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Abstract

Recent work on applications ranging from realistic hon-
eypots to stealthier rootkits has speculated about building
transparent VMMs — VMMs that are indistinguishable
from native hardware, even to a dedicated adversary. We
survey anomalies between real and virtual hardware and
consider methods for detecting such anomalies, as well
as possible countermeasures. We conclude that build-
ing a transparent VMM is fundamentally infeasible, as
well as impractical from a performance and engineering
standpoint.

1 Introduction

Recently there has been significant interest in providing
virtual machine transparency — making virtual and na-
tive hardware indistinguishable under close scrutiny by a
dedicated adversary, thus preventing VMM detection.

Interest in transparency stems from a variety of ap-
plications. Those exploring VMM-based worm detec-
tors [9], malware detectors [18, 21] and honeypots [19,
8, 5] wish to disguise their VMs as normal hardware to
avoid introducing an easy heuristic for detection and eva-
sion. Anti-virus vendors are eager to cloak their use of
VMs in identifying newly released exploits for similar
reasons [23, 11]. Others have proposed offensive uses
of virtualization in the form of VM-based rootkits (VM-
BRs) [10, 17, 24], hoping to leverage the transparency
of VMMs to cloak their presence and provide an ideal
attack platform !. We believe the transparency these pro-
posals desire is not achievable today and will remain so.

The belief that VMM transparency is possible is based
on a mistaken intuition that compatibility and perfor-
mance imply transparency i.e. that once VMMs are able
to run software for native hardware at native speeds, they
can be made to look like native hardware under close in-
spection. This is simply not the case.

Concern about virtualization-based rootkits has led to an advisory
from Microsoft suggesting that CPU-based virtualization extensions be
disabled in firmware on some systems [12].

While commodity VMMs conform to the PC architec-
ture, virtual implementations of this architecture differ
substantially from physical implementations. These dif-
ferences are not incidental: performance demands and
practical engineering limitations necessitate divergences
(sometimes radical ones) from native hardware, both in
semantics and performance. Consequently, we believe
the potential for preventing VMM detection under close
scrutiny is illusory — and fundamentally in conflict with
the technical limitations of virtualized platforms.

Previous discussions of VMM transparency have gen-
erally failed to acknowledge the breadth and depth of vir-
tualization induced anomalies, instead narrowly focusing
on a few simple techniques for detection [11]. The con-
flict between transparency and practical demands such
as performance and ease of implementation have also
been largely overlooked. Optimistic hopes that emerging
hardware support will mitigate these issues is misplaced.

Our thesis is that preventing VMM detection in the
face of a dedicated adversary is generally impractical. In
the next section, we survey the many types of dispari-
ties between native and virtual hardware, and means of
detection. We then discuss limitations associated with
trying to ameliorate these differences. We end on a pos-
itive note, observing that while infeasible, VMM trans-
parency is likely of marginal benefit to defenders in the
foreseeable future as virtualization becomes ubiquitous.

2 Virtualization Anomalies

We begin with a taxonomy of virtualization induced
anomalies and detection methods. Our discussion does
not aim to be exhaustive, instead we hope to convey the
scope of the VMM transparency problem, and the obsta-
cles to its solution.

In our threat model the VMM passively avoids detec-
tion. To succeed, virtual hardware must be sufficiently
similar to physical hardware to be indistinguishable to
an adversary in the guest OS. We explicitly ignore active
attempts at thwarting detection, through modifying guest



code to disable detectors, on the grounds that such ac-
tive approaches rely on a priori knowledge of the detec-
tor, making them inapplicable to the detection of novel—
a.k.a. “zero-day”’—detectors.

Our discussion makes no distinction between anoma-
lies visible at kernel vs. user level, as we assume the
reader can infer these by context. Further, this is often
a false dichtomoy, as timing and logical semantics of vir-
tual hardware are often as evident at user-level as they
are in the kernel.

2.1 Logical Discrepancies

CPU Discrepancies. Logical discrepancies are seman-
tic differences in the interfaces of real and virtual hard-
ware. Most current VMM detection methods exploit dif-
ferences in the virtual CPU interface of VMMs such as
VMware Player or Microsoft VirtualPC that violate x86
architecture. Inaccuracies in the execution of some non-
virtualizable instructions, such as SIDT, SGDT, and SSL,
allow user-level inspection of privileged state [15].
Since these and other discrepancies are unimportant to
the vast majority of software, VMMs make no effort to
hide them. Intel’s VT and AMD’s SVM eliminate many
obvious discrepancies, leading to speculation that hard-
ware virtualization makes great strides towards providing
transparency. This view is mistaken for several reasons.
As with software VMM, transparency is secondary to
providing an efficient and compatible execution environ-
ment. Thus, architecturally visible differences exist in
current CPU virtualization support, allowing straightfor-
ward detection of hardware-assisted hypervisors 2. Par-
avirtual VMMs intentionally extend the CPU in non-
transparent ways. Xen and Denali provide modified soft-
ware MMU architectures to ease implementation and im-
prove performance [22, 6] and commercial VMMs have
embraced a similar approach [4]. Even with compatible
and performant hardware virtualization, this approach
offers benefits, and thus will likely remain common.

Off-chip Discrepancies. SVM and VT only address
CPU virtualization. Off-CPU differences between phys-
ical and virtual hardware abound, both for reasons of
engineering ease and I/O performance. For example,
modern chipsets are difficult to model 3. For simplic-
ity, the VMware virtual platform always emulates an

For example, native x86 CPUs block non-maskable interrupts
(NMIs) after delivery of an NMI until execution of the /RET instruc-
tion, but VT hardware does not provide a corresponding “block NMIs”
bit [7]. Similarly, native x86 CPUs hold off debug exceptions for a one-
instruction window following MOV %SS instructions. AMD’s SVM
provides no information about pending debug exceptions if an exit oc-
curs in such a window [2]. We constructed a simple SVM detector
based on this discrepancy in less than 100 lines of C and assembly.

3Modern chipsets are complex and rapidly evolving. Beyond
changes in basic bus and memory controllers, richer power managment
and I/O, built in sound, video, and security functionality all contribute
to this.

i440bx chipset, leading to absurd hardware configura-
tions: two AMD Opteron CPUs and 8 GB of RAM in an
Intel motherboard from the Clinton administration, for
instance. Operating systems run in such bizarre environ-
ments, because the firmware layer makes OS scrutiny of
the chipset unnecessary.

I/O paravirtualization is another source of strange
looking hardware. VMware, for example, provides var-
ious network, SCSI, and video cards that look nothing
like any physical device, have PCI device and vendor
ID’s specific to VMware, and require their own device
drivers. A detector can easily flag such non-hardware as
proof of a VMM.

The VMM could try to emulate a richer set of devices,
allowing more plausible hardware configurations. How-
ever, writing and maintaining software models of modern
devices is difficult and costly. The VMM implementer
further risks introducing new opportunities for detection
in the form of bugs or omissions in emulated devices.
Maintaining a comprehensive library of such emulated
devices is a mammoth task that would require continu-
ous engineering effort as new devices become available.

The VMM may also present guest hardware via de-
vice pass through, allowing guests to program physical
devices directly. While this approach appears to im-
prove transparency, it introduces two major problems:
First, the VMM must audit device interactions to prevent
DMA-based access to arbitrary memory; this effectively
requires a complete emulated device model in order to
parse device requests. Second, such pass through devices
may no longer be shared with other VMs, defeating one
of the basic purposes of virtualization.

Hardware support for virtualization is progressing
to allow VMM protection from DMA through IOM-
MUs [3]. Current IOMMU proposals do not provide
restartable semantics for DMA faults, however. Thus,
even in the presence of an IOMMU, resource-efficient
pass through will require virtualization-specific device
interfaces [14], defeating any transparency benefits of
device pass through.

2.2 Resource Discrepancies

VMMs share physical resources with their guests, in-
cluding CPU cycles, physical memory, and cache foot-
print. To survive physical reboots, persistent storage is
also required. Irregularities in the availability of these
resources can betray the presence of a VMM.

Consider the TLB. VMM and guest virtual address
mappings both compete for the same small pool of TLB
entries. Software that is sensitive to TLB pressure can
detect VMM use of this shared resource.

To demonstrate the feasibility of this approach, we
constructed a simple TLB-sizing utility which changes
page table entries (PTEs) without executing a TLB-



synchronizing instruction, and then performs loads
through the altered PTEs. A load via the old mapping
indicates a hit, while a load from the new mapping is
the result of a miss. Our utility runs this TLB sizing al-
gorithm twice; during the second run, we interleave the
memory accesses with exiting operations that invoke the
VMM. In the presence of a VMM, the second run com-
putes a smaller TLB size, due to the entries consumed by
the VMM.

We can imagine VMM counter-measures for this de-
tection method. The VMM might model a hardware
TLB of native size, using a partial shadow page table
as the current “virtual TLB” contents. However, similar
methods can detect VMM pressure on data and instruc-
tion caches, and could include replacement policy along
with size as a detection criterion. In the limit, the VMM
must run every guest memory access through a software
cache simulator to avoid detection, incurring absurd per-
formance overheads, and leaving the VMM even more
vulnerable to detection by our next set of techniques.

2.3 Timing Discrepancies

Virtual and physical environments differ in their timing
characteristics. These differences are not simply “vir-
tualization overhead” that can be addressed by making
hardware or software faster — they can manifest as vari-
ance in latency, relative differences in the latencies of any
two operations, and the behavior of these latencies over
time. Consider some examples.

Device virtualization is a rich source of timing anoma-
lies. For example, a PCI device register that takes a hun-
dred cycles to read on physical hardware might require
only a single cycle when the virtual hardware register
is in the processor cache — cache behavior may in turn
cause the virtual access time to exhibit higher variance
than a hardware access. In this case, it is not the opera-
tion’s latency per se that betrays the presence of a VMM,
but the run-to-run variance in latency.

Memory virtualization also has guest-visible perfor-
mance consequences [20]. VMMs use page protection
for local and global resource management, memory-
mapped I/O (MMIO) emulation, and protection of the
VMM itself. Guest accesses to VMM-protected pages
often induce hidden page faults, eliciting a performance
discrepancy that can span three decimal orders of mag-
nitude. While some of these memory overheads will
be eliminated by future hardware developments such as
AMD’s NPT and Intel’s EPT technologies [13], resource
management and MMIO overheads will remain regard-
less of the hardware mechanism used to effect them.

Virtualization of privileged instructions is a well-
understood source of timing discrepancies, due to the
hardware and software overheads of a round-trip to the
VMM. While hardware virtualization support shrinks

some of these overheads, it bloats others [1]. On the
balance, hardware virtualization makes timing-based de-
tection no less feasible; while it changes the timing fin-
gerprint of the virtual environment relative to a software-
only approach, the fingerprint still differs from that of
native execution.

Detectors can use a variety of time sources:

Local Time Sources. Timers and periodic interrupt
sources provide the simplest mechanisms for measur-
ing latencies. Examples include the hardware timestamp
counter (rdtsc), PIT, ACPI timer and local APIC timer.

Guests can also use a host of relative time sources.
Most hardware betrays timing information implicitly, in
that hardware operations have a predictable average la-
tency. Guest software can use these latencies as a time
source by racing events against one another.

For example, we might construct a race between
the innocuous NOP instruction and the virtualization-
sensitive CPUID instruction. Thread A repeatedly
spends its entire quantum executing NOPs and incre-
menting a count of completed operations, while thread
B, bound to a separate logical processor, does the same
with CPUIDs. Since thread A takes no exits, the VMM
has no opportunity to throttle the rate of NOPs. Over
time, an observing thread will see the ratio of NOPs to
CPUIDs converging on a higher value in a virtual envi-
ronment than in a physical one.

In this example we have assumed the presence of mul-
tiple CPUs, but this race construction technique can use
any source of concurrency. DMA transfers, interrupt la-
tencies, the memory hierarchy, and OS scheduler activ-
ity, for example, all provide possible sources of timing
data for detection.

Remote Time Sources. A VM can use nearly any
communication from the outside world as a clock. Pos-
sible remote time sources range from overt use of the
NTP protocol to covert timing channels, such as subtle
variations in inter-packet arrival times. Any communica-
tion with an outside entity will provide access to a covert
channel, guaranteeing access to covert clocks — a VM
can then measure performance discrepancies with a high
integrity remote time source that is difficult to detect or
modify even in the presence of an active VMM warden.

A VMM can interpose on and modify local or remote
time sources, in an attempt to undermine timing based
detection. This alone does nothing to prevent timing at-
tacks. Any alterations a VMM makes must still “look
real” relative to other time sources, thus necessitating the
use of extreme measures like simulation. Approaches
like adding randomness to either local or remote timing
channels [5] merely introduces another source of anoma-
lies for measurement.



3 Trade-offs and Implications

We’ve considered a number of VMM detection strate-
gies, and have found the options for foiling these strate-
gies limited. While our list is incomplete, the ease of
imagining new detection methods suggests that VMM
transparency is difficult to the point of impracticality. We
now take a step back to look at transparency from the
VMM implementor’s point of view, and find an inherent
tension between VMM performance and transparency.
We then consider the ramifications of a world without
transparent VMs.

Practical Emulation Overhead. VMMs may attempt
to hide timing discrepancies by manipulating local time
sources, a technique known as time dilation. Time dila-
tion can allow virtual time to progress more slowly than
real time, buying the VMM time to conceal its overheads.

To achieve transparency, time dilation must account
for all latencies appropriately. In the limit, modeling
all absolute and relative time sources reduces to cycle-
accurate simulation of the entire system, entailing ex-
treme engineering hardship and huge runtime overhead.
Commercial emulators that provide a logical view of
hardware without cycle-accuracy, such as AMD’s Sim-
Now or VirtuTech’s Simics, incur a performance penalty
on the order of 10x. Cycle accurate simulators such as
SimOS incur overheads on the order of 25,000x [16] to
provide full accuracy.

Perhaps some VMMs would accept such performance
in the name of stealth, but this tactic would be self-
limiting. If the practice became common, attackers could
simply rule out attacking machines whose performance
is below that of desktop machines of 10 to 20 years ago;
we propose that the number of valuable targets running
on such meager hardware is vanishingly small.

Even if dilation of local time sources were practical,
the entire effort would be undermined as soon as a net-
work is attached due to the intractable problem of remote
timing channels.

Relative Accuracy vs. Absolute Cost. Time dilation,
and other heroic efforts at preventing local timing detec-
tion, ironically make the hypervisor more vulnerable to
remote detection; as the hypervisor spends more abso-
lute time emulating local hardware, the gap between lo-
cal and remote time sources widens.

In general, accurate simulation of any one compo-
nent (e.g. memory, peripherals, processor attributes) pro-
vides greater leverage for detection attempts based on
relative time differences. Carried to its logical con-
clusion, the cycle-accurate simulation approach is all-
or-nothing: if any guest operation escapes from the
cycle-accurate prison, all of the VMM’’s efforts at cycle-
accuracy only make the VMM’s presence more obvious.
Since we’ve argued that trapping all remote time sources

is intractable, the cycle-accurate simulation approach is
a dead end for systems with network connectivity.

Real System Performance. Users are primarily con-
cerned with the utility of their VMs: that VMs run
correctly, are performant, and use minimal system re-
sources. VMM implementors sweat blood over speed.
To achieve high performance, commercial VMMs make
heavy use of the systems design principle of optimizing
for the common case.

VMs diverging from the common case may encounter
performance cliffs. For detection software, such cliffs are
dead giveaways that a VMM is present, but for VMM im-
plementors, they are simply the consequence of a trade-
off that allows common cases to run fast. Stealth and
performance are thus, to some extent, in inevitable con-
flict.

For example, VMMs that use shadow paging manage
a cache of shadow page tables. The VMM derives a
shadow page table for each guest page table, allowing
efficient virtual address mappings for the corresponding
guest virtual address space. This cache has a finite ca-
pacity, however. By using an enormous number of page
tables, the guest can conduct an exhaustion attack on the
shadow page cache, leading to high rates of hidden page
faults and an easily detected performance cliff.

Other cliffs result from the VMM’s dynamic adapta-
tions to guest behavior. VMware’s VMM, for example,
uses a cache of binary translations of guest kernel code,
enforcing coherency via page protection of the source bi-
nary [1]. These translations evolve over time, e.g. by
producing special translations for accesses to memory-
mapped I/O devices.

In typical guests, this technique performs well. How-
ever, its performance rests on many assumptions, e.g.,
that self-modifying code is rare, and that the past be-
havior of an instruction predicts its future behavior. A
guest can violate these assumptions to cause an easily
observed performance degradation. Even with hardware
virtualization extensions, this problem remains, as binary
translation is a useful technique for avoiding hot spots
causing frequent (expensive) VMEXITs [1].

These cliffs do not reflect a weakness in the construc-
tion of VMMs, but rather one in the assumption of trans-
parency. By attacking the mechanisms that a VMM uses
to provide high performance for normal guests, a diabol-
ical guest will always be able to elicit worse performance
from the system.

Don’t worry — Be Happy. Those relying on VMM-
based systems for monitoring have expressed concern
over VMM detection while posing a variety of incom-
plete solutions. We believe these concerns are largely un-
warranted. Virtualization has made massive inroads into
enterprise data centers, a trend that is expected to con-



tinue. Soon, malware that limits itself to non-virtualized
platforms will be passing up a large percentage of com-
mercial, military and institutional targets. To the degree
that malware disables itself in the presence of VMs, VMs
become even more attractive for production systems. In
the long run, malware authors are motivated to operate
regardless of the presence of a VMM.

Whither VMBRs? The question, “Might VM-based
rootkits (VMBRs) be useful if they were small, clever,
hardware-accelerated, etc., enough?” no doubt remains
in some readers’ minds. We think not. No matter how
minimal the hostile VMM is, it must consume physical
resources, perturb timings, and take measures to protect
itself from the guest, leaving it no less susceptible to de-
tection than other VMMSs. Further, one of King et al.’s
primary motivations for introducing VMBRs was to pro-
vide a simpler environment to build malware than found
in current kernel based rootkits [10]. Highly resource-
constrained VMBRs would defeat this purpose.

Even if VMBR detection were difficult, VMBR pre-
vention is trivial and highly effective. As King et al.
note, a stub VMM that refuses to load unsigned VMMs
provides complete protection from VMBRs.

Perhaps the most concise argument against the utility
of VMBRs is: “Why bother?” VMBRs change the mal-
ware defender’s problem from a very difficult one (dis-
covering whether the trusted computing base of a system
has been compromised), to the much easier problem of
detecting a VMM.

4 Conclusion

The compatibility VMMs provide seems just a small step
away from transparency; intuition suggests that the tiny
gap between native and virtual platforms must only be a
small matter of programming, a dash of additional hard-
ware support, etc., away from vanishing. We have chal-
lenged this view by surveying the wide range of dis-
similarities between real and virtualized platforms, both
on principle and using examples from today’s VMMs.
While tomorrow’s VMMs will change, performance will
remain paramount. Consequently, virtual and native
hardware are likely to remain highly dissimilar, and thus
amenable to discrimination.
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