Security:
Trusted execution environments
Ryoan

Emmett Witchel
CS380L

Big tech has a poor track record for trust

* Administrators have a lot of control and sometimes misbehave
* Cloud providers have competing interests

e Data is valuable and there are buyers

* Cloud providers are a high value target for attacks

EEEEEEEEEE

Facebook pay ROOIKitin the Cloud: Hacker
In Cambridge Group Breaches AWS Servers

+ INCREASE /| DECREASE TEXT SIZE =

ED TARGETT EDITOR

7/28/20 2

But public clouds are useful

* Provide rapid, elastic access to resources

* Handle administration

* Ensure resources are available reliably

* Have large machines and accelerators like GPUs

The market agrees; public clouds made $105 billion last year

7/28/20 3

Objective: make cloud computing an option

for users with sensitive data

Requirements:

* Do not trust the cloud provider
* History tells us the cloud provider is not trustworthy

* Performance must be reasonable
e Users can always buy their own machines

Trusted Execution
Environments

—=

e Support common/important use cases
* Niche applications have niche appeal

System design

7/28/20

Trusted Execution Environments (TEEs)

* Hardware isolation mechanism that cannot be bypassed by software
* Necessary since the cloud provider controls the OS and Hypervisor

* Existing CPU TEEs: Intel SGX, Arm TrustZone, RISC-V Keystone

¢ Proposed GPU TEEs: Graviton [Volos et. al, OSDI'18], HIX [Jang et. al, ASPLOS 19]

arm
TRUSTZONE

7/28/20

TEEs are a performant mechanism for keeping
secrets from the cloud provider

* Memory is isolated from all external code
* |.e., only code inside a TEE can access or modify its state

* TEEs operate at near-native speeds

* Trusted attestation prevents hardware spoofing

TEEs are not the silver bullet

* Micro-architectural side channels

* Memory limits

e Users must vet TEE code
- TEE code can misbehave and leak secrets

* TEE guarantees end at the device boundary
- Workloads with accelerators must compose TEEs

7/28/20

Hardware
oversights

Fundamental
design issues

Our contribution: Augment TEE security with
systems designed to protect applications

= Applications are
O .
= ° Users must vet TEE code often proprietary
- TEE code can misbehave and leak secrets

e TEE guarantees end at the devi ndar e~y ti
E vg pramees end at Cte bou daTE’E Communication
i) - Workloads with accelerators must compose S exposes new timing
= channels

7/28/20 8

Micro-architectural side-channel attacks

 Micro-architectural side-channel attacks refer to a side-channel attack
that exploits information leakage from the hardware infrastructure
itself.

* The attacks can be found in a large scope of devices - servers, workstations,
laptops, smart-phones, etc.

* A side-channel attack is any attack based on extra information that
can be gathered because of the fundamental way a computer
protocol or algorithm is implemented (e.g., time, power
consumption, sound), rather than flaws in the design of the protocol
or algorithm itself.

Flush+Reload

Cache

Attacker

. A shared cache line

DRAM

Attacker:

Attacker: Victim: Reload ->
Flush Access low latency

Attacker: Victim: Attacker:

Flush No Access Reload ->
high latency

Time

Attack Strategy #2: Evict+Reload

. A shared cache line

Victim Attacker

Attacker: Attacker:
Access a Victim: Reload ->

large buffer ACCESS low latency

Cache . > Time

Attacker: Victim: Attacker:
Access a No Access Reload ->

large buffer high latency

DRAM

15

* TEEs allow you to run trusted code on untrusted
infrastructure
* Give an example of where a TEE would be useful to a computation
 What security guarantee does Ryoan provide?

TEXAS
The University of Texas at Austin

o

Ryoan: A Distributed sandbox for
Untrusted Computation on Secret Data

OSDI 2016 (Best Paper)
Tyler Hunt, Zhiting Zhu, Yuanzhong Xu,

Simon Peter, Emmett Witchel

Disease risk assessment: Trust
Issues

14

Disease risk assessment: Trust
Issues

A e
LAVAVA N
=
Classification amazon

) Result | webservices™)

2
g
&
N

®’8.
&

Issues

A

Disease risk assessment: Trust

.'Ir o . '\l ‘1'-
\©) I~ |
\ A

=4
amazon
webservices™

/

I 4
LAVAVA\NE
Classification
/ Result K
%
o
® .
0%

16

Disease risk assessment: Trust
Issues

4 Py I
)
-~ \©) I~ |
> Y r
\

.\’r;-::';';f} /
Classification am aZOI‘I
Result | webservices™ Y,

Disease risk assessment: Trust

Issues

Classification

O/./ Result
®
2\ %
U

amazon
web services™ Y.

18

Disease risk assessment: Trust
Issues

|
pd . ™
)
—— amazon
Classification webservices™
Result /

Talk outline

Introduction

Ryoan’s goals

Provide user data secrecy
Without trusting the application

Without trusting the platform (OS, Hypervisor)
Support cooperation between service providers

[
L
)

Userspace

Platform (\

" 'IIJ.- IR

21

Ryoan’s goals

Provide user data secrecy
Without trusting the application

Without trusting the platform (OS, Hypervisor)
Support cooperation between service providers

/

Ryoan Sa ndbox

Userspace kK\
Platform (\ k = ! =

22

Threat model

Users Service Providers Everyone
© DO”'_t trust © Control platforms © Trusts Ryoan
service providers © Don’t trust other © Trusts Intel SGX

for secrecy
© Don’t trust

platforms for

secrecy

Q - - Untrusted Code - Ryoan

- User

e - User Data A - Untrusted Platform - - SGX
e

service provides
for secrecy

23

Threat model

Users Service Providers Everyone
© DO”'_t trust © Control platforms © Trusts Ryoan
service providers © Don’t trust other © Trusts Intel SGX

for secrecy service provides

for secrecy

© Don’t trust
platforms for
secrecy

Q - - Untrusted Code - Ryoan
- User

e - User Data A - Untrusted Platform - - SGX
o

24

Threat model

Users Service Providers Everyone
© DO”'_t trust © Control platforms © Trusts Ryoan
service providers © Don’t trust other © Trusts Intel SGX

for secrecy
© Don’t trust

platforms for

secrecy

Q - - Untrusted Code - Ryoan

- User

e - User Data A - Untrusted Platform - - SGX
o

service provides

for secrecy

25

Threat model

Users Service Providers Everyone

© DO”'_t trust © Control platforms © Trusts Ryoan
service providers © Don’t trust other © Trusts Intel SGX

for secrecy service provides
© Don’t trust for secrecy

platforms for
secrecy

Q - - Untrusted Code - Ryoan
- User

e - User Data A - Untrusted Platform - - SGX
o

26

Ryoan uses TEEs for isolation and sandboxing
for confinement

* TEE isolation protects secrets from privileged software

* Cloud provider cannot use control of the machine to read secrets out of
memory

* Sandbox confines the application to prevent it from violating isolation
* Application does not have to be open source to be confined

Ryoan restricts programming model to make
confinement easier

e Confinement in general is hard [Lampson 73]

* Modules must be request oriented
* One request - one result

* Modules must have with a well-defined unit of work
* e.g, An email, or A photo

* These restrictions allow Ryoan to support applications with a simple
read-once, write-once |0 pattern @]

Q [
—

€ —
-

Ryoan’s world

Modules

© NaCl x86 binaries
from service
providers

© Application logic

Module

Platforms

© More service
providers’ code
© Host computation

Sandboxes

© Trusted code

© Confine modules

© Based on Google’s
Native Client (NaCl)

4 N

29

Ryoan’s world

Modules

© NaCl x86 binaries
from service

providers
© Application logic

Module

Platforms

© More service
providers’ code
© Host computation

Sandboxes

© Trusted code

© Confine modules

© Based on Google’s
Native Client (NaCl)

4 N

30

Ryoan’s world

Modules

© NaCl x86 binaries
from service
providers

© Application logic

Module

Platforms

© More service
providers’ code
© Host computation

Sandboxes

© Trusted code

© Confine modules

© Based on Google’s
Native Client (NaCl)

4 N

31

Ryoan’s world

Modules

© NaCl x86 binaries
from service
providers

© Application logic

Module

Platforms

© More service
providers’ code
© Host computation

Sandboxes

© Trusted code
© Confine modules

© Based on Google’s
Native Client (NaCl)

32

Ryoan applications

Modules
Request oriented ~]
Well defined unit of work Q ‘ m

One request—>one result
e.g, 1 email, 1 photo

Composable
Modules can be connected to build services

33

Talk outline

Controlling untrusted modules

Intel SGX in 2 minutes (or less)

© Provides Enclaves

O Regions of a process's virtual address
space

© Enclaves

O Can only be accessed by enclave code
O Still have access to the rest of memory

© Attestations

O Hardware signed hashes of initial code
and data

Enclave Code’s View

Ryoan Instance

Other Code’s View

Enclave (Inaccessible)

TEE of choice: Intel SGX

* TEEs provided by SGX are called Enclaves
* Regions of a process's virtual address space

* Enclaves

* Can only be accessed by enclave code
e Still have access to the rest of memory

* Attestations
* Hardware signed hashes of initial code and data

Enclave Code’s View

Ryoan Instance

Other Code’s View

Enclave (Inaccessible)

Chain of trust

SGX provides unforgeable attestation of the

sandbox _
@ | E‘> [Ryoan }
Skylake

Statements Roan makes about the module can
now be trusted

e

Ryoan’s view of SGX

SGX gives you:
Trusted computation on secret data

Ryoan uses SGX to give you:
Guarantees on Untrusted computation

Confining untrusted code

Problem:

© Platform can read secrets out
of memory

Module

39

Confining untrusted code

Problem:

© Platform can read secrets out
of memory

Solution:

© Execute module inside of an
enclave

Module

RO
Enclave

40

Confining untrusted code

Problem:

© Module can copy secrets to
non-enclave memory

Module

Enclave

41

Confining untrusted code

Problem:

© Module can copy secrets to
non-enclave memory

Solution:

© Restrict accessible memory
with a sandbox
O Property of NaCl

|
Module RAPAPAIAIG

Sandbox

- —

42

Confining untrusted code

Problem:

© M(_)dules can use system calls to Module
write out user data SRRVVRY,

43

Confining untrusted code

Problem:

© Modules can use system calls to
write out user data

Solution:

© NaCl modules call sandbox to
access system calls
© Enforce encryption

N

Sandbox

- -
Module
AAWAXAYAYAXA

7

write([CIPHERTEXT]);

44

Confining untrusted code

Problem: .
© Modules can collude with \g
| |

users to steal data

YENESESTY
It’s
ME!
BRI

45

Confining untrusted code

Problem: .
© Modules can collude with \%
| |

users to steal data

Y HNESZES
It’s
ME!

Solution:
© Don’t let modules keep state

between requests Q Q

46

Modules cannot keep state

Module life cycle imposed by Ryoan
O Read, process, write, destroy

© Sandbox enforces one request per module execution
O Represent a complete unit of work
O Only contain content from one user

Destroy

Talk outline

Covert and side channels

Covert and side channels

Output, via some externally
visible property of execution
Ryoan: Software covert

channels
System calls
Execution time

Hardware covert channels:
Hardware vendor’s responsibility

49

System call covert channel

0101110

_—

L A

Lo

A B

write(8bytes); write(16bytes);
write(8bytes); write(16bytes);
write(16bytes); write(16bytes);
write(8bytes);

8bytes

16bytes

50

Eliminating system call channel

Remove modules ability to make system calls

Ryoan performs all data input and output independent of the
content

L Confined; Module cannot make system calls.

Ryoan
makes input
available

Ryoan flushes all output

Initialization is expensive

ClamAV (virus scanner):
25.0 seconds to initialize
0.1 seconds to process a request

YL TN Confined; Module cannot make system calls.

Restore
Checkpoint

52

Confined compatibility API

Dynamic Memory

© Modules can call
mmap for “new”
memory

© Return memory from
a pre-allocated pool.

Replaced system calls:
mmap

In-memory file API

© File system operations in
memory

© Examples:
O Temp files
O Preexisting files

Replaced system calls:

open, close, read, write, stat,
Iseek, unlink, mkdir, rmdir,
getdents

Confined compatibility API

Dynamic Memory In-memory file API

© Modules can call © File system operations in
mmap for “new” memory
memory © Examples:

© Return memory from O Temp files
a pre-allocated pool. O Preexisting files

Replaced system calls: Replaced system calls:
mmap open, close, read, write, stat,
Iseek, unlink, mkdir, rmdir,

getdents

54

Confined compatibility API

Dynamic Memory

© Modules can call
mmap for “new”
memory

© Return memory from
a pre-allocated pool.

Replaced system calls:
mmap

In-memory file API

© File system operations in
memory
© Examples:

O Temp files
O Preexisting files

Replaced system calls:

open, close, read, write, stat,
Iseek, unlink, mkdir, rmdir,
getdents

55

Talk outline

Evaluation

Health Parse
Input
i?ﬂarldl‘ln’lu i;:vﬂe g&&gﬂ

In: Genome/health data Q

Out: Diseaserisk

Return

Translation
Results

In: French text
Out: English text

Images

Recognize
Face

Recognize
Horse

Distribute

Recognize
NSFW

2

In: Pictures
Out: Array of objects

Email

Distribute <

In: Emails
Out: Spam & virus status

Combine

57

Health

Return
Results

Translation

azon

" webservices™

In: Genome/he:m

Out: Diseaserisk

Images

Recognize
Face

Recognize
Horse

Distribute

Recognize
NSFW

Q2

In: Pictures
Out: Array of objects

2

In: French text
Out: English text

Email

Distribute <

In: Emails
Out: Spam & virus status

Combine

58

Health Parse
Input

T1L
23andMe
i " ‘/““amazon

" webservices™

In: Genome/h;:m Q

Out: Diseaserisk

Return
Results

Out: En

Images n

Recognize
Face

Recognize
Horse

Distribute

Recognize
NSFW

2

In: Pictures
Out: Array of objects

Email

Translation

In: French text
lish text

Distribute <

Combine

In: Emails
Out: Spam & virus status

59

Return
Results

Translation

In: French text Q

Out: English text

Recognize
Face

Recognize | Distribute Combine
Horse]

Distribute

Recognize
NSFW

Q2

In: Pictures In: Emails
Out: Array of objects Out: Spam & virus status

60

Return

Results

In: Genome/he;:m Q

Out: Diseaserisk

Images

Recognize
Face

. . H | Dl r. te 4
Distribute Recognize | Combine istribu

Horse [

Recognize
NSFW

Q2

In: Pictures

In: Emails
Out: Array of objects :

Translation

In: French text Q

Out: English text

Combine

Evaluation

Implementation requires SGX v2 instructions

(spec: Fall 2014, coming soon)
Dynamic memory allocation/protection

SGX performance model
Measured SGX v1 latencies on our hardware
Estimated SGX v2 latencies (sensitivity study in
paper)
Flush TLB on all system calls, page faults, and
interrupts

Cost of Confinement

48% 419% 91

Workload Runtime
(Seconds)
%]
o

Email

Sandbox

Baseline (native linux)

Health Images Translation

Add checkpoint restore

. Add encryption . Ryoan

Health

20,000 1.4KB Boolean vectors from different users

Translation

30 short paragraphs, sizes 25-300B, 4.1KB total

Images

12 images, sizes 17TKB-613KB

Email

250 emails, 30% with 103KB-12MB attachment

l Add system call parameter/result marshaling

63

Workload Runtime
(Seconds)

Cost of Confinement

48% 419%

91%

Email

Sandbox

27%

Health Images Translation

Add checkpoint restore

. Add encryption . Ryoan

Health 20,000 1.4KB Boolean vectors from different users
Translation 30 short paragraphs, sizes 25-300B, 4.1KB total
Images 12 images, sizes 17TKB-613KB

Email

250 emails, 30% with 103KB-12MB attachment

Baseline (native linux) lAdd system call parameter/result marshaling

64

Cost of Confinement

48% 419%

91%

Workload Runtime
(Seconds)
%]
o

Email

Sandbox

Baseline (native linux)

27%

Health Images Translation

Add checkpoint restore

. Add encryption . Ryoan

Health

20,000 1.4KB Boolean vectors from different users

Translation

30 short paragraphs, sizes 25-300B, 4.1KB total

Images

12 images, sizes 17TKB-613KB

Email

250 emails, 30% with 103KB-12MB attachment

l Add system call parameter/result marshaling

65

Cost of Confinement

48% 419%

91%

Workload Runtime
(Seconds)
%]
o

Email

Sandbox

Baseline (native linux)

27%

Health Images Translation

Add checkpoint restore

. Add encryption . Ryoan

Health

20,000 1.4KB Boolean vectors from different users

Translation

30 short paragraphs, sizes 25-300B, 4.1KB total

Images

12 images, sizes 17TKB-613KB

Email

250 emails, 30% with 103KB-12MB attachment

l Add system call parameter/result marshaling

66

Workload Runtime
(Seconds)

Cost of Confinement

48%

A4 nofn

91%

Email

Sandbox

27%

. Add encryption

Health Images

Add checkpoint restore

. Ryoan

Translation

Health 20,000 1.4KB Boolean vectors from different users
Translation 30 short paragraphs, sizes 25-300B, 4.1KB total
Images 12 images, sizes 17TKB-613KB

Email

250 emails, 30% with 103KB-12MB attachment

Baseline (native linux) lAdd system call parameter/result marshaling

67

Ryoan summary

Allows untrusted code to operate on secret data
on untrusted platforms

Sandbox with SGX

Eliminates explicit channels

Module can’t call platform
Eliminates covert channels

Mostly backwards compatible
Sandbox code implements system calls

	Slide 1: Security: Trusted execution environments Ryoan
	Slide 2: Big tech has a poor track record for trust
	Slide 3: But public clouds are useful
	Slide 4: Objective: make cloud computing an option for users with sensitive data
	Slide 5: Trusted Execution Environments (TEEs)
	Slide 6: TEEs are a performant mechanism for keeping secrets from the cloud provider
	Slide 7: TEEs are not the silver bullet
	Slide 8: Our contribution: Augment TEE security with systems designed to protect applications
	Slide 9: Micro-architectural side-channel attacks
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Ryoan: A Distributed sandbox for Untrusted Computation on Secret Data
	Slide 14: Disease risk assessment: Trust issues
	Slide 15: Disease risk assessment: Trust issues
	Slide 16: Disease risk assessment: Trust issues
	Slide 17: Disease risk assessment: Trust issues
	Slide 18: Disease risk assessment: Trust issues
	Slide 19: Disease risk assessment: Trust issues
	Slide 20: Talk outline
	Slide 21: Ryoan’s goals
	Slide 22: Ryoan’s goals
	Slide 23: Threat model
	Slide 24: Threat model
	Slide 25: Threat model
	Slide 26: Threat model
	Slide 27: Ryoan uses TEEs for isolation and sandboxing for confinement
	Slide 28: Ryoan restricts programming model to make confinement easier
	Slide 29: Ryoan’s world
	Slide 30: Ryoan’s world
	Slide 31: Ryoan’s world
	Slide 32: Ryoan’s world
	Slide 33: Ryoan applications
	Slide 34: Talk outline
	Slide 35: Intel SGX in 2 minutes (or less)
	Slide 36: TEE of choice: Intel SGX
	Slide 37: Chain of trust
	Slide 38: Ryoan’s view of SGX
	Slide 39: Confining untrusted code
	Slide 40: Confining untrusted code
	Slide 41: Confining untrusted code
	Slide 42: Confining untrusted code
	Slide 43: Confining untrusted code
	Slide 44: Confining untrusted code
	Slide 45: Confining untrusted code
	Slide 46: Confining untrusted code
	Slide 47: Modules cannot keep state
	Slide 48: Talk outline
	Slide 49: Covert and side channels
	Slide 50: System call covert channel
	Slide 51: Eliminating system call channel
	Slide 52: Initialization is expensive
	Slide 53: Confined compatibility API
	Slide 54: Confined compatibility API
	Slide 55: Confined compatibility API
	Slide 56: Talk outline
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Evaluation
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Ryoan summary

