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Big tech has a poor track record for trust

• Administrators have a lot of control and sometimes misbehave

• Cloud providers have competing interests

• Data is valuable and there are buyers

• Cloud providers are a high value target for attacks
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But public clouds are useful

• Provide rapid, elastic access to resources

• Handle administration

• Ensure resources are available reliably

• Have large machines and accelerators like GPUs
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The market agrees; public clouds made $105 billion last year



Objective: make cloud computing an option 
for users with sensitive data

Trusted Execution 
Environments
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System design

Requirements:

• Do not trust the cloud provider
• History tells us the cloud provider is not trustworthy

• Performance must be reasonable
• Users can always buy their own machines

• Support common/important use cases
• Niche applications have niche appeal



Trusted Execution Environments (TEEs)
• Hardware isolation mechanism that cannot be bypassed by software

• Necessary since the cloud provider controls the OS and Hypervisor

• Existing CPU TEEs: Intel SGX, Arm TrustZone, RISC-V Keystone

• Proposed GPU TEEs: Graviton [Volos et. al, OSDI`18], HIX [Jang et. al, ASPLOS`19]
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Keystone



TEEs are a performant mechanism for keeping 
secrets from the cloud provider

• Memory is isolated from all external code
• I.e., only code inside a TEE can access or modify its state

• TEEs operate at near-native speeds

• Trusted attestation prevents hardware spoofing
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TEEs are not the silver bullet

• Micro-architectural side channels

• Memory limits
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Hardware 
oversights

Fundamental 
design issues

• Users must vet TEE code
- TEE code can misbehave and leak secrets

• TEE guarantees end at the device boundary
- Workloads with accelerators must compose TEEs
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Our contribution: Augment TEE security with 
systems designed to protect applications
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• Users must vet TEE code
- TEE code can misbehave and leak secrets

• TEE guarantees end at the device boundary
- Workloads with accelerators must compose TEEs

Applications are 
often proprietary

Communication 
exposes new timing 

channels



Micro-architectural side-channel attacks

• Micro-architectural side-channel attacks refer to a side-channel attack 
that exploits information leakage from the hardware infrastructure 
itself. 
• The attacks can be found in a large scope of devices - servers, workstations, 

laptops, smart-phones, etc.

• A side-channel attack is any attack based on extra information that 
can be gathered because of the fundamental way a computer 
protocol or algorithm is implemented (e.g., time, power 
consumption, sound), rather than flaws in the design of the protocol 
or algorithm itself.







• TEEs allow you to run trusted code on untrusted 
infrastructure
• Give an example of where a TEE would be useful to a computation

• What security guarantee does Ryoan provide?



Ryoan: A Distributed sandbox for 
Untrusted Computation on Secret Data

Tyler Hunt,  Zhiting Zhu,  Yuanzhong Xu, 

Simon Peter,  Emmett Witchel

OSDI 2016 (Best Paper)



Disease risk assessment: Trust 
issues
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Ryoan’s goals
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◎ Provide user data secrecy
○ Without trusting the application
○ Without trusting the platform (OS, Hypervisor)

◎ Support cooperation between service providers

Userspace

Platform (             )



Ryoan Sandbox

Ryoan’s goals
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Threat model

Users

◎ Don’t trust 
service providers 
for secrecy

◎ Don’t trust 
platforms for 
secrecy
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- SGX- Untrusted Platform

Service Providers

◎ Control platforms
◎ Don’t trust other 

service provides 
for secrecy
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◎ Don’t trust other 

service provides 
for secrecy

Everyone

◎ Trusts Ryoan
◎ Trusts Intel SGX

- User

- User Data

- Untrusted Code - Ryoan

- SGX- Untrusted Platform



Ryoan uses TEEs for isolation and sandboxing 
for confinement
• TEE isolation protects secrets from privileged software

• Cloud provider cannot use control of the machine to read secrets out of 
memory

• Sandbox confines the application to prevent it from violating isolation
• Application does not have to be open source to be confined
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Ryoan restricts programming model to make 
confinement easier

• Confinement in general is hard [Lampson`73]

• Modules must be request oriented
• One request → one result

• Modules must have with a well-defined unit of work
• e.g,  An email, or A photo

• These restrictions allow Ryoan to support applications with a simple 
read-once, write-once IO pattern
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Module



Sandboxes
◎ Trusted code
◎ Confine modules
◎ Based on Google’s 

Native Client (NaCl)

Ryoan’s world
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Ryoan applications

Modules

◎Request oriented
◎Well defined unit of work

○ One request→one result
○ e.g, 1 email, 1 photo

Composable

◎Modules can be connected to build services
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Intel SGX in 2 minutes (or less)

◎ Provides Enclaves
○ Regions of a process's virtual address 

space

◎ Enclaves
○ Can only be accessed by enclave code
○ Still have access to the rest of memory

◎ Attestations
○ Hardware signed hashes of initial code 

and data
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Enclave Code’s View

Other Code’s View

Ryoan Instance
Module

Enclave (Inaccessible)



TEE of choice: Intel SGX

• TEEs provided by SGX are called Enclaves
• Regions of a process's virtual address space

• Enclaves
• Can only be accessed by enclave code

• Still have access to the rest of memory

• Attestations
• Hardware signed hashes of initial code and data
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Enclave Code’s View

Other Code’s View

Ryoan Instance
Module

Enclave (Inaccessible)
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◎SGX provides unforgeable attestation of the 
sandbox

◎Statements Ryoan makes about the module can 
now be trusted

Chain of trust
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RyoanAttests

ModuleRyoan Attests



Ryoan’s view of SGX

◎SGX gives you:
○ Trusted computation on secret data

◎Ryoan uses SGX to give you:
○ Guarantees on Untrusted computation
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Confining untrusted code
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Problem:

◎ Platform can read secrets out 
of memory

Module
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Problem:

◎ Platform can read secrets out 
of memory

Solution:

◎ Execute module inside of an 
enclave

Enclave
Module

Confining untrusted code
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Enclave

Module

Confining untrusted code

Problem:

◎Module can copy secrets to 
non-enclave memory
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Problem:

◎Module can copy secrets to 
non-enclave memory

Solution:

◎ Restrict accessible memory 
with a sandbox
○ Property of NaCl

Sandbox
Module

Confining untrusted code
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Problem:

◎Modules can use system calls to 
write out user data

Confining untrusted code

Sandbox

Module

write(                                  );
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Confining untrusted code

Sandbox

Module

write([CIPHERTEXT]);

Problem:

◎Modules can use system calls to 
write out user data

Solution:

◎NaCl modules call sandbox to 
access system calls

◎ Enforce encryption
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Confining untrusted code

Problem:

◎Modules can collude with 
users to steal data

ModuleModule

Later 
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Confining untrusted code

Problem:

◎Modules can collude with 
users to steal data

Solution:

◎ Don’t let modules keep state 
between requests

ModuleModule

Later 



Modules cannot keep state

◎Module life cycle imposed by Ryoan
○ Read, process, write, destroy 

◎ Sandbox enforces one request per module execution
○ Represent a complete unit of work
○ Only contain content from one user
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Initialize
Read 
Input

Process
Write

Output

Destroy
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Covert and side channels

◎Output, via some externally 
visible property of execution

◎ Ryoan:  Software covert  
channels
○ System calls
○ Execution time

◎ Hardware covert channels: 
○ Hardware vendor’s responsibility
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Module



System call covert channel
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Module

write(8bytes); write(16bytes); 
write(8bytes); write(16bytes); 
write(16bytes); write(16bytes); 
write(8bytes);

8bytes 0

16bytes 1

0101110

0101110



Eliminating system call channel

◎ Remove modules ability to make system calls

◎ Ryoan performs all data input and output independent of the 
content
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Confined; Module cannot make system calls. 

Initialize
Read 
Input

Process Done

Ryoan

makes input 
available Ryoan flushes all output

Destroy



Initialization is expensive

Confined; Module cannot make system calls. 

Initialize
Read 
Input
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Process Done

Checkpoint

Restore 
Checkpoint

ClamAV (virus scanner):
25.0 seconds to initialize
  0.1 seconds to process a request



Confined compatibility API

In-memory file API

◎ File system operations in 
memory

◎ Examples:
○ Temp files
○ Preexisting files

Dynamic Memory

◎Modules can call 
mmap for “new” 
memory

◎ Return memory from 
a pre-allocated pool.

53

Replaced system calls: 
mmap

Replaced system calls: 
open, close, read, write, stat, 
lseek, unlink, mkdir, rmdir, 
getdents



Confined compatibility API

In-memory file API

◎ File system operations in 
memory

◎ Examples:
○ Temp files
○ Preexisting files

Dynamic Memory

◎Modules can call 
mmap for “new” 
memory

◎ Return memory from 
a pre-allocated pool.

54

Replaced system calls: 
mmap

Replaced system calls: 
open, close, read, write, stat, 
lseek, unlink, mkdir, rmdir, 
getdents



Confined compatibility API

In-memory file API

◎ File system operations in 
memory

◎ Examples:
○ Temp files
○ Preexisting files

Dynamic Memory

◎Modules can call 
mmap for “new” 
memory

◎ Return memory from 
a pre-allocated pool.

55

Replaced system calls: 
mmap

Replaced system calls: 
open, close, read, write, stat, 
lseek, unlink, mkdir, rmdir, 
getdents



Talk outline

Introduction

Controlling untrusted modules

Covert channels

Evaluation

56



57

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute



58

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute



59

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute



60

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute



61

Moses

Classifier
Return
Results

Parse
Input

Combine
Distribute

Health

In: Genome/health data
Out: Disease risk

Translation

In: French text
Out: English text

EmailImages

In: Pictures
Out: Array of objects

In: Emails
Out: Spam & virus status

Recognize
NSFW

Recognize
Horse

Recognize
Face

Combine
Distribute



Evaluation

◎ Implementation requires SGX v2 instructions 
(spec: Fall 2014, coming soon)
○ Dynamic memory allocation/protection

◎SGX performance model 
○ Measured SGX v1 latencies on our hardware
○ Estimated SGX v2 latencies (sensitivity study in 

paper)
○ Flush TLB on all system calls, page faults, and 

interrupts
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Translation 30 short paragraphs, sizes 25-300B, 4.1KB total

Images 12 images, sizes 17KB-613KB

Email 250 emails, 30% with 103KB-12MB attachment
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Ryoan summary

◎Allows untrusted code to operate on secret data 
on untrusted platforms

◎Sandbox with SGX
○ Eliminates explicit channels

◎Module can’t call platform
○ Eliminates covert channels

◎Mostly backwards compatible
○ Sandbox code implements system calls
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