The Transaction Concept

CS380L

1 Preliminaries

11

1.2

1.3

Review

File system basics — what are conclusions?

Outline

Motivation/goal

Transaction concept: ACID semantics
Logging, checkpoints

Two-phase commit

Two-phase locking

Scalability

Nested transactions

Long-lived transactions

Subsets of ACID

Preview

2 Motivation/goal

2.1

Motivation

File systems have lots of data structures

— bitmap of free blocks

— directory

— file header

— indirect blocks
— data blocks

e For performance, all must be cached!

e Ok for reads, but what about writes?

2.1.1 Modified data in memory ("cached writes”) can be lost
e Options for writing data

— write through - write changes immediately to disk

— problem: slow! Have to wait for each write to complete befgoeng
on.

— Write back - delay writing modified data back to disk (for exde)
until replaced). Problem: can lose data on a crash
2.1.2 multiple updates

o if multiple updates needed to performe some operationharas occur be-
tween them!

e For example, to move a file between directories:

1. delete file from old directory
2. add file to new directory

e to create new file

1. allocate space on disk for header, data
2. write new header to disk
3. add new file to directory

e What if there is a crash in the middle, even with write-throumave a prob-
lem

2.2 Unix approach (ad-hoc)

e metadata: needed to keep file system logically consist@et(dries, bitmaps,
file headers, indirect blocks, etc.)

e data: user bytes

2.2.1 Metadata consistency

e For metadata, UNIX uses synchronous write through

o If multiple updates needed, does them in specific order soiftteacrash
occurs, run special program “fsck” that scans entire diskiriternal con-
sistency to check for “in progress” operations and then fixaapthing in
progress

— Exokernel allows guest file systems to enforce order by ndaingr
“tainted” blocks to disk

e example:

— file created, but not yet in any directory delete file
— blocks allocated, but not in bitmap update bitmap

e Challenge:

1. need to get ad-hoc reasoning exactly right (3 exokerrlel rirom
Ganger’s earlier dissertation help)

2. poor performance (synchronous writes)
3. slow recovery - must scan entire disk

2.2.2 User data consistency

e what about user data?

— write back, forced to disk every 30 seconds (or user can sgic” to force
to disk immediately)

e No guarantee blocks written to disk in any order
e can lose up to 30 seconds of work

e Still, sometimes metadata consistency is enough

e.g. how should vi or emacs write changes to a file to disk?

option 1:
1. delete old file
2. write new file

(how vi used to work!)

now vi does the following:

1. write new version to temp file

2. move old version to other temp file
3. move new version to real file

4. unlink old version

— If a crash, look in temp area, if any files there, send e-mailsir that
there might be a problem

e But what if user wants to have multiple file operations occaanit?
e Example: bank transfer

— ATM gives you $100
— debits your account

e must be atomic

2.2.3 General’s paradox

e Want to be able to reliable update state on in two differecations (possibly
on two different machines)

— e.g., move file from directory A to directory B

— e.g., create file: update free list, directory, inode, détak

— e.g., atomically move $100 from my account to Visa account
— e.g., atomically move directory from file server A to file senB

e Challenge:

— machines can crash
— messages can be lost

e General's paradox

— Can | use messages and retries over an unreliable netwoyki¢core-
nize two machines so that they are guaranteed to do same amat s
time?

— Remarkably, no. Even if all messages end up getting through

e General’s paradox: two generals on separate mountainso@grcommu-
nicate via messengers; the messengers can get lost or lkeschpt

— Need to coordinate the attack; if they attack at differanes, then they
all die. If they attack at same time, they win.

— 1— 2: Let'sattack at9
—2—1:0K.91itis.

— 1— 2: Check. 9itis.
— 2—1: Gotcha. 9 itis.

e Even if all messages are delivered, can't coordinate (B/bamce that the
last message doesn't get through). Can’t simultaneoushywgemachines
to aggre to do something at same time

e No solution to this - one of the few things in CS that is just osgible.

e Proof: by induction

3 Transaction concept: ACID semantics
e Solve weaker problem: 2 operations will both happen/nopkap(but not
necessarily happen at same time)

e Transaction concept: give one entity the power to say “yesho” for all
entities

— Local transaction: one disk update (e.g., write “commit’ldg) irre-
vokably triggers several updates

— Distributed transaction (2 phase commit): one machine eaidd for
all machines; all machines agree to go along with decision

o ACID semantics

— Atomic — all updates happen or none do

5

— Consistent — after each update, system invariants magaain

— Isolated — no one out side of transaction sees any updatitthegtcan
see them all

— Durable — once it is done it stays done

e Gray argues ACID is right software building block for relialsystems

— Application of end-to-end principle — you need to handls tase any-
how; handle it in a clean and correct way and get the side hiesfefi

also solving (rare) deadlocks, (less rare) programmingicéens, etc.
— Today: Widely accepted in databases

e Are subsets ever appropriate?

4

— What would “ACI" be and when might it be useful?
— What would “ACD” be and when might it be useful?
— Any others?

x Satya: “Isolation-only transactions”

Implementation (one thread): Logging, checkpoints

Key idea - fix problem of how you make multiple updates to disk@cally,
by turning multiple updates into a single disk write!

PICTURE: disk, log

lllustrate with simple money transfer from acct x to accty

Begi n transaction

X =X + 1
y=y-1
Conmmi t

Keep "write-ahead” log ("redo log”) on disk of all changestiansaction
Alog is like a journal - never erased, record of everything'ye done
Once both changes are in log, write is committed

Then can "write behind” changes to disk - if crash after commaplay log
to make sure updates get to disk.

6

—

—

Sequence of steps to execute transaction

write new value of x to log
write new value of y to log
write "commit”

write x to disk

write y to disk

6. reclaim space on log

QUESTION: what if we crash after 1?

arMwDdhE

no commit, nothing on disk, so ignore changes

what if after 2?

ditto

what if after 3, before 4 or 5?

commit written to log, so replay those changes back to disk
What if we crash while writing commit?

As with concurrency, need some primitive atomic operatimnglse can't
build anything else.

— Writing a single sector on disk (with a CRC) is atomic!
can we write x back to disk before commit?

— Yes: keep an "undo log” - save old values along with new value
— If transaction doesn’t commit, "undo” change!

QUESTION: can we do transaction with just undo log?

Just redo log?

5 Admin

Feedback
Getting back on schedule:

Today: transaction
W: Advanced file systems — LFS (optional: XFS, netapp)

Next week: distributed and replicated file systems

6 Two-phase locking

o What if two threads run same transaction at same time?

e Concurrency— use locks

Begi n transaction
l ock x, vy
X = x+1
y =y-1
Unl ock x, vy
commi t
e What if A grabs locks, maodifies x, y, writes to log, unlocksdaight before
committing, then B comes in, grabs lock, writes x, y, unloaaes commit;
e Then A crashes before commit
— problem. B commits values for x, y that depend on A committing
e Solution: two-phase locking

— Phase 1: only allowed to acquire lock
— Phase 2: All unlocks happen at commit

e Thus, B can't see any of A's changes until A commits and relsdscks—
provides serializability

e Also note - gives us a way to avoid deadlock
e What happens if you try to grab a lock and it is already held?
— (or what if you wait on a lock for ¢, 1 second, or....)
— abort transaction!
— avoids "no-revocation” condition of deadlock

e Generalization: readers/writers locks

7 Two-phase commit

What if we want two machines to do an atomic update?

example: my account is at NationsBank, yours is at Wells ¢-atgow to
transfer $100 from you to me? (Need to guarantee that botkstegree on
what happened).

Example: file system - move a file from directory A on server ditectory
B on server b

One machine must make irrevokable decision and then rgliafdrm others
of decision

Abstraction - distributed transaction - two machines agoego something
or not do it, atomically (but not necessarily at exactly tams time)

Two phase commit

— Phase 1: Everyone gives master machine power

— Phase 2: Master decides and tells everyone whether comppehad
or not

Phase 1: coordinator requests

1. coordinator sends REQUEST to all participants
— e.g. C—S1 "delete foo from /”, G-S2 "add foo to /”

2. participants recv request, execute transaction lgaatlje VOTE.COMMIT
or VOTE_ABORT to local log, and send VOTEOMMIT or VOTE_ABORT
to coordinator

Failure case Success case

S1 decides OK, S1 and S2 decide OK and write
writes 'rm /foo; VOTECOMMIT” to log, updates and VOTEEOMMIT to log,
and sends VOTEEOMMIT send VOTECOMMIT

S2 decides no space on device and writes
and sends VOTEABORT

e Phase 2: coordinator decides

1.3

— case 1: coordinator recv VOTEBORT or timeout

— coordinator write GLOBALABORT to log, and send GLOBAIABORT
to participants

— case 2: coordinator recvs VOTEOMMIT from all participants
— coordinator write GLOBALCOMMIT to log, and send GLOBALCOMMIT
to participants

2. 4 participant receives decision; write GLOBALOMMIT or GLOBAL_ABORT
to log

e What if

— Participant crashes at 2? Wakes up, does nothing. Cooodinai
timeout, abort transaction, retry

— Coordinator crashes at 3? Wakes up,

— Case 1: no GLOBAL* in log — Send message to participants "abort”

— Case 2: GLOBALABORT in log — send message to participants
"abort”

— Case 3. GLOBALCOMMIT in log — send message to participants
"commit”

— Participant crashes at 42+ On recovery, ask coordinator what hap-
pened and commit or abort

e This is another example of the idea of a basic atomic operatiothis case
- commit needs to "happen” at one place

e Limitation of 2PC - what if coordinator crashes during 3 ameésh't wake
up? All nodes block forever

— What if participants times out waiting in step 4 for coordorato say
what happened. It can make some progress by asking othijments
1. if any participant has heard "GLOBACOMMIT/ABORT", we
can safely commit/abort
2. if any participant has said "VOTBEBORT” or has made no vote,
we can safely abort
3. ifall participants have said "VOTEOMMIT” but none have heard
"GLOBAL _*", can we commit? A: no - coordinator might have
written "GLOBAL_ABORT" to its disk (e.g., local error or time-
out)

— Turns out - 2PC always has risk of indefinite blocking
— Solve with 3 phase commit
x See “distributed computing” — 3PC, Paxos

10

— In practice 2PC usually good enough - but be aware of thedimit

e If you come to a place where you need to do something acrosspiaul
machines, don't hack
— use 2PC (or 3PC)

— if 2PC, identify circumstances under which indefinite bliogkcan oc-
cur (and decide if acceptable engineering risk)

8 Scalability

9 Nested transactions

e Issue: Interact with multiple organizations; each inteoacis a “transac-
tion” to each organization; all interactions together aré&ransaction” to
you

e (travel agent example)
e Proposed solution?

— View transaction as collection of;

x actions on unprotected objects

x protected actions that my be undone or redone

x real actions that may be deferred but not undone
x nested transactions tht may be undone

Nested transaction returns name and parameters of contipgrisans-
action

— Parent includes compensating transaction in log of paransaction
— Invoke compensating transactions from log if parent tretisa aborted

— “Not satisfying, but better than etnirely manual procedutteat are in
common use today”

— Consistent, atomic, durable, but not isolated — “otherssmmnthe un-
committed updates of nested transactions; these updatgsubae-
qguently be undone by compensation”

— Question: how to adapt 2 phase locking to restore isolation?

11

10 Long-lived transactions

11 Subsets of ACID

12

