Security: Trusted execution environments Ryoan

Emmett Witchel CS380L

Big tech has a poor track record for trust

- Administrators have a lot of control and sometimes misbehave
- Cloud providers have competing interests
- Data is valuable and there are buyers
- Cloud providers are a high value target for attacks

7/28/20

But public clouds are useful

- Provide rapid, elastic access to resources
- Handle administration
- Ensure resources are available reliably
- Have large machines and accelerators like GPUs

The market agrees; public clouds made \$105 billion last year

Objective: make cloud computing an option for users with sensitive data

Requirements:

- Do not trust the cloud provider
 - History tells us the cloud provider is not trustworthy
- Performance must be reasonable
 - Users can always buy their own machines

Trusted Execution Environments

- Support common/important use cases
 - Niche applications have niche appeal

System design

Trusted Execution Environments (TEEs)

- Hardware isolation mechanism that cannot be bypassed by software
 - Necessary since the cloud provider controls the OS and Hypervisor
- Existing CPU TEEs: Intel SGX, Arm TrustZone, RISC-V Keystone
- Proposed GPU TEEs: Graviton [Volos et. al, OSDI`18], HIX [Jang et. al, ASPLOS`19]

TEEs are a performant mechanism for keeping secrets from the cloud provider

- Memory is isolated from all external code
 - I.e., only code inside a TEE can access or modify its state
- TEEs operate at near-native speeds
- Trusted attestation prevents hardware spoofing

7/28/20

TEEs are not the silver bullet

- Micro-architectural side channels
- Memory limits

Hardware oversights

- Users must vet TEE code
 - TEE code can misbehave and leak secrets
- TEE guarantees end at the device boundary
 - Workloads with accelerators must compose TEEs

Fundamental design issues

Our contribution: Augment TEE security with systems designed to protect applications

Ryoar

Users must vet TEE code

- TEE code can misbehave and leak secrets

Applications are often proprietary

Telekine

- TEE guarantees end at the device boundary
 - Workloads with accelerators must compose TEEs

Communication exposes new timing channels

Micro-architectural side-channel attacks

- Micro-architectural side-channel attacks refer to a side-channel attack that exploits information leakage from the hardware infrastructure itself.
 - The attacks can be found in a large scope of devices servers, workstations, laptops, smart-phones, etc.
- A side-channel attack is any attack based on extra information that can be gathered because of the fundamental way a computer protocol or algorithm is implemented (e.g., time, power consumption, sound), rather than flaws in the design of the protocol or algorithm itself.

Flush+Reload

Attack Strategy #2: Evict+Reload

- TEEs allow you to run trusted code on untrusted infrastructure
 - Give an example of where a TEE would be useful to a computation
 - What security guarantee does Ryoan provide?

Ryoan: A Distributed sandbox for Untrusted Computation on Secret Data

OSDI 2016 (Best Paper)

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, Emmett Witchel

Talk outline

Introduction

Controlling untrusted modules
Covert and side channels
Evaluation

Ryoan's goals

- Provide user data secrecy
 - Without trusting the application
 - Without trusting the platform (OS, Hypervisor)
- Support cooperation between service providers

Ryoan's goals

- Provide user data secrecy
 - Without trusting the application
 - Without trusting the platform (OS, Hypervisor)
- Support cooperation between service providers

Users

- Don't trust service providers for secrecy
- Don't trust platforms for secrecy

Service Providers

- © Control platforms
- Don't trust other service provides for secrecy

Everyone

- Trusts Ryoan
- Trusts Intel SGX

- User

User Data

Untrusted Code

- Ryoan

Untrusted Platform

Users

- Don't trust service providers for secrecy
- Don't trust platforms for secrecy

Service Providers

- Ocontrol platforms
- Don't trust other service provides for secrecy

Everyone

- Trusts Ryoan
- Trusts Intel SGX

WWWWWWW

- User
 - **User Data**

Untrusted Code

- Ryoan

Untrusted Platform

Users

- Don't trust service providers for secrecy
- Don't trust platforms for secrecy

Service Providers

- © Control platforms
- Don't trust other service provides for secrecy

Everyone

- Trusts Ryoan
- Trusts Intel SGX

WWWWWWW

- User

User Data

Untrusted Code

- Ryoan

Untrusted Platform

Users

- Don't trust service providers for secrecy
- Don't trust platforms for secrecy

Service Providers

- © Control platforms
- Don't trust other service provides for secrecy

Everyone

- Trusts Intel SGX

- User

User Data

Untrusted Code

- Ryoan

Untrusted Platform

Ryoan uses TEEs for isolation and sandboxing for confinement

- TEE isolation protects secrets from privileged software
 - Cloud provider cannot use control of the machine to read secrets out of memory
- Sandbox confines the application to prevent it from violating isolation
 - Application does not have to be open source to be confined

7/28/20

Ryoan restricts programming model to make confinement easier

- Confinement in general is hard [Lampson`73]
- Modules must be request oriented
 - One request → one result
- Modules must have with a well-defined unit of work
 - e.g, An email, or A photo
- These restrictions allow Ryoan to support applications with a simple read-once, write-once IO pattern

7/28/20

Modules

- NaCl x86 binaries from service providers
- Application logic

Module

Platforms

- More service providers' code
- O Host computation

Sandboxes

- Trusted code
- Confine modules
- Based on Google's Native Client (NaCl)

Modules

- NaCl x86 binaries from service providers
- Application logic

Platforms

- More service providers' code
- O Host computation

Sandboxes

- Trusted code
- Occident Confine Modules
- Based on Google's Native Client (NaCl)

30

Modules

- NaCl x86 binaries from service providers
- Application logic

Platforms

- More service providers' code
- O Host computation

Sandboxes

- Trusted code
- © Confine modules
- Based on Google's Native Client (NaCl)

Modules

- NaCl x86 binaries from service providers
- Application logic

Platforms

- More service providers' code
- O Host computation

Sandboxes

- Trusted code
- Confine modules
- Based on Google's Native Client (NaCl)

Ryoan applications

Modules

- Request oriented
- Well defined unit of work
 - One request→one result
 - e.g, 1 email, 1 photo

Composable

Modules can be connected to build services

Talk outline

Introduction

Controlling untrusted modules

Covert and side channels Evaluation

Intel SGX in 2 minutes (or less)

Provides Enclaves

 Regions of a process's virtual address space

© Enclaves

- Can only be accessed by enclave code
- Still have access to the rest of memory

Attestations

 Hardware signed hashes of initial code and data

Enclave Code's View

Module
Ryoan Instance

Other Code's View

Enclave (Inaccessible)

TEE of choice: Intel SGX

- TEEs provided by SGX are called Enclaves
 - Regions of a process's virtual address space

- Enclaves
 - Can only be accessed by enclave code
 - Still have access to the rest of memory

- Attestations
 - Hardware signed hashes of initial code and data

Enclave Code's View

Module Ryoan Instance

Other Code's View

Enclave (Inaccessible)

Chain of trust

SGX provides unforgeable attestation of the sandbox

(intel)

Statements Ryoan makes about the module can now be trusted

Attests

Ryoan

Ryoan's view of SGX

- SGX gives you:
 - Trusted computation on secret data
- Ryoan uses SGX to give you:
 - Guarantees on Untrusted computation

Problem:

Platform can read secrets out of memory

Problem:

Platform can read secrets out of memory

Solution:

© Execute module inside of an enclave

Problem:

 Module can copy secrets to non-enclave memory

Problem:

 Module can copy secrets to non-enclave memory

Solution:

- Restrict accessible memory with a sandbox
 - Property of NaCl

Problem:

Modules can use system calls to write out user data

Problem:

Modules can use system calls to write out user data

Solution:

- NaCl modules call sandbox to access system calls
- © Enforce encryption

Problem:

Modules can collude with users to steal data

Problem:

Modules can collude with users to steal data

Solution:

O Don't let modules keep state between requests

Modules cannot keep state

- Module life cycle imposed by Ryoan
 - Read, process, write, destroy
- Sandbox enforces one request per module execution
 - Represent a complete unit of work
 - Only contain content from one user

Talk outline

Introduction
Controlling untrusted modules

Covert and side channels

Evaluation

Covert and side channels

- Output, via some externally visible property of execution
- Ryoan: Software covert channels
 - System calls
 - Execution time
- Mardware covert channels:
 - Hardware vendor's responsibility

System call covert channel

Eliminating system call channel

- Remove modules ability to make system calls
- Ryoan performs all data input and output independent of the content

Initialization is expensive

Confined compatibility API

Dynamic Memory

- Modules can call mmap for "new" memory
- © Return memory from a pre-allocated pool.

In-memory file API

- © File system operations in memory
- © Examples:
 - Temp files
 - Preexisting files

Replaced system calls: mmap

Replaced system calls: open, close, read, write, stat, lseek, unlink, mkdir, rmdir, getdents

Confined compatibility API

Dynamic Memory

- Modules can call mmap for "new" memory
- © Return memory from a pre-allocated pool.

In-memory file API

- © File system operations in memory
- © Examples:
 - Temp files
 - Preexisting files

Replaced system calls: mmap

Replaced system calls: open, close, read, write, stat, lseek, unlink, mkdir, rmdir, getdents

Confined compatibility API

Dynamic Memory

- Modules can call mmap for "new" memory
- © Return memory from a pre-allocated pool.

In-memory file API

- © File system operations in memory
- © Examples:
 - Temp files
 - Preexisting files

Replaced system calls: mmap

Replaced system calls: open, close, read, write, stat, lseek, unlink, mkdir, rmdir, getdents

Talk outline

Evaluation

Introduction
Controlling untrusted modules
Covert channels

Combine

Evaluation

- Implementation requires SGX v2 instructions (spec: Fall 2014, coming soon)
 - Dynamic memory allocation/protection
- SGX performance model
 - Measured SGX v1 latencies on our hardware
 - Estimated SGX v2 latencies (sensitivity study in paper)
 - Flush TLB on all system calls, page faults, and interrupts

Health	20,000 1.4KB Boolean vectors from different users
Translation	30 short paragraphs, sizes 25-300B, 4.1KB total
Images	12 images, sizes 17KB-613KB
Email	250 emails, 30% with 103KB-12MB attachment

Health	20,000 1.4KB Boolean vectors from different users
Translation	30 short paragraphs, sizes 25-300B, 4.1KB total
Images	12 images, sizes 17KB-613KB
Email	250 emails, 30% with 103KB-12MB attachment

Health	20,000 1.4KB Boolean vectors from different users
Translation	30 short paragraphs, sizes 25-300B, 4.1KB total
Images	12 images, sizes 17KB-613KB
Email	250 emails, 30% with 103KB-12MB attachment

Health	20,000 1.4KB Boolean vectors from different users
Translation	30 short paragraphs, sizes 25-300B, 4.1KB total
Images	12 images, sizes 17KB-613KB
Email	250 emails, 30% with 103KB-12MB attachment

Health	20,000 1.4KB Boolean vectors from different users
Translation	30 short paragraphs, sizes 25-300B, 4.1KB total
Images	12 images, sizes 17KB-613KB
Email	250 emails, 30% with 103KB-12MB attachment

Ryoan summary

- Allows untrusted code to operate on secret data on untrusted platforms
- Sandbox with SGX
 - Eliminates explicit channels
- Module can't call platform
 - Eliminates covert channels
- Mostly backwards compatible
 - Sandbox code implements system calls