms
◎ Don’t trust other

service provides
for secrecy

Everyone

◎ Trusts Ryoan
◎ Trusts Intel SGX

- User

- User Data

- Untrusted Code - Ryoan

- SGX- Untrusted Platform

Ryoan uses TEEs for isolation and sandboxing
for confinement
• TEE isolation protects secrets from privileged software

• Cloud provider cannot use control of the machine to read secrets out of
memory

• Sandbox confines the application to prevent it from violating isolation
• Application does not have to be open source to be confined

7/28/20 27

Ryoan restricts programming model to make
confinement easier

• Confinement in general is hard [Lampson`73]

• Modules must be request oriented
• One request → one result

• Modules must have with a well-defined unit of work
• e.g, An email, or A photo

• These restrictions allow Ryoan to support applications with a simple
read-once, write-once IO pattern

7/28/20 28

Module

Sandboxes
◎ Trusted code
◎ Confine modules
◎ Based on Google’s

Native Client (NaCl)

Ryoan’s world

29

Module

Modules
◎ NaCl x86 binaries

from service
providers

◎ Application logic

Platforms
◎ More service

providers’ code
◎ Host computation

Sandboxes
◎ Trusted code
◎ Confine modules
◎ Based on Google’s

Native Client (NaCl)

Ryoan’s world

30

Module

Modules
◎ NaCl x86 binaries

from service
providers

◎ Application logic

Platforms
◎ More service

providers’ code
◎ Host computation

Sandboxes
◎ Trusted code
◎ Confine modules
◎ Based on Google’s

Native Client (NaCl)

Ryoan’s world

31

Module

Modules
◎ NaCl x86 binaries

from service
providers

◎ Application logic

Platforms
◎ More service

providers’ code
◎ Host computation

Sandboxes
◎ Trusted code
◎ Confine modules
◎ Based on Google’s

Native Client (NaCl)

Ryoan’s world

32

Module

Modules
◎ NaCl x86 binaries

from service
providers

◎ Application logic

Platforms
◎ More service

providers’ code
◎ Host computation

Ryoan applications

Modules

◎Request oriented
◎Well defined unit of work

○ One request→one result
○ e.g, 1 email, 1 photo

Composable

◎Modules can be connected to build services

33

Module

Talk outline

Introduction

Controlling untrusted modules

Covert and side channels

Evaluation

34

Intel SGX in 2 minutes (or less)

◎ Provides Enclaves
○ Regions of a process's virtual address

space

◎ Enclaves
○ Can only be accessed by enclave code
○ Still have access to the rest of memory

◎ Attestations
○ Hardware signed hashes of initial code

and data

35

Enclave Code’s View

Other Code’s View

Ryoan Instance
Module

Enclave (Inaccessible)

TEE of choice: Intel SGX

• TEEs provided by SGX are called Enclaves
• Regions of a process's virtual address space

• Enclaves
• Can only be accessed by enclave code

• Still have access to the rest of memory

• Attestations
• Hardware signed hashes of initial code and data

36

Enclave Code’s View

Other Code’s View

Ryoan Instance
Module

Enclave (Inaccessible)

7/28/20

◎SGX provides unforgeable attestation of the
sandbox

◎Statements Ryoan makes about the module can
now be trusted

Chain of trust

37

RyoanAttests

ModuleRyoan Attests

Ryoan’s view of SGX

◎SGX gives you:
○ Trusted computation on secret data

◎Ryoan uses SGX to give you:
○ Guarantees on Untrusted computation

38

Confining untrusted code

39

Problem:

◎ Platform can read secrets out
of memory

Module

40

Problem:

◎ Platform can read secrets out
of memory

Solution:

◎ Execute module inside of an
enclave

Enclave
Module

Confining untrusted code

41

Enclave

Module

Confining untrusted code

Problem:

◎Module can copy secrets to
non-enclave memory

42

Problem:

◎Module can copy secrets to
non-enclave memory

Solution:

◎ Restrict accessible memory
with a sandbox
○ Property of NaCl

Sandbox
Module

Confining untrusted code

43

Problem:

◎Modules can use system calls to
write out user data

Confining untrusted code

Sandbox

Module

write();

44

Confining untrusted code

Sandbox

Module

write([CIPHERTEXT]);

Problem:

◎Modules can use system calls to
write out user data

Solution:

◎NaCl modules call sandbox to
access system calls

◎ Enforce encryption

45

Confining untrusted code

Problem:

◎Modules can collude with
users to steal data

ModuleModule

Later

46

Confining untrusted code

Problem:

◎Modules can collude with
users to steal data

Solution:

◎ Don’t let modules keep state
between requests

ModuleModule

Later

Modules cannot keep state

◎Module life cycle imposed by Ryoan
○ Read, process, write, destroy

◎ Sandbox enforces one request per module execution
○ Represent a complete unit of work
○ Only contain content from one user

47

Initialize
Read
Input

Process
Write

Output

Destroy

Talk outline

Introduction

Controlling untrusted modules

Covert and side channels

Evaluation

48

Covert and side channels

◎Output, via some externally
visible property of execution

◎ Ryoan: Software covert
channels
○ System calls
○ Execution time

◎ Hardware covert channels:
○ Hardware vendor’s responsibility

49

Module

System call covert channel

50

Module

write(8bytes); write(16bytes);
write(8bytes); write(16bytes);
write(16bytes); write(16bytes);
write(8bytes);

8bytes 0

16bytes 1

0101110

0101110

Eliminating system call channel

◎ Remove modules ability to make system calls

◎ Ryoan performs all data input and output independent of the
content

51

Confined; Module cannot make system calls.

Initialize
Read
Input

Process Done

Ryoan

makes input
available Ryoan flushes all output

Destroy

Initialization is expensive

Confined; Module cannot make system calls.

Initialize
Read
Input

52

Process Done

Checkpoint

Restore
Checkpoint

ClamAV (virus scanner):
25.0 seconds to initialize
 0.1 seconds to process a request

Confined compatibility API

In-memory file API

◎ File system operations in
memory

◎ Examples:
○ Temp files
○ Preexisting files

Dynamic Memory

◎Modules can call
mmap for “new”
memory

◎ Return memory from
a pre-allocated pool.

53

Replaced system calls:
mmap

Replaced system calls:
open, close, read, write, stat,
lseek, unlink, mkdir, rmdir,
getdents

Confined compatibility API

In-memory file API

◎ File system operations in
memory

◎ Examples:
○ Temp files
○ Preexisting files

Dynamic Memory

◎Modules can call
mmap for “new”
memory

◎ Return memory from
a pre-allocated pool.

54

Replaced system calls:
mmap

Replaced system calls:
open, close, read, write, stat,
lseek, unlink, mkdir, rmdir,
getdents

Confined compatibility API

In-memory file API

◎ File system operations in
memory

◎ Examples:
○ Temp files
○ Preexisting files

Dynamic Memory

◎Modules can call
mmap for “new”
memory

◎ Return memory from
a pre-allocated pool.

55

Replaced system calls:
mmap

Replaced system calls:
open, close, read, write, stat,
lseek, unlink, mkdir, rmdir,
getdents

Talk outline

Introduction

Controlling untrusted modules

Covert channels

Evaluation

56

57

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

58

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

59

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

60

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

61

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute

Evaluation

◎ Implementation requires SGX v2 instructions
(spec: Fall 2014, coming soon)
○ Dynamic memory allocation/protection

◎SGX performance model
○ Measured SGX v1 latencies on our hardware
○ Estimated SGX v2 latencies (sensitivity study in

paper)
○ Flush TLB on all system calls, page faults, and

interrupts

62

63

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

64

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

65

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

66

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

67

Health 20,000 1.4KB Boolean vectors from different users

Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment

Ryoan summary

◎Allows untrusted code to operate on secret data
on untrusted platforms

◎Sandbox with SGX
○ Eliminates explicit channels

◎Module can’t call platform
○ Eliminates covert channels

◎Mostly backwards compatible
○ Sandbox code implements system calls

68

	Slide 1: Security: Trusted execution environments Ryoan
	Slide 2: Big tech has a poor track record for trust
	Slide 3: But public clouds are useful
	Slide 4: Objective: make cloud computing an option for users with sensitive data
	Slide 5: Trusted Execution Environments (TEEs)
	Slide 6: TEEs are a performant mechanism for keeping secrets from the cloud provider
	Slide 7: TEEs are not the silver bullet
	Slide 8: Our contribution: Augment TEE security with systems designed to protect applications
	Slide 9: Micro-architectural side-channel attacks
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Ryoan: A Distributed sandbox for Untrusted Computation on Secret Data
	Slide 14: Disease risk assessment: Trust issues
	Slide 15: Disease risk assessment: Trust issues
	Slide 16: Disease risk assessment: Trust issues
	Slide 17: Disease risk assessment: Trust issues
	Slide 18: Disease risk assessment: Trust issues
	Slide 19: Disease risk assessment: Trust issues
	Slide 20: Talk outline
	Slide 21: Ryoan’s goals
	Slide 22: Ryoan’s goals
	Slide 23: Threat model
	Slide 24: Threat model
	Slide 25: Threat model
	Slide 26: Threat model
	Slide 27: Ryoan uses TEEs for isolation and sandboxing for confinement
	Slide 28: Ryoan restricts programming model to make confinement easier
	Slide 29: Ryoan’s world
	Slide 30: Ryoan’s world
	Slide 31: Ryoan’s world
	Slide 32: Ryoan’s world
	Slide 33: Ryoan applications
	Slide 34: Talk outline
	Slide 35: Intel SGX in 2 minutes (or less)
	Slide 36: TEE of choice: Intel SGX
	Slide 37: Chain of trust
	Slide 38: Ryoan’s view of SGX
	Slide 39: Confining untrusted code
	Slide 40: Confining untrusted code
	Slide 41: Confining untrusted code
	Slide 42: Confining untrusted code
	Slide 43: Confining untrusted code
	Slide 44: Confining untrusted code
	Slide 45: Confining untrusted code
	Slide 46: Confining untrusted code
	Slide 47: Modules cannot keep state
	Slide 48: Talk outline
	Slide 49: Covert and side channels
	Slide 50: System call covert channel
	Slide 51: Eliminating system call channel
	Slide 52: Initialization is expensive
	Slide 53: Confined compatibility API
	Slide 54: Confined compatibility API
	Slide 55: Confined compatibility API
	Slide 56: Talk outline
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Evaluation
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Ryoan summary

