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Abstract

This paper describes the development of a virtual-machine
monitor (VMM) security kernel for the VAX architecture.
The paper particularly focuses on how the system’s hard-
ware, microcode, and software are aimed at meeting Al-
level security requirements while maintaining the standard
interfaces and applications of the VMS and ULTRIX-32 op-
erating systems. The VAX security kernel supports multiple
concurrent virtual machines on a single VAX system, provid-
ing isolation and controlled sharing of sensitive data. Rigor-
ous engineering standards were applied during development
to comply with the assurance requirements for verification
and configuration management. The VAX security kernel
has been developed with a heavy emphasis on performance
and on system management tools. The kernel performs suf-
ficiently well that all of its development is now carried out
in virtual machines running on the kernel itself, rather than
in a conventional time-sharing system.

1 Introduction

The VAX security kernel project is a research effort to deter-
mine what is required to build a production-quality security
kernel, capable of receiving an Al rating from the National
Computer Security Center. A production-quality security
kernel is very different from the many research-quality secu-
rity kernels that have been built in the past, and this research
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effort has been primarily aimed at identifying the differences
and their cost in development effort and in kernel complexity.

This paper describes how the VAX security kernel meets
its five major goals:

e Mcet all Al security requirements.

e Run on commercial hardware without special modifica-
tions other than microcode changes for virtualization.

¢ Provide software compatibility for applications written
for both the VMS and ULTRIX-32 opcrating systems.

o Provide an acceptable level of performance.

¢ Meet the requirements of a commercial software
product.

The VAX security kernel is a research effort. Digital.
Equipment Corporation makes no commitment to offer it
as a product.

2 Kernel Overview

The VAX sccurity kernel is a virtual-machine monitor
that runs on the VAX 8530, 8550, 8700, 8800, and 8810
processors.! It creates isolated virtual VAX processors, each
of which can run either the VMS or ULTRIX-32 operat-
ing system. If desired, virtual machines running each of the
operating systems can run simultancously on the same com-
puter system.? The VAX architecture was not virtualizable,
and thercfore extensions were made to the architecture and
to the processor microcode to support virtualization. (See
Section 3.2.)

Figure 1 shows a typical VAX sccurity kernel configura-
tion. While the VAX security kernel is a VMM, it is primar-
ily a sccurity kernel. Therefore, certain features tradition-
ally seen in VMMs, such as self-virtualization or debugging
of one VM from another, have becn omitted to reduce kernel
complexity.

1The VMM does not run on VAX 8820, 8830, or 8840 processors,
due to microcode and console differences.

2 A% least one virtual machine must always run the VMS operating
system, to carry out certain system management functions.
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Figure 1: VAX VMM Security Kernel Configuration

The VAX security kernel applies both mandatory and dis-
cretionary access controls to virtual machines. Each virtual
machine is assigned an access class that consists of a secrecy
class and an wntegrity class, similar to those in the VMS
Security Enhancement Service (VMS SES) [5]. The secrecy
and integrity classes are based on the Bell and LaPadula
sccurity [2] and Biba integrity [4] modecls, respectively. The
VAX security kernel also supports access control lists (ACLs)
on all objects, similar to those in the VMS operating sys-
tem [14].

The VMM security kernel is not a general purpose oper-
ating system. The principal subjects and objccts are virtual
machines and virtual disks, rather than conventional pro-
cesses and files. That is the inherent difference between a
VMM and a traditional operating system. Processes and
files are implemented within the virtual machines by either
the VMS or ULTRIX-32 operating systems.

The VAX security kermel can support large numbers of
simultaneous users.® All software development of the VAX
security kernel is now carried out on several virtual machines

3Exact numbers depend on the precise hardware configuration.

running on the VMM on a VAX 8800 system. On a typical
day, about 40 software engineers and managers are logged
in running a mixed load of text editing, compilation, system
building, and document formatting. The system provides
adequate interactive response time and is sufficiently reliable
to support an engineering group that must meet strict mile-
stones and schedules. As far as we know, the VAX security
kernel is the first security kernel to support its own devel-
opment team. The Multics Access Isolation Mechanism [36]
was developed on Multics itself, but Multics with AIM was
not a security kernel and only received a B2 rating.

The VAX security kernel is currently in the Design Anal-
ysis Phasc with the National Computer Seccurity Center
(NCSC) for an Al rating. It is being formally specified in Ina
Jo and formal proofs are being done on the specifications.

3 Design Approach

This section describes several of the design choices in the
VAX security kernel, including details about the virtual ma-



chine approach to security kernels, virtualizing the VAX ar-
chitecture, subjects and objects, access classes, our layered
design, and other software engineering issues.

3.1 Virtual Machine Approach

The choice to build the VAX security kernel as a VMM was
driven by two goals: to maintain compatibility with exist-
ing software written for the VAX architecture and to keep
software development and mainienance costs to a minimum.

Digital Equipment Corporation began plans to enhance
the security of the VAX architecture in mid-1979. Our ini-
tial effort was the design of security enhancements to the
VMS operating system, first prototyped in 1980 and avail-
able today in the base VMS operating system and in the
VMS Security Enhancement Service [5].

At the time of the initial prototype of the VMS secu-
rity enhancements [16], Digital considered a traditional ker-
nel/emulator security kernel to support VMS applications.
However, it quickly became clear that the software devel-
opment costs of a VMS emulator would be comparable to
the cost of development of the VMS operating system itself.
Worse still, the emulator would have to track all changes
made to the VMS operating system, resulting in ongoing
costs that would be unacceptably high for the limited market
for Al-secure systems. The kernel/emulator system could
not replace the existing VMS operating system because its
performance would not be as good, and it would likely be
export controlled. Furthermore, the growing demand for
UNIX-based software would force development of a UNIX
emulator at still more development cost.

To resolve these development cost and compatibility prob-
lems, we chose a VMM security kernel approach. A VMM
security kernel presents the interface of a computer architec-
ture that is comparatively simple and not subject to frequent
change. Thus, the VAX security kernel presents an interface
of the VAX architecture {21] and supports both the VMS
and ULTRIX-32 operating systems with relatively few mod-
ifications.

The idea of a VMM security kernel is not a new one. Mad-
nick and Donovan [22] first suggested the merits of VMMs for
security, and Rhode [30] first proposed VMM security ker-
nels. From 1976 to 1982, Systems Development Corporation
(now a division of the UNISYS Corporation) built a ker-
nelized version of IBM’s VM/370 virtual-machine monitor,
called KVM/370 [12]. While the design of the VAX secu-
rity kernel is very different from KVM/370, we have applied
some of the lessons learned in the KVM/370 project [11].
Section 7 compares the VAX security kernel with KVM/370.
Gasser |10, Section 10.7] provides more detail on some of the
trade-offs between a VMM security kernel approach and a
kernel/emulator approach.

3.2 Virtualizing the VAX

The requirements for virtualizing a computer architecture
were specified by Popek and Goldberg [26]. In essence, they

require that all sensitive instructions and all references to
sensitive data structures trap when executed by unprivileged
code. A sensitive instruction or data structure is one that
either reveals or modifies the privileged state of the proces-
sor.

3.2.1 Sensitive Instructions

Unfortunately, the VAX architecture does not meet Popek
and Goldberg’s requirements. Several instructions, includ-
ing Move Processor Status Longword (MOVPSL), Probe
(PROBEXx), and Return from Exception or Interrupt (REI)
are sensitive, but unprivileged. Furthermore, page table en-
tries (PTEs) are sensitive data structures that can be read
and written with unprivileged instructions.

As a fesult, we made a number of extensions to the VAX
architecture to support virtualization. In particular, we
added a VM bit to the processor status longword (PSL)
that indicated whether or not the processor was executing
in a virtual machine. A variety of sensitive instructions
were changed to trap based on the setting of the VM bit,
so that the VMM security kernel could emulate their exe-
cution. Space does not permit a full discussion of the in-
struction changes, but some details are discussed by Karger,
Mason and Leonard [18].

3.2.2 Ring Compression

The most significant and security-relevant change to the
VAX architecture was to virtualize protection rings. In the
past, only processors with two protection states (such as-
the IBM 360/370 architecture) had been virtualized. Gold-
berg [13, section 4.3] described the difficulties of virtualizing
machines with protection rings and therefore more than two
protection states. He proposed several techniques for map-
ping ring numbers, some in software and one with a hardware
ring relocation register, but he recognized that none of his
techniques were satisfactory. His software techniques broke
down because the physical ring number remained visible, and
his hardware ring relocation technique broke down because
virtualizing a machine with N rings always required N+1
rings.

Since the VMS operating system uses all four of the pro-
tection rings of the VAX architecture, it was essential that
we develop a new technique for virtualization of protection
rings. That technique is called ring compression.

Figure 2 shows how the protection rings of a virtual VAX
processor are mapped to the rings of a real VAX proces-
sor. Virtual user and supervisor modes map to their real
counterparts, but virtual executive and kernel modes both
map to real executive mode. The real ring numbers are con-
cealed from the virtual machine’s operating system (VMOS)
by three extensions to the VAX architecture: the addition of
the VM bit to the PSL (described in Section 3.2.1), the ad-
dition of a VM processor status longword register (VMPSL),
and the modification of all instructions that could reveal the
real ring number. Those instructions either trap to the VMM
security kernel for emulation or obtain their information from
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Figure 2: Ring Compression

the VMPSL, which contains the virtual ring number rather
than the real ring number. Additional details can be found
in Karger, Mason and Leonard [18].

Ring compression also requires that the security kernel
change the memory protection of pages belonging to virtual
machines so that their kernel-mode pages become accessible
from executive mode. This change of memory protection
could adversely affect security within a given virtual machine
because the virtual machine’s kernel mode is no longer fully
protected from its executive mode.

For the two operating systems of interest to the VAX se-
curity kernel, there is no effective loss of security within the
virtual machines themselves, although there is a loss of ro-
bustness against potentially bug-laden executive mode code.
Fortunately, the VMS operating system grants all programs
that run in executive mode the right to change mode to ker-
nel at will and uses the the kernel/executive mode boundary
only as a reliability mechanism. Furthermore, the ULTRIX-
32 operating system does not use exccutive mode at all.

Of course, the compression of kerncl and executive modcs
in the virtual machines in no way compromises the security
of the VMM, as the security kernel runs only in real ker-
nel mode, and no virtual machine ever is granted access to
real kernel mode pages. If there were some other VAX op-
erating system that actually used all four rings for security
purposes, it would lose some of its own security, much as
IBM operating systems lose some of their security when run
in VM/370. However, no such operating systems exist for
the VAX architecture.

3.2.3 1I/0 Emulation

Traditional virtual-machine monitors, such as IBM’s
VM/370, have virtualized not only the CPU, but also the
I/O hardware. Virtualization of the I/O hardware allows

the VMOS to run essentially unmodificd. Virtualization of
the VAX 1/O hardware is particularly difficult because its
I/0O devices are programmed by reading and writing control
and status registers (CSRs) that are located in a region of
physical memory called 1/O space. This type of I/O origi-
nated on the PDP-11 scries of computers and caused per-
formance difficulties in the UCLA PDP-11 virtual-machine
monitor [27] because the VMM must somehow simulatc ev-
ery instruction that manipulates a CSR. Vahey [33] proposed
a complex hardware performance assist, but such a device
would add excessive complexity and development cost to the
VAX security kerncl.

Instead, the VAX security kernel implements a special 1/O
interconnection strategy for virtual machines. The VAX ar-
chitecture {21] does not specify how I/O is to be done, and
different VAX processors have implemented very different
I/0 interfaces. The VAX sccurity kernel I/O interface is
a specialized kernel call mechanism, optimized for perfor-
mance, rather than traditional CSR-based I/0O. In essence, a
virtual machine stores I/O-related paraineters (such as buffer
addresses, etc.) in specified locations in its I/O space, but no
I/0 takes place until the virtual machine executes a Move to
Privileged Register (MTPR) instruction to a special kernel
call (KCALL) register. This MTPR traps to security kernel
software that then performs the I/O. Thus, the number of
traps to kernel software is dramatically less than would be
required for CSR emulation.

This special kernel I/O interface means that special un-
trusted virtual device drivers had to be written for both the
VMS and ULTRIX- 32 opcrating systemns, but this cflort was
no more than is typically required to support a new VAX
processor, a small number of engincer-ycars.

Because the virtual VAX processors have an 1/O interface
different from that of any existing VAX processors, the VAX
security kernel does not fall into any of Goldberg’s tradi-
tional categorics of VMMs. Goldberg [13, pp. 22-26] defines
a Type I VMM as a VMM that runs on a bare machine. He
dcfincs a Type 11 VMM as a VMM that runs under an cx-
isting host opcrating system. Goldberg [13, section 3.3] also
defines a Hybrid Virtual-Machine Monitor as one in which
all supervisory-state instructions are simulated, rather than
just the privileged instructions. The VMM security kernel is
essentially a cross between a self-virtualizing Type 1 VMM
for all non-I/O instructions and a Hybrid Virtual-Machine
Monitor for I/O instructions.

3.2.4 Self-Virtualization

As we designed the extensions to the VAX architee-
ture, we ensured that the architecture would permit self-
virtualization. Self-virtualization is the ability of a virtual-
machine monitor to run in one of its own virtual machines
and recursively crecate second-level virtual machines. Sclf-
virtualization is very useful for developing and debugging
the virtual-machine monitor itsclf, but it is of little value to
actual users. Since self-virtualization would have added sig-



nificant complexity to the Trusted Computing Base (TCB),
no software support has been done.?

3.3 Subjects

There are two kinds of subjects in the VAX security kernel,
users and virtual machines (VMs). A user communicates
over the trusted path with a process called a Server. Servers
are trusted processes, but unlike the trusted processes in
other systems such as KSOS-11 [3], servers run only within
the kernel itself. User subjects cannot run uscr-written code;
servers execute only verified code that is part of the TCB.
The powers of a server are determined by:

o The user’s minimum and maximum access class. (See
Section 3.5.)

e The terminal’s minimum and maximum access class.
e The uscr’s discretionary access rights.

o The user’s privileges. (See Section 3.6.)

o The privileges exercisable from the terminal.

A virtual machine is an untrusted subject that runs a
VMOS. A user interacts with the VMOS in whatever fashion
is normal for that operating system, for example, by logging
into that VMOS and issuing commands. A user may write
and run code inside a VM and even penetrate the VMOS,
all without affecting the security of other virtual machines
or the security kernel itself. At worst, a penetrated virtual
machine could only affect other virtual machines with which
it shared disk volumes.

On login to the security kernel, the VMM establishes a
connection betwecn the uscr’s terminal linc and the user’s
Server, called a session. When the uscr wants to use some
virtual machine, the user issues the CONNECT command to his
or her Server, specifying the name of that VM. If the con-
nection is authorized, the system suspends the user’s existing
session with the Server and establishes a new session between
the user’s terminal line and the requested virtual machine.
Thus, the Servers and the VMs have distinct identities and
distinct security attributes.

Virtual machines may be run in a single-user mode to pro-
vide maximum individual accountability. Alternately, they
can be run in a multi-user mode. In such a case, individual
accountability might be achicved by running a VMOS with

4The softwarce changes needed for self-virtualization primarily con-
sist of changes to the virtual device drivers described in Section 3.2.3
and some changes in the emulation of certain sensitive instructions.
Under the proposed Trusted VMM Interpretation [1], it might even be
possible for a self-virtualized security kernel to itself remain Al rated.
To achicve that goal, the first level VMM would map the second level
VMM’s kernel mode to real executive mode, while the VMs running on
top of the second level VMM would have their supervisor, executive,
and kernel modes all mapped to real supervisor mode. Of course, as
one continucs to recursively self-virtualize, one runs out of protection
rings at the fourth level VMM, and that VMM would no longer be
protected from its virtual machines.

at least a C2 rating, as suggested by the proposed Trusted
VMM Interpretation [1] of Trusted Information Systems, Inc.

Virtual machines can also be treated as objects because a
user may request that the TCB provide a connection between
the user’s terminal and some VM. For this operation, the
user is the subject and the VM is the object.

3.4 Objects

The VAX security kernel supports a variety of objects in-
cluding real devices and volumes and security kernel files.

One group of objects compriscs the real devices on the
system: disk drives, tape drives, printers, terminal lines, and
single access-class network lines. As these devices can con-
tain or transmit information, access to them must be con-
trolled by the TCB. Another object is the primary memory
that is allocated to each VM when it is activated.

Disk and tape volumes arc also objects. The contents of
some disk volumes are complctely undcr the control of a vir-
tual machine. They may contain a file system structure or
just an arbitrary collection of bits, depending on the method
used by the VMOS to access the volume. Such volumcs are
called ezchangeable volumes becausc they may be exchanged
with other computer systems running conventional operating
systems. Other disk volumes contain a VAX security kernel
file structure and are called VAX security kernel volumes.
These volumes must not be directly accessed by a VMOS
or exchanged with other systems, as an untrusted subject
could subvert the kernel’s file system or read information to
which it was not entitled. The VAX security kernel does not
provide trusted tape volumes; all tape volumes are exchange-
able.

VAX security kernel volumes contain VAX security kernel
files that are organized as a flat file system. VAX sccurity
kernel files are used for a variety of purposes in the system
and are considered objects by the TCB. One use for VAX
security kerncl files is to hold long-term system databases
such as the audit log and the authorization file. These filcs
are considered part of the TCB and, with the exception of the
audit log, error log and crash dump files, cannot be directly
referenced by virtnal machines.

Another use of VAX security kernel files is to create vir-
tual disk volumes, loosely analogous to mini-disks in IBM’s
VM/370 (23, pp. 549-563]. Mini-disks allow a physical disk
to be partitioned, so that one need not dedicate an cntire
physical disk to a small virtual machine that only requires a
small amount of disk space. Such virtual disks may contain
the file structure of some VMOS, such as a VMS file struc-
turc or an ULTRIX-32 file structure. However, the VMM
deals with virtual disks only as a whole. The contents of a
virtual disk are all part of a single object as far as the VMM
is concernced.

3.5 Access Classes

The VAX security kerncl enforces mandatory controls, as re-
quired of all Al systems. Both secrecy and integrity modcls



are supported, based on the work of Bell and LaPadula [2]
and of Biba [4], respectively. To implement mandatory con-
trols, each kernel subject and kernel object is assigned a
scnsitivity label, called an access class.5 An access class
consists of two components, a secrecy class and an integrity
class. These components are each further divided into a level

and a category set. A secrecy level is a hicrarchical classifi- -

cation. The secrecy category setis the set of non-hierarchical
secrecy categories that represents the sensitivity of the ac-
cess class. The integrity level and integrity category sct are
defined analogously. For compatibility with VMS SES [5],
the kernel supports 256 secrecy levels, 256 integrity levels,
64 secrecy categorics, and 64 integrity categories.

Given the complex structure of access classes, two defini-
tions must be carefully constructed:

Definition 1 An access class A is equal to an access class
B if and only if:

¢ The secrecy level of A is equal to the secrecy level of B,

e The secrecy calegory set of A s equal to the secrecy
category set of B,

o The integrity level of A is equal to the integrily level of
B, and

o The integrity category set of A is equal to the integrity
category set of B.

Definition 2 An access class A dominates an access class

B if and only if:

o The secrecy level of A is greater than or equal to the
secrecy level of B,

o The secrecy category set of A is an improper superset of
the secrecy category set of B,

o The integrity level of A is less than or equal to the
wntegrity level of B, and

o The wntegrity category set of A is an improper subset of
the integrity category set of B.

The sccrecy and integrity modcls define that a subject
may reference an object depending on the access classes of
the subject and object and on the type of reference. A sub-
ject may read from an object only if the subject’s access class
dominates the access class of the object. A subject may write
to an object only if the object’s access class dominates the
access class of the subject.® Thus, for example, a virtual
machine may mount for read-write access an exchangeable
volume only if the VM’s access class is equal to that of the
volume. However, the VM may mount for read-only access
any exchangeable volume where the VM’s access class dom-
inates that of the volume.

5Some objects, such as terminal lines, may be assigned a range of
access classes.

$In general, write access is even further restricted; a subject may
write to an object only if the subject’s and object’s access classes are
equal. This disallows blind writes to an objcct that cannot be read.

3.6 Privileges

System managers, security managers, and operators gain
their powers by having privileges. The privileges allow great
flexibility in the assignment of powers and responsibilities,
including a measure of two-person control and separation of
duties. Privileges restrict access beyond the protections pro-
vided by mandatory and discretionary access controls. A
privileged user cannot see data that would be otherwise in-
accessible. Only the downgrading privileges allow bypassing
of access controls, and the use of those privileges is audited.

Most privileges can be exercised only through the trusted
path and are called user privileges. (See Table 1.) Two
privileges can be exercised by virtual machines and are called
virtual-machine privileges. (See Table 2.)

3.7 Layered Design

The VAX security kernel has been implemented following the
strict levels of abstraction approach originally used by Dijk-
stra [8] in the THE system. Janson [15] developed the use of
levels of abstraction in security kernel design as a mcans of
reducing complexity and providing precise and undecrstand-
able specifications. Each layer of the design implements some
abstraction in part by making calls on lower layers. In no
case docs a lower layer invoke or depend upon higher layer
abstractions. By making lower layers unaware of higher ab-
stractions, we reduce the total number of interactions in the
system and thereby reduce the overall complexity. Further-
more, each layer can be tested in isolation from all higher
layers, allowing debugging to proceed in an orderly fashion,
rather than haphazardly throughout the system. This type
of layering is called out in the requirements for B3 and Al
systems when the NCSC evaluation criteria [7, p. 38] state
that, “T'he TCB shall incorporate significant use of layering,
abstraction and data hiding. Significant system engineering
shall be directed toward minimizing the complexity of the
TCB...”

The layercd design of the VAX security kernel was bascd
heavily on the Multics kernel design work of Janson [15] and
Reed [28] and to a lesser extent on the Naval Postgraduate
School kerncl design [6]. Figure 3 shows a diagram of the
layers of the VAX security kerncl. The arrows in the diagram
indicate how each layer functionally depends on the abstract
machine created by lower layers.

Each layer adds specific functions within the security ker-
nel, such that at the security perimeter, the secrecy and
integrity modecls are enforced. The kernel itsclf is process
structured, as described in the summary of the various lay-
ers. Unlike many other kernels, all of the trusted processes
run within the security perimetcr and are included in the
formal specifications described in Section 5.4.

HIH The Hardware-Interrupt Handler layer is immediately
above the physical VAX hardware and modificd mi-
crocode. It contains the interrupt handlers for the vari-
ous I/O controllers and certain CPU-specific code.



Privilege

Powers

CLASSIFY_DEVICE
CLASSIFY_SUBJECT

CLASSIFY_VOLUME

DELETE_AUDIT
DOWNGRADE_SECRECY

DOWNGRADE_SECRECY_NOINSPECT
ENABLE_DEBUGGER

OPERATE

REGISTER

SET_AUDIT

SET_COVERT.CHANNEL_DEFENSE
SET_FILE

SET_PASSWORD
UPGRADE_INTEGRITY
UPGRADE_INTEGRITY_NOINSPECT

Assign access classes to I/0 devices and privileges to terminals

Assign access classes and privileges to subjects; name levels and
categories

Register and assign access classes to volumes

Delete audit data
Downgrade secrecy of text after human inspection

Downgrade secrecy of data without inspection
Enable untrusted kernel debugger
Mount volumes, change printer paper, boot and shutdown system

Register and change non-security attributes of devices, virtual
machines, and users

Control audit log and real-time alarms

Enable or disable covert channel defenses
Create, delete, or copy kernel files

Change users’ passwords and password parameters

Upgrade integrity of text after human inspection

Upgrade integrity of data without inspection

Table 1: User Privileges

Privilege Powers
OPERATE Dismount volumes; activate and deactivate other virtual machines; set
login limits
SET_ACL Change any object’s ACL, if access class permits
Table 2: Virtual Machine Privileges
LLS The Lower-Level Scheduler is based strongly on Reed’s mechanism provides upward transfers of control that are

two-level scheduler design [28]. It creates the abstrac-
tions of level one virtual processors (vpls) that are the
basic unit of scheduling for the system. The LLS sup-
ports symmetric multiprocessing by binding and un-
binding real CPUs to individual vpls. As shown in
Figure 4, there are three kinds of vpls: dedicated vpls
that typically contain device drivers, bindable vpls that
can be bound to dedicated vp2s by the higher level
scheduler, and addressable vpls that can be bound to
bindable vp2s and thereby to virtual machines. Vpls
are intcnded to be very incxpensive processcs for usc
within the kerncl. Only addressable vpls have full ad-
dress spaces; all other vpls run out of the global address
space of the kernel. Thus, the lower-level scheduler can
context switch in and out of most vpls by merely sav-
ing registers and switching stack pointers. The lower-
level scheduler also implements eventcounts [29] as the
basic synchronization mechanism of the kernel. Event-
counts can be awaited or advanced in the normal way,
or a processor interrupt can be tied to an cventcount,
such that a VM can be interrupted when an eventcount
has reached a particular value. This proccssor interrupt

otherwise forbidden in the kerncl. Processor interrupts
are only delivered when the CPU is executing outside
the security kerncl.

TIOS The I/O services layer implements device drivers that
control the real I/O devices. The current version sup-
ports only directly connccted terminals and storage de-
vices.

VMP The VM physical memory layer manages real physi-
cal memory, and assigns it to virtual machines.

VMYV The VM virtual memory layer implements the
shadow page tables needed to support virtnal memory
in the virtual machines.” VMV implements a primary-
memory only strategy, requiring that all the physical
memory that a virtual machine sees be physically res-
ident when that virtual machine is active. While this
tecchnique limits the number of simultaneously active

7Shadow page tables are created by a VMM, because the physical
addresses in page table entries must be relocated. Shadow page ta-
bles are described in detail by Madnick and Donovan [23, Scction 9-5].
Shadow page tables are also where ring compression occurs.
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virtual machines to the number that can fit into physi-
cal memory simultaneously, it significantly reduces ker-
nel complexity by eliminating the need for a demand-
paging mechanism in the kernel. It also eliminates the
phenomenon of double paging that is often seen in other
VMMs, where the demand paging mechanisms of the
VMM and of the VMOS can thrash against one an-
other, leading to serious performance degradation. In
the VMM security kernel, the virtual machines are al-
located a fixed amount of physical memory and do all
their own paging.

HLS The Higher-Level Scheduler is also based on Reed’s
two-level scheduler [28]. Unlike Reed’s design, our
higher-level scheduler is extremely simple because it
does not need to schedule access to primary memory.
The HLS does create the abstraction of level-two virtual
processors (vp2s). There are two kinds of vp2s: dedi-
cated vp2s that are used primarily by the SSVR layer
described below and bindable vp2s that are used for vir-
tual machines. Figure 4 shows the relationships between
vpls and vp2s.

AUD The auditing layer provides the facilities for security
auditing and security alarms. It is described in detail in
a companion paper [31].

F11F The Files-11 Files layer implements a subset of the
ODS -2 file system that is also used in the VMS op-
erating system.® The most significant restrictions on
the VAX security kernel implementation of ODS-2 are
that all files must be pre-allocated and contiguous. This
reduces kerne! complexity by eliminating the need for
dynamic file extensions. F11F implements ODS -2 files
only as a flat file system.

VOL The Volumes layer implements VAX security kernel
and exchangecable volumes and provides registries of all
subjects and objects. These registries are much simpler
than ODS-2 directories.

VTerm The Virtual Terminals layer implements virtual ter-
minals for each virtual machine, and manages the physi-
cal terminal lines. Each user may have multiple sessions
connected to different virtual machines, and VTerm pro-
vides the session management functions, as described
in Section 4.1. VTerm also implements asynchronous
network lines to allow virtual machines to connect to
single-access-class networks via specially dedicated ter-
minal lines. The current version of the system has no
support for higher-speed network connections.

VPrint The Virtual Printers layer implements virtual print-
ers for each virtual machine and multiplexes the real
physical printers among the virtual printers. It provides
top and bottom labeling, as well as trusted banner pages
to delimit listings of different access classes and different

VMs.

8A brief summary of the Files-11 ODS--2 structure can be found in
the appendices of {35].




KI The Kernel Interface layer implements virtual controllers
for the various virtual I/O devices and the security
function controller, which implements such functions as
loading virtual disks into virtual drives.

VVAX The Virtual VAX layer completes the virtualization
process by emulating sensitive instructions, delivering
exceptions and interrupts to the virtual machine, etc.

SSVR. The Secure Server layer implements the trusted path
{for the security kernel, logs users in and out, and pro-
vides security-related administrative functions. There
is a dedicated vp2 for each terminal line to provide a
Server process for each logged in user.

VMOS The VMOS layer is the virtual machine’s operating
system.

USERS The users in Figure 3 include both the untrusted
applications programs that run on top of the VMOS,
and the human beings who communicate directly with
the secure server via the trusted path.

Dedicated

VP2s
(Server Processes)

Figure 4: Level One and Level Two Virtual Processors

3.8 Software Engineering Issues

A number of interesting software engineering issues arose
during the development of the VAX security kernel. While
space does not permit discussing all of them, this section
highlights a few of the most significant.

3.8.1 Programming Language Choice

Perhaps the most critical software engineering issue in the
VAX security kernel design was the choice of a programming
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language. From the problems that KSOS- 11 had with its
choice of compilers [3, 25}, it was clear that we needcd high
quality compilers to develop our security kerncl. While we
wanted as strongly-typed a language as possible, it was much
more critical that the compiler correctly compile very large
programs, produce high quality VAX object code, and be
supported by an organization that could quickly respond to
any problems we might find.

At the time the VAX security kerncl prototype effort be-
gan, there were only a small number of systems program-
ming langunages available for the VAX architecture: BLISS-
32, PL/I, PASCAL, and C. BLISS-32 was rejected because
of its lack of data typing facilities. PASCAL was rcjected
because the V2.0 compiler that generated high quality code
was not yet available. This left PL/I and C, both of which
used the same good quality code gencrator. We chosc PL/I
because of its slightly better data typing support, because
of its better support for character string manipulation, and
because the first prototype developers had extensive prior
experience in coding operating systems in PL/I.

We were not happy with the choice of PL/T because its
data types were not strongly enforced. When the high qual-
ity V2.0 PASCAL compiler became available, we began writ-
ing new code for the kernel in PASCAL. PASCAL provides
much stronger data-type checking than PL/I, and the VAX
calling standard made inter-language calls easy to imple-
ment.

Higher-level language compilers cannot generate optimal
code for all programs: Thercfore, we found it neccssary
to implement those modules that actual measurements had
shown to be performance-critical in the MACRO-32 assem-
bly language. Table 3 shows how much code was written in
each of the languages for each layer of the kernel.® The table
shows the number of executable source code statements (ex-
cluding comments, declarations, and white space) and per-
layer and per-language totals.

In retrospect, the use of both PL/I and PASCAL has led
to certain difficulties. Software engineers must be trained
in both languages, and some kernel bugs have resulted from
misunderstandings of how to pass parameters from one lan-
guage to the other. Future security kernel developers would
do well to choosc one systems programming language and
stick to it.

3.8.2 Coding Strategies

A number of coding strategies proved very useful in the de-
velopment of the VAX security kernel. For example, we
avoided all use of global pools within the kernel to mini-
mize the possibility of storage channels. The maximum size
of data structures is determined at system boot time (based

9Table 3 includes a number of entries that are not shown in the
layer diagram in Figure 3. These layers, COMMON, PMM, SVSBOO,
VMMBOOT, and VMMLIB provide certain booting and runtime li-
brary support functions. The normal runtime libraries for the PL/1
and PASCAL languages are not linked into the kernel becausc they
would have added a large amount of code that would need to be eval-
uated and placed under configuration control.



Layer | MACRO | PASCAL | PL/I | Total
VVAX 3371 1502 0| 4873
SSVR 0 6876 | 330 | 7206
KI 10 3354 0| 3364
VPRINT 0 1455 0| 1455
VTERM 0 1419 0| 1419
VoL 0 2553 01 2b53
F11F 0 2962 0] 2962
AUD 0 543 0 543
HLS 0 0} 430 430
VMV 129 0]1069 | 1198
VMP 0 0} 352 352
I0s 0 4725 0| 4725
LLS 1289 1313839 | 5141
HIH 816 2393 | 174 | 3382
COMMON 244 0 0 244
PMM 0 o 176 176
SVSBOO 2641 734 0] 3275
VMMBOOT 55 213 | 430 698
VMMLIB 3021 503 | 1265 | 4789
Total 11475 | 29245 | 8065 | 48785

Table 3: Executable Statements per Layer

on system generation parameters), and memory is allocated
for that maximum size during kernel initialization.

Different sections of memory within the kernel are sep-
arated by no-access guard pages to detect run-away array
or string references. Unused memory is set to all ones to
increase the chance of detecting the use of uninitialized vari-
ables becausc zeros are less likcly to gencrate exceptions.

The layers of the kernel are coded defensively with sanity
checks to protect each laycr from higher layers. If irregulari-
ties arc detected, the system crashes to avoid the possibility
of a security compromise. These sanity checks were devised
to aid in the debugging of the kernel and do not themselves
provide security assurance mechanisms. However, many of
the checks remain enabled in the finished kernel to help de-
tect any remaining bugs.

The actions of a user or a virtual machine cannot crash the
kernel. They can cause error messages, exception conditions
raised in the virtual machine, or in extreme cases, the halting
of an offending subject.

Since the entire TCB runs in kernel mode, there are
no hardware-enforced firewalls between layers. However,
the layering methodology forbids lower layers from calling
higher layers. To help us spot layer violations, we ap-
plied both automatic and manual techniques. Using the fca-
tures of the VAX DEC/Module Management System (VAX
DEC/MMS) and the VAX DEC/Code Management Systems
(VAX DEC/CMS), we were able to isolate all dependencies
of a layer on other layers. By visual inspcction, we could
immediately spot upward references. In fact during develop-
ment, we did detect and fix several such occurrences.
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4 Human Interfaces

High-security systems have developed a reputation for being
hard to use, primarily due to their limited user interfaces. We
believe that it is essential that a human interface meet the
expectations of today’s commercial computer users. How-
ever, we faced the same obstacles faced by other developers
of high-security systems:

¢ Development resources are limited and satisfying the Al
criteria takes precedence over all other efforts.

o The kerncl must be small and verifiable. User interface
features, such as a sophisticated command parser, arc
large and often difficult to verify. Conscquently, an in-
terface built entirely on trusted code cannot match the
usability of an interface built on untrusted code.

We overcame these obstacles by creating two separate
command sets: the Securc Server commands and the SE-
CURE commands. The Secure Server commands are imple-
mented entirely in trusted code. The administrative com-
mands, the SECURE commands, are parsed in the VMS
and ULTRIX-32 operating systems. With this approach,
we reduce the amount of trusted code and gain the well-
developed command interfaces of thesc mature commercial
operating systems. SECURE commands arc normally only
issued by the system manager, the sccurity manager, the op-
erators, and the auditors, although ordinary uscrs may need
to issue a few of them at times. By contrast, all users must
issue some Secure Server commands to login and conncect to
virtual machines.

4.1 Secure Server Commands

The Secure Server is the user’s direct interface to the kernel.
A user invokes a trusted path to the Securc Server by pressing
the Secure Attention Key. This key operates at all times and
cannot be intercepted by untrusted cnde. We have chosen
the BREAK key to be the Secure Attention Key.

The Secure Server’s commands control terminal connce-
tions to virtual machines in the same way that a terminal
server controls terminal connections to physical machines,
using commands such as: CONNECT, DISCONNECT, RESUME,
and SHOW SESSIONS. A user can create sessions with several
virtual machines at different access classes and can quickly
switch from one to another.

The interface for the Secure Server commands is built en-
tircly in trustced code and offers only minimal command-line
editing functions.

4.2 SECURE Commands

The tools for managing the system arc the SECURE com-
mands. The SECURE commands and utilitics are im-
plementcd just as are other commands in the VMS and
ULTRIX- 32 command languages, except that they issue ker-
nel calls to do their work. The complete sct of SECURE



commands and utilities is installed in the VMS operating
system. A subset of the SECURE commands is offered by
the ULTRIX-32 operating system.

The SECURE commands, unlike the Secure Server com-
mands, are parsed by the VMS and ULTRIX-32 command
language interpreters. The user can take advantage of such
features as command-line recall and command procedures.

There are two types of SECURE commands: VM
SECURE commands and User SECURE commands. Both
types of SECURE commands arc issued from the VM’s
operating-system command level. VM SECURE commands
are executed in the context of the issuing VM. User SECURE
commands are submitted to the Secure Server for execution.
The commands are distinguished by the type of subject, a
user or a virtual machine, that holds the access class and
privileges necessary to issue the command.

4.3

While both the User and VM SECURE commands are ad-
ministrative commands, only the User SECURE commands
must be trusted. For such security-relevant commands, we
require Al assurance that:

Command Confirmation

¢ The command was issued by a user and not by a Trojan
horse in a VM.

e The command received by the Secure Server is exactly
the same command typed by the user and not a com-
mand that was covertly modified by a Trojan horse.

e The user who issued the command can be identified in
the audit log.

Our design for the User SECURE commands provides
both trust and individuality accountability even for com-
mands issued from an untrusted environment. Upon receipt
of a valid User SECURE command, the VM instructs the
user to press SECURE ATTENTION. This key invokes a
trusted path between the uscr’s terminal and the Secure
Scerver. A SECURE ATTENTION signal can be sent to the
Secure Server only by manually pressing the BREAK key.
This prevents a Trojan horse from completing the execution
of a User SECURE command.

To prevent a VM from spoofing the user by passing a dif-
ferent command from what the user typed, the Secure Server
displays the action that will be taken by the command and
prompts the user to approve or reject the operation. Figure 5
is an abbreviated example of a User SECURE command is-
stucd from a VMS virtual machine. Resuming indicates that
control of the tcrminal will be returned to the virtual ma-
chine.

4.4 SECURE Utilities

Managing the VMM security kernel requires a number of
utilities. Our SECURE utilities are modeled after VMS util-
itics and are summarized in Table 4.
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$ SECURE DELETE TLS:STATUS.RPT
Press SECURE ATTENTION to complete
execution of this command.

User presses SECURE ATTENTION to establish a
trusted path.

Delete VAX security kernel file
TLS:STATUS .RPT

Confirmation [Yes or Nol: Y

VMM: File deleted
Resuming. ..

Figure 5: Example of a User SECURE command

SECURE Utility Purpose

Authorize Registers users and virtual
machines, etc.

Register/Device Registers I/O deviccs.

Register/Volume Registers disk and  tapc
volumes.

Sysgen Sets limits on system resources.

Crash Dump Analyzer | Provides data for detcrmining
the cause of a system crash.

Table 4: SECURE Utilitics

4.5 Reclassifying Information

Users can be permitted to change the access class of the
contents of a VAX security kernel file or an exchangeable
volume with the SECURE RECLASSIFY command. This
command copics the contents of a kernel file or volume to an
cxisting kernel file or volume labeled with a different access
class. The source and destination objects must lie within the
user’s access-class range. In addition, privileges are required
if the reclassification downgrades the data’s secrecy class or
upgrades its integrity class.

Reclassification normally requires trusted inspection by
the user. Inspection is required to be sure that a Trojan
horse has not inserted additional information that the user
did not intend to reclassify. To make inspection easier, the
user can opt to print the VAX security kernel file or display
the file on the terminal, one screen at a time. Once the
complete filc is printed or displayed, the user is prompted
to approve the reclassification. To prevent the covert pass-
ing of information from the source file to the target file in
the form of invisible escape sequences, inspected files must
contain only printing charactcrs, spaces, and form feeds. A
line may not end with a space because a trailing spacc would
be invisible. The reclassification is terminated if any illegal
character is encountered.



5 Assurance

The principal reason for building an A1l security kernel is to
provide a high degree of assurance that the security features
of the system actually work correctly. This section describes
some of the techniques that we have used in the VAX se-
curity kernel to provide the nccessary assurance of security,
to meet both the requirements of an Al evaluation and the
requirements of real-world users. It is this integration of
both Al requirements and real-world requircments that is
of particular research interest, as previous security kernels
have not succeeded at integrating the Al requirements with
good performance and compatibility with large amounts of
existing commercial software.

Gasser [10, p. 163] describes Honeywell’s STOP kernel for
the SCOMP [9] and Gemini Computers’ GEMSOS [32] as
commercial-grade security kernels. However, STOP does
not provide software compatibility with existing operating
systems, and GEMSOS to date has only been used in spe-
cialized environments. Shockley, Tao, and Thompson [32]
report that research is under way to provide both UNIX
and MS-DOS environments for GEMSOS, but it is not clear
whether those environments are yet working. If Gemini suc-
ceeds in providing both UNIX and MS-DOS environments
in GEMSOS, they will have succeeded at integrating Al re-
quirements with real-world requirements. The VAX security
kernel supports both the VMS and ULTRIX--32 opcrating
systems with their layered applications today.

5.1 Design and Code Changes

Every change to our code undergoes both design and code re-
view, regardless of whether the code is trusted or untrusted,
or whether it is a whole new layer or a bug fix. Design
reviews for even the smallest fixes ensure that system-wide
effects are considered. Each layer has an owner, who partici-
pates in the design review, and is responsible for the quality
of that layer. Each code change is reviewed both in the con-
text of its own layer and in the contexis of its calling and
called layers, so as to catch inter-layer problems.

Reviewers lcarn from the code they review, as well as shar-
ing their knowledge through review comments. Reviewers
address readability and clarity, security, performance, ele-
gance and adherence to guidelines. Much like access con-
trols, design and code guidclines are either mandatory or
discretionary. Mandatory guidelines are based on prior cxpe-
rience in security kernel developments. Discretionary guide-
lines are used to avoid wcll-known traps in the programming
language, and to produce consisient, readable code. This
consistency makes it easicr for an engineer to pick up and
debug in a new area, reducing engineering costs and time.

The code review results, along with the design and test
plan, are publicized for the entire group to check. This prac-
tice provides a last review of the entire change by a large
audience. Code review results can also serve as examples
from which engineers can learn good coding practices.
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The development team makes extensive use of VAX Notes
online conferences to publicize design and coding guidelincs,
to discuss specific design issues, to track bug reports, and
to record and publicize the results of the above-mentioned
design and code reviews.

Each coding task is integrated with the current working
system as soon as it is complete. This integration always
produces a working system. {See Section 5.3.) Continual and
incremental integration avoids major unexpected failures by
identifying design and/or coding errors as soon as possible.

5.2 Development Environment

As mentioned in Section 2, we have been developing the VAX
security kernel on a VAX security kernel system. Thus, our
group does its daily work on a system designed to meet Al
security requircments, using most of its features and con-
trols. Our VMs run at meaningful access classes. Different
versions of the kernel are maintained on different VMs to
keep orthogonal tasks from impinging on each other. We also
use VMs for developing and testing the untrusted code that
must run in the VMS and ULTRIX-32 opcrating systens.
We have separated the roles of our own system manager and
security manager, as recommended in the NCSC Evaluation
Criteria [7].

The CPU and console of the development machine are
kept inside a lab that only members of the VAX sccurity
kernel development group can enter. Within that lab, the
development machine is protected by a cage, which consists
of another room with a locked door. Physical access to both
the lab and to the cage within the lab is controlled by a
key-card security system. Finally, our development machine
is not yet connected to Digital’s internal computer network,
to minimize the external threat to our development environ-
ment and our project.

5.3 Testing

Integrating a coding task requires that a developer run a
standard regression test suite. Integration occurs usually at
least once a weck, and as often as twice a day.’® This regres-
sion suite consists of two portions: layer tests and KCALL
tests. Layer tcsts are linked directly into the kernel, and
test layer interfaces and internal routines by calling them di-
rectly and checking their outcome. KCALL tests run in a
VM, issuing legal, illcgal, and malformed requests, to check
the VM interface.

A separate suite of tests, issued via the VAX DEC/Test
Manager (D'TM), is run once cvery two weeks to test the user
command interface. These tests currently run for 30 hours.
They consist of commands that are successful, commands
that produce errors, and commands that send malformed
packets to the SSVR layer. DTM checks both the results of
each command and the displays it produces.

We also run the standard VAX architccture exerciser
(AXE) that verifics that a particular CPU correctly imple-

10Developers of course run individual fests prior to integration.



ments a VAX computer. We run AXE to test the VAX
virtualization, described in Section 3.2. AXE tests werc run
extensively during the development of the CPU microcode
extensions and the VVAX layer. They will be run again
when the kernel reaches final completion.

We are currently developing test plans for fully exercising
all of the access control decisions and other security-relevant
checks made by the system and for system-penetration test-
ing. Some of these new tests will be developed from scratch,
and some will be based on the formal specifications.

5.4 Formal Methods

The requirements for an Al security evaluation state that a
formal security policy modcl must be written, that a formal
top-level specification (FTLS) of the system design must be
written and proven to satisfy the security policy model, that
the system implementation must be informally shown to be
consistent with the FTLS, and that formal methods must
be used in covert channel analysis of the system. The FTLS
must accurately model system external interfaces, externally
visible behavior, and security-relevant actions. A descriptive
top-level specification (DTLS) is also required as a complete
natural language description of the system.

We use the Formal Development Mcthodology (FDM)
specification and verification system [19] to help meet these
requirements. We arc writing both our security policy model
(which consists of criteria and constraints and the top-level
specification (TLS) of the various transforms) and our FTLS
in the FDM specification language, Ina Jo. We are using
the FDM interactive theorem prover (ITP) to show that the
TLS obeys the policy and that the FTLS maps to the TLS.
The DTLS consists of our internal design documentation,
plus some special glue documents that tie the DTLS and the
FTLS together, particularly describing areas of the kernel
that are not formally modcled in the FTLS.

Table 3 shows the number of executable statements in the
security kernel. For comparison, table 5 shows an estimate
of the total number of lines of Ina Jo (comments excluded)
and the number of lines of transforms (declarations excluded)
required to specify that kernel. The numbers are estimates
because the FTLS is not yet complete. The totals show that
the number of lines of transforms are about one sixth of the
number of executable statements in the security kerncl.

Level of Specification | Lines of Ina Jo

Total | Transforms
TLS 650 294
FTLS 11758 8410
Total 12408 8704

Table 5: Lines of Formal Specifications

We are doing a formal covert channel analysis using a new
technique for automating the Shared-Resource Matrix ap-
proach [20] using code-level flow analysis tools.
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Formal methods do not make the system secure by them-
selves. Successful proof that our specifications meet security
policy does not guarantee that thcre are no lurking imple-
mentation bugs. However, the use of formal methods sig-
nificantly improves the overall quality of the security ker-
nel. When combined with the informal testing procedures of
Section 5.3, the use of formal methods improves the assur-
ance that the security features are effective. Indeed, the very
act of formally specifying the security kerncl in Ina Jo has
already detected several kernel bugs, both because of con-
straints imposed by proof procedures, and because the pro-
cess of code correspondence provides a thorough method for
reviewing the TCB code and informal design specifications.
The separation of duties between the software engineer and
the verifier, by itself, provides valuable extra assurance, even
if no proofs were ever done.

5.5 Configuration Control

We maintain strict configuration control on many items, in-
cluding design documents, trusted kernel code, test suites,
user documents, and verification documents. All of our code
is maintained under the VAX DEC/Code Management Sys-
tem (CMS) to maintain a history of each change to each
module. Security reviews check cach item against the specific
NGCSC criteria requirements [7] it fulfills and check among
the items for internal consistency. Items that have been re-
viewed are stored on a master pack that is physically pro-
tected against modification.

Our hardware, firmware, and software development tools
are developed by other groups within the corporation. We
review hardware and firmware ECOs, prior to supporting
them in the VAX security kerncl. New versions of software
development tools are tested on a stand-alone laboratory sys-
tem prior to use on the kernel development machine. We use
only the standard, released versions of software development
tools, the same versions that have been checked out for ship-
ment to our customers. With rare exceptions, no ficld-test
versions are permitted on the kernel development machine.

5.6 Trusted Distribution

The end user of a security kernel must have some assurance
that no one has tampered with or substituted counterfeit
copics of the hardware and software that make up the system.
Hardware and software have different trusted distribution
requirements.

5.6.1 Hardware Trusted Distribution

To assure that the hardware systems would arrive at the
customer’s site meeting the trusted distribution criteria, we
have developed a security-seal program. If someone tam-
pered with the seal, evidence would be provided of the at-
tempted entry. A locking device would combine with the se-
curity sealing procedures to ensure a trusted shipment. Full
individual accountability would be provided, including logs
of the dclivery.



5.6.2 Software Trusted Distribution

Installation of an Al system involves achieving a trusted
state. The steps to do this on VAX 8800 hardware are com-
plex. The console processor software and CPU microcode
must be installed and cryptographically checksummed with
stand-alone software to detect any possible tampering. If a
secure site loses its trusted state for any reason, they must re-
install the console software and the CPU microcode. Trusted
state could be lost just by running an untrusted operating
system or hardware diagnostics on the system.

Next, the trusted code is installed via untrusted code
(VMS) and the result is cryptographically checksummed to
verify that the untrusted code has not tampered with the
trusted code. The result of the checksum is checked against
a message authentication code to verify correct installation.
The checksumming software is shipped separately from the
rest of the software, so that a single failure of the trusted dis-
tribution system could not compromise both the checksum
program and the authentication code.

For software, there would also be an option of using trusted
couriers instead of the scparate delivery paths.

6 Production-Quality Kernels

A production-quality security kernel is designed to protect
and ensurc the quality of real-world information. This sec-
tion describes some of the differences between research and
production-quality security kernels that are required to meet
general user requirements, as well as to satisfy the NCSC cri-
teria for an Al operating system.

6.1 Producing the Kernel

The primary tools for creating a security kerncl are compil-
ers. Quality compilers must work for large programs, pro-
duce efficient object code, and be reliably supported. We
sacrificed programming language elegance in favor of com-
pilers with a strong track record: the VAX PASCAL and
PL/I compilers. We maintained contact with the compiler
developers throughout the development, and they provided
much needed help to us, including occasional changes to the
actual compiler code.

A second tool, a symbolic debugger/crash dump analyzer,
is needed to develop and debug the system. It would also be
needed by users and support personnel to diagnose problems,
and by users who might wish to add functions to the kerncl.

A production-quality security kernel must have adequate
performance to justify its purchase in the face of other op-
tions such as multiple separatc computers or periods pro-
cessing. To help ensure attention to performance, we do our
own development work on a VAX security kernel systcm.
Performance-critical paths were written in a high-level lan-
guage and then re-written in assembly language for speed.
We have meters to find performance-critical routines, and
a rudimentary performance monitor to gather statistics on
CPU and I/O usage.
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Bug tracking mechanisms arc necded both to satisfy NCSC
configuration management guidclines, and to give us a means
to respond to problems on a timely basis. They also provide
a means to check against our definition of quality: having no
security bugs and no bug that keeps production work from
running. Statistics on the number of bugs and their scverity
provide concrete feedback on stability.

6.2 Documentation

A real security kernel requires extensive documentation for
its users and for its system and sccurity managers. These
documents must not only mect the content requircments of
the NCSC; they must also be clear and understandable to
both novice and sophisticated customers. The VAX sccurity
kernel documentation set consists of ninc manuals and a ref-
erence card. The manuals include a user’s guide, guides to
both system security and systemn management, a command
reference manual, both basic and advanced programmer’s
manuals, an installation guide, a master index, and rclcase
notes. These manuals have been written to the same qual-
ity standards as the manuals for the VMS and ULTRIX 32
operating systems.

7 Comparison with KVM /370

While the VAX sccurity kernel superficially bears a strong
resemblance to KVM/370, in that both systeins create vir-
tual machincs that run at different access classcs, the internal
structurcs of the two systems arc very differcnt.

Most significantly, KVM/370 was designed as a rctrofit
to the existing VM/370 product, with a specific goal of
leaving at least half of the original code intact [11]. As
a result, KVM/370 was structurcd as shown in Figure 6.
The KVM/370 security kecrnel used a variation on sclf-
virtualization to create a serics of NKCPs (Non-Kerncl Con-
trol Programs), each at a distinct mandatory access class.
The NKCPs ran unmodified VM/370 code to crcatc multi-
ple virtual machines that then ran the CMS (Conversational
Monitor System), a single-user operating systcmn designed
to run in a virtual machine. The disadvantage of this ap-
proach is that many functions cxccuted by a virtual ma-
chine required two context switches, first into the NKCP
and then into the security kerncl. By comparison, VAX se-
curity kernel achieves a higher performance level by allowing
the virtual machines to communicate directly with the sc-
curity kernel. This makes the VAX security kerncl larger
than the KVM/370 security kerncl, but we belicve that the
performance gains justify the increase in size.!!

KVM/370 never implemented support for VMOSs that
supported virtual memory. It implemented demand paging
within its TCB. By contrast, the VAX sccurity kerncl lecaves
virtual memory support to the VMOSs. As discussed in

YThis comparison is not strictly fair to KVM/370 because the
KVM/370 tcam was required to maintain compatibility and a large
body of original code from VM/370, while the VAX security kernel
team had the liberty of designing and coding from scratch.
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Section 3.7, eliminating demand paging reduces kernel com-
plexity and improves performance at the cost of limiting the
number of simultaneously active virtual machines.

Another major difference is that KVM/370 has a very lim-
ited interface for system management and security manage-
ment functions. For example, new users cannot be added
during online operation. By contrast, the VAX security ker-
nel offers a full complement of system and security manage-
ment tools, such as are required in a general-purpose system.
(See Section 4.)

While performance comparisons are very tricky to make,
the relative performance of the VAX security kernel seems
better than that of KVM/370. KVM/370 reports {11] per-
formance ranges from 10% to 50% of VM/370, depending
on the workload. By contrast, the VAX security kernel ex-
hibits performance ranges from 30% to 90% of VMS capacity,
again depending on the workload. The KVM/370 measure-
ments were of an untuned system, while the VAX security
kerncl measurements were of a system with a limited amount
of tuning. The KVM/370 comparisons were to VM /370, it-
self a virtual-machine monitor with performance degradation
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compared to a native operating system. The VAX sccurity
kernel comparisons were to the native VMS operating sys-
tem. KVM/370 reported a number of desirable performance
optimizations that had not been done, and likewise, we know
of a number of optimizations that have not yet been applied
to VAX sccurity kernel because of limited devclopment re-
sources.

8 History of the Project

The idea of a virtual-machine monitor security kernel for the
VAX, similar in concept to KVM/370, was first conccived
by Paul Karger and Steve Lipner in a Mexican restaurant in
Palo Alto, CA, immediately after the 1981 Symposium on
Security and Privacy. An injtial design study [17] concluded
in 1982 that such a security kernel would be practical for the
VAX architecture.

The security kernel was initially prototyped on a VAX-
11/730 system. The VAX-11/730 CPU [34] was particularly
attractive because it was vertically microprogrammed, and
its microcode was executed from a writeable control store



(WCS) that could be reloaded from magnetic tape cassettes.
This environment was ideal for experimenting with alternate
microcode extensions to the VAX architecture, although the
CPU itself was quite slow.

The VMS operating system first successfully booted in a
virtual machine on 19 July 1984. That version of the security
kernel was a research prototype and was not a production-
quality system. It was cxiremcly slow (duc in part to the
choice of the VAX-11/730 and in part to the initial soft-
ware design that emphasized quick development and exten-
sive self-checking, but not performance), and its user inter-
face was extremely crude.

Once the VMM security kernel prototype was running re-
liably on the VAX-11/730 and we had accomplished some
performance tuning (that improved system performance by
at least an order of magnitude), we then began investiga-
tion of what a production-quality version would be like. The
extensions to the VAX architecture were re-implemented on
the VAX 8800 family of CPUs to provide a high-performance
base for the system. Like the VAX-11/730, the VAX 8800
CPU [24] runs its microcode from a writeable control store
(WCS), so modifications were possible. The VAX 8800 mi-
crocode is organized horizontally, rather than vertically, and
the microcode is pipelined, so the actual implementation of
the extensions was much more complex than for the VAX-
11/730.

Going from the research prototype to the practical version
also gave us the opportunity to revisit a number of design
decisions. In particular, the extensions to the VAX arch-
itecture to support virtualization were simplified, in part
due fo the limited availability of microcode memory in the
VAX 8800. A performance study of the VAX security ker-
nel prototype revealed that some of our architectural exten-
sions did not provide the expected performance gains, while
other extensions would be more valuable. For example, the
prototype design included complex microcode assistance for
delivering exceptions and interrupts to the virtual machines,
but these microcode assists proved not to be useful, and a
much simpler scheme was implemented for the VAX 8800.
Similarly, performance measurements of the prototype re-
vealed that VAX operating systems (and VMS in particular)
use the MTPR instruction to change their interrupt priority
level (IPL) much more frequently than anyone had expected.
Thercfore, the software was changed to optimize this particu-
lar path, and microcode assistance was considered, although
not implemented in this version.

The move to the production-quality kernel also marked
the development of such features as user and system man-
agement interfaces, auditing, and error logging. The proto-
type kernel, as a research kernel, had no necd of such tools,
but a real Al systcm must have them, so that the end users
can manage and reliably run real applications on the system.

By January 1988, the kernel was sufficiently stable that
some engineers could begin doing their development work on
a VM. Also in January 1988, the first VAX security kernel
was installed outside the kernel development group. That
system was installed in the European ULTRIX Enginecr-
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ing Group in Reading, England for porting the ULTRIX-32
operating system to a virtual machine. ULTRIX 32 first
booted in a virtual machine on 15 February 1988, only two
months after detailed design for the port began, and less
than one month after a working VAX security kernel system
was available for usc in Reading.

By August 1988, VAX security kernel builds were being
done on virtual machines, and by early 1989, esscntially all
software development work was being done on the kernel.
By Spring of 1989, the kernel was sufficiently stable that
the VAX 8800 that had been running a conventional VMS
time sharing systcm for the kernel developers was released
for other purposes.

9 Conclusions

The VAX security kernel is a working, production-quality
VMM security kernel with performance sufficient to support
a large number of time-sharing users. It is sufficiently fast
and stable that it supports its own development team. It
supports vast amounts of existing user software that has becn
written for both the VMS and the ULTRIX-32 opcrating
systems, and it supports both operating systems running
simultaneously on the same CPU. VAX security kernel is
currently (as of February 1990) in the Design Analysis Phase
with the National Computer Security Center (NCSC) for an
Al rating. As a research project in what is required to build
a practical security kernel, it has been a major success.

The development of VAX security kernel has becn long
and arduous, and we have learned a number of lessons dur-
ing that time. Performance of a security kernel is extremely
important, and getting good performance is very hard. It
requires detailed analysis of what portions of the kernel are
performance-critical and a willingness to redesign those por-
tions for performance and possibly re-code them in assembly
language or to provide microcode performance assistance.

Building the system twice, once as a research prototype
and once as a research study of a production-quality systcm,
was extremely valuable. The second time around, we were
able to apply some of the performance lessons learncd by
adjusting our microcode assistance, and we developed the
user and management interfaces that are essential in a rcal
system.

Devceloping a system to Al standards is very hard work.
Some of the A1 requirements can directly conflict with per-
formance and usability goals, and the testing and rcview
requirements are very time consuming. Furthermore, the
export controls imposed on A1l systems can seriously reduce
the potential market for a system, making it difficult to re-
cover the costs in achieving the Al rating. On the other
hand, the discipline required to meet Al requircments dcfi-
nitcly improves overall software quality and reliability.
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