
Are Virtual Machine Monitors Microkernels Done Right?

Steven Hand, Andrew Warfield, Keir Fraser,
Evangelos Kotsovinos, Dan Magenheimer†

University of Cambridge Computer Laboratory
† HP Labs, Fort Collins, USA

1 Introduction

At the last HotOS, Mendel Rosenblum gave an ‘outra-
geous’ opinion that the academic obsession with micro-
kernels during the past two decades produced many pub-
lications but little impact. He argued that virtual machine
monitors (VMMs) had had considerably more practical
uptake, despite—or perhaps due to—being principally
developed by industry.

In this paper, we investigate this claim in light of our
experiences in developing the Xen [1] virtual machine
monitor. We argue that modern VMMs present a practi-
cal platform which allows the development and deploy-
ment of innovative systems research: in essence, VMMs
are microkernels done right.

We first compare and contrast the architectural purity of
microkernels with the pragmatic design of VMMs. In
Section 3, we discuss several technical characteristics of
microkernels that have proven, in our experience, to be
incompatible with effective VMM design.

Rob Pike has irreverently suggested that “systems soft-
ware research is irrelevant”, implying that academic sys-
tems research has negligible impact outside the univer-
sity. In Section 4, we claim that VMMs provide a plat-
form on which innovative systems research ideas can be
developed and deployed. We believe that providing a
common framework for hosting novel systems will in-
crease the penetration and relevance of systems research.

2 Motivation and µHistory

Microkernels and virtual machine monitors are both
well explored areas of operating systems research dat-
ing back more than twenty years. Both areas have fo-
cused on a refactoring of systems into isolated compo-
nents that communicate across well-defined, typically
narrow interfaces. Despite considerable structural sim-
ilarities, the two research areas are remarkable in their

differences: Microkernels received considerable atten-
tion from academic researchers through the eighties and
nineties, while VMM research has largely been the baili-
wick of industrial research.

2.1 Microkernels: Noble Idealism

The most prolific academic microkernel ever developed
was probably Mach [2]. A major research project at
CMU, Mach’s beginnings were in the Rochester Intel-
ligent Gateway (RIG) [3] followed by the Accent ker-
nel [4]. The key motivation to all of these systems was
that the OS be “communication oriented”; that they have
rigid, message-based interfaces between system compo-
nents. Many of the abstractions used in Mach and later
systems appeared initially in the RIG, including that of
the port. However, the communications orientation of
these systems originally intended to allow the distribu-
tion of system components across a set of dissimilar
physical hosts.

The term “microkernel” was coined in response to the
predominant monolithic kernels at the time. Microker-
nel advocates claimed that a smaller OS core would be
easier to maintain, validate, and port to new architec-
tures. A common theme throughout much of the mi-
crokernel work is that microkernels were architecturally
better than monolithic kernels; from a research perspec-
tive they certainly are, as it is considerably easier to work
on a single system component if that component is not
entangled with other code.

Mach is hardly unique as an example of innovative
microkernel projects. In the heyday of microkernels,
many interesting systems were constructed including
Chorus [5], Amoeba [6], and L3/L4 [7, 8]. Several of
these evolved to show that microkernels, which were
often criticized for poor performance, could match and
even outperform commercial unix variants.



2.2 VMMs: Rough Pragmatism
Early work on Virtual Machines (VMs) [9, 10] was mo-
tivated by the need to improve hardware utilisation by fa-
cilitating the secure time-sharing of machines. Typically,
VMs in IBM’s model are identical “copies” of the under-
lying hardware where each instance runs its own operat-
ing system. Multiple VMs can be created and managed
via interfaces exported by the VMM, a component run-
ning on the physical hardware.

As virtual machines may be owned by multiple, com-
peting users, strong resource isolation mechanisms are
required in the VMM. Another important facility pro-
vided by VMMs is that of sharing the hardware: securely
multiplexing several virtual machines over a single set of
physical resources.

The use of a VMM presents an additional layer of in-
direction between the hardware and the user, and it is
necessary that this does not result in a noticeable perfor-
mance degradation. For that reason, a significant amount
of research effort in VMMs has been directed towards
maintaining a low performance overhead, with consider-
able success [1].

Although VMM architectures differ in the degree of
modification required to the guest operating systems they
host, these modifications typically range from very small
to none at all. Xen and Denali [11] host slightly modified
“guest OSes” for improved system performance while
VMware1 provides full hardware virtualization so that
no guestOS changes are needed.

An important characteristic of most VMMs is their abil-
ity to support the execution of out-of-the-box applica-
tions; users can run code that is executable on their regu-
lar desktop machines.

Because of the above properties of allowing users to se-
curely share hardware on machines at a low performance
cost, improving machine utilization, and not requiring
modifications to the applications, VMMs have always
presented a very appealing platform for practical deploy-
ment.

Previous research has combined microkernel and VM
concepts to provide recursive VMs running on a
microkernel-based OS [12]. User-mode Linux [13]
achieves software-level virtualization by running a
VMM as an application inside a host Linux system. Ad-
ditionally, several research systems do not fall cleanly
into either the VMM or microkernel camps; for example
both the Exokernel [14] and Nemesis [15] systems pro-
vide low-level interfaces and resource protection above

1http://www.vmware.com

a small trusted kernel, but without the fine-grained mod-
ularization of microkernels or the OS-granularity multi-
plexing of VMMs.

3 Architectural Lessons

While both microkernels and VMMs share rich histories
of innovation, it is increasingly obvious that VMMs have
achieved predominance in modern systems. In Section 4
we will revisit how many of the goals of microkernels
remain relevant today. We first discuss some technical
characteristics that consumed the research efforts of the
microkernel community, but which have proven in our
experience to be inconsequential in the development of
modern VMMs.

We note that VMMs and microkernels bear a great deal
of architectural similarity. The Denali team has re-titled
their VMM µDenali in reference to its explicit restruc-
turing as a microkernel, while there has recently been an
effort to develop VMM functionality on top of the L4 mi-
crokernel. In this section, however, we focus on what we
perceive to be the important differences between the two
approaches.

3.1 Avoid Liability Inversion
One of the fundamental properties of microkernels is the
division of a system into isolated user-space components.
While the resulting kernel is smaller, this functional re-
duction relaxes the dependability boundaries within the
system: applications must depend on other user-level
components in order to run. More importantly, the
microkernel itself depends on application level compo-
nents, such as pagers, to make forward progress.

External pagers are an excellent example of this phe-
nomenon: the failure conditions associated with them are
one of the earliest and most recurrent problems discussed
in microkernel-related literature [16]. Relegating a criti-
cal system-wide component to user-space, the kernel can
be left waiting on the pager to evict a page before it can
proceed. Various inelegant timeout and fallback mecha-
nisms were required to avoid deadlock. By depending on
arbitrary user-level components in order to continue ex-
ecution, the kernel abdicates its liability for system live-
ness. We refer to this as liability inversion.

One of the principal design guidelines in Xen has been
to avoid exactly these situations. Xen’s memory man-
agement system, for instance, has no notion of paging
whatsoever; rather it strictly partitions memory between
VMs and allows limited facilities for sharing. VMs are
themselves responsible for any paging within these allo-
cations. The point here is perhaps a subtle one: decisions
such as this are engineered to ensure that VM failure is



isolated and cannot degrade the stability of the system as
a whole.

Consider, as a counterexample to external paging, the
storage virtual machine used in Parallax [17]. In this
case a storage VM is used to serve block storage to a
collection of client VMs. A crash in the storage server
could compromise the function of its clients, but not of
the system as a whole: in particular, Xen itself does not
depend on the correctness of the storage VM to func-
tion. Moreover, the dependency between the storage VM
and its clients is explicit: the isolation between depen-
dent VMs can be increased by separating the storage VM
into multiple instances. This is essentially just the tradi-
tional trade-off between isolation and sharing which is
observed in the design of any system.

3.2 Make IPC Performance Irrelevant
IPC performance is arguably the most revered hallmark
of microkernel research. As message-based communica-
tion between system components is crucial to the oper-
ation of any microkernel, the literature is saturated with
papers measuring IPC performance, improving IPC per-
formance, and even questioning the relevance of IPC per-
formance. However in our experience fast IPC is not
a critical design concern in the construction of high-
performance VMMs.

There are a number of reasons why we can avoid relying
on fast, typically synchronous, IPC mechanisms. First,
since VMMs hold isolation to be a key goal, IPC be-
tween virtual machines is considerably less common in
general. This is a natural consequence of the fact that
VMM design considers entire operating systems to be the
unit of scheduling and protection: hence synchronization
and protected control transfer are only necessary when
two virtual machines wish to explicitly communicate.

Secondly, we have determined that a clear separation be-
tween control and data path operations allows us to op-
timize for the common case. In particular, we observe
that by explicitly setting up communication channels, we
can perform potentially expensive permission and safety
checks at initialization time and then elide validation dur-
ing more frequent data path operations. This decoupling
furthermore allows higher-level communcation mecha-
nisms great freedom in how they are implemented.

A particular example of this is seen in the implementa-
tion of control- and device-channels within Xen. Both
of these are built upon a simple asynchronous unidirec-
tional event mechanism which is the only communica-
tions primitive provided by Xen. However by combin-
ing pairs of events with shared memory, we can build
both synchronous IPC for control operations and asyn-

chronous producer-consumer rings for bulk, batched,
data transfer. Even these latter allow considerable flexi-
bility in use: by determining how often notifications are
generated or waited upon, one can explicitly trade-off
throughput and latency.

The difference between approaches to communication
between isolated components is a very interesting ex-
ample of the idealism versus pragmatism dichotomy de-
scribed in the previous section. Microkernel designers
view systems as sets of components that interact over
IPC-, and potentially RPC-, based interfaces: they con-
sider these interactions as procedure calls, in which the
entire system is a collection of well-isolated compo-
nents. VMM designers do not assume anywhere near the
same degree of coherency within their systems: where
VMs do communicate, they may not only be written in
separate programming languages, but may also be run-
ning completely different operating systems. A conse-
quence of this is that communications within VMMs typ-
ically looks like interactions with devices: a simple asyn-
chronous control path combined with fixed-format trans-
parent bulk data transfer.

3.3 Treat the OS as a Component
The final important difference between VMMs and mi-
crokernels is that of the granularity of componentization.
By positioning themselves as a response to monolithic
kernels, microkernels focused on dividing the functional
units of an OS into discrete parts. A practical prob-
lem faced by microkernel developers is that which faces
any new OS effort: by changing the API visible to ap-
plications, an OS forfeits the complete set of software
available to existing systems. As such, most microkernel
projects were left spending considerable effort to imple-
ment emulation interface layers for existing OSes.

VMMs differ significantly here in that their a priori in-
tention is to support existing operating systems. For ex-
ample, out-of-the-box code, compiled to be executable
on a range of existing OSes, can be run on a guest operat-
ing system on top of Xen. This reduces the cost of entry
for users and applications, makes virtualization attrac-
tive and practical for a wider community, and addresses
two of the main problems of microkernel systems — the
difficulty in attracting a substantial user base, and the
challenge in keeping microkernel operating systems up
to date with the feature sets of existing OSes.

By supporting existing OSes, VMMs need only justify
the potential performance overheads they incur in order
to be an attractive option. As shown in [1] and indepen-
dently verified in [18], the overhead imposed by Xen is
very small.



Secondly, VMMs appeal to developers because they
present a familiar development environment. Using ex-
isting OSes as fundamental blocks of componentization
allows developers to continue using the same tool set that
they have on their existing system, freeing them to con-
centrate on more important issues.

The Parallax storage system [17], mentioned earlier, is
an example of the sort of componentization that VMMs
allow: The storage VM is a set of daemons running on
Linux in an isolated virtual machine. The system can
be used by any OS that runs on Xen because it provides
the same block interface that Xen’s existing block virtu-
alization uses. Parallax provides an extension to an OS
function, an ability touted by microkernels, but does it
in a familiar development environment, using existing
OS drivers, and providing support in turn for a range of
client OSes. Moreover, the implementation is indepen-
dent from both Xen and client OS code: provided that
the block interface remains common, the OS extension
itself does not depend on the source of the client OSes or
the VMM.

Similar benefits accrue for the developers of the VMM
itself: for example, Xen makes extensive use of existing
tools for network routing, disk management, and con-
figuration as part of the control software running in the
privileged management VM.

The size of components — i.e., guest OSes — running
on a VMM can be adjusted, depending on the function-
ality required from them. One example is ttylinux, a
minimalistic Linux distribution, providing multi-tasking,
multi-user, and networking capabilities within less than
4 megabytes of operating system size. It is also easy
to build a simple single-threaded ‘library OS’ which en-
ables the use of extremely lightweight components when
desired for security or performance reasons.

4 The future for VMMs

Having illustrated what we feel are the key differences
between microkernel and VMM design, we now consider
how VMMs may be used to realize many of the research
benefits achieved by the microkernel community. These
include narrow interfaces between system components
providing easy extensibility of device and OS function-
ality, a small code base that can guarantee security more
easily than monolithic kernels, and strong isolation pro-
viding opportunities for improved manageability.

Narrow interfaces between system components are cru-
cial in facilitating extensibility. The clean IPC interfaces
provided by microkernels allowed researchers the ability
to focus on specific system components without becom-
ing entangled in unrelated code. Similarly, the narrow

interfaces present in Xen allow devices and OSes to be
easily extended. Xen’s device architecture has allowed
device drivers to be isolated in a separate VM for de-
pendability [19], and permitted low-level interfaces to be
extended without necessitating modification of the tar-
get OS or VMM [20]. Indeed, it seems very likely that
the exploration of how services and management will be
structured in a multi-OS VMM system will continue to
present many exciting research opportunities.

A further advantage of narrow interfaces, coupled with a
minimal privileged kernel, is the tractability of achieving
a high degree of confidence in the security of a system.
This has been explored in the microkernel community
by projects such as Flask [21] and EROS [22]. Several
groups have expressed interest in developing these ideas
for Xen, using concepts from projects such as the Flask-
derived SELinux.

A final avenue of innovation realized recently by VMMs
has been to explore less performance-centric aspects of
systems development. As with the examples above,
VMMs are a promising platform because these so-called
‘ilities’ can be developed and applied to existing systems.
For example, live OS migration [23] allows a running OS
to be relocated to a new physical host, empowering ad-
ministrators to better manage physical resources. The
ability to ‘rewind’ a VM’s state has been used for in-
trusion detection [24], debugging [25] and administra-
tion [26].

5 Conclusion

Despite having dissimilar motivations and origins, mi-
crokernels and VMMs share many architectural com-
monalities. In this paper we have attempted to illus-
trate some of the technical separations between the two
classes of system that, in our opinion, have favoured the
success of VMMs in recent years. More importantly
though, we posit that—despite the decline in microker-
nel research— modern VMMs, Xen in particular, are
in fact a specific point in the microkernel design space;
that VMMs are microkernels done right. In light of this
opinion, we observe that many of the advantages real-
ized through the structure of microkernel systems may be
similarly developed above a VMM. Moreover, because
VMMs run commodity operating systems and applica-
tions we claim that they present a valuable platform for
innovative systems research to have impact outside the
academic laboratory.



References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proc. 19th ACM Symposium
on Operating Systems Principles (SOSP), 2003.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel foun-
dation for UNIX development. In Proc. Summer USENIX
Conference, June 1986.

[3] E. Ball, J. Feldman, J. Low, R. Rashid, and P. Rovner.
RIG, Rochester’s Intelligent Gateway: System overview.
In Proc. 2nd International Conference on Software Engi-
neering, page 132, 1976.

[4] R. Rashid and G. Robertson. Accent: A communica-
tion oriented network operating system kernel. In Proc.
8th ACM Symposium on Operating Systems Principles
(SOSP), pages 64–75, 1981.

[5] V. Abrossimov, M. Rozier, and M. Gien. Virtual mem-
ory management in chorus. In Proc. European Work-
shop on Process in Distributed Operating Systems and
Distributed Systems Management, pages 45–59, 1990.

[6] S. Mullender, G. van Rossum, A. Tanenbaum, R. van Re-
nesse, and H. van Staveren. Amoeba: A distributed oper-
ating system for the 1990s. IEEE Computer, 23(5):44–53,
1990.

[7] J. Liedtke. Improving IPC by kernel design. In Proc.
14th ACM Symposium on Operating Systems Principles
(SOSP), December 1993.

[8] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The Performance of µ-Kernel-Based Systems.
In Proc. 16th ACM Symposium on Operating Systems
Principles (SOSP), October 1997.

[9] R. Adair, R. Bayles, L. Comeau, and R. Creasy. A vir-
tual machine system for the 360/40. Technical Report
320-2007, IBM Corporation, Cambridge Scientific Cen-
ter, May 1966.

[10] R. Goldberg. Architectural principles for virtual com-
puter systems. PhD thesis, Harvard University, 1972.

[11] A. Whitaker, M. Shaw, and S. Gribble. Scale and perfor-
mance in the Denali isolation kernel. In Proc. 5th Sym-
posium on Operating System Design and Implementation
(OSDI), December 2002.

[12] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back,
and S. Clawson. Microkernels meet recursive virtual ma-
chines. In Proc. 2nd Symposium on Operating Systems
Design and Implementation (OSDI), pages 137–151, Oc-
tober 1996.

[13] J. Dike. User-mode Linux. In Proc. 5th Annual Linux
Showcase and Conference, November 2001.

[14] D. Engler, F. Kaashoek, and J. O’Toole Jr. Exokernel:
an operating system architecture for application-level re-

source management. In Proc. 15th ACM Symposium on
Operating Systems Principles (SOSP), December 1995.

[15] I. M. Leslie, D. McAuley, R. Black, T. Roscoe,
P. Barham, D. Evers, R. Fairbairns, and E. Hyden. The
design and implementation of an operating system to sup-
port distributed multimedia applications. 14(7):1280–
1297, September 1996.

[16] M. Young, A. Tevanian, R. F. Rashid, D. B. Golub, J. L.
Eppinger, J. Chew, W. J. Bolosky, D. L. Black, and R. V.
Baron. The duality of memory and communication in the
implementation of a multiprocessor operating system. In
Proc. 11th ACM Symposium on Operating Systems Prin-
ciples (SOSP), 1987.

[17] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand.
Parallax: Managing storage for a million machines. In
Proc. 10th Workshop on Hot Topics in Operating Systems
(HotOS X.

[18] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,
J. Herne, and J. Matthews. Xen and the art of repeated
research. In Proc. USENIX Annual Technical Conference,
June 2004.

[19] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Safe hardware access with the Xen
virtual machine monitor. In Proc. ACM OASIS Workshop,
2004.

[20] A. Warfield, K. Fraser, S. Hand, and T. Deegan. Facili-
tating the development of soft devices. In Proc. USENIX
Annual Technical Conference, April 2005.

[21] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Ander-
sen, and J. Lepreau. The Flask security architecture: Sys-
tem support for diverse security policies. In Proc. Eighth
USENIX Security Symposium, August 1999.

[22] J. Shapiro, J. Smith, and D.Farber. EROS: a fast capabil-
ity system. In Symposium on Operating Systems Princi-
ples, 1999.

[23] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proc. USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2005.

[24] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. Re-
virt: enabling intrusion analysis through virtual-machine
logging and replay. SIGOPS Oper. Syst. Rev., 36(SI):211–
224, 2002.

[25] S. King, G. Dunlap, and P. Chen. Debugging operating
systems with time-traveling virtual machines. In Proc.
USENIX Annual Technical Conference, 2005.

[26] A. Whitaker, R. Cox, and S. Gribble. Configuration de-
bugging as search: Finding the needle in the haystack.
In Proc. 6th Symposium on Operating System Design and
Implementation (OSDI), pages 77–90, December 2004.


