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Treat disks like tape.
J. Ousterhout

File system design is governed by two general forces: technology, which provides a
set of basic building blocks, and workload, which determines a set of operations that
must be carried out efficiently.

Rosenblum and Ousterhout

1 Preliminaries

1.1 Outline

* Introduction
* 2 hard problems

— Finding data in log

— Cleaning
* 2 key ideas

— logging and transactions: log your writes

— indexing: inode — data can live anywhere — no need to “write back”

2 Introduction

2.1 Why this is “good” research

Driven by keen awareness of technology trend

Willing to radically depart from conventional practice

Yet keep sufficient compatibility to keep things simple and limit grunge work

3-level analysis:



2.2

2.3
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— Provide insight with simplified math — “science”
— Simulation to evaluate and validate ideas that are beyond math
— Solid real implementation and measurements/experience
Extreme research — take idea to logical conclusion (e.g., optimize file system for writes since

“reads will all come from the cache”)

Technology trends

Memory will grow, all reads will come from disk cache

— Is this true today? Why or why not?
Transfer bandwidth and access time. Where has this gone?
RAIDs and network RAIDs

File system design is governed by two general forces: technology, which provides a set
of basic building blocks, and workload, which determines a set of operations that must be
carried out efficiently.

Implications

Reads taken care of (?)
Writes not, because paranoid of failure
Most disk traffic is writes
Can’t afford small writes

— RAIDS makes small writes worse
Simplify and make FS less “device-aware”

— No tracks, cylinders, etc

— Just “big writes fast” + temporal locality between write and read patterns

Problems with UNIX FFS

(Because most files are small)
Too many small writes
(Because of recovery concerns)

Too many synchronous writes



2.5

2.6

2.7

2.8

It takes at least five separate disk 1/0s, each preceded by a seek, to create a new file in Unix
FFS: two different accesses to the file’s attributes plus one access each for the file’s data, the
directory’s data, and the directory’s attributes. When writing small files in such a system,
less than 5% of the disk’s potential bandwidth is used for new data; the rest of the time is
spent seeking.

Approaches

Replace synchronous writes with asynchronous ones (dribble latest updates to disk)
Replace many small writes with a few large ones

So buffer in memory and write to disk using large “segment-sized” chunks

Log-append only, no overwrite in place

Key difference between LFS and other log-based systems:

The log is the only and entire truth, there’s nothing else

Challenges
Two hard problems

— Metadata design

— Free space management
No update-in-place,

— (almost) nothing has a permanent home,

— So how do we find things?
Free space gets fragmented,

— So how to ensure large extents of free space?

The poetry of LFS

Overall, Sprite LFS permits about 65-75% of a disk’s raw bandwidth to be used for writing
new data (the rest is used for cleaning).

For comparison, Unix systems can only utilize 5-10% of a disk’s raw bandwidth for writing
new data; the rest of the time is spent seeking.

The fundamental idea of a log-structured file system is to improve write performance by
buffering a sequence of file system changes in the file cache and then writing all the changes
to disk sequentially in a single disk write operation.

* Basic operation, page 7



3 Index structures

3.1 Index structures in FFS
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3.2 Index structures in LFS




Step 1 — move inodes to log

Step 2 — find mobile inodes with fixed imap

Not obvious this is better

— Why is this better?
— Don’t have to write imap after every write — just at checkpoints; otherwise roll forward
— Couldn’t you do this with original inode array?

— Would there be any advantages to making imap mobile by adding another level of
indirection?

Compare different checkpoint organizations: entire disk, inodes, imap, imap map, ...

— Assume 100 bytes/inode, 4 bytes per disk pointer. 50 MB/s bandwidth.

— Assume 512MB main memory

disk data inode array  imap imap map
size 100 GB 1GB 40MB 320 KB
time to write checkpoint 2000 sec 20 sec I sec 10ms + seek + rot
Fraction of main memory 200x 2x 5% .05%

3.3 Example of LFS update
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¢ Read “/foo”



* Write “/foo”
* Read “/foo” using in-memory imap

¢ What if we crash?

» Update checkpoint (eventually)



4 Cleaning

How to get back free disk space

4.1 Option 1: threading

* Put new blocks wherever holes are
* Each block written has points to next block in sequential log
* Advantage: Don’t waste time reading/writing live data

* Law of storage system entropy: left to itself, free space gets fragmented to the point of
approaching your minimum allocation size

4.2 Option 2: Compact the log

* Compact live blocks in log to smaller log
* Advantage: Creates large extents of free space

* Problem: Read/write same data over and over again

4.3 Option 3: Segments: Combine threading + compaction

¢ Want benefits of both:

— Compaction: big free space
— Threading: leave long living things in place so I don’t copy them again and again

— Easily detect dead blocks by having a version number with inode. If old version, no
need to chase down inode pointers or indirect blocks.

— The version number combined with the inode number form a unique identifier (uid) for
the contents of the file.

— if the uid of a block does not match the uid currently stored in the inode map when
the segment is cleaned, the block can be discarded immediately without examining the
file’s inode.

* Solution: “segmented log”

— Chop disk into a bunch of large segments
— Compaction within segments
— Threading among segments

99 ¢

— Always write to the “current” “clean” segment, before moving onto next one

— Segment cleaner: pick some segments and collect their live data together (compaction)



— Segment summary information

* It must also be possible to identify the file to which each block belongs and the
position of the block within the file; this information is needed in order to update
the file’s inode to point to the new location of the block.

* Sprite LFS also uses the segment summary information to distinguish live blocks
from those that have been overwritten or deleted.

* Many similarities with generational garbage collection

5 Policies, evaluation

Write cost

No variance

FFS today
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5.1 Is cleaning going to hurt?

* Write cost = total_ 10O / new_writes = read segs + write live + write new / write new = [1+u+(1-
w)]/(1-u) = 2/(1-u)

— where u is utilization of segments cleaned

* A write cost of 10 means that only one-tenth of the disk’s maximum bandwidth is actually
used for writing new data; the rest of the disk time is spent in seeks, rotational latency, or
cleaning.

Conclusion: u better be small or it’s going to hurt bad.

Aha: u doesn’t have to be overall utilization, just utilization of cleaned segments.



* FFS has a write cost of 10-20, corresponding to 5-10% disk bandwidth between seeks. (Fig-
ure 3, page 11)

5.2 How to lower cost under utilization?
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¢ Want bimodal distribution

— clean low-utilization segments, easy

— leave high-utilization segs untouched
* Workloads

— random writes: still can do better than average u

— typical file system has locality, can do even better



5.3 Greedy cleaner
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* Greedy cleaner: pick the lowest u to clean
¢ Works fine for random workload
¢ For “hot-cold” workload: 90% writes to 10% blocks

— 1st mistake: not segregating hot from cold
— Did that and it didn’t help

— Figure 4 shows the surprising result that locality and “better” grouping result in worse
performance than a system with no locality!
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5.4 What’s wrong?
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* Segments are like fish, swimming to the left
* Cleaner spends all its time repeatedly slinging a few hot fish back

» Cold fish hide lots of free space on the cliff but the cleaner can’t get at them, and most fish
are cold
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5.5 Answer

Write cost
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* Cold free space more valuable: if you throw back cold fish, takes them longer to come back

* Hot free space is less valuable: might as well wait a bit longer

5.6 ‘Cost benefit cleaner”
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5.7

Optimize for benefit/cost = age*(1-u)/(1+u)

Favors cold segments. Coldness of segment approximated by age of of the youngest block
in the segment.

Hot segments cleaned at 15% utilization, cold segments at 75%. Result is similar to genera-
tional garbage collection

Segment usage table has the number of live bytes and the most recent modified time of any
block.

Segment size?

An Example Followup Question

5.8

What’s the best segment size?
Big: can amortize seek more effectively
Small: even better chance to find segments that have low utilization, or even zero utilization

Find the optimal compromise

Crash recovery

Last sector written in checkpoint is the timestamp (giving atomic commit). Two checkpoint
regions allow for a crash during a checkpoint.

Checkpoint every 30 seconds

— Checkpoint has addresses of all the blocks in the inode map and segment usage table,
plus the current time and a pointer to the last segment written.

Roll forward tracks changes to inodes, ignores new data blocks (why?)

Directory operation log ensures consistency between inodes and directory entries. Directory
operation entry is written before inode or directory entry.

Directory operation log makes atomic rename easy. Why?

— Directory entries cannot be modified while checkpoint is written.

13



6 Evaluation

6.1 Paper’s conclusions

* Disk parameters

— WREN IV disk — 1.3MB/s max BW, 17.5 avg seek, 300MB
— LFS: 4KB block size, IMB segment size

¢ Results

— 10x performance for small writes
— Similar large I/0 performance

— Terrible sequential read after random write. Temporal locality does not match logical

locality.
— Note:
* 1990 disk Wren IV: 1.3MB/s BW, 17.5ms avg seek, 300MB storage
* 2002 disk : SOMB/s BW (40x), Sms avg seek (3x), 100GB storage (300x)
* How change results?

*

How change design/parameters (segment size, checkpoint strategy, ...)

¢ Questions

Is LFES really as simple as FFS? Segment cleaning isn’t.
Microbenchmark only? (Andrew benchmark 80% CPU)

How much is attributed to asynchrony? (Later work on delayed writes for metadata)

Story of impact of cleaning is simplistic?

I argued at start of discussion that this is example of good science. Still not perfect.
What questions doesn’t it answer?

How does read cost compare with FFS in practice? Is it OK to give up careful disk-
physical-property-based placement and hope that read and write temporal locality will
match?

 Other advantages

— Fast recovery
— Support of transactional semantics

— Not necessarily an LFS monopoly though

6.2 Experimental evaluation

Note: I actually think they do a really good job overall. Still, let’s see if we understand what they
did and if there are any improvements...
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6.2.1 Graph-by-graph analysis/critique

* Figure 3, 4, and 7 — Analytic model and simultion of write cost v. disk capacity utilization

— Basic story —

*

*

*

*k

3: cleaning cost depends on utilization,

4: cleaning cost depends on minimum segment utilization not avg
4: But greedy cleaning does worse when there is locality (surprise!)
7: Delay cleaning hot segments

— Sanity check: Where does “FFS today = 10” come from? What about “FFS improved
=477

X:

*

Write = seek + rot + metadata write + seek + rot + data write + seek + rot + free
space write

BW IMB/s — write 1K in Ims
Worst case — No locality: seek + rot = 15ms

Best case — locality: seek + rot = 0 (amortize across many writes to huge numbers
of writes to nearby files...)

Range from 1/48 to 1/1 depending on workload

Paper uses microbenchmark experiment for “current case” — figure 8 “small file
create” — 10:1 to 50:1 advantage

(Should have used small file overwrite? Create may overstate benefits? Overwrite
may be less advantageous b/c fewer seeks)

(Methodology question: Did Figure 8 use a single blocking thread? Could FFS
get more throughput with multiple concurrent threads (allowing disk to schedule
multiple outstanding requests?)

Paper extrapolates from Seltzer, Chen, and Ousterout “Disk scheduling revisted”
to argue that best FF'S could do is write cost of 4

— Figure 8: Small file performance

*

*k

Basic story: LFS 10x faster for create/delete (and uses only 17% of disk BW)
What limitations, if any, from these experiments? How improve/expand on exper-
iments? X:
- no cleaning — keep running long enough to get steady state performance with
cleaning (vary free space)
- create more expensive than overwrite — also run experiment with “overwrite”
phase
- Read performance is “best case” for LFS (same order as write) — try reads
in random order

— Figure 9: Large file performance
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* Basic story: LFS modestly faster on sequantial or random writes; LFS similar
for sequential read after sequential write or random read after random write; FFS
faster for sequential read after random write

— Table II — production file system measurements of cleaning costs

* Basic story: avg write cost 1.4 to 1.6 in production file system
* (and this may be pessimistic — cleaning can be done in background?)

6.2.2 Higher level critique

Did they do the right experiments?

In what ways are experiments too generous to LFS? What is worst-case workload for LFS?
X:

e Microbenchmarks run with no cleaner

» Small file microbenchmarks have no concurrency; FFS might improve scheduling of writes
with more concurrency

* Should have shown small writes not just small creates

* Worst case performance: random overwrite of small chunks of large file (e.g., transaction
processing)

In what ways are experiments too conservative about LFS’s advantages? X:

* “real world” cleaning costs may overstate cost; cleaner probably is able to do most of its

work during periods of idleness,; perhaps should have measured what fraction of cleaning
done when idle...

What questions are just not addressed? How could they be addressed? X:

* Real world performance. Does a user see improved real-world performance? (Ideas for
testing — AFS benchmark, replay trace of real-world workload against LFS and against
other production system, ...)

* Real world experience issue — cleaner grabs exclusive lock on everything — multi-second
period during which everyone waits; implementation artifact, but still...

* Memory consumption — Seltzer93: “LFS [is] a very ’'bad neighbor”’ — LFS locks down
3 segments per file system plus buffers reserved for staging (64-128K per FS) and cleaner
(avg 3.7MB/file system); if a system has 10 file systems mounted and IMB segments — 60MB
“locked down” by LFS (v. 32MB for the workstation they ran microbenchmarks on). Answer

— (1) some of these are artifcats of implementation fixed by Seltzer93 (2) tech trends will
reduce this (?)
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6.3 Ousterhout’s (and Mike’s) summary of meta-lessons

* Vary operating conditions and show each system both at its best and worst.
— Mike: if you don’t show the worst-case behavior of your system, someone else will

* Measure one level deeper than you publish; use your intuition to ask questions, not to answer
them.

— Mike: Think about graphs. Don’t just say “up and to the right, that’s what we expected.”
Be able to explain with back of the envelope calculations the magnitude of values; the
slope of line.

— Mike: Big danger in experimental systems: (1) guess answer, (2) run experiment (3)
unexpected result (my system is not as good as the other system) — debug/tweak goto
2, (4) expected result (my system better than other) — done — as expected my system
wins!

» Consider significance of results: all graphs should have a y-axis based at zero.

* Mike: Many complex heuristics in CS (FFS, TCP, ...) —how do we understand them? Danger
— build “simple systems” that seem to work and then spend a decade or more figuring how
why they work (perhaps a more systematic approach could be taken from the beginning...)
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7 Conclusions

7.1 Why LFS? Why Not?
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* LFS does well on “common” workloads
* LFS degrades for “corner” cases

* LFS architecture inherently flexible — easy to incorporate other FS paradigms

7.2 How radical is it?

e continuum

FFS: inodes: fixed, update-in-place; data: fixed, update-in-place

JES: inodes: fixed, redo log; data: fixed, update-in-place

“Transactional FS”: inodes: fixed, redo log; data: fixed, redo log

LFS: inodes: mobile, log+cleaner data: mobile, log+
* Compare “Transactional FS” v. “LFS”

— In LFS need to be able to find data in log, but really no different than normal inode
structure
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— Compare cleaning cost v. replay cost

* LFS: get to wait longer before cleaning — data may die
% LFS: write cleaned data to log — fewer seeks

* Transactional FS: wait shorter before re-write — don’t have to read log (in com-
mon case)

*

TFS: Still get to batch many writes — maybe seeks are not too bad...
* Henson: LFS Failed because of segment cleaning overheads.

* Technology trends, solid state devices (SSD)

Reads are cheap, writes are expensive (large blocks).

LES, but in device firmware!

Looks like a block device to OS, format with ext4.

Ooops, include TRIM command, which lets the file system tell the block device which
blocks are free.
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