
The Transaction Concept

CS380L

1 Preliminaries

1.1 Review

• File system basics – what are conclusions?

1.2 Outline

• Motivation/goal

• Transaction concept: ACID semantics

• Logging, checkpoints

• Two-phase commit

• Two-phase locking

• Scalability

• Nested transactions

• Long-lived transactions

• Subsets of ACID

1.3 Preview

2 Motivation/goal

2.1 Motivation

• File systems have lots of data structures

– bitmap of free blocks

1

– directory

– file header

– indirect blocks

– data blocks

• For performance, all must be cached!

• Ok for reads, but what about writes?

2.1.1 Modified data in memory (”cached writes”) can be lost

• Options for writing data

– write through - write changes immediately to disk

– problem: slow! Have to wait for each write to complete beforegoing
on.

– Write back - delay writing modified data back to disk (for example,
until replaced). Problem: can lose data on a crash

2.1.2 multiple updates

• if multiple updates needed to performe some operation, crash can occur be-
tween them!

• For example, to move a file between directories:

1. delete file from old directory

2. add file to new directory

• to create new file

1. allocate space on disk for header, data

2. write new header to disk

3. add new file to directory

• What if there is a crash in the middle, even with write-through have a prob-
lem

2

2.2 Unix approach (ad-hoc)

• metadata: needed to keep file system logically consistent (directories, bitmaps,
file headers, indirect blocks, etc.)

• data: user bytes

2.2.1 Metadata consistency

• For metadata, UNIX uses synchronous write through

• If multiple updates needed, does them in specific order so that if a crash
occurs, run special program “fsck” that scans entire disk for internal con-
sistency to check for “in progress” operations and then fix upanything in
progress

– Exokernel allows guest file systems to enforce order by not writing
“tainted” blocks to disk

• example:

– file created, but not yet in any directory→ delete file

– blocks allocated, but not in bitmap→ update bitmap

• Challenge:

1. need to get ad-hoc reasoning exactly right (3 exokernel rules from
Ganger’s earlier dissertation help)

2. poor performance (synchronous writes)

3. slow recovery - must scan entire disk

2.2.2 User data consistency

• what about user data?

→ write back, forced to disk every 30 seconds (or user can call “sync” to force
to disk immediately)

• No guarantee blocks written to disk in any order

• can lose up to 30 seconds of work

• Still, sometimes metadata consistency is enough

3

– e.g. how should vi or emacs write changes to a file to disk?

– option 1:

1. delete old file

2. write new file

– (how vi used to work!)

– now vi does the following:

1. write new version to temp file

2. move old version to other temp file

3. move new version to real file

4. unlink old version

– If a crash, look in temp area, if any files there, send e-mail touser that
there might be a problem

• But what if user wants to have multiple file operations occur as a unit?

• Example: bank transfer

– ATM gives you $100

– debits your account

• must be atomic

2.2.3 General’s paradox

• Want to be able to reliable update state on in two different locations (possibly
on two different machines)

– e.g., move file from directory A to directory B

– e.g., create file: update free list, directory, inode, data block

– e.g., atomically move $100 from my account to Visa account

– e.g., atomically move directory from file server A to file server B

• Challenge:

– machines can crash

– messages can be lost

• General’s paradox

4

– Can I use messages and retries over an unreliable network to synchro-
nize two machines so that they are guaranteed to do same op at same
time?

– Remarkably, no. Even if all messages end up getting through

• General’s paradox: two generals on separate mountains. Canonly commu-
nicate via messengers; the messengers can get lost or be captured

– Need to coordinate the attack; if they attack at different times, then they
all die. If they attack at same time, they win.

– 1→ 2: Let’s attack at 9

– 2→ 1: OK. 9 it is.

– 1→ 2: Check. 9 it is.

– 2→ 1: Gotcha. 9 it is.

– ...

• Even if all messages are delivered, can’t coordinate (B/c a chance that the
last message doesn’t get through). Can’t simultaneously get two machines
to aggre to do something at same time

• No solution to this - one of the few things in CS that is just impossible.

• Proof: by induction

3 Transaction concept: ACID semantics

• Solve weaker problem: 2 operations will both happen/not happen (but not
necessarily happen at same time)

• Transaction concept: give one entity the power to say “yes” or “no” for all
entities

– Local transaction: one disk update (e.g., write “commit” tolog) irre-
vokably triggers several updates

– Distributed transaction (2 phase commit): one machine can decide for
all machines; all machines agree to go along with decision

• ACID semantics

– Atomic – all updates happen or none do

5

– Consistent – after each update, system invariants maintained

– Isolated – no one out side of transaction sees any updates until they can
see them all

– Durable – once it is done it stays done

• Gray argues ACID is right software building block for reliable systems

– Application of end-to-end principle – you need to handle this case any-
how; handle it in a clean and correct way and get the side benefit of
also solving (rare) deadlocks, (less rare) programming restrictions, etc.

– Today: Widely accepted in databases

• Are subsets ever appropriate?

– What would “ACI” be and when might it be useful?

– What would “ACD” be and when might it be useful?

– Any others?

∗ Satya: “Isolation-only transactions”

4 Implementation (one thread): Logging, checkpoints

• Key idea - fix problem of how you make multiple updates to disk atomically,
by turning multiple updates into a single disk write!

• PICTURE: disk, log

• Illustrate with simple money transfer from acct x to acct y

Begin transaction
x = x + 1
y = y - 1
Commit

• Keep ”write-ahead” log (”redo log”) on disk of all changes intransaction

• A log is like a journal - never erased, record of everything you’ve done

• Once both changes are in log, write is committed

• Then can ”write behind” changes to disk - if crash after commit, replay log
to make sure updates get to disk.

6

• Sequence of steps to execute transaction

1. write new value of x to log

2. write new value of y to log

3. write ”commit”

4. write x to disk

5. write y to disk

6. reclaim space on log

• QUESTION: what if we crash after 1?

→ no commit, nothing on disk, so ignore changes

• what if after 2?

→ ditto

• what if after 3, before 4 or 5?

→ commit written to log, so replay those changes back to disk

• What if we crash while writing commit?

→ As with concurrency, need some primitive atomic operation,or else can’t
build anything else.

– Writing a single sector on disk (with a CRC) is atomic!

• can we write x back to disk before commit?

– Yes: keep an ”undo log” - save old values along with new value

– If transaction doesn’t commit, ”undo” change!

• QUESTION: can we do transaction with just undo log?

• Just redo log?

5 Admin

Feedback
Getting back on schedule:

• Today: transaction

• W: Advanced file systems – LFS (optional: XFS, netapp)

• Next week: distributed and replicated file systems

7

6 Two-phase locking

• What if two threads run same transaction at same time?

• Concurrency→ use locks

Begin transaction
lock x, y
x = x+1
y = y-1
Unlock x, y
commit

• What if A grabs locks, modifies x, y, writes to log, unlocks, and right before
committing, then B comes in, grabs lock, writes x, y, unlocks, does commit;

• Then A crashes before commit

→ problem. B commits values for x, y that depend on A committing

• Solution: two-phase locking

– Phase 1: only allowed to acquire lock

– Phase 2: All unlocks happen at commit

• Thus, B can’t see any of A’s changes until A commits and releases locks→
provides serializability

• Also note - gives us a way to avoid deadlock

• What happens if you try to grab a lock and it is already held?

– (or what if you wait on a lock for ¿ 1 second, or....)

→ abort transaction!

→ avoids ”no-revocation” condition of deadlock

• Generalization: readers/writers locks

8

7 Two-phase commit

• What if we want two machines to do an atomic update?

• example: my account is at NationsBank, yours is at Wells Fargo. How to
transfer $100 from you to me? (Need to guarantee that both banks agree on
what happened).

• Example: file system - move a file from directory A on server a todirectory
B on server b

• One machine must make irrevokable decision and then reliably inform others
of decision

• Abstraction - distributed transaction - two machines agreeto do something
or not do it, atomically (but not necessarily at exactly the same time)

• Two phase commit

– Phase 1: Everyone gives master machine power

– Phase 2: Master decides and tells everyone whether commit happened
or not

• Phase 1: coordinator requests

1. coordinator sends REQUEST to all participants

– e.g. C→S1 ”delete foo from /”, C→S2 ”add foo to /”

2. participants recv request, execute transaction locally, write VOTE COMMIT
or VOTE ABORT to local log, and send VOTECOMMIT or VOTE ABORT
to coordinator
Failure case Success case
S1 decides OK, S1 and S2 decide OK and write
writes ”rm /foo; VOTECOMMIT” to log, updates and VOTECOMMIT to log,
and sends VOTECOMMIT send VOTECOMMIT
S2 decides no space on device and writes
and sends VOTEABORT

• Phase 2: coordinator decides

1. 3

– case 1: coordinator recv VOTEABORT or timeout

→ coordinator write GLOBALABORT to log, and send GLOBALABORT
to participants

9

– case 2: coordinator recvs VOTECOMMIT from all participants

→ coordinator write GLOBALCOMMIT to log, and send GLOBALCOMMIT
to participants

2. 4 participant receives decision; write GLOBALCOMMIT or GLOBAL ABORT
to log

• What if

– Participant crashes at 2? Wakes up, does nothing. Coordinator will
timeout, abort transaction, retry

– Coordinator crashes at 3? Wakes up,

– Case 1: no GLOBAL* in log → Send message to participants ”abort”

– Case 2: GLOBALABORT in log → send message to participants
”abort”

– Case 3: GLOBALCOMMIT in log → send message to participants
”commit”

– Participant crashes at 4?→ On recovery, ask coordinator what hap-
pened and commit or abort

• This is another example of the idea of a basic atomic operation. In this case
- commit needs to ”happen” at one place

• Limitation of 2PC - what if coordinator crashes during 3 and doesn’t wake
up? All nodes block forever

– What if participants times out waiting in step 4 for coordinator to say
what happened. It can make some progress by asking other participants

1. if any participant has heard ”GLOBALCOMMIT/ABORT”, we
can safely commit/abort

2. if any participant has said ”VOTEABORT” or has made no vote,
we can safely abort

3. if all participants have said ”VOTECOMMIT” but none have heard
”GLOBAL *”, can we commit? A: no - coordinator might have
written ”GLOBAL ABORT” to its disk (e.g., local error or time-
out)

– Turns out - 2PC always has risk of indefinite blocking

– Solve with 3 phase commit

∗ See “distributed computing” – 3PC, Paxos

10

– In practice 2PC usually good enough - but be aware of the limits

• If you come to a place where you need to do something across multiple
machines, don’t hack

– use 2PC (or 3PC)

– if 2PC, identify circumstances under which indefinite blocking can oc-
cur (and decide if acceptable engineering risk)

8 Scalability

9 Nested transactions

• Issue: Interact with multiple organizations; each interaction is a “transac-
tion” to each organization; all interactions together are a“transaction” to
you

• (travel agent example)

• Proposed solution?

– View transaction as collection of:

∗ actions on unprotected objects

∗ protected actions that my be undone or redone

∗ real actions that may be deferred but not undone

∗ nested transactions tht may be undone

– Nested transaction returns name and parameters of compensating trans-
action

– Parent includes compensating transaction in log of parent transaction

– Invoke compensating transactions from log if parent transaction aborted

– “Not satisfying, but better than etnirely manual procedures that are in
common use today”

– Consistent, atomic, durable, but not isolated – “others cansee the un-
committed updates of nested transactions; these updates may subse-
quently be undone by compensation”

– Question: how to adapt 2 phase locking to restore isolation?

11

10 Long-lived transactions

11 Subsets of ACID

12

