
Exokernel – Engler, Kaashoek etc.…
“Separate protection from management”
“Abstraction is policy”

1. High-level goals
Goal – “Improved performance for standard applications; order of
magnitude for aggressive applications”

example applications: web server, set top box, …
trend: hw cheap  if your app cares about performance, dedicate a
machine to it (vs. “fine grained sharing”)

Approach –
extensibility – application knows best – it should make decisions
whenever possible

minimalist – kernel’s job is to protect resources, not to manage them

 separate protection from resource management
Thin kernels, fat libraries!

2. Background
5 approaches to extensibility
1) OS per application (OSKit Fluke?)
DA: co-existence
DA: kernels are fragile and hard to modify

2) microkernels (hydra, mach, …)

 advantage: fault isolation
 slow (kernel crossings)

 limited extensibility (may make it easier for OS developer to extend,
but not user)

1) virtual machines (VM370, Disco, VMWare)

+ low-level interface (“ideal” according to Engler)
DA: “emulate” machine v. “export” resources

e.g. need to emulate “privileged” instructions
DA: poor IPC (traditionally) – machines isolated
DA: hide resource mgmt

Virtual machine

application

OS

application

OS

application

OS

application

kernel

File
server

Vm
server

…

2) Download untrusted code into kernel (Spin, Vino)

+ extension
DA: still working with basic OS
“Complimentary to exokernel”

3) Exokernel/libOS

Application

libOS

exokernel

Application

libOS

Application

libOS

App

OS

extension

App

extension

App

extension

Top-level structure
1) a small monolithic kernel
 low-level, fixed interface.

Ideally HW interface
 few and simple abstractions
 extension types
 resource state data – page table entries
 specialized resource mgmt modules
2) libraries of untrusted resource management routines (may be different for

different apps)
 VM replacement
 file system
 IPC
 …

Note: libraries are part of OS
 historically: OS was set of libraries for math, etc
 today – if it ain’t got stdio, it ain’t Unix!

Key difference – trust
Application can write over library, jump to bad addr in library, etc
 kernel can not trust library

Exokernel borrows liberally from other approaches:

 Like Fluke: make it easy for each app to have custom OS
 Like virtual machine: exokernel exports virtual machine (difference:

transparency – traditional VM wants to run unmodified OS’s;
exokernel VM wants to support custom OS’s)

 “Export, rather than emulate, resource” – LibOS is aware of
multiplexing

 Like Vino, Spin: one mechanism for extensibility is to download
untrusted code into kernel

2.1 Philosophy

 Traditional OS = protection + abstraction
 Exokernel:

 Protection = kernel – minimal mechanism
 + library – resource sharing policy

 Abstraction = library

“To provide applications control over machine resources, an
exokernel defines a low-level interface. The exokernel architecture
is founded on and motivated by a single, simple, and old
observation: the lower the level of the primitive, the more
efficiently it can be implemented, and the more latitude it grants to
implementers of higher-level abstractions.

 Want portability? Code to POSIX. Want performance? Code to
exokernel/hardware.

 Minimalist approach

 Key challenge – understand core of the abstractions for
different resources

 Next several weeks – papers trying to find core abstractions for
concurrency, scheduling, networking, file systems, …

 As we read these other papers, consider them from point of
view of Exokernel (not necessarily the best point of view, but
an interesting one…)

3. Exokernel principles

 separate protection and management
 export resources at lowest level possible with protection

 e.g. disk blocks, TLB entries, etc
 resource mgmt only at level needed for protection – allocation,

revocation, sharing, tracking of ownership
 “abstraction (mechanism) is policy”
 The implementation of abstractions in library operating systems

can be simpler and more specialized than in-kernel
implementations, because library operating systems need not
multiplex a resource among competing applications with widely
different demands.

 expose allocation – applications allocate resources explicitly
 expose names – use physical names whenever possible (physical memory

(cache coloring), disk arm position?)
 expose revocation – let apps choose which instances of a resource to give

up
 expose information – let application map in (read only) internal kernel

data structures (e.g. swTLB, CPU schedule, …)
 Exterminate all operating system abstractions (end-to-end)

4. Key mechanisms
Initially, only talked about first 3 or 4, but as system matures, have to add
more stuff in.
1) secure bindings
 bind at large granularity; access at small granularity

 Applicable in many systems – not just exokernel
 Allow kernel to protect resources without understanding them.

 Do access check at bind time, not access time
 e.g. when loading TLB entry for a page, not when accessing page
 mechanisms/examples

a) hardware – TLB
b) SW – SW tlb cache
c) downloaded code (e.g., packet filter) – type safe language,

sandboxing, interpreters, etc
d) traditional file system: open file/read and write file

Challenge: secure bindings v. Saltzer “complete mediation”

2) visible revocation

Continuum of resource multiplexing:

Transparent
Revocation

Notify-on-revocation Cooperative
Revocation

Traditional OS

 OS decides how

many resources
to give to apps

 OS chooses
what to revoke
and takes it

 Needed for
performant
frequent
revocation (e.g.,
ASIDs)

Exokernel – abort protocol;
repossession vector
Scheduler activations

 OS decides how many

resources to give to
apps

 OS chooses what to
revoke, takes it, and
tells application (or
libOS)

 Reposes dirty disk
block? Store it where?
(3.4)

Exokernel –
callbacks

 OS decides how

many resources
to give to apps.

 OS asks
application or
libOS to give up
a resource;
libOS/app
decides which
instance to give
up

 call application handler when taking away page, CPU, etc

 application can react
 update data structures (e.g. reduce # threads when CPU goes

away; scheduler activations
 decide what page to give up

ASIDs (processor addressing-context identifiers) are identified as a
resource best revoked transparently, because of frequent revocation.

3) abort protocol
when voluntary revocation fails – kernel tells application what it took
away
reason – library can maintain valid state specification

4) capabilities – encryption-based tokens to prove right to access
idea is to make kernel access-rights decision
a) simple
b) generic across resources
c) hierarchical – child has a subset

5) wakeup predicates (from later paper)
wakeup process when arbitrary condition becomes true (checked
when scheduler looking for something to run)

6) buffer cache registry – bind disk blocks to memory pages
  applications can share cached pages

7) etc. (block state to order writes, UDF, …)

Evaluation Methodology

1) Run benchmarks several times, to warm up cache/TLB
2) Take best run for Ultrix. Exokernel is median of 3 runs
3) Instruction cache conflicts 3x problem for exokernel
4) DA: Lots of micro-benchmarks. They never show the full

performance picture.
DA: There is a real danger of prototype systems to offer one-tenth the
functionality at ten times the performance.

a. Ping-ponging a counter

b. lrpc uses a single function (e.g., it does not use the RPC number
to index into a table), it does not check permissions, it is single-
threaded.

5. PART 2: Specific abstractions
1) exception handler
2) page protection/sharing
3) processor scheduling
4) fork/exec
5) VM replacement
6) network protocol
7) file system

6. Exceptions
1. Save 3 scratch registers to agreed-upon “save area”
 (use physical addresses in user space WHY?)
 phys  avoid TLB faults
 user space  can resume after exception w/o going back to kernel
2. load exception PC, badVA, exception type into those registers
3. jump to user handler

 18 instructions/1.5us!!!

v. 150 us in Ultrix  2 orders of magnitude

QUESTION: Why?

 more demultiplexing note: libOS may have to do some of this
work
 E.g., ExOS – 4 contexts: exception context, interrupt context,

protected entry context, addressing context
 save/restore registers note: libOS may have to do some of this

work…won’t exokernel have to save/restore at least some of its
registers in handler?

 exokernel kernel runs in physical memory  no kernel TLB
misses (simplifies exception handler even if no misses while
handling this particular exception)

7. Memory Page protection/sharing
QUESTION: what are goals of abstraction?
1) protection -- user program can issue any VA it wants; can’t touch anyone

else
2) relocation – user can move data structures around in virtual address space
3) sharing – different address spaces can share same phys page
 crucial for exokernel

 otherwise libOS’s are huge waste of mem
 “export information” from kernel by allowing users to map read-

only
1) fast – use TLB, etc.

key idea – kernel decides what VAPA translations application is allowed
to install in TLB

approach

 kernel gets exception and calls application
 exceptionHandler(exceptionPC, badVA, PAGE_FAULT)

 application does VA PA lookup
 page table, inverted page table, random…

 if no valid mapping, library signals application “Seg Fault”
 otherwise…

 application does system call to install TLB entry into kernel

 Alloc(TLB_ENTRY, VA, PA, state bits, capability)

 QUESTION: any security issues here?

 kernel checks that your capability has the rights to access page PA
with permissions indicated by state_bits

 They don’t tell you how this lookup takes place. Any ideas?

 return to application
 application performs cleanup and resumes execution

Details

 TLB refill must be fast
 maintain 4096-entry cache in kernel
 fast path software TL hit  18 cycles

QUESTION: what if user’s TLB miss handler has a TLB miss?
Answer: keep a few pages in a special segment for “bootstrapping”
before jumping to user on exception, check to see if page is one of these
“special” pages. If so, kernel does TLB refill itself.

8. Processor scheduling
(Not a complete discussion here, but some questions/comments)

They give basic vector-of-time-slice framework
+ Simple model
+ Can build real-time scheduler (grab one slot every 16ms), gang scheduler
(grab one slot on each CPU for same slice), compute-bound scheduler (grab
lots of slots in a row to minimize context switch overhead)

How does cross-process coordination policy work?

 Above is fine if only one job running.
 Need policy to decide among competing claims

 How would you build multi-level feedback queue?
 What if one jobs wants response time (lots of slots scattered

evenly) and another wants throughput (cluster slots into long
shots to minimize context switch) – who wins?

 How would you build stride scheduling?
They give stride scheduling example
How does this work?
 Scheduler process grabs all of the time slices in vector
 Other processes register with scheduler process
 Exo-scheduler gives CPU to scheduler process at each slice
 Scheduler processor yields to other process

(How is this different than microkernel with a special user-level
scheduling process? Perhaps they can make this “opt in” –
processes that want stride scheduler to schedule them donate
slots to server; others take charge of own slots…)

 Is this the right “minimal mechanism”?

How does interactive/IO bound scheduling work?

 First paper: An interactive job grabs one slot every few slots to make
sure it is scheduled frequently

 Any problems with this?
 [big waste – most of time my processes are waiting for

keyboard input]
 [how to make self-tuning – as more processes arrive, each

process needs to “claim” fewer slots]
 [responsiveness gets worse as # jobs increases – see ASH figure

below]
 Solutions

 Paper 1: ASH – for special case of network IO, inject code into
kernel that is run when interrupt occurs
 Could probably generalize to other IO events?
 Is a common ASH “schedule my job in next free slot?”

 Paper 2: Wakeup predicates – before running a job in a slot it
has claimed, check this predicate and don’t schedule it if false.
[allows job to, e.g., wait for page fault to be serviced]
 Still not quite what you want – want to get scheduled

when you are not scheduled not avoid being scheduled
when you already have a slot?

 Traditional abstraction – process the IO, demux it, identify who
was waiting for it, put that job on ready queue to be scheduled
“soon”

9. Networks
Example of downloading code into kernel.

1) Multiplexing the network – packet filter

idea: load a small piece of code that examines packet and decides if it is for
me.

Implement by downloading code into kernel

 written in simple, safe language – no loops, check all mem
references, etc.

Problem – what if I lie and say “yes it is for me” when it isn’t?
Solution – “assume they don’t lie”
 claim – could use a trusted server to load these things or could check
to make sure that a new filter never overlaps with an old one (does that solve
problem?) (today: I can listen on any port (numbered larger than 1024) that
is not currently being used – whoever claims a port first, gets it. More or less
the same in Exokernel…)

2) application-specific safe handlers (ASH)
Load handlers for application-specific messages into kernel
 can reply to packet w/o context switch

 example – auspex file server responds to NFS getattr requests in
hardware in network interface

advantages of ASH

 direct message vectoring – ASH knows where message should land in
user memory  avoid copies

 dynamic integrated layer processing – e.g. do checksum as data is
copied into NI

 message initiation – fast replies
 danger of deadlock?
 control initiation – “active messages”

Figure 2 compares ASH to no-ASH for Exokernel
 W/o ASH – exokernel just drops message in application buffer and later,

when application is scheduled, application handles it  round robin
scheduler  linear increase in ping latency

 What would happen in, say, Unix?

10. XN: Disk abstraction (follow-on paper)

How would you build a file system in Exokernel?

Strawman: Minimalist approach

 Allow application to DMA between memory page and disk sector
 Access control: Check capability to memory page and disk sector

 Kernel keep a table sector number  capability
 User-level file system: start with well known root directory and

capability; embed capabilities in directories, inodes, etc.

Arm wave: I could build a file system with this…

Problems:

 Scale
 Capabilities array is essentially another piece of file system

metadata (~FAT table?)  add one disk access per read/write
 Caching can help, but cost still is high
 “Brute force” capability system OK for memory, but for large

file system, may need to be more careful…
 Shared Caching

 Above would allow per-application cache
 Not really what we want

 Short lived processes  want cache to survive process
death

 Widely shared files (binaries, libraries)  want cache to
be shared across processes

 Read/write shared files
 Write buffer: What if process exits before flushing dirty

file to disk?
 Need kernel-managed file system cache

 No longer so minimalist – common naming/location
convention across processes, common replacement policy
(how does user-control of replacement work for shared
pages?)

 Sharing with mutual distrust
 “The most difficult requirement of XN is efficiently determining the

access rights of a given principal to a given disk block.”
 3 cases for sharing (follow on paper)

 mutual trust  easy
 one-way trust  not too bad
 mutual distrust  hard

 Problem: file systems fundamentally about sharing
  need to share file among multiple users
  need to share disk among multiple file systems

 Global invariants across FS
 E.g., directory structure, free list, order of writes to allow

recovery
 Even if your process is allowed to write directory

/foo/bar, it must obey invariants (no loops, no repeated
inumbers, free list corresponds to free sectors, …) [in
FFS, imap and free list are global data structures – who
can write them? Directory updates are “raw pointer
writes” to these global data structures – who can write
them?

 How to enforce ordering constraints (e.g., don’t update
pointer to inode until inode has been initialized) when
you have a bunch of processes all issuing concurrent
async writes?

HARD PROBLEMS – Exokernel went through 4 complete redesigns of the
file system

 Disk-block-level multiplexing (see above)

[next two: essentially try to create a safe type system for disk; this would
allow OS to prevent pointer forging, etc.]

 Self-descriptive metadata – metadata blocks (inodes, directories, etc.)

start with headers describing the structure of the block (e.g., “the next
10 words are block pointers”)
 “We discovered that this approach both caused unacceptable

amounts of space overhead and required excessive effort to modify
existing file system code, because it was difficult to shoe-horn
existing file system data structures into a universal format.”

 Template-based description – self-descriptive metadata + type system
 only need to describe each type of block once per system instead
of within each block

 “This system was simple and better than self-descriptive metadata, but
still exhibited what we have come to appreciate as an indication that the
applications do not have enough control: the system made too many
trade-offs. We had to make myriad of decisions about which base types
were available and how they were represented (how large disk block
pointers could be, how the type layout could change, how extents were
specified.) Given the variety of on-disk data structures described in the
file system literature, it seems unlikely that any fixed set of components
will ever be enough to describe all useful metadata.”
 XN

“Mechanism is policy” – keeping track of metadata -- which blocks belong
to which files, who can access what, etc --

Want to give applications (libOS’s) complete control over file system.
Problem: file systems fundamentally about sharing
  need to share file among multiple users
  need to share disk among multiple file systems

 Exokernel forced to develop several fairly complex in-kernel systems to
support libOS file systems

 Tricky to get this right – complete control v. controlled sharing. This
is their 4th design (did they get it right?)

3 new mechanisms
1) Security -- UDF – untrusted deterministic function – determine who

“owns” disk page w/o specifying common metadata format
2) ordered disk writes -- “tainted” page state

Why is this “fundamental” to sharing?
3) share cached pages -- Buffer cache registry

10.1 UDF

protection – who owns what block?

Approach – metadata on disk has a type T
each type of metadata has 3 UDF’s defined for it
 owns()  returns list of disk blocks owned by this metadata block

acl()  template-specific access control and semantic invariants; run
before any metadata modification

 size()  returns size of metadata object

Key idea: rather than define an interface “change structure X to add info Y”
(declarative description language), allow libFS to define data structures and
change them any way they want. Interface now checks to make sure the right
thing happened

 Owns – verifies that change to list of owned blocks is what is
purported

 ACL – XN doesn’t know what the constraints are, but it can use per-
FS code to validate constraints (e.g., “no two directory entries have
the same name”)

NB: acl and size are actually not deterministic – they are in kernel but
can be non-deterministic. Why?

UDFs are deterministic – only depend on input (simple language can be
statically checked)
 kernel can’t be “spoofed” by UDF

Example: To allocate a block b by making m point to it

1) tell XN m, b, diff (diff is how to change m)
2) XN does O = owns(m)
3) XN does m’ = m + diff
4) XN does O’ = owns(m’)
5) XN checks O’ = O + b

Bottom line: kernel can make sure your metadata doesn’t claim to own
something it doesn’t really own.
Notice – you can use any metadata format you want, but only kernel is
allowed to modify it.
Kernel doesn’t know what is in metadata, but you tell it what to do
UDF makes sure that you don’t mislead it

QUESTION: Why is owns a true UDF (in kernel, deterministic) but acl()
and size() are in kernel but may be nondeterministic?

 Owns needed for cross-libFS security/integrity while ACL and size
are only relevant within a given file system. Still need to be in kernel to
allow a libFS to enforce security, but if libFS gets it wrong, it only hurts
libFS.

Example: Unix FFS

 What are types?
 What are owns(), acl(), size() functions for each type (inode,

indirect node, double indirect,…)?


Page: 17

Inode

Owns(): up to 15 tuples
Up to 12 tuples {type = raw block, start block, nblocks}
Up to 1 tuple {type = indirect block, start block, nblocks = 1}
Up to 1 tuple {type = double indirect block, start block, nblocks = 1}
Up to 1 tuple {type = triple indirect block, start block, nblocks = 1}

ACL: run before any metadata modification
e.g., if a user asks to modify inode, return false if (a) user doesn’t have permission or (b) write
fails to update size to be consistent with new set of allocated blocks or (c) write fails to change the
last modified time to current time +/- delta, or (d) write munges data structure to illegal state or
…

single/double/triple indirect node

Owns() a bunch of tuples with type/range
ACL(): similar to (but simpler than) Inode

Directory – unix says “directory is just a file” – should XN treat directory as a file or as metadata?
Owns(): a bunch of tuples of type {type = inode, start block, nblocks}
ACL: enforce no repeated file names, enforce proper formatting of directory (e.g., list of variable
sized entries or list of fixed sized entries or tree of entries sorted by name or…), enforce
permission to write, …

10.2 Ordered disk writes

Problem – some metadata depends on other metadata; if kernel (or
application) writes to disk in wrong order, crash could wipe out data

Constraints

1) never reuse an on-disk resource before nullifying all previous
pointers to it

2) never create persistent pointer to block before block is initialized
 tricky

3) when moving a resource, never reset the old pointer before new
one is set  only matters within file system, not exokernel’s
problem

Conceptually simple, but tricky to do efficiently. Naïve implementation will
do many unneeded synchronous writes.

1 and 2 required for global integrity (enforced by XN) but 3 only affects a
given libFS. Why?

What if 1 is violated?
What if 2 is violated?
What if 3 is violated?

QUESTION: How to do 1 and 3?
(Paper just says “the first rule is implemented by deferring a block’s
deallocation until all on-disk pointers to the block have been deleted;
a reference count performed at crash recovery time helps the libFSes
implement the third rule”)

Perhaps: keep reference count in each entry of free list;
n since each modification of metadata explicitly tells XN the change

to owns() list, XN can maintain reference count, right?

n use lazy writes (+ recovery after crash) to avoid extra synchronous
writes

DA: requires scan of disk on recovery
DA: increases size of free list and/or puts upper bound on reference
count

Other options?

How to do 2)?
System tracks tainted blocks

A block is tainted if it points to an uninitialized metadata block or it
points to a tainted block

When allocating a block, I update a metadata node
 mark it tainted

But wait, parent metadata node is tainted too!
When I bring in any page (e.g. the metadata node), the buffer cache
registry keeps track of its parent  I can find parent and mark it
tainted (and on up the tree)

QUESTION: create a new empty file in FFS
 get block B from free list
 add block B to directory D

 XN.add(old D, new D, B, TYPE_INODE)
 XN marks D as tainted, B as tainted, increments B’s

reference count
 Does XN need to mark D’s inode as tainted? (No, since FFS

doesn’t change the location of D; in LFS (later) yes)
 Initialize B

 XN.initialize(new B, B, {})
 XN marks B as untainted

 Write B to disk
 XN marks D as untainted

 Write D to disk

QUESTION: When should we update the free list on disk? (If we do it
first, what happens if we crash? If we do it last, what happens if we
crash?)

10.3 Buffer cache registry

Allow protected sharing of blocks among libFSes
Track mapping of cached disk blocks and their metadata to phys pages

Pages, themselves, stored in application memory

Buffer cache registry tracks mapping and state

Anyone can order cache to write a block (subject to tainted)

10.4 FS questions and lessons

Lessons

 “Plan to build 2, you will anyhow”
 XN is 4th iteration of FS design, Xok is 3rd exokernel
 Engler could have called it good after first Exokernel
 Learned a lot of deep lessons by iterating
 Patterson rule: build it to find out what the real questions are

 Cross-disciplinary work/skills  creative new approaches
 Engler comes from a languages and compilers background

and many tricks in Exokernel build on this
 Opportunities: AI/OS, theory/OS, architecture/OS

 Writing trick
 Often a temptation to “tell the story” of how you came up

with a solution. But tedious for reader to hear the story
before knowing where you are going with it

 Comes up over and over in writing
 Almost always the right thing: put short discussion of

essence of idea first
 Example: Section 4 – 4.1 is “overview” and 4.2 is “Problem

and history”

Questions

 This still seems complex

 How doe the constraints drive complexity
 “Creating new file formats should be simple and

lightweight…should not require any special privilege”
 “Protection substrate should allow multiple libFSes to

safely share files at the raw disk block…level”
 “Efficient..as close to raw HW performance as

possible”
 “Facilitate cache sharing among libFS’s”

Compare
v. partitions

v. 1 MB volumes (e.g., allocate blocks to different file systems in
1MB units) how would you change design then. What would you
gain? What would you lose?

n Section 4.4 garbage collection sounds expensive – need to scan
entire disk to reconstruct free map

FSCK is considered really expensive today
 How to modify Exokernel to avoid this need (they say “if

rebuilding the free map after a crash needs to be fast, this step
can be eliminated by ordering writes to the free map” How
would that work?)

 For each libFS, it seems like we would want it to be the case
that the libFS can either enforce invarients to eliminate the need
for FSCK within the libFS or it can do lazy garbage collection
later. How does this work?

2 project ideas
I think XN is cool “extreme” research – get at essence of file system
abstraction (even if not quite what you would really ever build…)
 They promise as future work to implement a bunch of existing file

systems in XN to test whether their abstractions really do let you express
“real” file systems.  Build LFS or XFS in XN and see if it really
captures the essence

 Modify XN to eliminate need for fsck on recovery

11. PART3: Critique, Questions
1) Lessons (section 9.3 of second paper)

 Provide space for application data in kernel data structures
 Fast applications do not require good microbenchmark

performance
 “The main benefit of an exokernel is not that it makes

primitive operations efficient, but that it gives applications
control over expensive operations such as I/O”

 Inexpensive critical sections are useful for LibOS’s
 User-level page tables are complex
 Downloading interrupt handlers are of questionable utility
 Downloaded code is powerful

 “Advantage is not execution speed but rather trust and
consequently power”

1) Will improved performance matter or will increased processor speed

make the effort moot?

2) What happens when many users/competing libOS’s on a system?
 Exokernel must decide who gets CPU, who gets memory, etc.
 e.g. CPU scheduling between batch, interactive jobs?
 e.g. Page-hungry processes (react to page revocation by asking for a
new page)

  need some policy

 microbenchmarks in paper are best-case for exokernel

things like multi-level feedback scheduling are complex, but they got
invented for a reason. How would exokernel do with such a
workload? Would it “discover” something like MLF?

 Does anyone buy their scheduler discussion?

3) Will implementors of applications be willing to invest effort to build new

libOS?

1) What is cost of migrating to model?

5) Do you buy their conclusions

a) exokernel can be made efficient b/c small, low-level primitives
b) low-level multiplexing of HW can be efficient
c) traditional abstractions (e.g. VM, RPC) can be provided w/ low

overhead
d) application can create special-purpose implementation of

abstractions

4) why are non-exokernel systems (e.g. Ultrix getpid()) so slow?

QUESTION: (written critique) what is the “fatal flaw” in the paper?

Project ideas

 Both exokernel and Disco define virtual machines. Compared
to Disco, Exokernel is much less portable – it is harder to
build/port an exokernel than a virtual machine monitor for a
given piece of hardware (is it?) and if you want to run legacy
applications, it is harder to build a libOS over an exokernel than
it is to run an existing OS over a VMM (is it?) On the other
hand, compared to Exokernel, Disco may give up a lot of
performance opportunities because it hides virtualization. Also,
as more and more performance optimizations get put into
Disco, it may become as complex as a traditional OS. Build the
simplest VMM possible so that existing applications/OS’s can
run without modification and so that the VMM is easy to
maintain, and then add a few Exokernel-like extensions to the
system. These extensions should not complicate the core
abstraction…

 Add Exokernel’s virtual memory interface to linux as an option.
That is, allow a process to request that allocation return a
physical page. Then, the process would manage virtual-
>physical mappings, page replacement, etc. Compared to
Exokernel, this approach will probably be slower (how much?)
and may give up some flexibility (does it?) But, the advantage

is that the approach can be retrofitted to an existing OS. Are
there sufficient gains to be worth it?

 Add Exokernel’s network handlers (with improved security),
UDFs for disk (perhaps at the Linux volume manager level?),
or interrupt handlers and explore similar issues to the virtual
memory issues discussed above.

 New programmable router architectures promise fast, flexible
networking. We have an Intel network testbed of such machines
here at UT. The question is: how to program them. Build on the
Synthesis “pipeline of servers” model, the Scout path model,
and/or the Exokernel ASH model (or traditional packet filters)
to construct a flexible, high performance programming
environment for such architectures.



