
Synthesis� An E�cient Implementation

of Fundamental Operating System Services

Henry Massalin

Submitted in partial ful�llment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences�

Columbia University

����

c� Henry Massalin ����

ALL RIGHTS RESERVED

Synthesis� An E�cient Implementation

of Fundamental Operating System Services

Henry Massalin

Abstract

This dissertation shows that operating systems can provide fundamental services

an order of magnitude more e�ciently than traditional implementations� It describes the

implementation of a new operating system kernel� Synthesis� that achieves this level of

performance�

The Synthesis kernel combines several new techniques to provide high performance

without sacri�cing the expressive power or security of the system� The new ideas include	

� Run�time code synthesis
 a systematic way of creating executable machine code

at runtime to optimize frequently�used kernel routines
 queues� bu�ers� context

switchers� interrupt handlers� and system call dispatchers
 for speci�c situations�

greatly reducing their execution time�

� Fine�grain scheduling
 a new process�scheduling technique based on the idea of

feedback that performs frequent scheduling actions and policy adjustments
at sub�

millisecond intervals� resulting in an adaptive� self�tuning system that can support

real�time data streams�

� Lock�free optimistic synchronization is shown to be a practical� e�cient alternative to

lock�based synchronization methods for the implementation of multiprocessor operat�

ing system kernels�

� An extensible kernel design that provides for simple expansion to support new kernel

services and hardware devices while allowing a tight coupling between the kernel and

the applications� blurring the distinction between user and kernel services�

The result is a signi�cant performance improvement over traditional operating system im�

plementations in addition to providing new services�

Contents

Table of Contents i

List of Figures v

List of Tables vii

� Introduction �

��� Purpose �
��� History and Motivation �
��� Synthesis Overview �

����� Kernel Structure �
����� Implementation Ideas �
����� Implementation Language �
����� Target Hardware �
����� Unix Emulator �

� Previous Work ��

��� Overview ��
��� The Tradeo� Between Throughput and Latency � � � � � � � � � � � � � � � � ��
��� Kernel Structure ��

����� The Trend from Monolithic to Di�use � � � � � � � � � � � � � � � � � ��
����� Services and Interfaces ��
����� Managing Diverse Types of I�O ��
����� Managing Processes ��

� Kernel Code Generator ��

��� Fundamentals ��
��� Methods of Runtime Code Generation ��

����� Factoring Invariants ��
����� Collapsing Layers ��
����� Executable Data Structures ��
����� Performance Gains ��

��� Uses of Code Synthesis in the Kernel ��
����� Bu�ers and Queues ��

i

����� Context Switches ��
����� Interrupt Handling ��
����� System Calls ��

��� Other Issues ��
����� Kernel Size ��
����� Protecting Synthesized Code ��
����� Non�coherent Instruction Cache ��

��� Summary ��

� Kernel Structure ��

��� Quajects ��
����� Quaject Interfaces ��
����� Creating and Destroying Quajects ��
����� Resolving References ��
����� Building Services ��
����� Summary ��

��� Procedure�Based Kernel ��
����� Calling Kernel Procedures ��
����� Protection ��
����� Dynamic Linking ��

��� Threads of Execution ��
����� Execution Modes ��
����� Thread Operations ��
����� Scheduling ��

��� Input and Output ��
����� Producer�Consumer ��
����� Hardware Devices ��

��� Virtual Memory ��
��� Summary ��

� Concurrency and Synchronization ��

��� Synchronization in OS Kernels ��
����� Disabling Interrupts ��
����� Locking Synchronization Methods ��
����� Lock�Free Synchronization Methods � � � � � � � � � � � � � � � � � � ��
����� Synthesis Approach ��

��� Lock�Free Quajects ��
����� Simple Linked Lists ��
����� Stacks and Queues ��
����� General Linked Lists ��
����� Lock�Free Synchronization Overhead � � � � � � � � � � � � � � � � � � ��

��� Threads ��
����� Scheduling and Dispatching ��
����� Thread Operations ��
����� Cost of Thread Operations ��

ii

��� Summary ��

� Fine	Grain Scheduling
�

��� Scheduling Policies and Mechanisms ��
��� Principles of Feedback ��

����� Hardware Phase Locked Loop ��
����� Software Feedback ��
����� FLL Example ��
����� Application Domains ��

��� Uses of Feedback in Synthesis ���
����� Real�Time Signal Processing ���
����� Rhythm Tracking and The Automatic Drummer � � � � � � � � � � � ���
����� Digital Oversampling Filter ���
����� Discussion ���

��� Other Applications ���
����� Clocks ���
����� Real�Time Scheduling ���
����� Multiprocessor and Distributed Scheduling � � � � � � � � � � � � � � ���

��� Summary ���

� Measurements and Evaluation ��

��� Measurement Environment ���
����� Hardware ���
����� Software ���

��� User�Level Measurements ���
����� Comparing Synthesis with SUNOS ��� � � � � � � � � � � � � � � � � � ���
����� Comparing Window Systems ���

��� Detailed Measurements ���
����� File and Device I�O ���
����� Virtual Memory ���
����� Window System ���
����� Other Figures ���

��� Experience ���
����� Assembly Language ���
����� Porting Synthesis to the Sony NEWS Workstation � � � � � � � � � � ���
����� Architecture Support ���

��� Other Opinions ���

� Conclusion ��

Bibliography ���

A Unix Emulator Test Programs ���

iii

List of Figures

��� Hand�crafted assembler implementation of a bu�er � � � � � � � � � � � � � � ��
��� Better bu�er implementation using code synthesis � � � � � � � � � � � � � � ��
��� Context Switch ��
��� Thread Context ��
��� Synthesized Code for Sound Interrupt Processing � CD Active � � � � � � � ��
��� Sound Interrupt Processing� Hand�Assembler � � � � � � � � � � � � � � � � � ��
��� Sound Interrupt Processing� C Code ��
��� User�to�Kernel Procedure Call ��

��� Queue Quaject ��
��� Blocking write ��
��� Non�blocking write ��

��� Atomic Update of Single�Word Data ��
��� De�nition of Compare�and�Swap ��
��� De�nition of Double�Word Compare�and�Swap � � � � � � � � � � � � � � � � ��
��� Insert and Delete at Head of Singly�Linked List � � � � � � � � � � � � � � � � ��
��� Stack Push and Pop ��
��� Queue Put and Get ��
��� Linked List Traversal ��
��� Lock�Free Delete from Head of Singly�Linked List � � � � � � � � � � � � � � � ��
��� Locked Delete from Head of Singly�Linked List � � � � � � � � � � � � � � � � ��
���� Thread State Transition Diagram ��

��� PLL Picture ��
��� Relationship between ILL and FLL ��
��� General FLL ��
��� Low�pass Filter ��
��� Integrator Filter ��
��� Derivative Filter ��
��� Program to Play a CD ���
��� Two Processors� Static Scheduling ���
��� Two Processors� Fine�Grain Scheduling ���

v

A�� Test �	 Compute ���
A�� Test �� �� and �	 Read�Write to a Pipe ���
A�� Test � and �	 Opening and Closing ���
A�� Test �	 Read�Write to a File ���

vi

List of Tables

��� Overhead of Various System Calls� Unix Release ���C � � � � � � � � � � � � ��
��� Overhead of Various System Calls� Mach ��

��� CPU Cycles for Bu�er�Put ��
��� Comparison of C�Language �stdio� Libraries � � � � � � � � � � � � � � � � � ��
��� Cost of Thread Scheduling and Context Switch � � � � � � � � � � � � � � � � ��
��� Processing Time for Sound�IO Interrupts ��
��� Cost of Null System Call ��
��� Kernel Memory Requirements ��

��� List of Basic Quajects ��
��� Interface to I�O Quajects ��
��� Interface to other Kernel Quajects ��
��� Interface to Device Quajects ��

��� Comparison of Di�erent Synchronization Methods � � � � � � � � � � � � � � ��
��� Thread operations ��
��� Overhead of Thread Scheduling and Context Switch � � � � � � � � � � � � � ��

��� Measured Unix System Calls
in seconds� ���
��� Time to �cat �etc�termcap� to a ����� TTY window � � � � � � � � � � � � � ���
��� File and Device I�O
in microseconds� ���
��� Low�level Memory Management Overhead
Page Size � �KB� � � � � � � � � ���
��� Selected Window System Operations ���

vii

Acknowledgements

Many people contributed to making this research e�ort a success�

First and foremost� I want to thank my advisor� Calton Pu� He was instrumental in

bringing this thesis to fruition� He helped clarify the ideas buried in my �collection of fast

assembly�language routines�� and his dedication through di�cult times encouraged me to

keep pushing forward� Without him� this dissertation would not exist�

I am also greatly indebted to the other members of my committee	 Dan Duchamp�

Bob Sproull� Sal Stolfo� and John Zahorjan� Their valuable insight and timely suggestions

helped speed this dissertation to completion�

My sincerest appreciation and deepest �Qua��s go to Renate Valencia� Her unsel�sh

love and a�ection and incredible amount of emotional support helped me through some of

my darkest hours here at Columbia and gave me the courage to continue on� Thanks also

to Matthew� her son� for letting me borrow Goofymeyer� his stu�ed dog�

Many other friends in many places have helped in many ways� I am grateful to Emilie

Dao for her generous help and support trying to help me understand myself and for the

fun times we had together� to John Underko er and Clea Waite for their ear in times of

personal uncertainty� to Mike Hawley and Olin Shivers� for their interesting conversation�

rich ideas� and untiring willingness to �look at a few more sentences�� to Ken Phillips� for

the thoughts we shared over countless cups of co�ee� to Mort Meyerson� whose generosity

in those �nal days helped to dissipate some of the pressure� to Brewster Kahle� who always

has a ready ear and a warm hug to o�er� to Domenic Frontiere and family� who are some of

the most hospitable people I know� and to all my friends at Cooper Union� who made my

undergrad and teaching years there so enjoyable�

I also wish to thank Ming�Chao Chiang� Tom Matthews� and Tim Jones� the project

students who worked so hard on parts of the Synthesis system� Thanks also go to all the

people in the administrative o�ces� particularly Germaine� who made sure all the paperwork

!owed smoothly between the various o�ces and who helped schedule my thesis defense on

record short notice� I particularly want to thank my friends here at Columbia
 Cli�

Beshers� Shu�Wie Chen� Ashutosh Dutta� Edward Hee� John Ioannidis� Paul Kanevsky�

Fred Korz� David Kurlander� Jong Lim� James Tanis� and George Wolberg� to name just a

ix

few� The countless dinners� good times� and piggy�back rides we shared helped make my

stay here that much more enjoyable�

I also wish to extend special thanks to the people at the University of Washington�

especially Ed Lazowska� Hank Levy� Ed Felten� David Keppel
a�k�a� Pardo�� Dylan Mc�

Namee� and Raj Vaswani� whose boundless energy and happiness always gave me something

to look forward to when visiting Seattle or traveling to conferences and workshops� Special

thanks to Raj� Dylan� Ed Felten and Jan and Denny Prichard� for creating that �carry� tee

shirt and making me feel special� and to Lauren Bricker� Denise Draper� and John Zahorjan

for piggy�back rides of unparalleled quality and length�

Thanks goes to Sony corporation for the use of their machine� to Motorola for sup�

plying most of the parts used to build my computer� the Quamachine� and to Burr Brown

for their generous donation of digital audio chips�

And �nally� I want to thank my family� whose patience endured solidly to the end�

Thanks to my mother and father� who always welcomed me home even when I was too busy

to talk to them� Thanks� too� to my sister Lucy� sometimes the only person with whom I

could share my feelings� and to my brother� Peter� who is always challenging me to a bicycle

ride�

In appreciation� I o�er to all a warm� heartfelt

� Qua� �

x

�

�

Introduction

I must Create a System� or be enslav�d by another Man�s�

I will not Reason and Compare� my business is to Create�

� William Blake Jerusalem

��� Purpose

This dissertation shows that operating systems can provide fundamental services

an order of magnitude more e�ciently than traditional implementations� It describes the

implementation of a new operating system kernel� Synthesis� that achieves this level of

performance�

The Synthesis kernel combines several new techniques to provide high performance

without sacri�cing the expressive power or security of the system� The new ideas include	

� Run�time code synthesis
 a systematic way of creating executable machine code

at runtime to optimize frequently�used kernel routines
 queues� bu�ers� context

switchers� interrupt handlers� and system call dispatchers
 for speci�c situations�

greatly reducing their execution time�

�

� Fine�grain scheduling
 a new process�scheduling technique based on the idea of

feedback that performs frequent scheduling actions and policy adjustments
at sub�

millisecond intervals� resulting in an adaptive� self�tuning system that can support

real�time data streams�

� Lock�free optimistic synchronization is shown to be a practical� e�cient alternative to

lock�based synchronization methods for the implementation of multiprocessor operat�

ing system kernels�

� An extensible kernel design that provides for simple expansion to support new kernel

services and hardware devices while allowing a tight coupling between the kernel and

the applications� blurring the distinction between user and kernel services�

The result is a signi�cant performance improvement over traditional operating system im�

plementations in addition to providing new services�

The text is structured as follows	 The remainder of this chapter summarizes the

project� It begins with a brief history� showing how my dissatisfaction with the performance

of computer software led me to do this research� It ends with an overview of the Synthesis

kernel and the hardware it runs on� The intent is to establish context for the remaining

chapters and reduce the need for forward references in the text�

Chapter � examines the design decisions and tradeo�s in existing operating systems�

It puts forth arguments telling why I believe some of these decisions and tradeo�s should

be reconsidered� and points out how Synthesis addresses the issues�

The next four chapters present the new implementation techniques� Chapter � ex�

plains run�time kernel code synthesis� Chapter � describes the structure of the Synthesis

kernel� Chapter � explains the lock�free data structures and algorithms used in Synthe�

sis� Chapter � talks about �ne�grain scheduling� Each chapter includes measurements that

prove the e�ectiveness of each idea�

Application�level measurements of the system as a whole and comparisons with other

systems are found in chapter �� The dissertation closes with chapter �� which contains

conclusions and directions for further work�

�

��� History and Motivation

This section gives a brief history of the Synthesis project� By giving the reader a

glimpse of what was going through my mind while doing this research� I establish context

and make the new ideas easier to grasp by showing the motivation behind them�

� � �

In ����� the �rst Unix�based workstations were being introduced� I was unhappy
with the performance of computers of that day� particularly that of workstations relative

to what DOS�based PCs could deliver� Among other things� I found it hard to believe that

the workstations could not drive even one serial line at a full ������ baud
 approximately

���� characters per second�� I remember asking myself and others	 �There is a full half�

millisecond time between characters� What could the operating system possibly be doing

for that long"� No one had a clear answer� Even at the relatively slow machine speed of

that day
 approximately one million machine instructions per second
 the processor

could execute ��� machine instructions in the time a character was transmitted� I could

not understand why ��� instructions were not su�cient to read a character from a queue

and have it available to write to the device�s control register by the time the previous one

had been transmitted�

That summer� I decided to try building a small computer system and writing some

operating systems software� I thought it would be fun� and I wanted to see how far I could

get� I teamed up with a fellow student� James Arleth� and together we built the precursor

of what was later to become an experimental machine known as the Quamachine� It was a

two�processor machine based on the ����� CPU #�$� but designed in such a way that it could

be split into two independently�operating halves� so we each would have a computer to take

with us after we graduated� Jim did most of the hardware design while I concentrated on

software�

The �rst version of the software #��$ consisted of drivers for the machine�s serial

ports and ��bit analog I�O ports� a simple multi�tasker� and an unusual debug monitor that

included a rudimentary C�language compiler�interpreter as its front end� It was quite small

�This is still true today despite an order�of�magnitude speed increase in the processor hardware� and
attests to a comparable increase in operating system overhead� Speci�cally� the Sony NEWS ���	 worksta�
tion� running release
�	 of Sony�s version of UNIX� places a software limit of ��		 baud on the machine�s
serial lines� If I force the line to go faster through the use of kernel hackery� the operating system loses data
each time a burst longer than about
		 characters arrives at high speed�

�

 everything �t into the machine�s �� kilobyte ROM� and ran comfortably in its �� kilobyte

RAM� And it did drive the serial ports at ������ baud� Not just one� but all four of them�

concurrently� Even though it lacked many fundamental services� such as a �lesystem� and

could not be considered a �real� operating system in the sense of Unix� it was the precursor

of the Synthesis kernel� though I did not know it at the time�

After entering the PhD program at Columbia in the fall of ����� I continued to

develop the system in my spare time� improving both the hardware and the software� and

also experimenting with other interests
 electronic music and signal processing� During

this time� the CPU was upgraded several times as Motorola released new processors in the

����� family� Currently� the Quamachine uses a ����� processor rated for �� MHz� but

running at ��MHz� thanks to a homebrew clock circuit� special memory decoding tricks� a

higher�than�spec operating voltage� and an ice�cube to cool the processor�

But as the software was !eshed out with more features and new services� it became

slower� Each new service required new code and data structures that often interacted with

other� unrelated� services� slowing them down� I saw my system slowly acquiring the ills of

Unix� going down the same road to ine�ciency� This gave me insight into the ine�ciency

of Unix� I noticed that� often� the mere presence of a feature or capability incurs some cost�

even when not being used� For example� as the number of services and options multiply�

extra code is required to select from among them� and to check for possible interference

between them� This code does no useful work processing the application�s data� yet it adds

overhead to each and every call�

Suddenly� I had a glimmer of an idea of how to prevent this ine�ciency from creeping

into my system	 runtime code generation� All along I had been using a monitor program

with a C�language front end as my �shell�� I could install and remove services as needed� so

that no service would impose its overhead until it was used� I thought that perhaps there

might be a way to automate the process� so that the correct code would be created and

installed each time a service was used� and automatically removed when it was no longer

needed� This is how the concept of creating code at runtime came to be� I hoped that this

could provide relief from the ine�ciencies that plague other full�featured operating systems�

I was dabbling with these ideas� still in my spare time� when Calton Pu joined the

faculty at Columbia as I was entering my third year� I went to speak with him since I

was still unsure of my research plans and looking for a new advisor� Calton brought with

him some interesting research problems� among them the e�cient implementation of object�

�

based systems� He had labored through his dissertation and knew where the problems were�

Looking at my system� he thought that my ideas might solve that problem one day� and

encouraged me to forge ahead�

The project took shape toward the end of that semester� Calton had gone home for

Christmas� and came back with the name Synthesis� chosen for the main idea	 run�time

kernel code synthesis� He helped package the ideas into a coherent set of concepts� and we

wrote our �rst paper in February of �����

I knew then what the topic of my dissertation would be� I started mapping out

the structure of the basic services and slowly restructured the kernel to use code synthesis

throughout� Every operation was subject to intense scrutiny� I recall the joy felt the day

I discovered how to perform a �putchar�
place character into bu�er� operation in four

machine instructions rather than the �ve I had been using
or eight� using the common C�

language macro�� After all� �putchar� is a common operation� and I found it both satisfying

and amusing that eliminating one machine instruction resulted in a �% overall gain in

performance for some of my music applications� I continued experimenting with electronic

music� which by then had become more than a hobby� and� as shown in section ���� o�ered

a convincing demonstration that Synthesis did deliver the kind of performance claimed�

Over time� this type of semi�playful� semi�serious work toward a fully functional

kernel inspired the other features in Synthesis
 �ne�grained scheduling� lock�free synchro�

nization� and the kernel structure�

Fine�grained scheduling was inspired by work in music and signal�processing� The

early kernel�s scheduler often needed tweaking in order to get a new music synthesis program

to run in real�time� While early Synthesis was fast enough to make real�time signal process�

ing possible by handling interrupts and context switches e�ciently� it lacked a guarantee

that real�time tasks got su�cient CPU as the machine load increased� I had considered

the use of task priorities in scheduling� but decided against them� partly because of the

programming e�ort involved� but mostly because I had observed other systems that used

priorities� and they did not seem to fully solve the problem� Instead� I got the idea that the

scheduler could deduce how much CPU time to give each stage of processing by measuring

the data accumulation at each stage� That is how �ne�grained scheduling was born� It

seemed easy enough to do� and a few days later I had it working�

The overall structure of the kernel was another idea developed over time� Initially�

the kernel was an ad�hoc mass of procedures� some of which created code� some of which

�

didn�t� Runtime code generation was not well understood� and I did not know the best

way to structure such a system� For each place in the kernel where code�synthesis would

be bene�cial� I wrote special code to do the job� But even though the kernel was lacking

in overall structure� I did not see that as negative� This was a period where freedom to

experiment led to valuable insights� and� as I found myself repeating certain things� an

overall structure gradually became clear�

Optimistic synchronization was a result of these experiments� I had started writing

the kernel using disabled interrupts to implement critical sections� as is usually done in

other single�processor operating systems� But the limitations of this method were soon

brought out in my real�time signal processing work� which depends on the timely servicing

of frequent interrupts� and therefore cannot run in a system that disables interrupts for too

long� I therefore looked for alternatives to inter�process synchronization� I observed that in

many cases� such as in a single�producer�single�consumer queue� the producer and consumer

interact only when the queue is full or empty� During other times� they each work on di�er�

ent parts of the queue� and can do so independently� without synchronization� My interest

in this area was further piqued when I read about the �Compare�and�Swap� instructions

on the ����� processor� which allows concurrent data structures to be implemented without

using locks�

��� Synthesis Overview

����� Kernel Structure

The Synthesis kernel is designed to support a real� full�featured operating system

with functionality on the level of Unix #��$ and Mach #�$� It is built out of many small�

independent modules called quajects� A quaject is an abstract data type
 a collection of

code and data with a well�de�ned interface that performs a speci�c function� The interface

encompasses not just the quaject�s entry points� but also all its external invocations� making

it possible to dynamically link quajects� thereby building up kernel services� Some examples

of quajects include various kinds of queues and bu�ers� threads� TTY input and output

editors� terminal emulators� and text and graphics windows�

All higher�level kernel services are created by instantiating and linking two or more

quajects through their interfaces� For example� a Unix�like TTY device is built using

�

the following quajects	 a raw serial device driver� two queues� an input editor� an output

format converter� and a system�call dispatcher� The wide choice of quajects and linkages

allows Synthesis to support a wide range of di�erent system interfaces at the user level� For

example� Synthesis includes a
partial� Unix emulator that runs some SUN�� binaries� At

the same time� a di�erent application might use a di�erent interface� for example� one that

supports asynchronous I�O�

����� Implementation Ideas

One of the ways Synthesis achieves order�of�magnitude gains in e�ciency is through

the technique of kernel code synthesis� Kernel code synthesis creates� on�the�!y� specialized

thus short and fast� kernel routines for speci�c situations� reducing the execution path

for frequently used kernel calls� For example� queue quajects have their bu�er and pointer

addresses hard�coded using self�relative addressing� thread quajects have their system�call

dispatch and context�switch code specially crafted to speed these operations� Section ���

illustrates the speci�c code created for these and other examples� This hard�coding elim�

inates indirection and reduces parameter passing� improving execution speed� Extensive

use of the processor�s self�relative addressing capability retains the bene�ts of relocatability

and easy sharing� Shared libraries of non�specialized code handle less�frequently occurring

cases and keep the memory requirements low� Chapter � explains this idea in detail and also

introduces the idea of executable data structures� which are highly e�cient �self�traversing�

structures�

Synthesis handles real�time data streams with �ne�grain scheduling� Fine�grain

scheduling measures process progress and performs frequent scheduling actions and pol�

icy adjustments at sub�millisecond intervals resulting in an adaptive� self�tuning system

usable in a real�time environment� This idea is explained in chapter �� and is illustrated

with various music�synthesizer and signal�processing applications� all of which run in real

time under Synthesis�

Finally� lock�free optimistic synchronization increases concurrency within the multi�

threaded synthesis kernel and enhances Synthesis support for multiprocessors� Synthesis

also includes a reentrant� optimistically�synchronized C�language runtime library suitable

for use in multi�threaded and multi�processor applications written in C�

�

����� Implementation Language

Synthesis is written in ����� macro assembly language� Despite its obvious !aws

the lack of portability and the di�culty of writing complex programs
 I chose assembler

because no higher�level language provides both e�cient execution and support for runtime

code�generation� I also felt that it would be an interesting experiment to write a medium�

size system in assembler� which allows unrestricted access to the machine�s architecture�

and perhaps discover new coding idioms that have not yet been captured in a higher�level

language� Section ����� reports on the experience�

A powerful macro facility helped minimize the di�culty of writing complex programs�

It also let me postpone making some di�cult system�wide design decisions� and let me easily

change them after they were made� For example� quaject de�nition is a declarative macro

in the language� The structure of this macro and the code it produced changed several

times during the course of system development� Even the object��le ��o� format is de�ned

entirely by source�code macros� not by the assembler itself� and allows for easy expansion

to accommodate new ideas�

����� Target Hardware

At the time of this writing� Synthesis runs on two machines	 the Quamachine and

the Sony NEWS ���� workstation�

The Quamachine is a home�brew� experimental ������based computer system de�

signed to aid systems research and measurement� Measurement facilities include an in�

struction counter� a memory reference counter� hardware program tracing� and an interval

timer with ���nanosecond resolution� As their names imply� the instruction counter keeps a

count of machine instructions executed by the processor� and the memory reference counter

keeps a count of memory references issued by the processor� The processor can operate at

any clock speed from � MHz up to �� MHz� Normally it runs at �� MHz� But by setting

the processor speed to �� MHz and introducing � wait�state into the memory access� the

Quamachine closely matches the performance characteristics of a the SUN������� allowing

direct measurements and comparisons with that machine and its operating system�

Other features of the Quamachine include ��� kilobytes of no�wait�state ROM that

holds the entire Synthesis kernel� monitor� and runtime libraries� ��
�
megabytes of no�wait�

state main memory� a �Kx�Kx��bit framebu�er with graphics co�processor� and audio I�O

�

devices	 stereo ���bit analog output� stereo ���bit analog input� and a compact disc
CD�

player digital interface�

The Sony NEWS ���� is a workstation with two ����� processors� It is a commercial�

ly available machine� making Synthesis potentially accessible to other interested researchers�

It has two processors� which� while not a large number� nevertheless demonstrates Synthe�

sis multiprocessor support� While its architecture is not symmetric
 one processor is the

main processor and the other is the I�O processor
 Synthesis treats it as if it were a

symmetric multiprocessor� scheduling tasks on either processor without preference� except

those that require something that is accessible from one processor and not the other�

����	 Unix Emulator

A partial Unix emulator runs on top of the Synthesis kernel and emulates certain

SUNOS kernel calls #��$� Although the emulator supports only a subset of the Unix system

calls
 time constraints have forced an �implement�as�the�need�arises� strategy
 the set

supported is su�ciently rich to provide many bene�ts� It helps with the problem of acquiring

application software for a new operating system by allowing the use of SUN�� binaries� It

further demonstrates the generality of Synthesis by setting the lower bound
 emulating a

widely used system� And� most important from the research point of view� it allows a direct

comparison between Synthesis and Unix� Section ����� presents measurements showing that

the Synthesis emulation of Unix is several times more e�cient than native Unix running

the same set of programs on comparable hardware�

��

�

Previous Work

If I have seen farther than others� it is because

I was standing on the shoulders of giants�

� Isaac Newton

If I have not seen as far as others� it is because

giants were standing on my shoulders�

� Hal Abelson

In computer science� we stand on each other�s feet�

� Brian K� Reid

��� Overview

This chapter sketches an overview of some of the classical goals of operating system

design and tells how existing designs have addressed them� This provides a background

against which the new techniques in Synthesis can be contrasted� I argue that some of the

classical goals need to be reconsidered in light of new requirements and point out the new

goals that have steered the design of Synthesis�

There are four areas in which Synthesis makes strong departures from classical de�

signs	 overall kernel structure� the pervasive use of run�time code generation� the man�

agement of concurrency and synchronization� and novel use of feedback mechanisms in

��

scheduling� The rest of this chapter discusses each of these four topics in turn� but �rst� it

is useful to consider some broad design issues�

��� The Tradeo� Between Throughput and Latency

The oldest goal in building operating systems has been to achieve high performance�

There are two common measures of performance	 throughput and latency� Throughput is a

measure of how much useful work is done per unit time� Latency is a measure of how long it

takes to �nish an individual piece of work� Traditionally� high performance meant increasing

the throughput
 performing the most work in the minimum time� But traditional ways

of increasing throughput also tend to increase latency�

The classic way of increasing throughput is by batching data into large chunks which

are then processed together� This way� the high overhead of initiating the processing is

amortized over a large quantity of data� But batching increases latency because data that

could otherwise be output instead sits in a bu�er� waiting while it �lls� causing delays� This

happens at all levels� The mainframe batch systems of the �����s made e�cient use of

machines� achieving high throughput but at the expense of intolerable latency for users and

grossly ine�cient use of people�s time� In the �����s� the shift toward timesharing operating

systems made for a slightly less e�cient use of the machine� but personal productivity was

enormously improved� However� calls to the operating system were expensive� which meant

that data had to be passed in big� bu�ered chunks in order to amortize the overhead�

This is still true today� For example� the Sony NEWS workstation� running Sony�s

version of Unix release ���C
a derivative of Berkeley Unix�� takes ��� microseconds to

write a single character to an I�O pipe connecting to another program� But writing ����

characters takes ��� microseconds
 a little more than twice the cost of writing a single

character� Looking at it another way� over ��� characters can be written in the time

taken by the invocation overhead� The reasons for using bu�ering are obvious� In fact�

Sony�s program libraries use larger� �����character bu�ers to further amortize the overhead

and increase throughput� Such large�scale bu�ering greatly increases latency and indeed

the general trend has been to parcel systems into big pieces that communicate with high

overhead� compounding the delays�

In light of these large overheads� it is interesting to examine the history of operating

system performance� paying particular attention to the important� low�level operations that

��

System Function Time for � char
�s� Time for ���� chars
�s�

Write to a pipe ��� ���

Write to a �le ��� ���

Read from a pipe ��� ���

Read from a �le ��� ���

System Function Time
�s�

Dispatch system call
getpid� ��

Context Switch ���

Sony NEWS ���� workstation� ����� processor� �	MHz� � w
s� Unix Release ���C�

Table ���	 Overhead of Various System Calls� Unix Release ���C

System Function Time for � char
�s� Time for ���� chars
�s�

Write to a pipe ��� ���

Write to a �le ��� ���

Read from a pipe ��� ���

Read from a �le ��� ���

System Function Time
�s�

Dispatch system call
getpid� ��

Context Switch ���

NeXT workstation� ����� processor� �	MHz� � w
s� Mach Release ����

Table ���	 Overhead of Various System Calls� Mach

��

are exercised often� such as context switch and system call dispatch� We �nd that operating

systems have historically exhibited large invocation overheads� Due to its popularity and

wide availability� Unix is one of the more�studied systems� and I use it here as a baseline

for performance comparisons�

In one study� Feder compares the evolution of Unix system performance over time

and over di�erent machines #��$� He studies the AT&T releases of Unix
 System � and

System �
 spanning a time period from the mid����s to late ���� and shows that Unix

performance had improved roughly ��% during this time� Among the measurements shown

is the time taken to execute the getpid
get process id� system call� This system call fetches

a tiny amount of information
one integer� from the kernel� and its speed is a good indicator

of the cost of the system call mechanism� For the VAX������� minicomputer� Feder reports

a time of ��� microseconds for getpid and ���� microseconds for context switch�

I have duplicated some of these experiments on the Sony NEWS workstation� a

machine of roughly �� times the performance of the VAX�������� Table ��� summarizes

the results�� On this machine� getpid takes �� microseconds� and a context switch takes

��� microseconds� These numbers suggest that� since ����� the performance of Unix has

remained relatively constant compared to the speed of the hardware�

A study done by Ousterhout #��$ shows that operating system speed has not kept

pace with hardware speed� The reasons he �nds are that memory bandwidth and disk speed

have not kept up with the dramatic increases in processor speed� Since operating systems

tend to make heavier use of these resources than the typical application� this has a negative

e�ect on operating system performance relative to how the processor�s speed is measured�

But I believe there are further reasons for the large overhead in existing systems�

As new applications demand more functionality� the tendency has been simply to layer on

more functions� This can slow down the whole system because often the mere existence of a

feature forces extra processing steps� regardless of whether that feature is being used or not�

New features often require extra code or more levels of indirection to select from among

them� Kernels become larger and more complicated� leading designers to restructure their

operating systems to manage the complexity and improve understandability and maintain�

ability� This restructuring� if not carefully done� can reduce performance by introducing

�Even though the Sony machine has two processors� one of them is dedicated exclusively to handling
device I�O and does not run any Unix code� This second processor does not a�ect the outcome of the tests�
which are designed to measure Unix system overhead� not device I�O capacity� The �le read and write
benchmarks were to an in�core �le system� There was no disk activity�

��

extra layers and overhead where there was none before�

For example� the Mach operating system o�ers a wide range of new features� such as

threads and !exible virtual memory management� all packaged in a small� modular� easy�to�

port kernel #�$� But it does not perform very well compared to Sony�sUnix� Table ��� shows

the results of the previous experiment� repeated under Mach on the NeXT machine� Both

the NeXT machine and the Sony workstation use the Motorola ����� processor� and both

run at ��MHz� All but one of the measurements show reduced performance compared to

Sony�s Unix� Crucial low�level functions� such as context switch and system call dispatch�

are two to three times slower in this version of Mach�

Another reason for the large overheads might be that invocation overhead per se

has not been subject to intense scrutiny� Designers tend to optimize the most frequently

occurring special cases in the services o�ered� while the cases most frequently used tend

to be those that were historically fast� since those are the ones people would have tended

to use more� This self�reinforcing loop has the e�ect of encouraging optimizations that

maintain the status quo with regard to relative performance� while eschewing optimizations

that may have less immediate payo� but hold the promise of greater eventual return� Since

large invocation overheads can usually be hidden with bu�ering� there has not been a large

impetus to optimize in this direction�

Instead of attacking the problem of high kernel overhead directly� performance prob�

lems are being solved with more bu�ering� applied in ever more ingenious ways to a wider

array of services� Look� for example� at recent advances in thread management� A number

of researchers begin with the premise that kernel thread operations are necessarily expen�

sive� and go on to describe the implementation of a user�level threads package #��$ #�$ #��$ #�$�

Since much of the work is now done at the user�level by subscheduling one or more kernel�

supplied threads� they can avoid many kernel invocations and their associated overhead�

But there is a tradeo�	 increased performance for operations at the user level come

with increased overhead and latency when communicating with the kernel� One reason is

that kernel calls no longer happen directly� but �rst go through the user�level code� Another

reason could be that optimizing kernel invocations are no longer deemed to be as impor�

tant� since they occur less often� For example� while Anderson reports order�of�magnitude

performance improvement for user�level thread operations on the DEC CVAX multipro�

cessor compared to the native Topaz kernel threads implementation� the cost of invoking

the kernel thread operations had been increased by a factor of � over Topaz threads #�$�

��

The factor of � is signi�cant because� ultimately� programs interact with the outside world

through kernel invocations� Increasing the overhead limits the rate at which a program can

invoke the kernel and therefore� interact with the outside world�

Taken to the limit� the things that remain fast are those local to an application�

those that can be done at user�level without invoking the kernel often� But in a world

of increasing interactions and communications between machines
 all of which require

kernel intervention
 I do not think this is a wise optimization strategy� Distributed

computing stresses the importance of low latency� both because throughput can actually

su�er if machines spend time waiting for each others� responses rather than doing work�

and because there are so many interactions with other machines that even a small delay in

each is magni�ed� leading to uneven response time to the user�

Improvement is clearly required to ensure consistent performance and controlled la�

tencies� particularly when processing richer media like interactive sound and video� For

example� in an application involving ��bit audio sampled at �KHz� using a �����byte bu�er

leads to a ����second delay per stage of processing� This is unacceptable for real�time�

interactive audio work� The basic system overhead must be reduced so that time�sensitive

applications can use smaller bu�ers� reducing latency while maintaining throughput� But

there is little room for revolutionary increases in performance when the fundamental oper�

ating system mechanisms� such as system call dispatch and context switch� are slow� and

furthermore� show no trend in becoming faster� In general� existing designs have not focused

on lower�level� low�overhead mechanisms� preferring instead to solve performance problems

with more bu�ering�

This dissertation shows that the unusual goal of providing high throughput with low

latency can be achieved� There are many factors in the design of Synthesis that accomplish

this result� which will be discussed at length in subsequent chapters� But let us now consider

four important aspects of the Synthesis design that depart from common precedents and

trends�

��

��� Kernel Structure

����� The Trend from Monolithic to Di
use

Early kernels tended to be large� isolated� monolithic structures that were hard to

maintain� IBM�s MVS is a classic example #��$� Unix initially embodied the �small is beau�

tiful� ideal #��$� It captured some of the most elegant ideas of its day in a kernel design that�

while still monolithic� was small� easy to understand and maintain� and provided a synergis�

tic� productive� and highly portable set of system tools� However� its subsequent evolution

and gradual accumulation of new services resulted in operating systems like System V and

Berkeley�s BSD ���� whose large� sprawling kernels hearken back to MVS�

These problems became apparent to several research teams� and a number of new

system projects intended to address the problem were begun� For example� recognizing the

need for clean� elegant services� the Mach group at CMU started with the BSD kernel and

factored services into user�level tasks� leaving behind a very small kernel of common� central

services #�$� Taking a di�erent approach� the Plan � group at AT&T Bell Laboratories

chose to carve the monolithic kernel into three sub�kernels� one for managing �les� one for

computation� and one for user interfaces #��$� Their idea is to more accurately and !exibly

�t the networks of heterogeneous machines that are common in large organizations today�

There are di�culties with all these approaches� In the case of Mach� the goal of

kernelizing the system by placing di�erent services into separate user�level tasks forces ad�

ditional parameter passing and context switches� adding overhead to every kernel invocation�

Communication between the pieces relies heavily on message passing and remote procedure

call� This adds considerable overhead despite the research that has gone into making them

fast #��$� While Mach has addressed the issues of monolithic design and maintainability�

it exacerbates the overhead and latency of system services� Plan � has chosen to focus on

a particular cut of the system	 large networks of machines� While it addresses the chosen

problem well and extends the productive virtues of Unix� its arrangement may not be as

suitable for other machine topologies or features� for example� the isolated workstation in a

private residence� or those with richer forms of input and output� such as sound and video�

which I believe will be common in the near future�

In a sense� kernelized systems can hide ugliness by partitioning it away� The kernel

alone is not useful without a great deal of a�liated user�level service� Many papers publish

numbers touting small kernel sizes but these hide the large amount of code that has been

��

moved to user�level services� Some people argue that the size of user�level services does not

count as much� because they are pageable and are not constrained to occupy real memory�

But I argue	 is it really a good idea to page out operating system services" This can only

result in increased latency and unpredictable response time�

In general� I agree that the di�usion of the kernel structure is a good idea but �nd

it unfortunate that current�generation kernelized systems tend to be slow� even in spite of

ongoing e�orts to make them faster� Perhaps people commonly accept that some loss of

performance is the inevitable result of partitioning� and are willing to su�er that loss in

return for greatly increased maintainability and extensibility�

My dissertation shows that this need not be the case	 Synthesis addresses the issues

of structuring and performance� Its quaject�based kernel structure keeps the modularity�

protection� and extensibility demanded of modern�day operating systems� At the same

time Synthesis delivers performance an order of magnitude better than existing systems�

as evidenced by the experiments in Chapter �� Its kernel services are subdivided into even

�ner chunks than kernelized systems like Mach� Any service can be composed of pieces that

run at either user� or kernel�level	 the distinction is blurred�

Synthesis breaks the batch�mode thinking that has led to systems that wait for all

the data to arrive before any subsequent processing is allowed to take place� when in fact

subsequent processing could proceed in parallel with the continuing arrival of data� Witness

a typical system�s handling of network packets	 the whole packet is received� bu�ered� and

checksummed before being handed over for further processing� when instead the address

�elds could be examined and lookups performed in parallel with the reception of the rest

of the packet� reducing packet handling latency� Some network gateways do this type of

cut�through routing for packet forwarding� But in a general�purpose operating system� the

high overhead of system calls and context switches in existing systems discourage this type

of thinking in preference to batching� By reconsidering the design� Synthesis compounds

the savings� Low�overhead system calls and context switches encourage frequent use to

better streamline processing and take advantage of the inherent parallelism achieved by a

pipeline� reducing overhead and latency even further�

��

����� Services and Interfaces

A good operating system provides numerous useful services to make applications

easy to write and easy to interconnect� To this end� it establishes conventions for packaging

applications so that formats and interfaces are reasonably well standardized� The conven�

tions encompass two forms	 the model� which refers to the set of abstractions that guide

the overall thinking and design� and the interface� which refers to the set of operations

supported and how they are invoked� Ideally� we want a simple model� a powerful interface�

and high performance� But these three are often at odds�

Witness the MVS I�O system� which has a complex model but o�ers a powerful

interface and high performance� Its numerous options o�er the bene�t of detailed� precise

control over each device� but with the drawback that even simple I�O requires complex

programming�

Unix is at the other end of the scale� Unix promoted the idea of encapsulating I�O

in terms of a single� simple abstraction� All common I�O is accomplished by reading or

writing a stream of bytes to a �le�like object� regardless of whether the I�O is meant to

be viewed on the the user�s terminal� stored as a �le on disk� or used as input to another

program� Treating I�O in a common manner o�ers great convenience and utility� It becomes

trivial to write and test a new program� viewing its output on the screen� Once the program

is working� the output can be sent to the intended �le on disk without changing a line of

code or recompiling�

But an oversimpli�ed model of I�O brings with it a loss of precise control� This loss

is not important for the great many Unix tools
 it is more than compensated by the

synergies of a diverse set of connectable programs� But other� more complex applications

such as a database management system
DBMS� require more detailed control over I�O #��$�

Minimally� for a DBMS to provide reasonable crash recovery� it must know when a write

operation has successfully �nished placing the data on disk� inUnix� a write only copies the

data to a kernel bu�er� movement of data from there to disk occurs later� asynchronously�

so in the event of an untimely crash� data waiting in the bu�ers will be lost� Furthermore�

a well�written DBMS has a good idea as to which areas of a �le are likely to be needed

in the future and its performance improves if this knowledge can be communicated to the

operating system� by contrast� Unix hides the details of kernel bu�ering� impeding such

optimizations in exchange for a simpler interface�

��

Later versions of Unix extended the model� making up some of the loss� but these

extensions were not �clean� in the sense of the original Unix design� They were added

piecemeal as the need arose� For example� ioctl
for I�O controls� and the select system

call help support out�of�band stream controls and non�blocking
polled� I�O� but these

solutions are neither general nor uniform� Furthermore� the granularity with which Unix

considers an operation ��non�blocking� is measured in tens of milliseconds� While this was

acceptable for the person�typing�on�a�terminal mode of user interaction of the early �����s�

it is clearly inappropriate for handling higher rate interactive data� such as sound and video�

Interactive games and real�time processing are two examples of areas where the classic

models are insu�cient� Unix and its variants have no asynchronous read� for example� that

would allow a program to monitor the keyboard while also updating the player�s screen�

A conceptually simple application to record a user�s typing along with its timing and later

play it back with the correct timing takes several pages of code to accomplish under Unix�

and then it cannot be done well enough if� say� instead of a keyboard we have a musical

instrument�

The newer systems� such as Mach� provide extensions and new capabilities but within

the framework of the same basic model� hence the problems persist� The result is that the

�ner aspects of stream control� of real�time processing� or of the handling of time�sensitive

data in general have not been satisfactorily addressed in existing systems�

����� Managing Diverse Types of I�O

The multiplexing of I�O and handling of the machine�s I�O devices is one of the three

most important functions of an operating system�
Managing the processor and memory are

the other two�� It is perhaps the most di�cult function to perform well� because there can

be many di�erent types of I�O devices� each with its own special features and requirements�

Existing systems handle diverse types of I�O devices by de�ning a few common

internal formats for I�O and mapping each device to the closest one� General�purpose

routines in the kernel then operate on each format� Unix� for example� has two major

internal formats� which they call �I�O models�	 the block model for disk�like devices and

the character model for terminal�like devices #��$�

But common formats force compromise� There is a performance penalty paid when

mismatches between the native device format and the internal format make translations

��

necessary� These translations can be expensive if the �distance� between the internal format

and a particular device is large� In addition� some functionality might be lost� because

common formats� however general� cannot capture everything� There could be some features

in a device that do not map well into the chosen format and those features become di�cult

if not impossible to access� Since operating systems tend to be structured around older

formats� chosen at time when the prevalent I�O devices were terminals and disks� it is not

surprising that they have di�culty handling the new rich media devices� such as music and

video�

Synthesis breaks this tradeo�� The quaject structuring of the kernel allows new I�O

formats to be created to suit the performance characteristics of unusual devices� Indeed� it

is not inconceivable that every device has its own format� specially tailored to precisely �t

its characteristics� Di�erences between a device format and what the application expects

are spanned using translation� as in existing systems� But unlike existing systems� where

translation is used to map into a common format� Synthesis maps directly from the device

format to the needs of the application� eliminating the intermediate� internal format and

its associated bu�ering and translation costs� This lets knowledgable applications use the

highly e�cient device�level interfaces when very high performance and detailed control are

of utmost importance� but also preserves the ability of any application to work with any

device� as in the Unix common�I�O approach� Since the code is runtime�generated for each

speci�c translation� performance is good� The e�cient emulation of Unix under Synthesis

bears witness to this�

����� Managing Processes

Managing the machine�s processors is the second important function of an operating

system� It involves two parts	 multiplexing the processors among the tasks� and controlling

task execution and querying its state� But in contrast to the many control and query

functions o�ered for I�O� existing operating systems provide only limited control over task

execution� For example� the Unix system call for this purpose� ptrace� works only between

a parent task and its children� It is archaic and terribly ine�cient� meant solely for use by

debuggers and apparently implemented as an afterthought� Mach threads� while supporting

some rudimentary calls� sometimes lacks desirable generality	 a Mach thread cannot suspend

itself� for example� and the thread controls do not work between threads in di�erent tasks�

��

In this sense� Mach threads only add parallelism to an existing abstraction
 the Unix

process
Mach does not develop the thread idea to its fullest potential� Both these systems

lack general functions to start� stop� query� and modify an arbitrary task�s execution without

arrangements having been made beforehand� for example� by starting the task from within

a debugger�

In contrast� Synthesis provides detailed thread control� comparable to the level of

control found for other operating system services� such as I�O� Section ����� lists the oper�

ations supported� which work between any pair of threads� even between unrelated threads

in di�erent address spaces and even on the kernel�s threads� if there is su�cient privilege�

Because of their exceptionally low overhead
 only ten to twenty times the cost of a null

procedure call
 they provide unprecedented data collection and measurement abilities and

unparalleled support for debuggers�

��

�

Kernel Code Generator

For� behold� I create new heavens and a new earth�

� The Bible� Isaiah

��� Fundamentals

Kernel code synthesis is the name given to the idea of creating executable machine

code at runtime as a means of improving operating system performance� This idea distin�

guishes Synthesis from all other operating systems research e�orts� and is what helps make

Synthesis e�cient�

Runtime code generation is the process of creating executable machine code during

program execution for use later during the same execution #��$� This is in contrast to the

usual way� where all the code that a program runs has been created at compile time� before

program execution starts� In the case of an operating system kernel like Synthesis� the

�program� is the operating system kernel� and the term �program execution� refers to the

kernel�s execution� which lasts from the time the system is started to the time it is shut

down�

There are performance bene�ts in doing runtime code generation because there is

more information available at runtime� Special code can be created based on the particular

��

data to be processed� rather than relying on general�purpose code that is slower� Runtime

code generation can extend the bene�ts of detailed compile�time analysis by allowing certain

data�dependent optimizations to be postponed to runtime� where they can be done more

e�ectively because there is more information about the data� We want to make the best

possible use of the information available at compile�time� and use runtime code generation

to optimize data�dependent execution�

The goal of runtime code generation can be stated simply	

Never evaluate something more than once�

For example� suppose that the expression �A � A ' A � B ' B � B� is to be evaluated

for many di�erent A while holding B � �� It is more e�cient to evaluate the reduced

expression obtained by replacing B with �	 �A �A'A'��� Finding opportunities for such

optimizations and performing them is the focus of this chapter�

The problem is one of knowing how soon we can know what value a variable has� and

how that information can be used to improve the program�s code� In the previous example�

if it can be deduced at compile time that B � �� then a good compiler can perform precisely

the reduction shown� But usually we can not know ahead of time what value a variable

will have� B might be the result of a long calculation whose value is hard if not impossible

to predict until the program is actually run� But when it is run� and we know B� runtime

code generation allows us to use the newly�acquired information to reduce the expression�

Speci�cally� we create specialized code once the value of B becomes known� using

an idea called partial evaluation #��$� Partial evaluation is the building of simpler� easier�

to�evaluate expressions from complex ones by substituting variables that have a known�

constant value with that constant� When two or more of these constants are combined

in an arithmetic or logical operation� or when one of the constants is an identity for the

operation� the operation can be eliminated� In the previous example� we no longer have to

compute B �B� since we know it is �� and we do not need to compute A �B� since we know

it is A�

There are strong parallels between runtime code generation and compiler code gen�

eration� and many of the ideas and terminology carry over from one to the other� Indeed�

anything that a compiler does to create executable code can also be performed at run�

time� But because compilation is an o��line process� there is usually less concern about

the cost of code generation and therefore one has a wider palette of techniques to choose

��

from� A compiler can a�ord to use powerful� time�consuming analysis methods and perform

sophisticated optimizations
 a luxury not always available at runtime�

Three optimizations are of special interest to us� not only because they are easy to

do� but because they are also e�ective in improving code quality� They are	 constant folding�

constant propagation� and procedure inlining� Constant folding replaces constant expressions

like � � � with the equivalent value� ��� Constant propagation replaces variables that have

known� constant value with that constant� For example� the fragment x � �� y � � � x

becomes x � �� y � � � � through constant propagation� � � � then becomes �� through

constant folding� Procedure inlining substitutes the body of a procedure� with its local

variables appropriately renamed to avoid con!icts� in place of its call�

There are three costs associated with runtime code generation	 creation cost� paid

each time a piece of code is created� execution cost� paid each time the code is used� and

management costs� to keep track of where the code is and how it is being used� The hope

is to use the information available at runtime to create better code than would otherwise

be possible� In order to win� the savings of using the runtime�created code must exceed the

cost of creating and managing that code� This means that for many applications� a fast

code generator that creates good code will be superior to a slow code generator that creates

excellent code�
The management problem is analogous to keeping track of ordinary� heap�

allocated data structures� and the costs are similar� so they will not be considered further��

Synthesis focuses on techniques for implementing very fast runtime code generation�

The goal is to broaden its applicability and extend its bene�ts� making it cheap enough so

that even expressions and procedures that are not re�used often still bene�t from having

their code custom�created at runtime� To this end� the places where runtime code generation

is used are limited to those where it is clear at compile time what the possible reductions

will be� The following paragraphs describe the idea� while the next section describes the

speci�c techniques�

A fast runtime code generator can be built by making full use of the information

available at compile time� In our example� we know at compile time that B will be held

constant� but we do not know what the constant will be� But we can predict at compile�time

what form the reduced expression will have	 A �A'C� �A'C�� Using this knowledge� we

can build a simple code generator for the expression that copies a code template representing

A � A ' C� � A ' C� into newly allocated memory and computes and �lls the constants	

C� � B and C� � B �B� A code template is a fragment of code which has been compiled

��

but contains �holes� for key values�

Optimizations to the runtime�created code can also be pre�computed� In this exam�

ple� interesting optimizations occur when B is �� �� or a power of two� Separate templates

for each of these cases allow the most e�cient code possible to be generated� The point is

that there is plenty of information available at compile time to allow not just simple sub�

stitution of variables by constants� but also interesting and useful optimizations to happen

at runtime with minimal analysis�

The general idea is	 treat runtime code generation as if it were just another �function�

to be optimized� and apply the idea of partial evaluation recursively� That is� just as in the

previous example we partially�evaluate the expression A �A'A �B'B �B with respect to

the variable held constant� we can partially�evaluate the optimizations with respect to the

parameters that the functions will be specialized under� with the result being specialized

code�generator functions�

Looking at a more complex example� suppose that the compiler knows� either through

static control�!ow analysis� or simply by the programmer telling it through some directives�

that the function f
p�� ���� � � � p� ' ��� will be specialized at runtime for constant p�� The

compiler can deduce that the expression ��p� will reduce to a constant� but it does not know

what particular value that constant will have� It can capture this knowledge in a custom

code generator for f that computes the value � � p� when p� becomes known and stores it

in the correct spot in the machine code of the specialized function f � bypassing the need for

analysis at runtime� In another example� consider the function g� g�p�� ���� � if�p�

� �	� S�
 else S�
� also to be specialized for constant parameter p�� Since parameter

p� will be constant� we know at compile time that the if statement will be either always

true� or always false� We just don�t know which� But again� we can create a specialized

generator for g� one that evaluates the conditional when it becomes known and emits either

S� or S� depending on the result�

The idea applies recursively� For example� once we have a code generator for a

particular kind of expression or statement� that same generator can be used each time

that kind of expression occurs� even if it is in a di�erent part of the program� Doing this

limits the proliferation of code generators and keeps the program size small� The resulting

runtime code generator has a hierarchical structure� with generators for the large functions

calling sub�generators to create the individual statements� which in turn call yet lower�level

generators� and so on� until at the bottom we have very simple generators that� for example�

��

move a constant into a machine register in the most e�cient way possible�

��� Methods of Runtime Code Generation

The three methods Synthesis uses to create machine code are	 factoring invariants�

collapsing layers� and executable data structures�

����� Factoring Invariants

The factoring invariants method is equivalent to partial evaluation where it is known

at compile time the variables over which a function will be partially evaluated� It is based on

the observation that a functional restriction is usually easier to calculate than the original

function� Consider a general function	

Fbig
p�� p�� � � � � pn��

If we know that parameter p� will be held constant over a set of invocations� we can factor

it out to obtain an equivalent composite function	

#F create
p��$
p�� � � � � pn� � Fbig
p�� p�� � � � � pn��

F create is a second�order function� Given the parameter p�� F create returns another function�

Fsmall� which is the restriction of Fbig that has absorbed the constant argument p�	

Fsmall
p�� � � � � pn� � Fbig
p�� p�� � � � � pn��

If F create is independent of global data� then for a given p�� F
create will always

compute the same Fsmall regardless of global state� This allows F
create
p�� to be evaluated

once and the resulting Fsmall used thereafter� If Fsmall is executed m times� generating and

using it pays o� when

Cost
F create� 'm � Cost
Fsmall� � m � Cost
Fbig��

As the �factoring invariants� name suggests� this method resembles the constant

propagation and constant folding optimizations done by compilers� The analogy is strong�

but the di�erence is also signi�cant� Constant folding eliminates static code and calcula�

tions� In addition� Factoring Invariants can also simplify dynamic data structure traversals

that depend on the constant parameter p��

��

For example� we can apply this idea to improve the performance of the read system

function� When reading a particular �le� constant parameters include the device that the

�le resides on� the address of the kernel bu�ers� and the process performing the read� We

can use �le open as F create� the Fsmall it generates becomes our read function� F create

consists of many small procedure templates� each of which knows how to generate code for

a basic operation such as �read disk block�� �process TTY input�� or �enqueue data�� The

parameters passed to F create determine which of these code�generating procedures are called

and in what order� The �nal Fsmall is created by �lling these templates with addresses of

the process table� device registers� and the like�

����� Collapsing Layers

The collapsing layers method is equivalent to procedure inlining where it is known

at compile time which procedures might be inlined� It is based on the observation that in a

layered design� separation between layers is a part of speci�cation� not implementation� In

other words� procedure calls and context switches between functional layers can be bypassed

at execution time� Let us consider an example from the layered OSI model	

Fbig
p�� p�� � � � � pn� � Fapplica
p�� Fpresent
p�� Fsession
� � �Fdatalnk
pn� � � �����

Fapplica is a function at the Application layer that calls successive lower layers to send a

message� Through in�line code substitution of Fpresent in Fapplica� we can obtain an equiva�

lent !at function by eliminating the procedure call from the Application to the Presentation

layer	

F
flat

applica
p�� p�� Fsession
� � ���� � Fapplica
p�� Fpresent
p�� Fsession
� � �����

The process to eliminate the procedure call can be embedded into two second�order

functions� F create
present returns code equivalent to Fpresent and suitable for in�line insertion�

F create
applica incorporates that code to generate F

flat

applica�

F create
applica
p�� F

create
present
p�� � � ��� F

flat

applica
p�� p�� � � ����

This technique is analogous to in�line code substitution for procedure calls in compiler code

generation� In addition to the elimination of procedure calls� the resulting code typically

exhibit opportunities for further optimization� such as Factoring Invariants and elimination

of data copying�

��

By induction� F create
present can eliminate the procedure call to the Session layer� and

down through all layers� When we execute F create
applica to establish a virtual circuit� the F

flat
applica

code used thereafter to send and receive messages may consist of only sequential code� The

performance gain analysis is similar to the one for factoring invariants�

����� Executable Data Structures

The executable data structures method reduces the traversal time of data structures

that are frequently traversed in a preferred way� It works by storing node�speci�c traversal

code along with the data in each node� making the data structure self�traversing�

Consider an active job queue managed by a simple round�robin scheduler� Each

element in the queue contains two short sequences of code	 stopjob and startjob� The

stopjob saves the registers and branches into the next job�s startjob routine
in the next

element in queue�� The startjob restores the new job�s registers� installs the address of its

own stopjob in the timer interrupt vector table� and resumes processing�

An interrupt causing a context switch will execute the current program�s stopjob�

which saves the current state and branches directly into the next job�s startjob� Note

that the scheduler has been taken out of the loop� It is the queue itself that does the

context switch� with a critical path on the order of ten machine instructions� The scheduler

intervenes only to insert and delete elements from the queue�

����� Performance Gains

Runtime code generation and partial evaluation can be thought of as a way of caching

frequently visited states� It is interesting to contrast this type of caching with the caching

that existing systems do using ordinary data structures� Generally� systems use data struc�

tures to capture state and remember expensive�to�compute values� For example� when a

�le is opened� a data structure is built to describe the �le� including its location on disk

and a pointer to the procedure to be used to read it� The read procedure interprets state

stored in the data structure to determine what work is to be done and how to do it�

In contrast� code synthesis encodes state directly into generated procedures� The

resulting performance gains extend beyond just saving the cost of interpreting a data struc�

ture� To see this� let us examine the performance gains obtained from hard�wiring a constant

directly into the code compared to fetching it from a data structure� Hardwiring embeds

��

char buf������ �bufp � 	buf���� �endp � 	buf�����

Put�c�

�bufp�� � c

if�bufp �� endp�

flush��

�

Put� �� �character is passed register d��
move�l �bufp��a� �� ��� Load buffer pointer into register a�
move�b d���a��� �� ��� Store the character and increment the a� register
move�l a���bufp� �� ��� Update the buffer pointer
cmp�l �endp��a� �� ��� Test for end�of�buffer
beq flush �� ��� if end� jump to flush routine
rts �� ��� otherwise return

Figure ���	 Hand�crafted assembler implementation of a bu�er

the constant in the instruction stream� so there is an immediate savings that comes from

eliminating one or two levels of indirection and obviating the need to pass the structure

pointer� These can be attributed to �saving the cost of interpretation�� But hardwiring also

opens up the possibility of further optimizations� such as constant folding� while fetching

from a data structure admits no such optimizations� Constant folding becomes possible be�

cause once it is known that a parameter will be� say� �� all pure functions of that parameter

will likewise be constant and can be evaluated once and the constant result used thereafter�

A similar !avor of optimization arises with IF�statements� In the code fragment �if�C�

S�
 else S�
�� where the conditional� C� depends only on constant parameters� the gen�

erated code will contain either S� or S�� never both� and no test� It is with this cascade

of optimization possibilities that code synthesis obtains its most signi�cant performance

gains� The following section illustrates some of the places in the kernel where runtime code

generation is used to advantage�

��� Uses of Code Synthesis in the Kernel

����� Bu
ers and Queues

Bu�ers and queues can be implemented more e�ciently with runtime code generation

than without�

��

Put� �� �character is passed register d��
move�l �P��a� �� Load buffer pointer into register a�
move�b d���a��D� �� Store the character
addq�w ����P��� �� Update the buffer pointer and test if reached end
beq flush �� ��� if end� jump to flush routine
rts �� ��� otherwise return

Figure ���	 Better bu�er implementation using code synthesis

Cold cache Warm cache

Code�synthesis
CPU cycles� �� ��

Hand�crafted assembly
CPU cycles� �� ��

Speedup ��� ���

����� CPU� �	MHz� �
wait
state main memory

Table ���	 CPU Cycles for Bu�er�Put

Figure ��� shows a good� hand�written ����� assembler implementation of a bu�er�

The C language code illustrates the intended function� while the ����� assembler code shows

the work involved� The work consists of	
�� loading the bu�er pointer into a machine

register�
�� storing the character in memory while incrementing the pointer register�
��

updating the bu�er pointer in memory� and
�� testing for the end�of�bu�er condition� This

fragment executes in �� machine cycles not counting the procedure call overhead�

Figure ��� shows the code�synthesis implementation of a bu�er� which is ��% faster�

Table ��� gives the actual measurements� The improvement comes from the elimination

of the cmp instruction� for a savings of � cycles� The code relies on the implicit test for

zero that occurs at the end of every arithmetic operation� Speci�cally� we arrange that

the lower �� bits of the pointer variable be zero when the end of bu�er is reached� so that

incrementing the pointer also implicitly tests for end�of�bu�er�

This is done for a general pointer as follows� The original bufp pointer is represented

as the sum of two quantities	 a pointer�like variable� P � and a constant displacement� D�

Their sum� P ' D� gives the current position in the bu�er� and takes the place of the

��

��� Executions of	 Execution time� seconds Size	 Bytes�Invocation

Unix �putchar� macro ���� user� ��� system ���

Synthesis �putchar� macro ���� user� ��� system ��

Synthesis �putchar� function ���� user� ��� system �

Table ���	 Comparison of C�Language �stdio� Libraries

original bufp pointer� The character is stored in the bu�er using the �move�b d	��a	�D��

instruction which is just as fast as a simple register�indirect store� The displacement� D� is

chosen so that when P 'D points to the end of the bu�er� P is � modulo ���� that is� the

least signi�cant �� bits of P are zero� The �addq�w ����P
��� instruction then increments

the lower �� bits of the bu�er pointer and also implicitly tests for end�of�bu�er� which is

indicated by a � result� For bu�er sizes greater than ��� bytes� the flush routine can

propagate the carry�out to the upper bits� !ushing the bu�er when the true end is reached�

This performance gain can only be had using runtime code generation� because D

must be a constant� embedded in the bu�er�s machine code� to take advantage of the

fast memory�reference instruction� Were D a variable� the loss of fetching its value and

indexing would o�set the gain from eliminating the compare instruction� The ��% savings

is signi�cant because bu�ers and queues are used often� Another advantage is improved

locality of reference	 code synthesis puts both code and data in the same page of memory�

increasing the likelihood of cache hits in the memory management unit�s address translation

cache�

Outside the kernel� the Synthesis implementation of the C�language I�O library�

�stdio�� uses code�synthesized bu�ers at the user level� In a simple experiment� I replaced

the Unix stdio library with the Synthesis version� I compiled and ran a simple test program

that invokes the putchar macro ten million times� using �rst the native Unix stdio library

supplied with the Sony NEWS workstation� and then the Synthesis version� Table ��� shows

the Synthesis macro version is ��� times faster� and over � times smaller� than the Unix

version�

The drastic reduction in code size comes about because code synthesis can take

advantage of the extra knowledge available at runtime to eliminate execution paths that

��

cannot be taken� The putchar operation� as de�ned in the C library� actually supports

three kinds of bu�ering	 block�bu�ered� line�bu�ered and unbu�ered� Even though only

one of these can be in e�ect at any one time� the C putchar macro must include code to

handle all of them� since it cannot know ahead of time which one will be used� In contrast�

code synthesis creates only the code handling the kind of bu�ering actually desired for the

particular �le being written to� Since putchar� being a macro� is expanded in�line every

time it appears in the source code� the savings accumulate rapidly�

Table ��� also shows that the Synthesis �putchar� function is slightly faster than

the Unix macro
 a dramatic result� that even incurring a procedure call overhead� code

synthesis still shows a speed advantage over conventional code in�lined with a macro�

����� Context Switches

One reason that context switches are expensive in traditional systems like Unix is

that they always save and restore the entire CPU context� even though that may not be

necessary� For example� a process that did not use !oating point since it was switched in does

not need to have its !oating�point registers saved when it is switched out� Another reason

is that saving context is often implemented as a two�step procedure	 the CPU registers are

�rst placed in a holding area� freeing them so they can be used to perform calculations and

traverse data structures to �nd out where the context was to have been put� and �nally

copying it there from the holding area�

A Synthesis context switch takes less time because only the part of the context being

used is preserved� not all of it� and because the critical path traversing the ready queue is

minimized with an executable data structure�

The �rst step is to know how much context to preserve� Context switches can happen

synchronously or asynchronously with thread execution� Asynchronous context switches are

the result of external events forcing preemption of the processor� for example� at the end

of a CPU quantum� Since they can happen at any time� it is hard to know in advance

how much context is being used� so we preserve all of it� Synchronous context switches�

on the other hand� happen as a result of the thread requesting them� for example� when

relinquishing the CPU to wait for an I�O operation to �nish� Since they occur in speci�c�

well�de�ned points in the thread�s execution� we can know exactly how much context will

be needed and therefore can arrange to preserve only that much� For example� suppose a

��

proc�
�
�

Save necessary context�
bsr swtch

res�

Restore necessary context�

�
�

swtch�
move�l �Current��a� �� ��� Get address of current thread�s TTE
move�l sp��a�� �� ��� Save its stack pointer
bsr find�next�thread �� ��� Find another thread to run
move�l a���Current� �� ��� Make that one current
move�l �a���sp �� ��� Load its stack pointer
rts �� ��� Go run it�

Figure ���	 Context Switch

read procedure needs to block and wait for I�O to �nish� Since it has already saved some

registers on the stack as part of the normal procedure�call mechanism� there is no need to

preserve them again as they will only be overwritten upon return�

Figure ��� illustrates the general idea� When a kernel thread executes code that

decides that it should block� it saves whatever context it wishes to preserve on the active

stack� It then calls the scheduler� swtch� doing so places the thread�s program counter on

the stack� At this point� the top of stack contains the address where the thread is to resume

execution when it unblocks� with the machine registers and the rest of the context below

that� In other words� the thread�s context has been reduced to a single register	 its stack

pointer� The scheduler stores the stack pointer into the thread�s control block� known as

the thread table entry
TTE�� which holds the thread state when it is not executing� It then

selects another thread to run� shown as a call to the find next thread procedure in the

�gure� but actually implemented as an executable data structure as discussed later� The

variable Current is updated to re!ect the new thread and its stack pointer is loaded into the

CPU� A return�from�subroutine
rts� instruction starts the thread running� It continues

where it had left o�
at label res�� where it pops the previously�saved state o� the stack

and proceeds with its work�

Figure ��� shows two TTEs� Each TTE contains code fragments that help with

context switching	 sw in and sw in mmu� which loads the processor state from the TTE� and

sw out� which stores processor state back into the TTE� These code fragments are created

specially for each thread� To switch in a thread for execution� the processor executes the

��

The integer registers

sw_out: movem.l <d0-a7>,(tt0.reg)
move.l %usp,a0
move.l a0,tt0.usp
jmp

sw_in_mmu:
pmove.q tt0.ptab,%crp

sw_in: move.l tt0.vbr,a0
move.l a0,%vbr
move.l tt0.usp,a0
move.l a0,%usp
movem.l (tt0.reg),<d0-a7>
rte

tt0.reg:

The floating-point registers

The user stack pointer

The vector tablett0.vbr:

tt0.usp:

tt0.fpr:

The integer registers

sw_out: movem.l <d0-a7>,(tt1.reg)
move.l %usp,a0
move.l a0,tt1.usp
jmp

sw_in_mmu:
pmove.q tt1.ptab,%crp

sw_in: move.l tt1.vbr,a0
move.l a0,%vbr
move.l tt1.usp,a0
move.l a0,%usp
movem.l (tt1.reg),<d0-a7>
rte

tt1.reg:

The floating-point registers

The user stack pointer

The vector tablett1.vbr:

tt1.usp:

tt1.fpr:

The page map tablett0.ptab: The page map tablett1.ptab:

Figure ���	 Thread Context

thread�s sw in or sw in mmu procedure� To switch out a thread� the processor executes the

thread�s sw out procedure�

Notice how the ready�to�run threads
waiting for CPU� are chained in an executable

circular queue� A jmp instruction at the end of the sw out procedure of the preceding thread

points to the sw in procedure of the following thread� Assume thread�� is currently running�

When its time quantum expires� the timer interrupt is vectored to thread���s sw out� This

procedure saves the CPU registers into thread���s register save area
TT	�reg�� The jmp

instruction then directs control !ow to one of two entry points of the next thread�s
thread���

context�switch�in procedure� sw in or sw in mmu� Control !ows to sw in mmu when a change

of address space is required� otherwise control !ows to sw in� The switch�in procedure then

��

Type of context switch Time
�s�

Integer registers only ����

Floating�point ��

Integer� change address space ��

Floating�point� change address space ��

Null procedure call
C language� ���

Sony NEWS� Unix ���

NeXT Machine� Mach ���

����� CPU� �	MHz� �
wait
state main memory� cold cache

Table ���	 Cost of Thread Scheduling and Context Switch

loads the CPU�s vector base register with the address of thread���s vector table� restores the

processor�s general registers� and resumes execution of thread��� The entire switch takes ����

microseconds to switch integer�only contexts between threads in the same address space� or

�� microseconds including the !oating point context and a change in address space��

Table ��� summarizes the time taken by the various types of context switches in

Synthesis� saving and restoring all the integer registers� These times include the hardware

interrupt service overhead
 they show the elapsed time from the execution of the last

instruction in the suspended thread to the �rst instruction in the next thread� Previously

published papers report somewhat lower �gures #��$ #��$� This is because they did not

include the interrupt�service overhead� and because of some extra overhead incurred in

handling the ����� !oating point unit on the Sony NEWS workstation that does not occur

on the Quamachine� as discussed later� For comparison� a call to a null procedure in the C

language takes ��� microseconds� and the SonyUnix context switch takes ��� microseconds�

�Previous papers incorrectly cite a �oating�point context switch time of �� �s �
�� ����� This error is
believed to have been caused by a bug in the Synthesis assembler� which incorrectly �lled the operand �eld
of the �oating�point move�multiple�registers instruction causing it to preserve just one register� instead of
all eight� Since very few Synthesis applications use �oating point� this bug remained undetected for a long
time�

��

In addition to reducing ready�queue traversal time� specialized context�switch code

enables further optimizations� to move only needed data� The previous paragraph already

touched on one of the optimizations	 bypassing the MMU address space switch when it

is not needed� The other optimizations occur in the handling of !oating point registers�

described now� and in the handling of interrupts� described in the next section�

Switching the !oating point context is expensive because of the large amount of state

that must be saved� The registers are �� bits wide� moving all eight registers requires ��

transfers of �� bits each� The ����� coprocessor compounds this cost� because each word

transferred requires two bus cycles	 one to fetch it from the coprocessor� and one to write

it to memory� The result is that it takes about �� microseconds just to save and restore the

hundred�plus bytes of information comprising the !oating point coprocessor state� This is

more than �ve times the cost of doing an entire context switch without the !oating point�

Since preserving !oating point context is so expensive� we use runtime tests to see

if !oating point had been used to avoid saving state that is not needed� Threads start

out assuming !oating point will not be used� and their context�switch code is created

without it� When context�switching out� the context�save code checks whether the !oating

point unit had been used� It does this using the fsave instruction of the Motorola �����

!oating point coprocessor� which saves only the internal microcode state of the !oating

point processor #��$� The saved state can be tested to see if it is not null� If so� the

user�visible !oating�point state is saved� and the context�switch code re�created to include

the !oating�point context in subsequent context switches� Since the majority of threads in

Synthesis do not use !oating point� the savings are signi�cant�

Unfortunately� after a thread executes its �rst !oating point instruction� !oating

point context will have to be preserved from that point on� even if no further !oating�point

instructions are issued� The context must be restored upon switch�in because a !oating

point instruction might be executed� The context must be saved upon switch�out even if

no !oating point instructions had been executed since switch�in because the ����� cannot

detect a lack of instruction execution� It can only tell us if its state is completely null� This

is bad because sometimes a thread may use !oating�point at �rst� for example� to initialize a

table� and then not again� But with the ������ we can only optimize the case when !oating

point is never used�

The Quamachine has hardware to alleviate the problem� Its !oating�point unit

 also a �����
 can be enabled and disabled by software command� allowing a lazy�

��

evaluation of !oating�point context switches� Switching in a thread for execution loads its

integer state and disables the !oating�point unit� When a thread executes its �rst !oating

point instruction since the switch� it takes an illegal instruction trap� The kernel then

loads the necessary state� �rst saving any prior state that may have been left there� re�

enables the !oating�point unit� and the thread resumes with the interrupted instruction�

The trap is taken only on the �rst !oating�point instruction following a switch� and adds

only � �s to the overhead of restoring the state� This is more than compensated for by

the other savings	 integer context�switch becomes ��� �s faster because there is no need for

an fsave instruction to test for possible !oating�point use� and even !oating�point threads

bene�t when they block without a !oating point instruction being issued since they were

switched in� saving the cost of restoring and then saving that context� Indeed� if only a

single thread is using !oating point� the !oating point context is never switched� remaining

in the coprocessor�

����� Interrupt Handling

A special case of context switching occurs in interrupt handling� Many systems� such

as Unix� perform a full context switch on each interrupt� For example� an examination of

the running Sony Unix kernel reveals that not only are all integer registers saved on each

interrupt� but the active portion of the !oating�point context as well� This is one of the

reasons that interrupt handling is expensive on a traditional system� and the reason why

the designers of those systems try hard to avoid frequent interrupts� As shown earlier�

preserving the !oating�point state can be very expensive� Doing so is super!uous unless

the interrupt handler uses !oating point� most do not�

Synthesis interrupt handling is faster because it saves and restores only the part of

the context that will be used by the service routine� not all of it� Code synthesis allows

partial context to be saved e�ciently� Since di�erent interrupt procedures use di�erent

amounts of context� we can not� in general� know how much context to preserve until the

interrupt is linked to its service procedure� Furthermore� it may be desirable to change

service procedures� for example� when changing or installing new I�O drivers in the running

kernel� Without code synthesis� we would have to save the union of all contexts used by all

procedures that could be called from the interrupt� slowing down all because of the needs

of a few�

��

Examples taken from the Synthesis Sound�IO device driver illustrate the ideas and

provide performance numbers� The Sound�IO device is a general�purpose� high�quality

audio input and output device with stereo� ���bit analog�to�digital and digital�to�analog

converters� and a direct�digital input channel from a CD player� This device interrupts the

processor once for every sound sample
 ����� times per second
 a very high number

by conventional measures� It is normally inconceivable to attach such high�rate interrupt

sources to the main processor� Sony Unix� for example� can service a maximum of ������

interrupts per second� and such a device could not be handled at all�� E�cient interrupt

handing is mandatory� and the rest of this section shows how Synthesis can service high

interrupt rates e�ciently�

Several bene�ts of runtime code generation combine to improve the e�ciency of

interrupt handing in Synthesis	 the use of the high�speed bu�ering code described in Sec�

tion ������ the ability to create interrupt routines that save and restore only the part of the

context being used� and the use of layer�collapsing to merge separate functions together�

Figure ��� shows the actual Synthesis code created to handle the Sound�IO interrupts

when only the CD�player is active� It begins by saving a single register� a	� since that is

the only one used� This is followed by the code for the speci�c sound I�O channels� in this

case� the CD�player� The code is similar to the fast bu�er described in ������ synthesized

to move data from the CD port directly into the user�s bu�er� If the other input sources

such as the A�to�D input� also become active� the interrupt routine is re�written� placing

their bu�er code immediately following the CD�player�s� The code ends by restoring the a	

register and returning from interrupt�

Figure ��� shows the best I have been able to achieve using hand�written assembly

language� without the use of code synthesis� Like the Synthesis version� this uses only a

single register� so we save and restore only that one�� But without code synthesis� we must

include code for all the Sound�IO sources
 CD� AD� and DA
 testing and branching

around the parts for the currently inactive channels� In addition� we can no longer use the

�The Sony workstation has two processors� one of which is dedicated to I�O� including servicing I�O
interrupts using a somewhat lighter�weight mechanism� They solve the overhead problem with specialized
processors � a trend that appears to be increasingly common� But this solution compounds latency� and
does not negate my point� which is that existing operating systems have high overhead that discourage
frequent invocations�

�Most existing systems neglect even this simple optimization� They save and restore all the registers� all
the time�

��

intr�
move�l a����sp� �� Save register a�
move�l �P��a� �� Get buffer pointer into reg� a�
move�l �cd�port���a��D��� Store CD data into address P�D
addq�w ����P��� �� Increment low �� bits of P�
beq cd�done �� ��� flush buffer if full
move�l �sp���a� �� Restore register a�
rte �� Return from interrupt

Figure ���	 Synthesized Code for Sound Interrupt Processing � CD Active

s�intr�
move�l a����sp� �� Save register a�
tst�b �cd�active� �� Is the CD device active�
beq cd�no �� ��� no� jump
move�l �cd�buf��a� �� Get CD buffer pointer into reg� a�
move�l �cd�port���a��� �� Store CD data
 increment pointer
move�l a���cd�buf� �� Update CD buffer pointer
subq�l ����cd�cnt� �� Decrement buffer count
beq cd�flush �� ��� jump if buffer full

cd�no�
tst�b �ad�active� �� Is the AD device active�
beq ad�no �� ��� no� jump

�
� �handle AD device� similar to CD code�
�

ad�no�
tst�b �da�active� �� Is the DA device active�
beq da�no �� ��� no� jump

�
� �handle DA device� similar to CD code�
�

da�no�
move�l �sp���a� �� Restore register a�
rte �� Return from interrupt

Figure ���	 Sound Interrupt Processing� Hand�Assembler

fast bu�er implementation of section ����� because that requires code synthesis�

Figure ��� shows another version� this one written in C� and invoked by a short

assembly�language dispatch routine� It preserves only those registers clobbered by C pro�

cedure calls� and is representative of a carefully�written interrupt routine in C�

The performance di�erences are summarized in Table ���� Measurements are divided

into three groups� The �rst group� consisting of just a single row� shows the time taken

by the hardware to process an interrupt and immediately return from it� without doing

anything else� The second group shows the time taken by the various implementations of

the interrupt handler when just the CD�player input channel is active� The third group is

like the second� but with two active sources	 the CD�player and AD channels�

��

s�intr�
movem�l �d��d��a��a�����sp�
bsr �sound�intr
movem�l �sp����d��d��a��a��
rte

sound�intr��

if�cd�active�

�cd�buf�� � �cd�port

if���cd�cnt � ��

cd�flush��

�
if�ad�active�

���
�
if�da�active�

���
�

�

Figure ���	 Sound Interrupt Processing� C Code

Time in �S Speedup

Null Interrupt ���

CD�in� code�synth ���

CD�in� assembler ��� ���

CD�in� C ��� ���

CD�in� C & Unix ���� ���

CD'DA� code�synth ���

CD'DA� assembler ��� ���

CD'DA� C ���� ���

CD'DA� C & Unix ���� ���

����� CPU� �	MHz� �
wait
state main memory� cold cache

Table ���	 Processing Time for Sound�IO Interrupts

��

Within each group of measurements� there are four rows� The �rst three rows show

the time taken by the code synthesis� hand�assembler� and C implementations of the inter�

rupt handler� in that order� The code fragments measured are those of �gures ���� ����

and ���� the C code was compiled on the Sony NEWS workstation using �cc �O�� The last

row shows the time taken by the C version of the handler� but dispatched the way that Sony

Unix does� preserving all the machines registers prior to the call� The left column tells the

elapsed execution time� in microseconds� The right column gives the ratio of times between

the code synthesis implementation and the others� The null�interrupt time is subtracted

before computing the ratio to give a better picture of what the implementation�speci�c

performance increases are�

As can be seen from the table� the performance gains of using code synthesis are

impressive� With only one channel active� we get more than twice the performance of hand�

written assembly language� almost �ve times more e�cient than well�written C� and very

nearly an order of magnitude better than traditional Unix interrupt service� Furthermore�

the non�code�synthesis versions of the driver supports only the two�channel� ���bit linear�

encoding sound format� Extending support� as Synthesis does� to other sound formats�

such as ��Law� either requires more tests in the sound interrupt handler or an extra level of

format conversion code between the application and the sound driver� Either option adds

overhead that is not present in the code synthesis version� and would increase the time

shown�

With two channels active� the gain is still signi�cant though somewhat less than that

for one channel� The reason is that the overhead�reducing optimizations of code synthesis

 collapsing layers and preserving only context that is used
 become less important as

the amount of work increases� But other optimizations of code synthesis� such as the fast

bu�er� continue to be e�ective and scale with the work load� In the limit� as the number of

active channels becomes large� the C and assembly versions perform equally well� and the

code synthesis version is about ��% faster�

����� System Calls

Another use of code synthesis is to minimize the overhead of invoking system calls�

In Synthesis the term �system call� is somewhat of a misnomer because the Synthesis sys�

tem interface is based on procedure calls� A Synthesis system call is really a procedure call

��

�� ��� User�level stub procedure ���
proc�

moveq �N�d� �� Load procedure index
trap ��� �� Trap to kernel
rts �� Return

�� ��� Dispatch to kernel procedure ���
trap���

cmp�w �MAX�d� �� Check that procedure index is in range
bhs bad�call �� ��� jump if not
move�l �tab �pc�d�����a� �� Get the procedure address
jsr �a�� �� Call it
rte �� Return to user�level

�align � �� Table of kernel procedure addresses���
tab �

dc�l fn�� fn�� fn�� fn�� ���� fnN

Figure ���	 User�to�Kernel Procedure Call

that happens to cross the protection boundary between user and kernel� This is important

because� as we will see in Chapter �� each Synthesis service has a set of procedures associ�

ated with it that delivers that service� Since the set of services provided is extensible� we

need a more general way of invoking them� Combining procedure calls with runtime code

generation lets us do this e�ciently�

Figure ��� shows how� The generated code consists of two parts	 a user part� shown

at the top of the �gure� and a kernel part� shown at the bottom� The user part loads the

procedure index number into the d� register and executes the trap instruction� switching the

processor into kernel mode where it executes the kernel part of the code� beginning at label

trap��� The kernel part begins with a limit check on the procedure index number� ensuring

that the index is inside the table area and preventing cheating by buggy or malicious user

code that may pass a bogus number� It then indexes the table and calls the kernel procedure�

The kernel procedure typically performs its own checks� such as verifying that all pointers

are valid� before proceeding with the work� It returns with the rte instruction� which

takes the thread back into user mode� where it returns control to the caller� Since the user

program can only specify an index into the procedure table� and not the procedure address

itself� only the allowed procedures may be called� and only at the appropriate entry points�

Even if the user part of the generated code is overwritten either accidentally or maliciously�

it can never cause the kernel to do something that could not have been done through some

other� untampered� sequence of calls�

��

Runtime code generation gives the following advantages	 each thread has its own

table of vectors for exceptions and interrupts� including trap ��� This means that each

thread�s kernel calls vector directly to the correct dispatch procedure� saving a level of

indirection that would otherwise have been required� This dispatch procedure� since it is

thread�speci�c� can hard�wire certain constants� such as MAX and the base address of the

kernel procedure table� saving the time of fetching them from a data structure�

Furthermore� by thinking of kernel invocation not as a system call
 which conjures

up thoughts of heavyweight processing and large overheads
 but as a procedure call�

many other optimizations become easier to see� For example� ordinary procedures preserve

only those registers which they use� kernel procedures can do likewise� Procedure calling

conventions also do not require that all the registers be preserved across a call� Often�

a number of registers are allowed to be �trashed� by the call� so that simple procedures

can execute without preserving anything at all� Kernel procedures can follow this same

convention� The fact that kernel procedures are called from user level does not make them

special� one merely has to properly address the issues of protection� which is discussed

further in Section ������

Besides dispatch� we also need to address the problem of how to move data between

user space and kernel as e�ciently as possible� There are two kinds of moves required	

passing procedure arguments and return values� and passing large bu�ers of data� For

passing arguments� the user�level stub procedures are generated to pass as many arguments

as possible in the CPU registers� bypassing the expense of accessing the user stack from

kernel mode� Return values are likewise passed in registers� and moved elsewhere as needed

by the user�level stub procedure� This is similar in idea to using CPU registers for passing

short messages in the V system #�$�

Passing large data bu�ers is made e�cient using virtual memory tricks� The main

idea is	 when the kernel is invoked� it has the user address space mapped in� Synthesis

reserves part of each address space for the kernel� This part is normally inaccessible from

user programs� But when the processor executes the trap and switches into kernel mode�

the kernel part of the address space becomes accessible in addition to the user part� and

the kernel procedure can easily move data back and forth using the ordinary machine

instructions� Prior to beginning such a move� the kernel procedure checks that no pointer

refers to locations outside the user�s address space
 an easy check due to the way the

virtual addresses are chosen	 a single limit�comparison
two instructions� su�ces�

��

Further optimizations are also possible� Since the user�level stub is a real procedure�

it can be in�line substituted into its caller� This can be done lazily
 the stub is written so

that each time a call happens� it fetches the return address from the stack and modi�es that

point in the caller� Since the stubs are small� space expansion is minimal� Besides being

e�ective� this mechanism requires minimal support from the language system to identify

potential in�lineable procedure calls�

Another optimization bypasses the kernel procedure dispatcher� There are �� possi�

ble traps on the ������ Three of these are already used� leaving �� free for other purposes�

such as to directly call heavily�used kernel procedures� If a particular kernel procedure is

expected to be used often� an application can invoke the cache procedure call� and Syn�

thesis will allocate an unused trap� set it to call the kernel procedure directly� and re�create

the user�level stub to issue this trap� Since this trap directly calls the kernel procedure�

there is no longer any need for a limit check or a dispatch table� Pre�assigned traps can

also be used to import execution environments� Indeed� the Synthesis equivalent of the

Unix concept of �stdin� and �stdout� is implemented with cached kernel procedure calls�

Speci�cally� trap � writes to stdout� and trap � reads from stdin�

Combining both optimizations results in a kernel procedure call that costs just a

little more than a trap instruction� The various costs are summarized in Table ���� The

middle block of measurements show the cost of various Synthesis null kernel procedure

calls	 the general�dispatched� non�inlined case� the general�dispatched� with the user�level

stub inlined into the application�s code� cached�kernel�trap� non�inlined� and cached�kernel�

trap� inlined� For comparison� the cost of a null trap and a null procedure call in the C

language is shown on the top two lines� and the cost of the trivial getpid system call in

Unix and Mach is shown on the bottom two lines�

��� Other Issues

����� Kernel Size

Kernel size in!ation is an important concern in Synthesis due to the potential redun�

dancy in the many Fsmall and F
flat programs generated by the same F create� This could

be particularly bad if layer collapsing were used too enthusiastically� To limit memory use�

F create can generate either in�line code or subroutine calls to shared code� The decision of

��

�S� cold cache �S� warm cache

C procedure call ��� ���

Null trap ��� ���

Kernel call� general dispatch ��� ���

Kernel call� general� in�lined ��� ���

Kernel call� cached�trap ��� ���

Kernel call� cached and in�lined ��� ���

Unix� getpid ���

Mach� getpid ���

����� CPU� �	MHz� �
wait
state main memory

Table ���	 Cost of Null System Call

when to expand in�line is made by the programmer writing F create� Full� memory�hungry

in�line expansion is usually reserved for speci�c uses where its bene�ts are greatest	 the

performance�critical� frequently�executed paths of a function� where the performance gains

justify increased memory use� Less frequently executed parts of a function are stored in a

common area� shared by all instances through subroutine calls�

In�line expansion does not always cost memory� If a function is small enough� ex�

panding it in�line can take the same or less space than calling it� Examples of functions

that are small enough include character�string comparisons and bu�er�copy� For functions

with many runtime�invariant parameters� the size expansion of inlining is o�set by a size

decrease that comes from not having to pass as many parameters�

In practice� the actual memory needs are modest� Table ��� shows the total memory

used by a full kernel
 including I�O bu�ers� virtual memory� network support� and a

window system with two memory�resident fonts�

��

System Activity Memory Use� as code ' data
Kbytes�

Boot image for full kernel ���

One thread running Boot ' ��� ' �

File system and disk bu�ers Boot ' � ' ���

��� threads� ��� open �les Boot ' �� ' ����

Table ���	 Kernel Memory Requirements

����� Protecting Synthesized Code

The classic solutions used by other systems to protect their kernels from unauthorized

tampering by user�level applications also work in the presence of synthesized code� Like

many other systems� Synthesis needs at least two hardware�supported protection domains	

a privileged mode that allows access to all the machine�s resources� and a restricted mode

that lets ordinary calculations happen but restricts access to resources� The privileged mode

is called supervisor mode� and the restricted mode� user mode�

Kernel data and code
 both synthesized and not
 are protected using memo�

ry management to make the kernel part of each address space inaccessible to user�level

programs� Synthesized routines run in supervisor mode� so they can perform privileged

operations such as accessing protected bu�er pages�

User�level programs enter supervisor mode using the trap instruction� This instruc�

tion provides a controlled
 and the only
 way for user�level programs to enter supervisor

mode� The synthesized routine implementing the desired system service is accessed through

a jump table in the protected area of the address space� The user program speci�es an in�

dex into this table� ensuring the synthesized routines are always entered at the proper entry

points� This protection mechanism is similar to Hydra�s use of C�lists to prevent the forgery

of capabilities #��$�

Once in kernel mode� the synthesized code handling the requested service can begin

to do its job� Further protection is unnecessary because� by design� the kernel code generator

only creates code that touches data the application is allowed to touch� For example� were a

�le inaccessible� its read procedure would never have been generated� Just before returning

��

control to the caller� the synthesized code reverts to the previous
user�level� mode�

There is still the question of invalidating the code when the operation it performs is

no longer valid
 for example� invalidating the read procedure after a �les has been closed�

Currently� this is done by setting the corresponding function pointers in the KPT to an

invalid address� preventing further calls to the function� The function�s reference counter is

then decremented� and its memory freed when the count reaches zero�

����� Non�coherent Instruction Cache

A common assumption in the design of processors is that a program�s instructions

will not change as the program runs� For that reason� most processor�s instruction caches are

not coherent
 writes to memory are not re!ected in the cache� Runtime code generation

violates this assumption� requiring that the instruction cache be !ushed whenever code

changes happen� Too much cache !ushing reduces performance� both because programs

execute slower when the needed instructions are not in cache and because !ushing itself

may be an expensive operation�

The performance of self�modifying code� like that found in executable data struc�

tures� su�ers the most from an incoherent instruction cache� This is because the ratio of

code modi�cation to use tends to be high� Ideally� we would like to !ush with cache�line

granularity to avoid losing good entries� Some caches provide only an all�or�nothing !ush�

But even line�at�a�time granularity has its disadvantages	 it needs machine registers to

hold the parameters� registers that may not be available during interrupt service without

incurring the cost of saving and restoring them� Unfortunately for Synthesis� most cases of

self�modifying code actually occur inside interrupt service routines where small amounts of

data
e�g�� one character for a TTY line� must be processed with minimal overhead� Fortu�

nately� in all important cases the cost has been reduced to zero through careful layout of the

code in memory using knowledge of the ����� cache architecture to cause the subsequent

instruction fetch to replace the cache line that needs !ushing� But that trick is neither

general nor portable�

For the vast majority of code synthesis applications� an incoherent cache is not a big

problem� The cost of !ushing even a large cache contributes relatively little compared to the

cost of allocating memory and creating the code� If code generation happens infrequently

relative to the code�s use� as is usually the case� the performance hit is small�

��

Besides the performance hit from a cold cache� cache !ushing itself may be slow� On

the ����� processor� for example� the instruction to !ush the cache is privileged� Although

this causes no special problems for the Synthesis kernel� it does force user�level programs

that modify code to make a system call to !ush the cache� I do not see any protection�

related reason why that instruction must be privileged� perhaps making it so simpli�ed

processor design�

��� Summary

This chapter showed	
�� that code synthesis allows important operating system

functions such as bu�ering� context switching� interrupt handing� and system call dispatch

to be implemented ��� to ��� times more e�ciently than is possible using the best assembly�

language implementation without code synthesis and ��� to � times better than well�written

C code�
�� that code synthesis is also e�ective at the user�level� achieving an ��% improve�

ment for basic operations such as putchar� and
�� that the anticipated size penalty does

not� in fact� happen�

Before leaving this section� I want to call a moment�s more attention to the interrupt

handlers of Section ������ At �rst glance
 and even on the second and third
 the C�

language code it looks to be as minimal as it can get� There does not seem to be any fat to

cut� Table ��� has shown otherwise� The point is that sometimes� sources of overhead are

hidden� not so easy to spot and optimize� They are a result of assumptions made and the

programming language used� whether it be in the form of a common calling convention for

procedures� or in conventions followed to simplify linking routines to interrupts� This section

has shown that code synthesis is an important technique that enables general procedure

interfacing while preserving
 and often bettering
 the e�ciency of custom�crafted code�

The next chapter now shows how Synthesis is structured and how synergy between

kernel code synthesis and good software engineering leads to a system that is general and

easily expandable� but at the same time e�cient�

��

�

Kernel Structure

All things should be made as simple as possible� but no simpler�

� Albert Einstein

��� Quajects

Quajects are the building blocks out of which all Synthesis kernel services are com�

posed� The name is derived from the term �object� of Object�Oriented
O�O� systems�

which they strongly resemble #��$� The similarity is strong� but the di�erence is signi�cant�

Like objects� quajects encapsulate data and provide a well�de�ned interface to access it�

Unlike objects� quajects use a code�synthesis implementation to achieve high performance�

but lack high�level language support and inheritance�

Kernel quajects can be broadly classi�ed into four kinds	 thread� memory� I�O� and

device� Thread quajects encapsulate the unit of execution� memory quajects the unit of

data storage� I�O quajects the unit of data movement� and device quajects the machine�s

interfaces to the outside world� Each kind of quaject is de�ned and implemented indepen�

dently�

Basic quajects implement fundamental services that cannot be had through any

combination of other quajects� Threads and queues are two examples of basic quajects�

��

Name Purpose

Thread Implements threads

Queue Implements FIFO queues

Bu�er Data bu�ering

Dcache Data caching
e�g�� for disks�

FSmap File to !at storage mapping

Clock The system clock

CookTTYin Keyboard input editor

CookTTYout Output editor and format conversion

VT���� Emulates DEC�s VT��� terminal

Twindow Text display window

Gwindow Graphics
bit�mapped� display window

Probe Measurements and statistics gathering

Sytab Symbol table
associative mapping�

Table ���	 List of Basic Quajects

Table ��� contains a list of the basic quajects in Synthesis� More complex kernel services

are built out of the basic quajects by composition� For example� the Synthesis kernel has no

pre�de�ned notion of a �process�� But a Unix�like process can be created by instantiating

a thread quaject� a memory quaject� some I�O quajects� and interconnecting them in a

particular way�

����� Quaject Interfaces

The interface to a quaject consists of callentries� callbacks� and callouts � A client

uses the services of a quaject by calling a callentry� Normally a callentry invocation simply

returns� Exceptional situations return along callbacks� Callouts are places in the quaject

��

��
! Qput ! ! Qget !
������������ ���������� ������������
! Qfull ! o o ! ! ! ! Qempty !
������������ ���������� ������������
! Qfull�� ! ! Qempty�� !
��

Figure ���	 Queue Quaject

where external calls to other quaject�s callentries happen� Tables ���� ���� and ��� list the

interfaces to the Synthesis basic kernel quajects�

Callentries are analogous to methods in O�O systems� The other two� callbacks and

callouts� have no direct analogue in O�O systems� Conceptually� a callout is a function

pointer that has been initialized to point to another quaject�s callentry� callbacks point

back to the invoker� Callouts are an important part of the interface because they specify

what type of external call is needed� making it possible to dynamically link one of several

di�erent quaject�s callentries to a particular callout� so long as the type matches� For

example� the Synthesis buffer quaject has a flush callout which is invoked when the

bu�er is full� This enables the same bu�er implementation to be used throughout the

kernel simply be instantiating a buffer quaject and linking its flush callout to whatever

downstream processing is appropriate for the instance�

The quaject interface is better illustrated using a simple quaject as an example

the FIFO queue� shown in Figure ���� The Synthesis kernel supports four di�erent types

of queues� to optimize for the varying synchronization needs of di�erent combinations of

single or multiple producers and consumers
synchronization is discussed in Chapter ��� All

four types support the same abstract type #�$� de�ned by two callentry references� Q put

and Q get� which put and get elements of the queue� Both these callentry references return

synchronously under the normal condition
successful insertion or deletion�� Under other

conditions� the queue returns through the callbacks�

The queue has four callbacks which are used to return queue�full and queue�empty

conditions back to caller� Q empty is invoked when a Q get fails because the queue is empty�

Q full is invoked when a Q put fails because the queue is full� Q empty
� is called after

a previous Q get had failed and then an element was inserted� And Q full�� is called

after a previous Q put had failed and then an element was deleted� The idea is	 instead of

returning a condition code for interpretation by the invoker� the queue quaject directly calls

��

Quaject Interface Name Purpose

Queue Callentry Q put Insert element into queue
Q get Remove element from queue

Callback Q full Notify that the queue is full
Q full�� Notify that the queue is no longer full
Q empty Notify that the queue is empty
Q empty�� Notify that the queue is no longer empty

Bu�erOut Callentry put Insert an element into the bu�er
write Insert a string of elements into the bu�er
!ush Force bu�er contents to output

Callout !ush Dump out the full bu�er

Bu�erIn Callentry get Get a single element from the bu�er
read Get a string of elements from the bu�er

Callout �ll Replenish the empty bu�er

CookTTYin Callentry getchar Read a processed character from the edit bu�er
read Read a string of characters from the edit bu�er

Callout raw get Get new characters from user�s keyboard
echo Echo user�s typed characters

CookTTYout Callentry putchar Send a character out for processing
write Send a string of characters out for processing

Callout raw write Write out processed characters to display

VT��� Callentry putchar Write a character to the virtual VT���� screen
write Write a string of characters
update Propagate changes to the virtual screen image
refresh Propagate the entier virtual screen image

FSmap Callentry aread Asynchronous read from �le
awrite Asynchronous write to �le

Callout ca read Read from disk cache
ca write Write to disk cache

Dcache Callentry read Read from data cache
write Write to data cache

Callout bk read Read from backing store
bk write Write to backing store

T window Callentry write Write a string of
character�attribute� pairs

G window Callentry blit Copy a rectangular array of pixels to window

Table ���	 Interface to I�O Quajects

��

Quaject Interface Name Purpose

Thread Callentry suspend Suspends thread execution
resume Resumes thread execution
stop Prevents execution
step Executes one instruction then stops
interrupt Send a software interrupt
signal Send a software signal
wait Wait for an event
notify Notify that event has happened

Callout read#i$ Read from quaject i
write#i$ Write to quaject i
call#i$#e$ Call callentry e in quaject i

Clock Callentry gettime Get the time of day� in �ticks�
getunits Learn how many �ticks� there are in a second
alarm Set an alarm	 call given procedure at given time
cancel Cancel an alarm

Callout call#i$ Call procedure i upon alarm expiration

Probe Callentry probe Tell which procedure to measure
show Display statistics

Symtab Callentry lookup Lookup a string� return its associated value
add Add entry to symbol table

Table ���	 Interface to other Kernel Quajects

the appropriate handling routines supplied by the invoker� speeding execution by eliminating

the interpretation of return status codes�

����� Creating and Destroying Quajects

Each class of quaject has create and destroy callentries that instantiate and destroy

members of that class� including creating all their runtime�generated code� Creating a

quaject involves allocating a single block of memory for its data and code� then initializing

portions of that memory� With few exceptions� all of a quaject�s runtime�generated code

is created during this initialization� This generally involves copying the appropriate code

template� determined by the type of quaject being created and the situation in which

it is to be used� and then �lling in the address �elds in the instructions that reference

quaject�speci�c data items� There are two exceptions to the rule� One is when the quaject

implementation uses self�modifying code� The other occurs during the handling of callouts

��

Quaject Interface Name Purpose

Serial in Callentry enable Enable input
disable Disable input

Callout putchar Write received characher

Serial out Callentry enable Enable output
disable Disable output

Callout getchar Obtain characher to send

Sound CD Callentry enable Enable input
disable Disable input

Callout put sample Store sound sample received from CD player

Sound DA Callentry enable Enable output
disable Disable output

Callout get sample Get new sound sample to send to A�D device

Framebu�er Callentry blit Copy memory bitmap to framebu�er
intr ctl Enable or disable interrupts

Callout Vsync Vertical sync interrupt
Hsync Horizontal sync interrupt

Disk Callentry aread Asyncronous read
awrite Asynchronous write
format Format the disk
blk size Learn the disk�s block size

Callout new disk
Floppy� disk has been changed

Table ���	 Interface to Device Quajects

when linking one quaject to another� This is covered in the next section�

Kernel quajects are created whenever they are needed to build higher�level services�

For example� opening an I�O pipe creates a queue� opening a text window creates three

quajects	 a window� a VT���� terminal emulator� and a TTY�cooker� Which quajects

get created and how they are interconnected is determined by the implementation of each

service�

Quajects may also be created at the user level� simply by calling the class�s create

callentry from a user�level thread� The e�ect is identical to creating kernel quajects� except

that user memory is allocated and �lled� and the resulting quajects execute in user�mode�

not kernel� The kernel does not concern itself with what happens to such user�level quajects�

It merely o�ers creation and linkage services to applications that want to use them�

Quajects are destroyed when they are no longer needed� Invoking the destroy

��

callentry signals that a particular thread no longer needs a quaject� The quaject itself is

not actually destroyed until all references to it are severed� Reference counts are used�

There is the possibility that circular references prevent destruction of otherwise useless

quajects but this has not been a problem because quajects tend to be connected in cycle�

free graphs� Destroying quajects does not immediately deallocate their memory� They are

instead placed in the inactive list for their class� This speeds subsequent creation because

much of the code�generation and initialization work had been already done�� As heap

memory runs out� memory belonging to quajects on the inactive list is recycled�

����� Resolving References

The kernel resolves quaject callentry and callbacks references when linking quajects

to build services� Conceptually� callouts and callback are function pointers that are initial�

ized to point to other quaject�s callentries when quajects are linked� For example� when

attaching a queue to a source of data� the kernel �lls the callouts of the data source with the

addresses of the corresponding callentries in the queue and initializes the queue�s callbacks

with the addresses of the corresponding exception handlers in the data source� If the source

of data is a thread� the address of the queue�s Q put callentry is stored in the thread�s

write callout� the queue�s Q full callback is linked to the thread�s suspend callentry� and

the queue�s Q full�� callback is linked to the thread�s resume callentry� See Figure ����

In the actual implementation� a callout is a �hole� in the quaject�s memory where

linkage�speci�c runtime generated code is placed� Generally� this code consists of zero or

more instructions that save any machine registers used by both caller and callee quajects�

followed by a jsr instruction to invoke the target callentry� followed by zero or more in�

structions to restore the previously saved registers� The callout�s code might also perform a

context switch if the called quaject is in a di�erent address space� Or� in the case when the

code comprising the called quaject�s callentry is in the same address space and is smaller

than the space set aside for the callout� the callentry is copied in its entirety into the callout�

This is how the layer�collapsing� in�line expansion optimization of Section ����� works� A

!ag bit in each callentry tells if it uses self�modifying code� in which case� the copy does

not happen�

Most linkage is done without referencing any symbol tables� but using information

�Performance measurements in this dissertation were carried out without using the inactive list� but
creating fresh quajects as needed�

��

that is known at system generation time� Basically� the linking consists of blindly storing

addresses in various places� being assured that they will always �land� in the correct place in

the generated code� Similarly� no runtime type checking is required� as all such information

has been resolved at system generation time�

Not all references must be speci�ed or �lled� Each quaject provides default values

for its callout and callbacks that de�ne what happens when a particular callout or callback

is needed but not connected� The action can be as simple as printing an error message

and aborting the operation or as complicated as dynamically creating the missing quaject�

linking the reference� and continuing�

In addition� the kernel can also resolve references in response to execution traps that

invoke the dynamic linker� Such references are represented by ASCII names� The name

Q get� for example� refers to the queue�s callentry� A symbol�table quaject maps the string

names into the actual addresses and displacements� For example� the Q get callentry is

represented in the symbol table as a displacement from the start of the queue quaject�

Which quaject is being referenced is usually clear from context� For example� callentries

are usually invoked using a register�plus�o�set addressing mode� the register contains the

address of the quaject in question� When not� an additional parameter disambiguates the

reference�

����� Building Services

Higher�level kernel services are built by composing several basic quajects� I now

show� by means of an example� how a data channel is put together� The example illustrates

the usage of queues and reference resolution� It also shows how a data channel can support

two kinds of interfaces� blocking and non�blocking� using the same quaject building block�

The queue quaject used is of type ByteQueue��

Figure ��� shows a producer thread using the Q put callentry to store bytes in the

queue� The ByteQueue�s Q full callback is linked to the thread�s suspend callentry� the

ByteQueue�s Q full�� callback is linked to the thread�s resume callentry� As long as the

queue is not full� calls to Q put enqueue the data and return normally� When the queue

becomes full� the queue invokes the Q full callback� suspending the producer thread� When

�The actual implementation of Synthesis V�� uses an optimized version of ByteQueue that has a string�
oriented interface to reduce looping� but the semantics is the same�

��

Kind of
Reference

User
Thread ByteQueue ByteQueue

Device
Driver Hardware

callentry write �� Q put Q get ��
send�complete
interrupt

callback suspend �� Q full Q empty ��
turn o�

send�complete

callback resume �� Q full�� Q empty
� ��
turn on

send�complete

Figure ���	 Blocking write

Reference Thread ByteQueue

callentry write �� Q put

callback
return to

caller
�� Q full

callback
if
more work�
goto Q put

�� Q full��

Figure ���	 Non�blocking write

the ByteQueue�s reader removes a byte� the Q full�� callback is invoked� awakening the

producer thread� This implements the familiar synchronous interface to an I�O stream�

Contrast this with Figure ���� which shows a non�blocking interface to the same

data channel implemented using the same queue quaject� Only the connections between

ByteQueue and the thread change� The thread�s write callout still connects to the queue�s

Q put callentry� But the queue�s callbacks no longer invoke procedures that suspend or

resume the producer thread� Instead� they return control back to the producer thread�

functioning� in e�ect� like interrupts that signal events
 in this example� the �lling and

emptying of the queue� When the queue �lls� the Q full callback returns control back to

the producer thread� freeing it to do other things without waiting for output to drain and

without having written the bytes that did not �t� The thread knows the write is incomplete

��

because control !ow returns through the callback� not through Q put� After output drains�

Q full�� is called� invoking an exception handler in the producer thread which checks

whether there are remaining bytes to write� and if so� it goes back to Q put to �nish the

job�

Ritchie�s Stream I�O system has a similar !avor	 it too provides a framework for

attaching stages of processing to an I�O stream #��$� But stream�I�O�s queueing structure is

�xed� the implementation is based on messages� and the I�O is synchronous� Unlike Stream�

I�O� quajects o�er a �ner level of control and expanded possibilities for connection� The

previous example illustrates this by showing how the same queue quaject can be connected

in di�erent ways to provide either synchronous or asynchronous I�O� Furthermore� quajects

extend the idea to include non�I�O services as well� such as threads�

����	 Summary

In the implementation of Synthesis kernel� quajects provide encapsulation and make

all inter�module dependencies explicit� Although quajects di�er from objects in traditional

O�O systems because of a procedural interface and run�time code generation implemen�

tation� the bene�ts of encapsulation and abstraction are preserved in a highly e�cient

implementation�

I have shown� using the data channel as an example� how quajects are composed to

provide important services in the Synthesis kernel� That example also illustrates the main

points of a quaject interface	

� Callentry references implement O�O�like methods and bypass interpretation in the

invoked quaject�

� Callback references implement return codes and bypass interpretation in the invoker�

� The operation semantics are determined dynamically by the quaject interconnections�

independent of the quaject�s implementation�

This last point is fundamental in allowing a true orthogonal quaject implementation� for

example� enabling a queue to be implemented without needing any knowledge of how threads

work
 not even how to suspend and resume them�

The next section shows how the quaject ideas �t together to provide user�level ser�

vices�

��

��� Procedure�Based Kernel

Two fundamental ideas underlie how Synthesis is structured and how the services

are invoked	

� Every callentry is a real� distinct procedure�

� Services are invoked by calling these procedures�

Quaject callentries are small procedures stored at known� �xed o�sets from the base

of the block of memory that holds the quaject�s state� For simple callentries� the entire

procedure is stored in the allocated space of the structure� Quajects such as bu�ers and

queues have their callentries expanded in this manner� using all the runtime code�generation

ideas discussed in Chapter �� For more complex callentries� the procedures usually consist

of some instance�speci�c code to handle the common execution paths� followed by code that

loads the base pointer of the quaject�s structure into a machine register and jumps to shared

code implementing the rest of the callentry�

This representation di�ers from that of methods in object�oriented languages such

as C''� In these languages� the object�s structure contain pointers to generic methods for

that class of object� not the methods themselves� The language system passes a pointer to

the object�s structure as an extra parameter to the procedure implementing each method�

This makes it hard to use an object�s method as a real function� one whose address can be

passed to other functions without also passing and dealing with the extra parameter�

It is this di�erence that forms the basis of Synthesis quaject composition and ex�

tensible kernel service� Every callentry is a real procedure� each with a unique address

and expecting no �extraneous� parameters� Each queue�s Q put� for example� takes exactly

one parameter	 the data to be enqueued� This property is fundamental for easy quaject

composition	 each quaject in a chain simply calls the next� without passing an arbitrarily

long array of structure pointers downstream� one for each quaject�

����� Calling Kernel Procedures

The discussion until now assumes that the callentries reside in the same address

space and execute at the same privilege level as their caller� so that direct procedure call

is possible� But when user�level programs invoke kernel quajects� e�g�� to read a �le� the

��

invocation crosses a protection boundary� A direct procedure call would not work because

the kernel routine needs to run in supervisor mode�

In a conventional operating system� such as Unix� application programs invoke the

kernel by making system calls� But while system calls provide a controlled� protected way

for a user�level program to invoke procedures in the kernel� they are limited in that they

allow access to only a �xed set of procedures in the kernel� For Synthesis to be extensible�

it needs an extensible kernel call mechanism� a mechanism that supports a protected� user�

level interface to arbitrary kernel quajects�

The user�level interface is supplied with stub quajects� Stub quajects reside in the

user address space and have the same callentries� with the same o�sets� as the kernel quaject

which they represent� Invoking a stub�s callentry from user�level results in the corresponding

kernel quaject�s callentry being invoked and the results returned back�

This is implemented in the following way� The stub�s callentries consist of tiny

procedures that load a number into a machine register and then executes a trap instruction�

The number identi�es the desired kernel procedure� The trap switches the processor into

kernel mode� where it executes the kernel�procedure dispatcher� The dispatcher uses the

procedure number parameter to index a thread�speci�c table of kernel procedure addresses�

Simple limit checks ensure the index is in range and that only the allowed procedures are

called� If the checks pass� the dispatcher invokes the kernel procedure on the behalf of the

user�level application�

There are many bene�ts to this design� One is that it extends the kernel quaject

interface transparently to user�level� allowing kernel quajects to be composed with user�level

quajects� Its callentries are real procedures	 their addresses can be passed to other functions

or stored in tables� they can be in�line substituted into other procedures and optimized using

the code�synthesis techniques of Section ��� applied at the user level� Another advantage�

which has already been discussed in Section ������ is that a very e�cient implementation

exists� The result is that the protection boundary becomes !uid� what is placed in the

kernel and what is done at user�level can be chosen at will� not dictated by the design of

the system� In short� all the advantages of kernel quajects have been extended out to user

level�

��

����� Protection

Kernel procedure calls are protected because the user program can only specify

indices into the kernel procedure table
KPT�� so the kernel quajects are guaranteed to

execute only from legitimate entry points� and because the index is checked before being

used� only valid entries in the table can be accessed�

����� Dynamic Linking

Synthesis supports two !avors of dynamic linking	 load�link� which resolves external

references at program load time� before execution begins� and run�link� which resolves

references at runtime as they are needed� Run�link has the advantage of allowing execution

of programs with unde�ned references as long as the execution path does not cross them�

simplifying debugging and testing of un�nished programs�

Dynamic linking does not prevent sharing or paging of executable code� It is possi�

ble to share dynamically�linked code because the runtime libraries always map to the same

address in all address spaces� It is possible to page run�linked code and throw away infre�

quently used pages instead of writing them to backing store because the dynamic linker will

re�link the references should the old page be needed again�

��� Threads of Execution

Synthesis threads are light�weight processes� implemented by the thread quaject�

Each Synthesis thread
called simply �thread� from now on� executes in a context� de�ned

by the thread table entry
TTE�� which is the data part of the thread quaject holding the

thread state and which contains	

� The register save area to hold the thread�s machine registers when the thread is not

executing�

� The kernel procedure table
KPT�
 that table of callouts described in ������

� The signal table� used to dispatch software signals�

� The address mapping tables for virtual memory�

��

� The vector table
 the hardware�de�ned array of starting addresses of exception

handlers� The hardware consults this table to dispatch the hardware�detected excep�

tions	 hardware interrupts� error traps
like division by zero�� memory faults� and

software�traps
system calls��

� The context�switch�in and context�switch�out procedures comprising the executable

data structure of the ready queue�

Of these� the last two are unusual� The context�switch�in and �out procedures were

already discussed in Section ������ which explains how executable data structures are used

to implement fast context switching� Giving each thread its own vector table also di�ers

from usual practice� which makes the vector table a global structure� shared by all threads

or processes� By having a separate vector table per thread� Synthesis saves the dispatching

cost of thread�speci�c exceptions� Since most of the exceptions are thread speci�c� the

savings is signi�cant� Examples include all the error traps� such as division by zero� and

the VM�related traps� such as translation fault�

����� Execution Modes

Threads can execute in one of two modes	 supervisor mode and user mode� When

a thread calls the kernel by issuing the trap instruction� it changes modes from user to

supervisor� This view of things is in contrast to having a kernel server process run the

kernel call on the behalf of the client thread� Each thread�s memory mapping tables are

set so that as the thread switches to supervisor mode� the kernel memory space becomes

accessible in addition to the user space� in e�ect� �unioning� the kernel memory space

with the user memory space�
This implies the set of addresses used must be disjoint��

Consequently� the kernel call may move data between the user memory and the kernel

memory easily� without using special machine instructions� such as �moves�
move from�to

alternate address space�� that take longer to execute� Other memory spaces are outside the

kernel space� inaccessible even from supervisor mode except through special instructions�

Since no quaject�s code contains those special instructions� Synthesis can easily enforce

memory access restrictions for its kernel calls by using the normal user�level memory�access

checks provided by the memory management unit� It �rst checks that no pointer is in the

kernel portion of the address space
an easy check�� and then proceeds to move the data�

If an illegal access happens� or if a non�resident page is referenced� the thread will take a

��

translation�fault exception� even from supervisor mode� the fault handler then reads in the

referenced page from backing store if it was missing or prints the diagnostic message if the

access is disallowed�
All this works because all quajects are reentrant� and since system

calls are built out of quajects� all system calls are reentrant��

Synthesis threads also provide a mechanism where routines executing in supervisor

mode can make protected calls to user�mode procedures� It is mostly used to allow user�

mode handling of exceptions that arise during supervisor execution� for example� someone

typing �Control�C� while the thread is in the middle of a kernel call� It is also expected

to �nd use in a future implementation of remote procedure call� The hard part in allowing

user�level procedure calls is not in making the call� but arranging for a protected return from

user�mode back to supervisor� This is done by pushing a special� exception�causing return

address on the user stack� When the user procedure �nishes and returns� the exception is

raised� putting the thread back into supervisor mode�

����� Thread Operations

As a quaject� the thread supports several operations� de�ned by its callentries� They

are	 suspend� resume� stop� step� interrupt� signal� setsignal� wait� and notify�

The last four overlap functionality with the �rst �ve� but are included for programmer

convenience��

Suspend and resume control thread execution� disabling or re�enabling it� They

are often the targets of I�O quajects� callbacks� implementing blocking I�O� Stop and step

support debuggers	 stop prevents thread execution� step causes a stopped thread to execute

a single machine instruction and then re�enter the stopped state� The di�erence between

stop and suspend is that a suspended thread still executes in response to interrupts and

signals while a stopped one does not� Resume continues thread execution from either the

stopped or suspended state�

Interrupt causes a thread to call a speci�ed procedure� as if a hardware interrupt

had happened� It takes two parameters� an address and a mode� and it causes the thread

to call the procedure at the speci�ed address in either user or supervisor mode according to

�In the current implementation� the thread quaject is really a composition of two lower�level quajects�
neither of them externally visible� a basic thread quaject which supports the �ve fundamental operations
listed� and a hi thread quaject� which adds the higher�level operations� I�m debating whether I want to
make the basic thread quaject visible�

��

the mode parameter� Suspended threads can be interrupted	 they will execute the interrupt

procedure and then re�enter the suspended state�

Signal is like interrupt� but with a level of indirection for protection and isolation�

It takes an integer parameter� the signal number� and indexes the thread�s signal�table

with it� obtaining the address and mode parameters that are then passed to interrupt�

Setsignal associates signal numbers with addresses of interrupt procedures and execution

modes� It takes three parameters	 the signal number� an address� and a mode� and it �lls

the table slot corresponding to the signal number with the address and mode�

Wait waits for events to happen� It takes one parameter� an integer representing an

event� and it suspends the thread until that event occurs� Notify informs the thread of

the occurrence of events� It too takes one parameter� an integer representing an event� and

it resumes the thread if it had been waiting for this event� The thread system does not

concern itself with what is an event nor how the assignment of events to integers is made�

����� Scheduling

The Synthesis scheduling policy is round�robin with an adaptively adjusted CPU

quantum per thread� Instead of priorities� Synthesis uses �ne�grain scheduling� which assigns

larger or smaller quanta to threads based on a �need to execute� criterion� A detailed

explanation on �ne�grain scheduling is postponed to Chapter �� Here� I give only a brief

informal summary�

A thread�s �need to execute� is determined by the rate at which I�O data !ows

through its I�O channels compared to the rate at which which the running thread produces

or consumes this I�O� Since CPU time consumed by the thread is an increasing function

of the data !ow� the faster the I�O rate the faster a thread needs to run� Therefore� the

scheduling algorithm assigns a larger CPU quantum to the thread� This kind of scheduling

must have a �ne granularity since the CPU requirements for a given I�O rate and the I�O

rate itself may change quickly� requiring the scheduling policy to adapt to the changes�

E�ective CPU time received by a thread is determined by the quantum assigned to

that thread divided by the sum of quanta assigned to all threads� Priorities can be simulated

and preferential treatment can be given to certain threads in two ways	 raise a thread�s CPU

quantum and reorder the ready queue as threads block and unblock� As an event unblocks

a thread� its TTE is placed at the front of the ready queue� giving it immediate access to

��

the CPU� This minimizes response time to events� Synthesis� low�overhead context switch

allows quanta to be considerably shorter than that of other operating systems without

incurring excessive overhead� Nevertheless� to minimize time spent context switching� CPU

quanta are adjusted to be as large as possible while maintaining the �ne granularity� A

typical quantum is on the order of a few hundred microseconds�

��� Input and Output

In Synthesis� I�O includes all data !ow among hardware devices and address spaces�

Data move along logical channels called data channels � which connect sources of data with

the destinations�

����� Producer�Consumer

The Synthesis implementation of the channel model I�O follows the well�known pro�

ducer�consumer paradigm� Each data channel has a control !ow that directs its data !ow�

Depending on the origin and scheduling of the control !ow� a producer or consumer can

be either active or passive� An active producer
or consumer� runs on a thread and calls

functions submitting
or requesting� its output
or input�� A thread performing writes is

active� A passive producer
or consumer� does not run of its own� it sits passively� waiting

for one of its I�O functions to be called� then using the thread that called the function

to initiate the I�O� A TTY window is passive� characters appear on the window only in

response to other thread�s I�O� There are three cases of producer�consumer relationships�

which we shall consider in turn�

The simplest is an active producer and a passive consumer� or vice�versa� This case�

called active�passive� has a simple implementation� When there is only one producer and

one consumer� a procedure call does the job� If there are multiple producers� we serialize

their access� If there are multiple consumers� each consumer is called in turn�

The most common producer�consumer relationship has both an active producer

and an active consumer� This case� called active�active� requires a queue to mediate the

two� For a single producer and a single consumer� an ordinary queue su�ces� For cas�

es with multiple participants on either the producer or consumer side� we use one of the

optimistically�synchronized concurrent�access queues described in section ������ Each queue

may be synchronous
blocking� or asynchronous
using signals� depending on the situation�

��

The last case is a passive producer and a passive consumer� Here� we use a pump

quaject that reads data from the producer and writes it to the consumer� This works for

multiple passive producers and consumers as well�

����� Hardware Devices

Physical I�O devices are encapsulated in quajects called device servers� The device

server interface generally mirrors the basic� �raw� interface of the physical device� Its I�O

operations typically include asynchronous read and write of �xed�length data records and

device�speci�c query and control functions� Each device server may have its own thread
s�

or not� A polling I�O server runs continuously on its own thread� An interrupt�driven

server blocks after initialization� The server without threads runs when its physical device

generates an interrupt� invoking one of its callentries� Device servers are created at boot

time� one server for each device� and persist until the system is shut down� Device servers

can also be added as the system runs� but this must be done from a kernel thread

currently there is no protected� user�level way to do this�

Higher�level I�O streams are created by composing a device server with one or more

�lter quajects� There are three important functions that a �lter quaject can perform	

mapping one style of interface to another
e�g�� asynchronous to synchronous�� mapping

one data format to another
e�g�� EBCDIC to ASCII� byte�reversal�� and editing data
e�g��

backspacing�� For example� the Synthesis equivalent of Unix cooked tty interface is a �lter

that processes the output from the raw tty device server� bu�ers it� and performs editing

as called for by the erase and kill control characters�

��� Virtual Memory

A full discussion of virtual memory will not be presented in this dissertation because

all the details have not been completely worked out as of the time of this writing� Here� I

merely assert that Synthesis does support virtual memory� but the model and interface are

still in !ux�

��

��	 Summary

The positive experience in using quajects shows that a highly e�cient implementation

of an object�based system can be achieved� The main ingredients of such an implementation

are	

� a procedural interface using callout and callentry references�

� explicit callback references for asynchronous return�

� run�time code generation and linking�

Chapter � backs this up with measurements� But now� we will look at issues involving

multiprocessors�

��

�

Concurrency and Synchronization

The most exciting phrase to hear in science�

the one that heralds new discoveries� is not

�Eureka	�
I found it	� but �That�s funny ����

� Isaac Asimov

��� Synchronization in OS Kernels

In single�processor machines� the need for synchronization within an operating sys�

tem arises because of hardware interrupts� They may happen in the middle of sensitive

kernel data structure modi�cations� compromising their integrity if not properly handled�

Even if the operating system supports multiprogramming� as most do� it is always an in�

terrupt that causes the task switch� leading to inter�task synchronization problems�

In shared�memory multiprocessors� there is interference between processors accessing

the shared memory� in addition to hardware interrupts� When di�erent threads of control

in the kernel need to execute in speci�c order
e�g�� to protect the integrity of kernel data

structures�� they use synchronization mechanisms to ensure proper execution ordering� In

this chapter� we discuss di�erent ways to ensure synchronization in the kernel with emphasis

on the Synthesis approach based on lock�free Synchronization�

��

	���� Disabling Interrupts

In a single�processor kernel
including most !avors of Unix�� all types of synchro�

nization problems can be solved cheaply by disabling the hardware interrupts� While inter�

rupts are disabled the executing procedure is guaranteed to continue uninterrupted� Since

disabling and enabling interrupts cost only one machine instruction each� it is orders of

magnitude cheaper than other synchronization mechanisms such as semaphores� therefore

its use is widespread� For example� ��� of the ��� procedures that make up version ��� of

the Sony NEWS kernel
a BSD ��� derivative� disable interrupts�

But synchronization by disabling interrupts has its limitations� Interrupts cannot

remain disabled for too long� otherwise frequent hardware interrupts such as a fast clock

may be lost� This places a limit on the length of the execution path within critical regions

protected by disabled interrupts� Furthermore� disabling interrupts is not always su�cient�

In a shared�memory multiprocessor� data structures may be modi�ed by di�erent CPUs�

Therefore� some explicit synchronization mechanism is needed�

	���� Locking Synchronization Methods

Mutual exclusion protects a critical section by allowing only one process at a time

to execute in it� The many styles of algorithms and solutions for mutual exclusion may

be divided into two kinds	 busy�waiting
usually implemented as spin�locks� and blocking

usually implemented as semaphores�� Spin�locks sit in tight loops while waiting for the

critical region to clear� Blocking semaphores
or monitors� explicitly send a waiting process

to a queue� When the currently executing process exits the critical section� the next process

is dequeued and allowed into the critical section�

The main problem with spin�locks is they waste CPU time while waiting� The

justi�cation in multiprocessors is that the process holding the lock is running and will soon

clear the lock� This assumption may be false when multiple threads are mapped to the

same physical processor� and results either in poor performance� or complicated scheduling

to ensure the bad case does not happen� The main di�culty with blocking semaphores is

the considerable overhead to maintain a waiting queue and to set and reset the semaphore�

Furthermore� the waiting queue itself requires some kind of lock� resulting in a catch���

situation that is resolved by disabling interrupts and spin�locks� Finally� having to choose

between the two implementations leads to non�trivial decisions and algorithms for making

��

it�

Besides the overhead in acquiring and releasing locks� locking methods su�er from

three major disadvantages	 contention� deadlock� and priority inversion� Contention occurs

when many competing processes all want to access the same lock� Important global data

structures are often points of contention� In Mach� for example� a single lock serializes

access to the global run�queue #�$� This becomes a point of contention if several processors

want to access the queue at the same time� as would occur when the scheduler clocks

are synchronized� One way to reduce the lock contention in Mach relies on scheduling

�hints� from the programmer� For example� hand�o� hints may give control directly to the

destination thread� bypassing the run queue� Although hints may decrease lock contention

for speci�c cases� their use is di�cult and their bene�ts uncertain�

Deadlock results when two or more processes both need locks held by the other�

Typically� deadlocks are avoided by imposing a strict request order for the resources� This

is a di�cult solution because it requires system�wide knowledge to perform a local function�

this goes against the modern programming philosophy of information�hiding�

Priority inversion occurs when when a low priority process in a critical section is

preempted and causes other� higher priority processes to wait for that critical section� This

can be particularly problematic for real�time systems where rapid response to urgent events

is essential� There are sophisticated solutions for the priority inversion problem #�$� but

they contribute to make locks more costly and less appealing�

A �nal problem with locks is that they are state� In an environment that allows

partial failure
 such as parallel and distributed systems
 a process can set a lock and

then crash� All other processes needing that lock then hang inde�nitely�

	���� Lock�Free Synchronization Methods

It is possible to perform safe updates of shared data without using locks� Herlihy #��$

introduced a general methodology to transform a sequential implementation of any data

structure into a wait�free� concurrent one using the Compare���Swap primitive� which he

shows is more powerful than test�and�set� the primitive usually used for locks� Compare���

Swap takes three parameters	 a memory location� a compare value� and an update value�

If contents of the memory location is identical to the compare value� the update value is

stored there and the operation succeeds� otherwise the memory location is left unchanged

��

int data�val

AtomicUpdate�update�function�

retry�

old�val � data�val

new�val � Update�Function�old�val�

if�CAS�	data�val� old�val� new�val� �� FAIL�

goto retry

return new�val

�

Figure ���	 Atomic Update of Single�Word Data

CAS�mem�addr� compare�value� update�value�

if��mem�addr �� compare�value�

�mem�addr � update�value

return SUCCEED

� else
return FAIL

�

Figure ���	 De�nition of Compare�and�Swap

and the operation fails�

Figure ��� shows how Compare���Swap is used to perform an arbitrary atomic update

of single�word data in a lock�free manner� Initially� the current value of the word is read into

a private variable� old val� This value is passed to the update function which places its

result in a private variable� new val� Compare���Swap then checks if interference happened

by testing whether the word still has value old val� If it does� then the word is atomically

updated with new val� Otherwise� there was interference� so the operation is retried� For

reference� Figures ��� and ��� shows the de�nition of CAS� the Compare���Swap function�

and of CAS�� the two�word Compare���Swap function� which is used later�

Updating data of arbitrary�length using Compare���Swap is harder� Herlihy�s gen�

eral method works like this	 each data structure has a �root� pointer� which points to the

current version of the data structure� An update is performed by allocating new memo�

ry and copying the old data structure into the new memory� making the changes� using

Compare���Swap to swing the root pointer to the new structure� and deallocating the old�

��

CAS��mem�addr�� mem�addr�� compare�� compare�� update�� update��

if��mem�addr� �� compare� 		 �mem�addr� �� compare��

�mem�addr� � update�

�mem�addr� � update�

return SUCCEED

� else
return FAIL

�

Figure ���	 De�nition of Double�Word Compare�and�Swap

He provides methods of partitioning large data structures so that not all of it needs to be

copied� but in general� his methods are expensive�

Herlihy de�nes an implementation of a concurrent data structure to be wait�free if

it guarantees that each process modifying the data structure will complete the operation in

a �nite number of steps� He de�nes an implementation to be non�blocking if it guarantees

that some process will complete an operation in a �nite number of steps� Both prevent

deadlock� Wait�free also prevents starvation� In this paper� we use the term lock�free as

synonymous with non�blocking� We have chosen to use lock�free synchronization instead of

wait�free because the cost of wait�free is much higher and the chances of starvation in an

OS kernel is low
 I was unable to construct a test case where that would happen�

Even with the weaker goal of non�blocking� Herlihy�s data structures are expensive�

even when there is no interference� For example� updating a limited�depth stack is im�

plemented by copying the entire stack to a newly allocated block of memory� making the

changes on the new version� and switching the pointer to the stack with a Compare���Swap�

This cost is much too high� and we want to �nd ways to reduce it�

	���� Synthesis Approach

The Synthesis approach to synchronization is motivated by a desire to do each job

using the minimum resources� The previous sections outlined the merits and problems of

various synchronization methods� Here are the ideas that guided our search for a synchro�

nization primitive for Synthesis	

� We wanted a synchronization method that avoids the problem of priority inversion so

as to simplify support of real�time signal processing�

��

� We did not want to disable interrupts because we wanted to support I�O devices that

interrupt at a very high rate� such as the Sound�IO devices� Also� disabling interrupts

by itself does not work for multiprocessors�

� We wanted a synchronization method that does not have the problem of deadlock�

The reason is that we wanted as much !exibility as possible to examine and modify

running kernel threads� We wanted to be able to suspend threads to examine their

state without a�ecting the rest of the system�

Given these desires� lock�free synchronization is the method of choice� Lock�free

synchronization does not have the problems of priority inversion and deadlock� I also feel

it leads to more robust code because there can never be the problem of a process getting

stuck and hanging while holding a lock�

Unfortunately� Herlihy�s general wait�free methods are too expensive� So instead

of trying to implement arbitrary data structures lock�free� we take a di�erent tack	 We

ask �what data structures can be implemented lock�free� e�ciently"� We then build the

kernel out of these structures� This di�ers from the usual way	 typically� implementors

select a synchronization method that works generally� such as semaphores� then use that

everywhere� We want to use the cheapest method for each job� We rely on the quaject

structuring of the kernel and on code synthesis to create special synchronization for each

need�

The job is made easier because the Motorola ����� processor supports a two�word

Compare���Swap operation� It is similar in operation to the one�word Compare���Swap�

except that two words are compared� and if they both match� two updates are performed�

Two�word Compare���Swap lets us e�ciently implement many basic data structures such

as stacks� queues� and linked lists because we can atomically update both a pointer and the

location being pointed to in one step� In contrast� Herlihy�s algorithms� using single�word

Compare���Swap� must resort to copying�

The �rst step is to see if synchronization is necessary at all� Many times the need for

synchronization can be avoided through code isolation� where only specialized code that is

known to be single�threaded handles the manipulation of data� An example of code isolation

is in the run�queue� Typically a run�queue is protected by semaphores or spin�locks� such as

in the Unix and Mach implementations #�$� In Synthesis� only code residing in each element

can change it� so we separate the run�queue traversal� which is done lock�free� safely and

��

concurrently� from the queue element update� which is done locally by its associated thread�

Another example occurs in a single�producer� single�consumer queue� As long as the queue

is neither full nor empty� the producer and consumer work on di�erent parts of it and need

not synchronize�

Once it has been determined that synchronization is unavoidable� the next step is to

try to encode the shared information into one or two machine words� If that succeeds� then

we can use Compare���Swap on the one or two words directly� Counters� accumulators�

and state�!ags all fall in this category� If the shared data is larger than two words� then

we try to encapsulate it in one of the lock�free quajects we have designed� explained in the

next section	 LIFO stacks� FIFO queues� and general linked lists� If that does not work�

we try to partition the work into two pieces� one part that can be done lock�free� such as

enqueueing the work and setting a �work�to�be�done� !ag� and another part that can be

postponed and done at a time when it is known interference will not happen
e�g�� code

isolation�� Suspending of threads� which is discussed in Section ������ follows this idea

a thread is marked suspended� the actual removal of the thread from the run�queue occurs

when the thread is next scheduled�

When all else fails� it is possible to create a separate thread that acts as a server to

serialize the operations� Communication with the server happens using lock�free queues to

assure consistency� This method is used to update complex data structures� such as those

in the VT���� terminal emulator� Empirically� I have found that after all the other causes

of synchronization have been eliminated or simpli�ed as discussed above� the complex data

structures that remain are rarely updated concurrently� In these cases� we can optimize�

dispensing with the server thread except when interference occurs� Invoking an operation

sets a �busy� !ag and then proceeds with the operation� using the caller�s thread to do the

work� If a second thread now attempts to invoke an operation on the same data� it sees the

busy�!ag set� and instead enqueues the work� When the �rst thread �nishes the operation�

it sees a non�empty work queue� and spawns a server thread to process the remaining work�

This server thread persists as long as there is work in the queue� When the last request has

been processed� the server dies�

In addition to using only lock�free objects and optimistic critical sections� we also

try to minimize the length of each critical section to decrease the probability of retries� The

longer a process spends in the critical section� the greater the chance of outside interference

forcing a retry� Even a small decrease in length can have a profound e�ect on retries�

��

Insert�elem�

retry�

old�first � list�head

�elem � old�first
if�CAS�	list�head� old�head� elem� �� FAIL�

goto retry

�

Delete��

retry�

old�first � list�head

if�old�first �� NULL�

return NULL

second � �old�first

if�CAS��	list�head� old�first� old�head� second� second� �� �� FAIL�

goto retry

return old�first

�

Figure ���	 Insert and Delete at Head of Singly�Linked List

Sometimes a critical section can be divided into two shorter ones by �nding a consistent

intermediate state� Shifting some code between readers and writers will sometimes produce

a consistent intermediate state�

��� Lock�Free Quajects

The Synthesis kernel is composed of quajects � chunks of code with data structures�

Some quajects represent OS abstractions� such as threads� memory segments� and I�O

devices described earlier in Chapter �� Other quajects are instances of abstract data types

such as stacks� queues� and linked lists� implemented in a concurrent� lock�free manner�

This section describes them�

	���� Simple Linked Lists

Figure ��� shows a lock�free implementation of insert and delete at the head of a

singly�linked list� Insert reads the address of the list�s �rst element into a private variable

old�first�� copies it into the link �eld of the new element to be inserted� and then uses

Compare���Swap to atomically update the list�s head pointer if it had not been changed

since the initial read� Insert and delete to the end of the list can be carried out in a similar

manner� by maintaining a list�tail pointer� This method is similar to that suggested in the

��

Push�elem�

retry�

old�SP � SP

new�SP � old�SP � �

old�val � �new�SP

if�CAS��	SP� new�SP� old�SP� old�val� new�SP� elem� �� FAIL�

goto retry

�

Pop��

retry�

old�SP � SP

new�SP � old�SP � �

elem � �old�SP

if�CAS��	SP� old�SP� old�SP� elem� new�SP� elem� �� FAIL�

goto retry

return elem

�

Figure ���	 Stack Push and Pop

����� processor handbook #��$�

	���� Stacks and Queues

One can implement a stack using insert and delete to the head of a linked list� using

the method of the previous section� But this requires node allocation and deallocation�

which adds overhead� So I found a way of doing an array�based implementation of a stack

using two�word Compare���Swap� This implementation also has the advantage that it

works on the hardware�de�ned processor stacks� which is important for delivering signals

to threads� I believe this is a new result� though not a �big� one�

Figure ��� shows a lock�free implementation of a stack� Pop is implemented in almost

the same way as a counter increment� The current value of the stack pointer is read into a

private variable� which is de�referenced to get the top item on the stack and incremented past

that item� The stack pointer is then updated using Compare���Swap to test for interfering

accesses and retry when they happen�

Push is more complicated because it must atomically update two things	 the stack

pointer and the top item on the stack� This needs a two�word Compare���Swap� The

current stack pointer is read into a private variable and decremented� placing the result

into another private variable� This decremented stack pointer contains the memory address

where the new item will be put� But �rst� the data at this address is read into a third

��

Put�elem�

retry�

old�head � Q�head

new�head � old�head � �

if�new�head �� Q�end�

new�head � Q�begin

if�new�head �� Q�tail�

return FULL

old�elem � �new�head

if�CAS��	Q�head� new�head� old�head� old�elem� new�head� elem� �� FAIL�

goto retry

�

Get��

retry�

old�tail � Q�tail

if�old�tail �� Q�head�

return EMPTY

elem � �old�tail

new�tail � old�tail � �

if�new�tail �� Q�end�

new�tail � Q�begin

if�CAS��	Q�tail� old�tail� old�tail� elem� new�tail� elem� �� FAIL�

goto retry

return elem

�

Figure ���	 Queue Put and Get

private variable� then the new item stored there and the stack pointer updated using a

a two�word Compare���Swap�
The data must be read to give Compare���Swap�� two

comparison values� Compare���Swap�� always performs two tests� sometimes one of them

is undesirable��

Figure ��� shows a lock�free implementation of a circular queue� It is very similar to

the stack implementation� and will not be discussed further�

	���� General Linked Lists

The �simple� linked lists described earlier allow operations only on the head and tail

of the list� General linked lists also allow operations on interior nodes�

Deleting nodes at the head of a list is easy� Deleting an interior node of the list is much

harder because the permanence of its neighbors is not guaranteed� Linked list traversal in

the presence of deletes is hard for a similar reason
 a node may be deleted and deallocated

while another thread is traversing it� If a deleted node is then reallocated and reused for

some other purpose� its new pointer values may cause invalid memory references by the

��

VisitNextNode�current�

nextp � 	 current��next
 �� Point to current node�s next�node field
retry�

next�node � �nextp
 �� Point to the next node
if�next�node �� NULL�
 �� If node exists���

refp � 	 next�node��refcnt
 �� Point to next node�s ref� count field
old�ref � �refp
 �� Get value of next node�s ref� count
new�ref � old�ref � �
 �� And increment
if�CAS��nextp� refp� next�node� old�ref� next�node� new�ref� �� FAIL�

goto retry

�
return next�node

�

ReleaseNode�current�

refp � 	 current��refcnt
 �� Point to current node�s ref� count field
retry�

old�ref � �refp
 �� Get value of current node�s ref� count
new�ref � old�ref � �
 �� ��� Decrement
if�CAS�old�ref� new�ref� refp� �� FAIL�

goto retry

if�new�ref �� ��

Deallocate�current�

return NULL

� else

return current

�
�

Figure ���	 Linked List Traversal

other thread still traversing it�

Herlihy�s solution #��$ uses reference counts� The idea is to keep deleted nodes

�safe�� A deleted node is safe if its pointers continue to be valid� i�e�� pointing to nodes that

eventually take it back to the main list where the Compare���Swap will detect the change

and retry the operation� Nodes that have been deleted but not deallocated are safe�

Figure ��� shows an implementation of Herlihy�s idea� simpli�ed by using a two�word

Compare���Swap� Visiting a node loads the pointer and increments the reference count�

Leaving a node decrements the reference count� A deleted node is not actually freed until the

reference count reaches zero� Deleting a node still requires the permanence of its neighbors�

We do this in two steps	
�� mark the nodes to be deleted and leave them in the list�
�� if

the previous node is not marked for deletion� sit on it and delete the original node marked

for deletion� Since step � may require going back through the list an arbitrary number

of nodes� usually we do step � the next time we traverse the list to avoid the overhead of

traversing the list just for deletion�

��

Operation Non Sync Locked Lock�freenoretry Lock�freeoneretry

null procedure call
in C ���

Increment counter ��� ��� ��� ���

Linked�list Insert ��� ��� ��� ���

Linked�list Delete ��� ��� ��� ���

Circular�Queue Insert ��� ��� ��� ���

Circular�Queue Delete ��� ��� ��� ���

Stack Push ��� ��� ��� ���

Stack Pop ��� ��� ��� ���

get semaphore
Sony NEWS� Unix ���

Times in microseconds

����� CPU� ��MHz� ��wait�state main memory� cold cache

Table ���	 Comparison of Di�erent Synchronization Methods

Optimizations are possible if we can eliminate some sources of interference� In the

Synthesis run queue� for example� there is only one thread visiting a TTE at any time�

So we simplify the implementation to use a binary marker instead of counters� We set

the mark when we enter the node using a two�word Compare���Swap� This is easier than

incrementing a counter because we don�t have to read the mark beforehand � it must be

zero to allow entrance� Non�zero means that node is being visited by some other processor�

so we skip to the next one and repeat the test�

	���� Lock�Free Synchronization Overhead

Table ��� shows the overhead measured for the lock�free objects described in this

section� and compares it with the overhead of two other implementations	 one using locking

��

and one that is not synchronized� The column labeled �Non Sync� shows the time taken

to execute the operation without synchronization� The column labeled �Locked� shows the

time taken by a locking�based implementation of the operation without interference� The

column labeled �Lock�freenoretry� shows the time taken by the lock�free implementation

when there is no interference� The column labeled �Lock�freeoneretry� shows the time taken

when interference causes the �rst attempt to retry� with success on the second attempt�� For

reference� the �rst line of the table gives the cost of a null procedure call in the C language�

and the last line gives the cost of a get semaphore operation in Sony�s RTX kernel�
The

RTX kernel runs in the I�O processor of Sony�s dual�processor workstation� and is meant

to be a light�weight kernel��

The numbers shown are for in�line assembly�code implementation and assume a

pointer to the relevant data structure already in a machine register� The lock�free code

measured is the same as that produced by the Synthesis kernel code generator� The non�

synchronized code is the best I�ve been able to do writing assembler by hand� The lock�

based code is the same as the non�synchronized� but preceded by some code that disables

interrupts and then obtains a spinlock� and followed by code to clear the spinlock and re�

enable interrupts� The reasoning behind disabling interrupts is to make sure that the thread

does not get preempted in its critical section� guaranteeing that the lock is cleared quickly�

This represents good use of spin�locks� since any contention quickly passes�

Besides avoiding the problems of locking� the table shows that the lock�free imple�

mentation is actually faster than the lock�based one� even in the case of no interference� In

fact� the performance of lock�free in the presence of interference is comparable to locking

without interference�

Let us study the reason for this surprising result� Figures ��� and ��� show the actual

code that was measured for the linked�list delete operation� Figure ��� shows the lock�free

code� while Figure ��� shows the locking�based code� The lock�free code closely follows the

principles of operation described earlier� The lock�based code begins by disabling processor

interrupts to guarantee that the process will not be preempted� It then obtains the spin�

lock� interference at this point is limited to that from other CPUs in a multiprocessor� and

the lock should clear quickly� The linked�list delete is then performed� followed by clearing

�This case is produced by generating an interfering memory reference between the initial read and the
Compare���Swap� The Quamachine�s memory controller� implemented using programmable gate arrays� lets
us do things like this� Otherwise the interference would be very di�cult to produce and measure�

��

retry� move�l �head��d� �� Get head node into reg� d�
move�l d��a� �� ��� copy to register �a��
beq empty �� ��� jump if list empty
lea �a��next��a� �� Get address of head node�s next ptr�
move�l �a���d� �� Get �nd node in list into reg� d�
cas��l d��d��d��d���head���a�� �� Update head if both nodes still same
bne retry �� ��� go try again if unsucessful

Figure ���	 Lock�Free Delete from Head of Singly�Linked List

move�w "sr�d� �� Save CPU status reg� in reg� d�
or�w ��x�#���"sr �� Disable interrupts�

spin� tas lock �� Obtain lock
bne spin �� ��� busy wait
move�l �head��a� �� Get head node into reg� a�
tst�l a� �� Is there a node�
bne go �� ��� yes� jump
clr�l lock �� ��� no� Clear the lock
move�w d��"sr �� Reenable interrupts
bra empty �� Go to �empty� callback

go� move�l �a��next���head��� Make �head� point to �nd node
clr�l lock �� Clear the lock
move�w d��"sr �� Reenable interrupts

Figure ���	 Locked Delete from Head of Singly�Linked List

the lock and reenabling interrupts�
Don�t be fooled by its longer length	 part of the code

is executed only when the list is empty��

Accounting for the costs� the actual process of deleting the element from the list

takes almost the same time for both versions� with the the lock�free code taking a few cycles

longer�
This is because the Compare���Swap instruction requires its compare�operands to

be in D registers while indirection is best done through the A registers� whereas the lock�

based code can use whatever registers are most convenient�� The cost advantage of lock�free

comes from the much higher cost of obtaining and clearing the lock compared to the cost

of Compare���Swap� The two�word Compare���Swap instruction takes �� machine cycles

to execute on the ����� processor� By comparison� obtaining and then clearing the lock

costs �� cycles� with the following breakdown	 � to save the CPU status register� �� to

disable interrupts� �� to obtain the lock� � to clear the lock following the operation� and

�� to reenable interrupts�
For reference� fetching from memory costs � cycles and a single

��

word Compare���Swap takes �� cycles��

Some people argue that one should not disable interrupts when obtaining a lock�

They believe it is better to waste time spin�waiting in the rare occasion that the process

holding the lock is preempted� than to pay the disable�enable costs each time�� I disagree�

I believe that in operating systems� it is better that an operation perhaps cost a little more�

than to have it be a little faster but occasionally exhibit very high cost� Repeatability

and low variance are often times as important if not more important than low average

cost� Furthermore� allowing interrupts in a critical section opens the possibility that a

process which has been interrupted might not return to release the lock� The user may have

typed Control�C� for example� terminating the program� Recovering from this situation or

preventing it from happening requires tests and more code which adds to the cost
 if not

to the lock itself� then somewhere else in the system�

��� Threads

This section describes how thread operations can be implemented so they are lock�

free and gives timing �gures showing their cost�

	���� Scheduling and Dispatching

Section ����� described how thread scheduling and dispatching works using an ex�

ecutable data structure to speed context switching� Each thread is described by a thread

table entry
TTE�� The TTE contains the thread�speci�c procedures implementing the dis�

patcher and scheduler� the thread context save area� and other thread�speci�c data� The

dispatcher is divided into two halves	 the switch�out routine� which is executed from the

currently running thread�s TTE and which saves the thread�s context� and the switch�in

routine� which is executed from the new thread�s TTE and loads new thread�s context and

installs its switch�out routine into the quantum clock interrupt handler�

In the current version of Synthesis� the TTEs are organized into multiple levels of run�

queues for scheduling and dispatching� The idea is that some threads need more frequent

attention from the CPU than others� and we want to accommodate this while maintaining

an overall round�robin�like policy that is easy to schedule cheaply� The policy works like

�for the data structures of interest here� not disabling interrupts makes the cost of locking when no
process is preempted very nearly identical to the cost of lock�free�

��

this	 on every second context switch� a thread from level � is scheduled� in round�robin

fashion� On every fourth context switch� a thread from level � is scheduled� also in round�

robin fashion� On every eighth context switch� a thread from level � is scheduled� And so

on� for � levels� Each level gets half the attention of the previous level� If there are no

threads at a particular level� that level�s quanta is distributed among the rest of the levels�

A global counter and a lookup table tells the dispatcher which level�s queue is next�

The lookup table contains the scheduling policy described above
 a � every other entry�

� every fourth entry� � every eighth entry� like this	
�� �� �� �� �� �� �� �� �� �� � � ��� Using the

counter to follow the priority table� the kernel dispatches a thread from level � at every

second context�switch� from level � at every fourth context�switch� level � at every eighth�

and so on�

When multiple CPUs attempt to dispatch threads from the run�queues� each active

dispatcher
switch�out routine� acquires a new TTE by marking it using Compare���Swap�

If successful� the dispatcher branches to the switch�in routine in the marked TTE� Otherwise�

some other dispatcher has just acquired the attempted TTE� so this dispatcher moves on to

try to mark the next TTE� The marks prevent other dispatchers from accessing a particular

TTE� but not from accessing the rest of the run queues�

	���� Thread Operations

We now explain how the other thread operations are made lock�free� The general

strategy is the same� First� mark the intended operation on the TTE� Second� perform the

operation� Third� check whether the situation has changed� If negative� the operation is

done� If positive� retry the operation� An important observation is that all state transitions

and markings are done atomically through Compare���Swap�

Figure ���� shows the thread state�transition diagram for the suspend and resume

operations�

Suspend
 The thread�suspend procedure sets the STOPME !ag in the target

thread�s TTE indicating that it is to be stopped� If the target thread is currently run�

ning on a di�erent CPU� a hardware interrupt is sent to that CPU by writing to a special

I�O register� forcing a context�switch� We optimize the case when a thread is suspending

itself by directly calling the scheduler instead� Thread�suspend does not actually remove

the thread from the run�queue�

��

(1,0)
Running,

Scheduler Invoked

(0,0)
Running

(0,0)
Ready

(1,0)
Suspended

In run-queue

(1,1)
Suspended

Not in run-queue

Suspend
Resume

Suspend
Resume

Resume

Schedule Schedule

Schedule

Numbers in parenthesis� �STOPME�STOPPED�

Figure ����	 Thread State Transition Diagram

When a scheduler encounters a thread with the STOPME !ag set� it removes its

TTE from the run�queue and sets the STOPPED !ag to indicate that the thread has been

stopped� This is done using the two�word compare�and�swap instruction to synchronize

with other CPU�s schedulers that may be operating on the adjacent queue elements� The

mark on the TTE guarantees that only one CPU is visiting each TTE at any given time�

This also makes the delete operation safe�

Resume
 First� the STOPME and STOPPED !ags are read and the STOPME !ag

is cleared to indicate that the thread is ready to run� If the previously�read STOPPED

!ag indicates that the thread had not yet been removed from the run�queue� we are done�

Otherwise� we remove the TTE and insert the thread directly into the run queue� The main

problem we have to avoid is the case of a neighboring TTE being deleted due to the thread

being killed� To solve that problem� when a thread is killed� we mark its TTE as �killed��

but do not remove it from the run�queue immediately� When a dispatcher realizes the next

TTE is marked �killed� during a context switch� it can safely remove it�

Signal
 Thread�signal is synchronized in a way that is similar to thread�resume�

Each thread�s TTE has a stack for pending signals which contains addresses of signal�handler

procedures� Thread�signal uses a two�word Compare���Swap to push a new procedure

address onto this stack� It then sets a signal�pending !ag� which the scheduler tests� The

scheduler removes procedures from the pending�signal stack� one at a time� and constructs

��

Thread Operation Time
�s�

Createshared vector table ����

Createseparate vector table ��

Destroy ��� ' ��� in dispatcher

Suspend ��� ' ��� in dispatcher

Resume ��� if in Q� ��� not in Q

Signal ��� ' ��� in scheduler

Step
no FP� no VM switch� ��

Table ���	 Thread operations

procedure call frames on the thread�s runtime stack to simulate the thread having called

that procedure�

Step
 Thread�step is intended for instruction�at�a�time debugging� concurrent calls

defeats its purpose� So we do not give any particular meaning to concurrent calls of this

function except to preserve the consistency of the kernel� In the current implementation�

all calls after the �rst fail� We implement this using an advisory lock�

	���� Cost of Thread Operations

Table ��� shows the time taken to perform the various thread operations implemented

using the lock�free synchronization methods of this chapter� They were measured on the

Sony NEWS ���� machine� a dual ����� each at �� MHz� with no interference from the

other processor�

Thread suspend� destroy� and signal have been split into two parts	 the part done

by the requester and the part done by the dispatcher� The time for these are given in the

form �X ' Y �� the �rst number is the time taken by the requester� the second number is

the time taken by the dispatcher� Thread resume has two cases� the case where the thread

had been stopped but the scheduler had not removed it from the run queue yet� shown

by the �rst number� and the case where it was removed from the run queue and must be

re�inserted� shown by the second number�

��

Type of context switch Synthesis V��

Integer registers only ��

Floating�point ��

Integer� change address space �� ' ��� � TLB fill

Floating�point� change address space �� ' ��� � TLB fill

Table ���	 Overhead of Thread Scheduling and Context Switch

Thread create has been made signi�cantly faster with a copy�on�write optimization�

Recall from Section ��� that each thread has a separate vector table� The vector table

contains pointers to synthesized routines that handle the various system calls and hardware

interrupts� These include the �� system�call trap vectors� �� program exception vectors� ��

vectors for hardware failure detection� and� depending on the hardware con�guration� from

� to ��� interrupt vectors� This represents a large amount of state information that had to

be initialized
 ���� bytes�

Newly�created threads point their vector table to the vector table of their creator

and defer the creation of their own until they need to change the vector table� There are

only two operations that change a thread�s vector table	 opening and closing quajects� If a

quaject is not to be shared� open and close test if the TTE is being shared� and if so they

�rst make a copy of the TTE and then modify the new copy� Alternatively� several threads

may share the changes in the common vector table� For example� threads can now perform

system calls such as open file and naturally share the resulting �le access procedures with

the other threads using the same vector table�

Table ��� shows the cost of context switching and scheduling� Context�switch is

somewhat slower than shown earlier� in Table ���� because now we schedule from multiple

run queues� and because there is synchronization that was not necessary in the single�CPU

version discussed in Section ������ When changing address spaces� loading the memory

management unit�s translation table pointer and !ushing the translation cache increases

the context switch time� Extra time is then used up to �ll the translation cache� This is the

�'��� �TLB fill� time� Depending on the thread�s locality of reference� this can be as low

��

as ��� microseconds for � pages
code� global data� and stack� to as high as �� microseconds

to �ll the entire TLB cache�

��� Summary

We have used only lock�free synchronization techniques in the implementation of Syn�

thesis multiprocessor kernel on a dual������ Sony NEWS workstation� This is in contrast

to other implementations of multiprocessor kernels that use locking� Lock�based synchro�

nization methods such as disabling interrupts� spin�locking� and waiting semaphores have

many problems� Semaphores carry high management overhead and spin�locks may waste

signi�cant amount of CPU�
A typical argument for spin�locks is that the processor would

be idle otherwise� This may not apply for synchronization inside the kernel�� A complete�

ly lock�free implementation of a multiprocessor kernel demonstrates that synchronization

overhead can be reduced� concurrency increased� deadlock avoided� and priority inversion

eliminated�

This completely lock�free implementation is achieved with a careful kernel design

using the following �ve�point plan as a guide	

� Avoid synchronization whenever possible�

� Encode shared data into one or two machine words�

� Express the operation in terms of one or more fast lock�free data structure operations�

� Partition the work into two parts	 a part that can be done lock�free� and a part that

can be postponed to a time when there can be no interference�

� Use a server thread to serialize the operation� Communications with the server hap�

pens using concurrent� lock�free queues�

First we reduced the kind of data structures used in the kernel to a few simple abstract data

types such as LIFO stacks� FIFO queues� and linked lists� Then� we restricted the uses of

these abstract data types to a small number of safe interactions� Finally we implemented

e�cient special�purpose instances of these abstract data types using single�word and double�

word Compare���Swap� The kernel is fully functional� supporting threads� virtual memory�

and I�O devices such as window systems and �le systems� The measured numbers show the

��

very high e�ciency of the implementation� competitive with user�level thread management

systems�

Two lessons were learned from this experience� The �rst is that a lock�free im�

plementation is a viable and desirable alternative to the development of shared�memory

multiprocessor kernels� The usual strategy
 to evolve a single�processor kernel into a mul�

tiprocessor kernel by surrounding critical sections with locks
 carries some performance

penalty and potentially limits the system concurrency� The second is that single and double

word Compare���Swap are important for lock�free shared�memory multiprocessor kernels�

Architectures that do not support these instructions may su�er performance penalties if

operating system implementors are forced to use locks� Other synchronization instructions�

such as the Load�Linked�Store�Conditional found on the MIPS processor� may also yield

e�cient lock�free implementations�

��

�

Fine�Grain Scheduling

There�s no sense in being precise when you

don�t even know what you�re talking about�

� John von Neumann

	�� Scheduling Policies and Mechanisms

There are two parts to scheduling	 the policy and the mechanism� The policy deter�

mines when a job should run and for how long� The mechanism implements the policy�

Traditional scheduling mechanisms have high overhead that discourages frequent

scheduler decision making� Consequently� most scheduling policies try to minimize their

actions� We observe that high scheduling and dispatching overhead is a result of imple�

mentation� not an inherent property of all scheduling mechanisms� We call scheduling

mechanisms �ne�grain if their scheduling�dispatching costs are much lower than a typical

CPU quantum� for example� context switch overhead of tens of microseconds compared to

CPU quanta of milliseconds�

Traditional timesharing scheduling policies use some global property� such as job

priority� to reorder the jobs in the ready queue� A scheduling policy is adaptive if the global

property is a function of the system state� such as the total amount of CPU consumed by

��

the job� A typical assumption in global scheduling is that all jobs are independent of each

other� But in a pipeline of processes� where successive stages are coupled through their

input and output� this assumption does not hold� In fact� a global adaptive scheduling

algorithm may lower the priority of a CPU�intensive stage� making it the bottleneck and

slowing down the whole pipeline�

To make better scheduling decisions for I�O�bound processes� we take into account

local information and coupling between jobs in addition to the global properties� We call

such scheduling policies �ne�grain because they use local information� An example of in�

teresting local information is the amount of data in the job�s input queue	 if it is empty�

dispatching the job will merely block for lack of input� This chapter focuses on the coupling

between jobs in a pipeline using as the local information the amount of data in the queues

linking the jobs�

Fine�grain scheduling is implemented in the Synthesis operating system� The ap�

proach is similar to feedback mechanisms in control systems� We measure the progress of

each job and make scheduling decisions based on the measurements� For example� if the

job is �too slow�� say because its input queue is getting full� we schedule it more often and

let it run longer� The measurements and adjustments occur frequently� accurately tracking

each job�s needs�

The key idea in �ne�grain scheduling policy is modeled after the hardware phase

locked loop
PLL�� A PLL outputs a frequency synchronized with a reference input fre�

quency� Our software analogs of the PLL track a reference stream of interrupts to generate

a new stable source of interrupts locked in step� The reference stream can come from a vari�

ety of sources� for example an I�O device� such as disk index interrupts that occur once every

disk revolution� or the interval timer� such as the interrupt at the end of a CPU quantum�

For readers unfamiliar with control systems� the PLL is summarized in Section ����

Fine�grain scheduling would be impractical without fast interrupt processing� fast

context switching� and low dispatching overhead� Interrupt handling should be fast� since it

is necessary for dispatching another process� Context switch should be cheap� since it occurs

often� The scheduling algorithm should be simple� since we want to avoid a lengthy search

or calculations for each decision� Chapter � already addressed the �rst two requirements�

Section ����� shows that the scheduling algorithms are simple�

��

input
�

�
�
�
�

phase
comparator

Kd�

'

	

Volt
� Filter

F
S��

Volt
� VCO

K��S�

output
frequency

�

�
N

��N�

�

Figure ���	 PLL Picture

	�� Principles of Feedback

���� Hardware Phase Locked Loop

Figure ��� shows the block diagram of a PLL� The output of the PLL is an internally�

generated frequency synchronized to a multiple of the external input frequency� The phase

comparator compares the current PLL output frequency� divided by N � to the input fre�

quency� Its output is proportional to the di�erence in phase
frequency� between its two

inputs� and represents an error signal that indicates how to adjust the output to better

match the input� The �lter receives the signal from the phase comparator and tailors the

time�domain response of the loop� It ensures that the output does not respond too quickly

to transient changes in the input� The voltage�controlled oscillator
VCO� receives the �l�

tered signal and generates an output frequency proportional to it� The overall loop operates

to compensate the variations on input� so that if the output rate is lower than the input

rate� the phase comparator� �lter� and oscillator work together to increase the output rate

until it matches the input� When the two rates match� the output rate tracks the input

rate and the loop is said to be locked to the input rate�

���� Software Feedback

The Synthesis �ne�grain scheduling policies have the same three elements as the

hardware PLL� They track the di�erence between the running rate of a job and the reference

frame in a way analogous to the phase comparator� They use a �lter to dampen the

oscillations in the di�erence� like the PLL �lter� And they re�schedule the running job to

��

Interval Frequency

Time Events

��

��x

�

�

d�de
R
de

�

�

R
dt d�dt

Figure ���	 Relationship between ILL and FLL

minimize its error compared to the reference� in the same way the VCO adjusts the output

frequency�

Let us consider a practical example from a disk driver	 we would like to know which

sector is under the disk head to perform rotational optimization in addition to the usual

seek optimizations� This information is not normally available from the disk controller�

But by using feedback� we can derive it from the index�interrupt that occurs once per disk

revolution� supplied by some ESDI disk controllers� The index�interrupt supplies the input

reference� The rate divider� N � is set to the number of sectors per track� An interval timer

functions as the VCO and generates periodic interrupts corresponding to the passage of new

sectors under the drive head� The phase comparator and �lter are algorithms described in

Section ������

When we use software to implement the PLL idea� we �nd more !exibility in mea�

surement and control� Unlike hardware PLLs� which always measure phase di�erences�

software can measure either the frequency of the input
events per second�� or the time

interval between inputs
seconds per event�� Analogously� we can adjust either the fre�

quency of generated interrupts or the intervals between them� Combining the two kinds

of measurements with the two kinds of adjustments� we get four kinds of software locked

loops� This dissertation looks only at software locked loops that measure and adjust the

same variable� We call a software locked loop that measures and adjusts frequency an FLL

frequency locked loop� and a software locked loop that measures and adjusts time intervals

an ILL
interval locked loop��

��

In general� all stable locked loops minimize the error
feedback signal�� Concretely�

an FLL measures frequency by counting events� so its natural behavior is to maintain the

number of events
and thus the frequency� equal to the input� An ILL measures intervals�

so its natural behavior is to maintain the interval between consecutive output interrupts

equal to the interval between inputs� At �rst� this seems to be two ways of looking at the

same thing� And if the error were always zero� it would be� But when a change in the input

happens� there is a period of time when the loop oscillates before it converges to the new

output value� During this time� the di�erences between ILL and FLL show up� An FLL

tends to maintain the correct number of events� although the interval between them may

vary from the ideal� An ILL tends to maintain the correct interval� even though it might

mean losing some events to do so�

This natural behavior can be modi�ed with �lters� The overall response of a software

locked loop is determined by the kind of �lter it uses to transform measurements into

adjustments� A low�pass �lter makes the FLL output frequency or the ILL output intervals

more uniform� less sensitive to transient changes in the input� But it also delays the response

to important changes in the input� An integrator �lter allows the loop to track linearly

changing input without error� Without an integrator� only constant input can be tracked

error�free� Two integrators allows the loop to track quadratically changing input without

error� But too many integrators tend to make the loop less stable and lengthens the time

it takes to converge� A derivative �lter improves response to sudden changes in the input�

but also makes the loop more prone to noise� Like their hardware analogs� these �lters can

be combined to improve both the response time and stability of the SLL�

���� FLL Example

Figure ��� shows the general algorithm for an FLL that generates a stream of inter�

rupts at four times the rate of a reference stream� The procedure i� services the reference

stream of interrupts� while the procedure i� services the generated stream� The variable

freq holds the frequency of i� interrupts and is updated whenever i� or i� runs� The

variable residue keeps track of di�erences between i� and i�� serving the role of the phase

comparator in a hardware PLL� Each time i� executes� it adds � to residue� Each time

i� executes� it subtracts � from residue� The Filter function determines how the residue

a�ects the frequency adjustments�

��

int residue��� freq��

�� Master �reference frame� �� �� Slave �derived interrupt� ��
i��� i���

residue �� �
 residue��

freq �� Filter�residue�
 freq �� Filter�residue�

� �
� �do work�

�do work� �
� next�time � NOW � ��freq

� schedintr�i�� next�time�

return
 return

� �

Figure ���	 General FLL

LoPass�x�

static int lopass

lopass � �#�lopass � x� � $

return lopass

�

Figure ���	 Low�pass Filter

If i� and i� were running at the perfect relative rate of � to �� residue would tend to

zero and freq would not be changed� But if i� is slower than � times i�� residue becomes

positive� increasing the frequency of i� interrupts� Similarly� if i� is faster than � times

i�� i� will be slowed down� As the di�erence in relative speeds increases� the correction

becomes correspondingly larger� As i� and i� approach the exact ratio of �	�� the di�erence

decreases and we reach the minimum correction with residue being decremented by one

and incremented by four� cycling between 	� and '�� Since residue can never converge

to zero
 only hover around it
 the i� execution frequency will always jitter slightly�

In practice� residue would be scaled down by an appropriate factor so that the jitter is

negligible�

Figures ���� ���� and ��� show some simple �lters that can be used alone or in

combination to improve the responsiveness and stability of the FLL� In particular� the low�

pass �lter shown in Figure ��� helps eliminate the jitter mentioned earlier at the expense

of a longer settling time� The variable lopass keeps a �history� of what the most recent

residues were� Each update adds ��� of the new residue to ��� of the old lopass� This

has the e�ect of taking a weighted average of recent residues� When residue is positive

��

Integrate�x�

static int accum

accum � accum � x

return accum

�

Figure ���	 Integrator Filter

Deriv�x�

static int old�x

int dx

dx � x � old�x

old�x � x

return dx

�

Figure ���	 Derivative Filter

for many iterations� as is the case when i� is too slow� lopass will eventually be equal

to residue� But if residue oscillates rapidly� as in the situation described in the previous

paragraph� lopass will go to zero� The derivative is never used alone� but can be used in

combination with other �lters to improve response to rapidly�changing inputs�

���� Application Domains

We choose between measuring and adjusting frequency and intervals depending on

the desired accuracy and application� Accuracy is an important consideration because we

can measure only integer quantities	 either the number of events
frequency�� or the clock

ticks between events
interval�� We would like to measure the larger quantity of the two

since it carries higher accuracy�

Let us consider a scenario that favors ILL� Suppose you have a microsecond�resolution

interval timer and the input event occurs about once per second� To make the output

interval match the input interval� the ILL measures second�long intervals with a microsecond

resolution timer� achieving high accuracy with few events� Consequently� ILL stabilizes very

quickly� In contrast� by measuring frequency
counting events�� an FLL needs more events

to detect and adjust the error signal� Empirically� it takes about �� input events
in about

�� seconds� for the output to stabilize to within ��% of the desired value�

���

A second scenario favors FLL� Suppose you have an interval timer with the resolution

of one�sixtieth of a second� The input event occurs �� times a second� Since the FLL is

independent of timer resolution� its output will still stabilize to within ��% after seeing

about �� events
in about ��� seconds�� However� since the event interval is comparable

to the resolution of the timer� an ILL will su�er loss of accuracy� In this example� the

measured interval will be either �� � or � ticks� depending on the relative timing between

the clock and input� Thus the ILL�s output can have an error of as much as ��%�

Generally� slow input rates and high resolution timers favor ILL� while high input

rates and low resolution timers favor FLL� Sometimes the problem at hand forces a particu�

lar choice� For example� in queue handling procedures� the number of get�queue operations

must equal the number of put�queue operations� This forces the use of an FLL� since the

actual number of events control the actions� In another example� subdivision of a time

interval
like in the disk sector �nder�� an ILL is best�

	�� Uses of Feedback in Synthesis

We have used feedback�based scheduling policies for a wide variety of purposes in

Synthesis� These are	

� An FLL in the thread scheduler to support real�time signal�processing applications�

� An ILL rhythm tracker for a special e�ects sound processing program�

� A digital oversampling �lter for a CD player� An FLL adjusts the �lter I�O rate to

match the CD player�

� An ILL that adjusts itself to the disk rotation rate� generating an interrupt a few

microseconds before each sector passes under the disk head�

���� Real�Time Signal Processing

Synthesis uses the FLL idea in its thread scheduler� This enables a pipeline of

threads to process high�rate� real�time data streams and simpli�es the programming of

signal�processing applications� The idea is quite simple	 if a thread�s input queue is �lling

or if its output queue is emptying� increase its share of CPU� Conversely� if a thread�s input

queue is emptying or if its output queue is �lling� decrease its share of CPU� The e�ect of

���

main��

char buf�����

int n� fd�� fd�

fd� � open�%�dev�cd%� ��

fd� � open�%�dev�speaker%� ��

for�

�

n � read�fd�� buf� ����

write�fd�� buf� n�

�
�

Figure ���	 Program to Play a CD

this scheduling policy is to allocate enough CPU to each thread in the pipeline so it can

process its data� Threads connected to the high�speed Sound�IO devices �nd their input

queues being �lled
 or their output queues being drained
 at a high rate� Consequently�

their share of CPU increases until the rate at which they process data equals the rate that it

arrives� As these threads run and produce output� the downstream threads �nd that their

queues start to �ll� and they too receive more CPU� As long as the total CPU necessary for

the entire pipeline does not exceed ���%� the pipeline runs in real�time�

The simpli�cation in applications programming that occurs using this scheduler can�

not be overstated� One no longer needs to worry about assigning priorities to jobs� or of

carefully crafting the inner loops so that everything is executed frequently enough� For ex�

ample� in Synthesis� reading from the CD player is no di�erent than reading from any other

device or �le� Simply open ��dev�cd� and read from it� To listen to the CD player� one

could use the program in Figure ���� The scheduler FLL keeps the data !owing smoothly

at the ���� KHz sampling rate
 ��� kilobytes per second for each channel
 regardless

of how many CPU�intensive jobs might be executing in the background�

Several music�oriented signal�processing applications have been written for Synthe�

sis and run in real�time using the FLL�based thread scheduler� The Synthesis music and

signal�processing toolkit includes many simple programs that take sound input� process it

in some way� and produce sound output� These include delay elements� echo and reverber�

ation �lters� adjustable low�pass� band�pass and high�pass �lters� Fourier transform� and

a correlator and feature extraction unit� These programs can be connected together in a

pipeline to perform more complex sound processing functions� in a similar way that text

�lters in Unix can be cascaded using the shell�s ��� notation� The thread scheduler ensures

���

the pipeline runs in real�time�

���� Rhythm Tracking and The Automatic Drummer

Besides scheduling� the feedback idea �nds use in the actual processing of music sig�

nals� In one application� a correlator extracts rhythm pulses from the music on a CD� These

are fed to an ILL� which subdivides the beat interval and generates interrupts synchronized

to the beat of the music� These interrupts are then used to drive a drum synthesizer� which

adds more drum beats to the original music� The interrupts also adjust the delay in the

reverberation unit making it equal to the beat interval of the music� You can also get pretty

pictures synchronized to the music when you plot the ILL input versus output on a graphics

display�

���� Digital Oversampling Filter

In another music application� an FLL is used to generate the timing information for a

digital interpolation �lter� A digital interpolator takes as input a stream of sampled data and

creates additional samples between the original ones by interpolation� This oversampling

increases the accuracy of analog reconstruction of digital signals� We use �	� oversampling�

i�e� we generate � samples using interpolation from each CD sample� The CD player has a

new data sample available ������ times per second� or one every ����� microseconds� The

interpolated data output is four times this rate� or one every ���� microseconds�� We use

an FLL to generate an interrupt source at this rate� synchronized with the CD player� This

also serves as an example of just how �ne�grained the timing can be	 an interrupt every

�����s corresponds to over ������� interrupts per second�

���� Discussion

A formal analysis of �ne�grain scheduling is beyond the scope of this dissertation�

However� I would like to give readers an intuitive feeling about two situations	 saturation

and cheating� As the CPU becomes saturated� the FLL�based scheduler degrades gracefully�

The processes closest to externally generated interrupts
device drivers� will still get the

necessary CPU time� The CPU�intensive processes away from I�O interrupts will slow down

�rst� as they should at saturation�

�This program runs on the Quamachine at �	 MHz clock rate�

���

Another potential problem is cheating by consuming resources unnecessarily to in�

crease priority� This is possible because �ne�grain scheduling tends to give more CPU to

processes that consume more� However� cheating cannot be done easily from within a thread

or by cooperation of several threads� First� unnecessary I�O loops within a program does

not help the cheater� since they do not speed up data !ow in the pipeline of processes� Sec�

ond� I�O within a group of threads only shifts CPU quanta within the group� A thread that

reads from itself gains quanta for input� but loses the exact amount in the self�generated

output� To increase the priority of a process� it must read from a real input device� such as

the CD player� In this case� it is virtually impossible for the OS kernel to distinguish the

real I�O from cheating I�O�

	�� Other Applications

���� Clocks

The FLL provides integral stability� This means the long�term drift between the

reference frame and generated interrupts tends to zero� even though any individual interval

may di�er from the reference� This is in contrast with di�erential stability� in which the

consecutive intervals are all the same� but any systematic error� no matter how small� will

accumulate into a long�term drift� To illustrate� the interval timers found on many machines

provide good di�erential stability	 all the intervals are of very nearly the same length� But

they do not provide good integral stability	 they do not keep good time�

The integral stability property of the FLL lets it increase the resolution of precise

timing sources� The idea is to synchronize a higher�resolution but less precise timing device�

such as the machine�s interval timer� to the precise one� The input to the FLL would be an

interrupt derived from a very precise source of timing� for example� from an atomic clock�

The output is a new stream of interrupts occurring at some multiple of the input rate�

Suppose the atomic clock ticks once a second� If the FLL�s rate divider� N � is set

to ����� then the FLL will subdivide the second�long intervals into milliseconds� The FLL

adjusts the interval timer so that each �������th interrupt occurs as close to the �correct�

time of arrival as possible given the resolution of the interval timer� while maintaining

integral stability
 N interrupts out for every interrupt in� If the interval timer used

exhibits good di�erential stability� as most interval timers do� the output intervals will be

���

both precise and accurate�

But for this to work well� one must be careful to avoid the accumulation of round�o�

error when calculating successive intervals� A good rule�of�thumb to remember is	 calculate

based on elapsed time� not on intervals� Use di�erences of elapsed times whenever an

interval is required� This is crucial to guaranteeing convergence� The sample FLL in

�gure ��� follows these guidelines�

To illustrate this� suppose that the hardware interval timer ticks every ����� micro�

seconds�� Using this timer� a millisecond is ������ ticks long� But when scheduling using

intervals� ������ is truncated to ���� since interrupts can happen only on integer ticks�

This gains time� One second later� the FLL will compensate by setting the interval to �����

But now it loses time� The FLL ends up oscillating between ���� and ����� and never

converging� Since the errors accumulate all in the same direction for the entire second

before the adjustment occurs� the resulting millisecond subdivisions are not very accurate�

A better way to calculate is this	 let the desired interval
��frequency� be a !oating�

point number and accumulate intervals into an elapsed�time accumulator using !oating�

point addition� Interrupts are scheduled by taking the integer part of the elapsed�time

accumulator and subtracting it from the previous elapsed�time to obtain the integer interval�

Once convergence is reached� � out of � interrupts will be scheduled every ���� ticks and

� out of � every ���� ticks� evenly interspersed� averaging to ������� Each interrupt will

occur as close to the ��millisecond mark as possible given the resolution of the timer
e�g��

they will di�er by at most �������s�� In practice� the same e�ect can be achieved using

appropriately scaled integer arithmetic� and !oating point arithmetic would not be used�

���� Real�Time Scheduling

The adaptive scheduling strategy might be improved further� possibly encompassing

many hard real�time scheduling problems� Hard real�time scheduling is a harder problem

than the real�time stream processing problem discussed earlier� In stream processing� each

job has a small queue where data can sit if the scheduler makes an occasional mistake� The

goal of �ne�grain scheduling is to converge to the correct CPU assignments for all the jobs

before any of the queues over!ow or under!ow� In contrast� hard real�time jobs must meet

their deadline� every single time� Nevertheless� I believe that the feedback�based scheduling

�This is a common number on machines that derive timing from the baud�rate generator used in serial
communications�

���

idea will �nd useful application in this area� In this section� I only outline the general idea�

without o�ering proof or examples� For a good discussion of issues in real�time computing�

see #��$�

We divide hard�deadline jobs into two categories	 the short ones and the long ones�

A short job is one that must be completed in a time frame within an order of magnitude of

interrupt and context switch overhead� For example� a job taking up to ��� microseconds

would be a short job in Synthesis� Short jobs are scheduled as they arrive and run to

completion without preemption�

Long jobs take longer than ��� times the overhead of an interrupt and context switch�

In Synthesis this includes all the jobs that take more than � millisecond� which includes

most of the practical applications� The main problem with long jobs is the variance they

introduce into scheduling� If we always take the worst scenario� the resulting hardware

requirement is usually very expensive and unused most of the time�

To use �ne�grain scheduling policies for long jobs� we break down the long job into

small strips� For simplicity of analysis we assume each strip to have the same execution

time ET� We de�ne the estimated CPU power to �nish job J as	

Estimate
J� �

strips in J� �ET

Deadline
J�	Now

For a long job� it is not necessary to know ET exactly since the locked loop �measures�

it and continually adjusts the schedule in lock step with the actual execution time� In

particular� if Estimate
J� � � then we know from the current estimate that J will not

make the deadline� If we have two jobs� A and B� with Estimate
A� ' Estimate
B� � �

then we may want to consider aborting the less important one and calling a short emergency

routine to recover�

Unlike traditional hard�deadline scheduling algorithms� which either guarantee com�

pletion or nothing� �ne�grain scheduling provides the ability to predict the deadline miss

under dynamically changing system loads� I believe this is an important practical concern

to real�time application programmers� especially in recovery from faults�

���� Multiprocessor and Distributed Scheduling

I also believe the adaptiveness of FLL promises good results in multiprocessor and

distributed systems� As in the previous section� the idea can be o�ered at this writing�

but with little support� At the risk of oversimpli�cation� I describe an example with �xed

���

P�

P�

disk

time
msec� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

read read write read write r r r
execute execute r r r

execute execute execute r r r

Figure ���	 Two Processors� Static Scheduling

bu�er size and execution time� Recognize that at a given a load� we can always �nd the

optimal scheduling statically by calculating the best bu�er size and CPU quantum� But I

emphasize the main advantage of feedback	 the ability to dynamically adjust towards the

best bu�er size and CPU quantum� This is important when we have a variable system load�

jobs with variable demands� or a recon�gurable system with a variable number of CPUs�

Figure ��� shows the static scheduling for a two�processor shared�memory system

with a common disk
transfer rate of � MByte�second�� We assume that both processes

access the disk drive at the full transfer rate� e�g� reading and writing entire tracks� Process

� runs on processor �
P�� and process � runs on processor �
P��� Process � reads ���

KByte from the disk into a bu�er� takes ��� milliseconds to process them� and writes ���

KByte through a pipe into process �� Process � reads ��� KByte from the pipe� takes

another ��� milliseconds to process them� and writes ��� KByte out to disk� In the �gure�

process � starts to read at time �� All disk activities appear in the bottom row� P� and P�

show the processor usage� and shaded quadrangles show idle time�

Figure ��� shows the �ne�grain scheduling mechanism
using FLL� for the same

system� We assume that process � starts by �lling its ��� KByte bu�er� but soon after

it starts to write to the output pipe� process � starts� Both processes run to exhaust the

bu�er� when process � will read from the disk again� After some settling time� depending on

the �lter used in the locked loop� the stable situation is for the disk to remain continuously

active� alternatively reading into process � and writing from process �� Both processes will

also run continuously� with the smallest bu�er that maintains the nominal transfer rate�

The above example illustrates the bene�ts of �ne�grain scheduling policies in par�

���

P�

P�

disk

time
msec� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

read r r r r r w r w r w r r r
execute r r r e e e e e e r r r
execute r r r e e e e e e r r r

Figure ���	 Two Processors� Fine�Grain Scheduling

allel processing� In a distributed environment� the analysis is more complicated due to

network message overhead and variance� In those situations� calculating statically the opti�

mal scheduling becomes increasingly di�cult� We expect the �ne�grain scheduling to show

increasing usefulness as it adapts to an increasingly complicated environment�

Another application of FLL to distributed systems is clock synchronization� Given

some precise external clocks� we would like to synchronize the rest of machines with the

reference clocks� Many algorithms have been published� including a recent probabilistic

algorithm by Christian #��$� Instead of specialized algorithms� we use an FLL to synchronize

clocks� where the external clock is the reference frame� the message delays introduce the

jitter in the input� and we need to �nd the right combination of �lters to adapt the output

to the varying message delays� Since an FLL exhibits integral stability� the clocks will tend

to synchronize with the reference once they stabilize� We are currently collecting data on

the typical message delay distributions and �nding the appropriate �lters for them�

	�� Summary

We have generalized scheduling from job assignments as a function of time� to job

assignments as a function of any source of interrupts� The generalized scheduling is most

useful when we have �ne�grain scheduling� that uses frequent state checks and dispatching

actions to adapt quickly to system changes� Relevant new applications of the generalized

�ne�grain scheduling include I�O device management� such as a disk sector interrupt source�

and adaptive scheduling� such as real�time scheduling and distributed scheduling�

���

The implementation of �ne�grain scheduling in Synthesisis based on feedback sys�

tems� in particular the phase locked loop� Synthesis� �ne�grain scheduling policy means

adjustments every few hundreds of microseconds on local information� such as the number

of characters waiting in an input queue� Very low overhead scheduling and context switch

for dispatching form the foundation of our �ne�grain scheduling mechanism� In addition�

we have very low overhead interrupt processing to allow frequent checks on the job progress

and quick� small adjustments to the scheduling policy�

There are two main advantages of �ne�grain scheduling	 quick adjustment to chang�

ing situations� and early warning of potential deadline misses� Quick adjustments make

better use of system resources� since we avoid queue�bu�er over!ow and other mismatches

between the old scheduling policy and the new situation� Early warning of deadline misses

allows real�time application programmers to anticipate a disaster and attempt an emergency

recovery before the disaster strikes�

We have only started exploring the many possibilities that generalized �ne�grain

scheduling o�ers� Distributed applications stand to bene�t from the locked loops� since

they can track the input interrupt stream despite jitters introduced by message delays� Con�

crete applications we are studying include load balancing� distributed clock synchronization�

smart caching in memory management and real�time scheduling� To give one example� load

balancing in a real�time distributed system can bene�t greatly from �ne�grain scheduling�

since we can detect potential deadline misses in advance� if a job is making poor progress

towards its deadline locally� it is a good candidate for migration�

���

	

Measurements and Evaluation

�� Everything should be built top�down� except the �rst time�

� Alan J� Perlis Epigrams on Programming

�� Measurement Environment

����� Hardware

The current implementation of Synthesis runs on two machines	 the Quamachine

and the Sony NEWS ���� workstation� As described in section ������ the Quamachine is

a home�brew� experimental ������based computer system designed to aid systems research

and measurement� Its measurement facilities include an instruction counter� a memory refer�

ence counter� hardware program tracing� and a memory�mapped clock with ���nanosecond

resolution� The processor can operate at any clock speed from � MHz up to �� MHz�

Normally it runs at �� MHz� But by changing the processor speed and introducing wait�

states into the main memory access� the Quamachine can closely emulate the performance

characteristics of common workstations� simplifying measurements and comparisons� The

Quamachine also has special I�O devices that support digital music and audio signal pro�

���

cessing	 stereo ���bit analog output� stereo ���bit analog input� and a compact disc
CD�

player digital interface�

The Sony NEWS ���� is a commercially�available workstation with two ����� pro�

cessors� Its architecture is not symmetric� One processor is meant to be the main processor

and the other is meant to be the I�O processor� Synthesis tries to treat it as if it were

a symmetric multiprocessor� scheduling most tasks on either processor without preference�

except those that require something that is accessible from one processor and not the other�

While this is not a large number of processors� it nevertheless helps demonstrate Synthesis

multiprocessor support� But for measurement purposes of this chapter� only one processor

 the slower I�O processor
 was used�
With the kernel�s multiprocessor support kept

intact��

����� Software

A partial emulator for Unix runs on top of the Synthesis kernel and emulates some

of the SUNOS
version ���� kernel calls� This provides a direct way of measuring and com�

paring two otherwise very di�erent operating systems� Since the executables are the same�

the comparison is direct� The emulator further demonstrates the generality of Synthesis by

setting the lower bound
 Synthesis is at least as general as Unix if it can emulate Unix�

It also helps with the problem of acquiring application software for a new operating system

by allowing the use of SUN�� binaries instead� Although the emulator supports a subset of

the Unix system calls
 time constraints have forced an �implement�as�the�need�arises�

strategy
 the set supported is su�ciently rich to provide a good idea of what the relative

times for the basic operations are�

�� User�Level Measurements

����� Comparing Synthesis with SUNOS ��	

This section describes a comparison between Synthesis and SUNOS ���� The bench�

mark programs consist of simple loops that exercise a particular system function many

times� The source code for the programs is in appendix A� All benchmark programs were

compiled on the SUN ������ using cc �O under SUNOS release ���� The executable a�out

was timed on the SUN� then brought over to the Quamachine and executed using the Unix

���

Program Raw Sun Data Sun Synthesis Ratio I�O Rate
usr sys total watch usr'sys Emulator
MB�Sec�

� Compute ���� ��� �� ���� ���� ����� ����

� R�W pipe � ��� ��� �� ���� ���� ���� ��� ���

� R�W pipe ���� ��� ���� �� ���� ���� ���� ��� �

� R�W pipe ���� ��� ���� �� ���� ���� ���� ��� �

� R�W �le ��� ���� �� ���� ���� ���� ��� �

� open null�close ��� ���� �� ���� ���� ���� ���

� open tty�close ��� ���� �� ���� ���� ���� ���

Table ���	 Measured Unix System Calls
in seconds�

emulator�

Ideally� we would want to run both Synthesis and SUNOS on the same hardware�

Unfortunately� we could not obtain detailed information about the Sun�� machine� so Syn�

thesis has not been ported to the Sun� Instead� we closely emulate the hardware charac�

teristics of a Sun�� machine using the Quamachine� This involves three changes	 replace

the ����� CPU with a ������ set the CPU speed to ��MHz� and introduce one wait�state

into the main�memory access� To validate faithfulness of the hardware emulation� the �rst

benchmark program is a compute�bound test� This test program implements a function

producing a chaotic sequence�� It touches a large array at non�contiguous points� which

ensures that we are not just measuring the �in�the�cache� performance� Since it does not

use any operating system resources� the measured times on the two machines should be the

same�

Table ��� summarizes the results of the measurements� The columns under �Raw

SUN data� were obtained using the Unix time command and veri�ed with a stopwatch�

The SUN was unloaded during these measurements and time reported more than ��% CPU

available for them� The columns labeled �usr�� �sys�� and �total� give the time spent in

the user�s program� in the SUNOS kernel� and the total elapsed time� as reported by the

�Pages ������� in Godel� Escher� Bach� An Eternal Golden Braid� by Douglas Hofstadter�

���

time command� The column labeled �usr'sys� is the sum of the user and system times�

and is the number used for comparisons with Synthesis� The Synthesis emulator data were

obtained by using the microsecond�resolution real�time clock on the Quamachine� rounded

to hundredths of a second� These times were also veri�ed with stopwatch� sometimes by

running each test �� times to obtain a more easily measured time interval� The column

labeled �Ratio� gives the ratio of the preceding two columns� The last column� labeled �I�O

Rate�� gives the overall Synthesis I�O rate in megabytes per second for those test programs

performing I�O�

The �rst program is a compute�intensive calibration function to validate the hardware

emulation�

Programs �� �� and � write and then read back data from a Unix pipe in chunks of

�� ����� and ���� bytes� Program � shows a remarkable speed advantage
 �� times
 for

the single�byte read�write operations� Here� the low overhead of the Synthesis kernel calls

really makes a di�erence� since the amount of data moved is small and most of the time is

spent in overhead� But even as the I�O size grows to the page size� the di�erence remains

signi�cant
 � to � times� Part of the reason is that the SUNOS overhead is still signi�cant

even when amortized over more data� Another reason is the fast synthesized routines that

move data across address spaces� The generated code loads words from one address space

into registers and stores them back in the other address space� With unrolled loops this

achieves the data transfer rate of about �MB per second�

Program � reads and writes a �le
cached in main memory� in chunks of �K bytes�

It too shows a remarkable speed improvement over SUNOS�

Programs � and � repeatedly open and close �dev�null and �dev�tty� They show

that Synthesis kernel code generation is very e�cient� The open operations create exe�

cutable code for later read and write� yet they are �� to �� times faster than the Unix open

that does not do code generation� Table ��� contains more details of �le system operations

that are discussed in the next section�

����� Comparing Window Systems

A simple measurement gives an idea of the speed of interactive I�O on various ma�

chines running di�erent window systems� We use �cat �etc�termcap� to a TTY window�

The local termcap �le is ������ bytes long� The window size is �� characters wide by ��

���

OS� Window System Machine CPU Time
Seconds�

Synthesis Sony NEWS ������ ��mhz ���

Unix� X�� R� Sony NEWS ������ ��mhz ��

Unix� console Sony NEWS ������ ��mhz ���

Mach� NextStep NeXT ������ ��mhz ��

Mach� NextStep NeXT ������ ��mhz ��

SUNOS� X�� R� Sun SparcStation II Sparc ���

Table ���	 Time to �cat �etc�termcap� to a ����� TTY window

lines� using a �� by �� pixel font� and with scrollbars enabled�

Table ��� summarizes the times taken by the various machines and window systems�

There are many good reasons why the other window systems are slow� The Sony console

device driver� for example� scrolls the whole screen one line at a time� even when there are

several lines of output waiting� The X window system uses RPC to communicate between

client and server� no doubt this adds to the overhead� The NextStep window system is

based on Postscript� which is overkill for the task at hand�

The point is not to parade Synthesis speed nor justify the other�s slowness� It is

to point out that that speed is possible through careful thought and program structuring

that provides just the right level of abstraction for each application� For example� one

application that runs under Synthesis reads music data from the CD player� computes its

Fourier transform
���� point�� and displays the result in a window� all in real�time� It

displays ����� data points per second� This is impossible to do today using any other

single�processor workstation and operating system because the abstractions provided are

too expensive and just plain wrong for this particular task� This is true even though

the newer Sparc�based workstations from SUN are more than four times faster than the

machine running Synthesis� Section ����� shows detailed measurements for the Synthesis

window system�

���

Operation Native Time Unix Emulation

emulation trap
 �

open �dev�null �� ��

open �dev�tty �� ��

open
disk �le� �� ��

close �� ��

read � byte from �le � ��

read N bytes from �le �'N�� ��'N��

read N from �dev�null � �

Table ���	 File and Device I�O
in microseconds�

�� Detailed Measurements

The Quamachine�s ���nanosecond resolution memory�mapped clock enables precise

measurement of the time taken by each individual system call� To obtain direct timings in

microseconds� we surround the system call to be measured with two �read clock� machine

instructions and subtract to �nd the elapsed time�

����� File and Device I�O

Table ��� gives the time taken by various �le� and device�related I�O operations� It

compares the timings measured for the native Synthesis system calls and for the equivalent

call in SUNOS emulation mode� For these tests� the Quamachine was running at ��MHz

using the ����� CPU�

Worth noting is the cost of open� The simplest case� open �dev�null� takes ��

microseconds� of which about ��% are used to �nd the name in the directory structure and

��% for memory allocation and code synthesis to create the null read and write procedures�

The additional �� microseconds in opening �dev�tty come from generating more involved

code to read and write the TTY device� Finally� opening a �le requires synthesizing more

sophisticated code and bu�er allocations� costing �� additional microseconds�

���

Operation Time
�s�

Service Translation Fault ����

Allocate page
pre�zeroed� ��� ' ���� � ����

Allocate page
needs zeroing� ��� ' ���� � ���

Allocate page
none free� replace� ��� ' ���� ' Treplace � ��� ' Treplace

Copy a page
� Kbytes� ��� ' ���� � ���

Free page ���

Table ���	 Low�level Memory Management Overhead
Page Size � �KB�

����� Virtual Memory

Table ��� gives the time taken by various basic operations related to virtual mem�

ory� The �rst row� labeled �Service Translation Fault�� gives the time taken to service a

translation fault exception� It represents overhead that is always incurred� regardless of the

reason for the fault� Translation faults happen whenever a memory reference can not be

completed because the address could not be translated� The reasons are manifold	 the page

is not present� or it is copy�on�write� or it has not been allocated� or that reference is not

allowed� This number includes the time taken by the hardware to detect the translation

fault� save the machine state� and dispatch to the fault handler� It includes the time taken

by the Synthesis fault handler to interpret the saved hardware state� determine the reason

for the fault� and dispatch to the correct sub�handler� And it includes the time to re�load

the machine state and retry the reference once the sub�handler has �xed the situation�

Subsequent rows give the additional time taken by the various sub�handlers� as a

function of the cause of the fault� The numbers are shown in the form �X ' ���� � Y ��

where X is the time taken by the sub�handler alone� and Y the total time including the

fault overhead� The second row of the table gives the time to allocate a zeroed page when

one already exists�
Synthesis uses idle CPU time to maintain a pool of pre�zeroed pages

for faster allocation�� The third row gives the time taken to allocate and zero a free page�

If no page is free� one must be replaced� and this cost is given in the fourth row�

���

Quaject �s to Create �s to Write

TTY�Cooker �� ��� ' ����char

VT���� terminal emulator ��� ���� ' ����char

Text window �� ���� ' �����char

Table ���	 Selected Window System Operations

����� Window System

A terminal window is composed of a pipeline of three quajects	 a TTY�Cooker� a VT�

��� Terminal Emulator� and a Text�Window� Each quaject has a �xed cost of invocation

and a per�character cost that varies depending on the character being processed� These

costs are summarized in Table ���� The numbers are show in the form �X ' Y �char��

where X is the invocation cost and Y the average per�character costs� The average is taken

over the characters in �etc�termcap�

The numbers in Table ��� can be used to predict the elapsed time for the �cat

�etc�termcap� measurement done in Section ������ Performing the calculation� we get ���

seconds if we ignore the invocation overhead and use only the per�character costs� Notice

that this exceeds the elapsed time actually observed
Table ����� This unexpected result

happens because Synthesis kernel can optimize the data !ow� resulting in fewer calls and

less actual work than a straight concatenation of the three quajects would indicate� For

example� in a fast window system� many characters may be scrolled o� the screen between

the consecutive vertical scans of the monitor� Since these characters would never be seen

by a user� they need not be drawn� The Synthesis window manager bypasses the drawing

of those characters by using �ne�grained scheduling� It samples the content of the virtual

VT��� screen �� times a second� synchronized to the vertical retrace of the monitor� and

draws the parts of the screen that have changed since the last time� This is a good example

of how �ne�grain scheduling can streamline processing� bypassing I�O that does not a�ect

the visible result� The data is not lost� however� All the data is available for review using

the window�s scrollbars�

���

����� Other Figures

Other performance �gures at the same level of detail were already given in the

previous chapters� In Table ��� on page ��� we see that Synthesis kernel threads are light�

weight� with less than �� microsecond creation time� Table ��� on page �� shows that thread

context switching is fast� Table ��� on page �� gives the time taken to handle the high�rate

interrupts from the Sound�IO devices�

�� Experience

����� Assembly Language

The current version of Synthesis is written in ����� macro assembly language� This

section reports on the experience�

Perhaps the �rst question people ask is� �Why is Synthesis written in assembler"�

This is soon followed by �How much of Synthesis could be re�written in a high�level lan�

guage"� and �At what performance loss"��

There are several reasons why assembler language was chosen� some of them research�

related� and some of them historical� One reason is I felt that it would be an interesting

experiment to write a medium�size system in assembler� which allows unrestricted access to

the machine�s architecture� and perhaps discover new coding idioms that have not yet been

captured in a higher�level language� Later paragraphs talk about these� Another reason

is that much of the early work involved discovering the most e�cient way of working with

the machine and its devices� It was a fast prototyping language� one in which I could write

and test simple I�O drivers without the trouble of supporting a complex language runtime

environment�

But perhaps the biggest reason is that in ����� at the time the seed ideas were being

developed� I could not �nd a good� reliable
bug�free� C compiler for the ����� processor�

I had tried the compilers on several ������based Unix machines and repeatedly found that

compilation was slow� that the compilers were buggy� that they produced terrible machine

code� and that their runtime libraries were not reentrant� These qualities interfered with

my creativity and desire to experiment� Slow compilation dampens the enthusiasm of trying

new ideas because the edit�compile�test cycle is lengthened� Buggy compilers makes it that

much harder to write correct code� Poor code�generation makes my optimization e�orts

���

seem meaningless� And non�reentrant runtime libraries makes it harder to write a multi�

threaded kernel that can take advantage of multiprocessor architecture�

Having started coding in assembler� it was easier to continue that way than to change�

I had written an extensive library of utilities� including a fully reentrant C�language runtime

library and subroutines for music and signal processing� In particular� I found my signal

processing algorithms di�cult to express in C� To achieve the high performance necessary

for real�time operation� I use �xed�point arithmetic for the calculations� not !oating�point�

The C language provides poor support for �xed�point math� particularly multiply and

divide� The Synthesis �printf� output conversion and formatting function provides a

stunning example of the performance improvements that result with carefully�coded �xed�

point math� This function converts a !oating�point number into a fully�formatted ASCII

string� ��	 times faster than themachine instruction on the ����� !oating�point coprocessor

converts binary !oating�point to unformatted BCD
binary�coded decimal��

Overall� the experience has been a positive one� A powerful macro facility helped

minimize the di�culty of writing complex programs� The Synthesis assembler macro pro�

cessor borrows heavily from the C�language macro processor� sharing much of the syntax

and semantics� It provides important extensions� including macros that can de�ne macros

and quoting and �eval� mechanisms� Quaject de�nition� for example� is a declarative macro

instruction in the assembler� It creates all the code and data structures needed by the kernel

code generator� so the programmer need not worry about these details and can concentrate

on the quaject�s algorithms� Also� the Synthesis assembler
written in C� by the way� as�

sembles ���� lines per second� Complete system generation takes only �� seconds� The

elapsed time from making a change to the Synthesis source to having a new kernel booted

and running is less than a minute� Since the turn�around time is so fast� I am much more

likely to try di�erent things�

To my surprise� I found that there are some things that were distinctly easier to do

using Synthesis assembler than using C� In many of these� the powerful macro processor

played an important role� and I believe that the C language could be usefully improved with

this macro processor� One example is the procedure that interprets receiver status code

bits in the driver for the LANCE Ethernet controller chip� Interpreting these bits is a little

tricky because some of the error conditions are valid only when present in conjunction with

certain other conditions� One could always use a deeply�nested if�then�else structure to

separate out the cases� It would work and also be quite readable and maintainable� But

���

a jump�table implementation is faster� Constructing this table is di�cult and error�prone�

So we use macros to do it� The idea is to de�ne a macro that evaluates the jump�address

corresponding to a constant status�value passed as its argument� This macro is de�ned

using preprocessor ��if� statements to evaluate the complex conditionals� which is just as

readable and maintainable as regular if statements� The jump�table is then constructed

by passing this macro to a counting macro which repeatedly invokes it� passing it �� �� ��

��� and so on� up to the largest status register value
�����

The VT���� terminal emulator is another place where assembly language made the

job of coding easier� The VT���� terminal emulator takes as input a bu�er of data and

interprets it� making changes to the virtual terminal screen� A problem arises when the

input bu�er runs out while in the middle of processing an escape sequence� for example�

one which sets the cursor to an
X �Y � position on the screen� When this happens� we must

save enough state so that processing can resume where it left o� when the emulator is called

again with more data� Saving the state variables is easy� Saving the position within the

program is harder� There is no way to access the program counter from the C language�

This is a big problem because the VT���� emulator is very complex� and there are many

places where execution may be suspended� Using C� one must label all these places� and

surround the whole piece of code with a huge switch statement to take execution !ow to the

right place when the function is called again� Using assembly language� this problem does

not arise� We can encode the state machine directly� using the di�erent program counter

addresses to represent the di�erent states�

I believe much of Synthesis could be re�written in C� or a C�like high�level language�

Modern compilers now have much better code generators� and I feel that performance of

the static runtime code would not degrade too much
 perhaps less than ��%� Runtime

code�generation could be handled by writing machine instructions into integer arrays and

this code would continue to be highly e�cient but still unportable� However� with the code

generator itself written in a high�level language� porting it might be easier�

I feel that adding a few new features to the C language can simplify the rewriting of

Synthesis and help minimize the performance loss� Features I would like to see include	

� A code�address data type to hold program�counter values� and an expanded �goto�

to transfer control to such addresses� State machines in particular can bene�t from a

�goto a�i�� programming construct�

���

� A concept of a subroutine within a procedure� analogous to the �jsr���rts� instruc�

tions in assembly language� These would allow direct language model of the underlying

hardware stack� They are useful to separate out into subroutines common blocks of

code within a procedure� without the argument passing and procedure call overhead

of ordinary functions� since subroutines implicitly inherit all local variables� Among

other things� I have found that LALR
�� context�free parsers can be implemented

very e�ciently by representing the parser stack using the hardware� and using jsr

and rts to perform the state transitions�

� Better support for �xed�point math� Even an e�cient way of obtaining the full ���bit

result from a ���bit integer multiplication would go a long way in this regard�

The inclusion of features like these does not mean that I encourage programmers to write

spaghetti�code� Rather� these features are intended to supply the needed hooks for auto�

matic program generators� for example� a state machine compiler� to take maximum bene�t

of the underlying hardware�

����� Porting Synthesis to the Sony NEWS Workstation

Synthesis was �rst developed for the Quamachine� and like many substantial software

systems� has gone through several revisions� The early kernel had several shortcomings�

While the kernel showed impressive speed gains over conventional operating systems such

as Unix� its internal structure was not clean� The quaject structuring idea had come late in

kernel development� so there were many parts that had been written in an ad hoc manner�

Furthermore� the Quamachine kernel did not support virtual memory or networking�

The goal of the Synthesis port to the Sony workstation was to alleviate the short�

comings� for example� by cleaning up the kernel structure and adding virtual memory and

networking support� In particular� we wanted to show that the additional functionality

would not signi�cantly slow down the Synthesis kernel� This section reports on the experi�

ence and discusses the problems encountered while porting�

The Synthesis port happened in three stages	 �rst� a minimal Synthesis is ported to

run under Sony�s native Unix� Then we wrote drivers for the keyboard and screen� and got

minimal Synthesis to run on the raw hardware� This was followed by a full port� including

all the devices�

���

The �rst step went fast� taking two to three weeks� The reason is that most of

the quajects do not need to run in kernel mode in order to work� The di�erence between

Synthesis under Unix and native Synthesis is that instead of connecting the �nal�stage I�O

quajects to I�O device driver quajects
which are the only quajects that must be in the

kernel�� we connect them to Unix read and write system calls on appropriately opened

�le descriptors� This is ultimate proof that Synthesis services can run in user�level as well

as kernel�

Porting to the raw machine was much harder� primarily because we chose to do our

own device drivers� Some problems were caused by incomplete documentation on how to

program the I�O devices on the Sony NEWS workstation� It was further complicated by

the fact that each CPU has a di�erent mapping of the I�O devices onto memory addresses

and not everything is accessible by both CPUs� A simple program was written to patch the

running Unix kernel and install a new system call
 �execute function in kernel mode��

Using this utility
carefully��� we were able to examine the running kernel and discover

a few key addresses� After a bit more poking around� we discovered how to alter the

page mappings so that sections of kernel and I�O memory were directly mapped into all

user address spaces��
The mmap system call on �dev�mem did not work�� Then using the

Synthesis kernel monitor running on minimal Synthesis under a Unix process� we were able

to �hand access� the remaining I�O devices to verify their addresses and operation�

The Synthesis kernel monitor is basically a C�language parser front�end with direct

access to the kernel code generators� It was crucial to both development and porting of

Synthesis because it let us run and test sections of code without having the full kernel

present� A typical debug cycle goes something like this	 using the kernel monitor� we

instantiate the quaject we want to test� We create a thread and point it at one of the

quaject�s callentries� We then single�step the thread and verify that the control !ows where

it is supposed to�

But the most di�cult porting problems were caused by timing sensitivities in the

various I�O devices� Some devices would �freeze� when accessed twice in rapid succession�

These problems never showed up in the Unix code because Unix encapsulates device access

in procedures� Calling a procedure to read a status value or change a control register

allows enough time for the device to �recover� from the previous operation� But with

�Talk about security holes�

���

code synthesis� device access frequently consists of a single machine instruction� Often the

same device is accessed twice in rapid succession by two consecutive instructions� causing

the timing problem� Once the cause of the problem was found� it was easy to correct	 I

made the kernel code generator insert an appropriate number of �nop� instructions between

consecutive accesses�

Once we had the minimal kernel running� getting the rest of the kernel and its

associated libraries working was relatively easy� All of the code that did not involve the

I�O devices ran without change� This includes the user�level shared runtime libraries�

such as the C functions library and the signal�processing library� It also includes all the

�intermediate� quajects that do not directly access the machine and its I�O devices� such

as bu�ers� symbol tables
for name service�� and mappers and translators
for �le system

mapping�� Code involving I�O devices was harder� since that required writing new drivers�

Finally� there are some un�nished drivers such as the SCSI disk driver�

The thread system needed some changes to support the two CPUs on the Sony

workstation� these were discussed in Chapter �� Most of the changes were in the scheduling

and dispatching code� to synchronize between the processors� This involved developing

e�cient� lock�free data structures which were then used to implement the algorithms� The

scheduling policy was also changed from a single round�robin queue to one that uses a

multiple�level queue structure� This helped guarantee good response time to urgent events

even when there are many threads running� making it feasible to run thousands of threads

on Synthesis�

The most time�consuming part was implementing the new services	 virtual memory�

Ethernet driver� and window system� They were all implemented �from scratch�� using all

the performance�improving ideas discussed in this dissertation� such as kernel code genera�

tion� The measurements in this chapter show high performance gains in these areas as well�

The Ethernet driver� for example� is fast enough to record all the packet tra�c of a busy

Ethernet
��� kilobytes�second� or about � megabits per second� into RAM using only ��%

of a ��MHz� ����� CPU�s time� This is a problem that has been worked on and dismissed

as impractical except when using special hardware�

Besides the Sony workstation� the new kernel runs on the Quamachine as well� Of

course� each machine must use the appropriate I�O drivers� but all the new services added

to the Sony version work on the Quamachine�

���

����� Architecture Support

Having worked very close to the hardware for so long� I have acquired some insight of

what kinds of things would be useful for better operating systems support in future CPUs�

Rather than pour out everything I ever thought useful for a machine to have� I will keep

my suggestions to those that �t reasonably well with the �RISC� idea of processor design�

� Better cache control to support runtime code generation� Ideally� I would like to

see fully coherent instruction caches� But I recognize the expense involved� both in

silicon area and degraded signal propagation times� But full coherence is probably

not necessary� A cheap� non�privileged instruction to invalidate changed cache lines

provides very good support at minimal cost for both hardware and code�modifying

software� After all� if you�ve just modi�ed an instruction� you know it�s address� and

it is easy to issue a cache�line invalidate on that address�

� Faster interrupt handling� Chapter � discussed the advantages of �ne�grained

handling of computation� particularly when it comes to interrupts� Further bene�ts

result by also reducing the hardware�imposed overhead of interrupt handing� Perhaps

this can be achieved at not�too�great expense by replicating the CPU pipeline registers

much like register�windows enable much faster procedure call� I expect even a single

level of duplication to really help� if we assume that interrupts are handled fast enough

that the chances are small of receiving a second interrupt in the middle of processing

the �rst�

� Hardware support for lock	free synchronization� Chapter � discussed the

virtues of lock�free synchronization� But lock�free synchronization requires hard�

ware support in the form of machine instructions that are more powerful than the

test�and�set instruction used to implement locking� I have found that double�word

Compare���Swap is su�cient to implement an operating system kernel� and I conjec�

ture that single�word Compare���Swap is too weak� There may also be other kinds

of instructions that also work�

� Hardware support for fast context switching� As processors become faster and

more complex� they have increasing amounts of state that must be saved and restored

on every context switch� Earlier sections had discussed the cost of switching the

!oating�point context� which is high because of the large amount of data that must

���

be moved	 � registers� each �� bits long� requires �� memory cycles to save them� and

another �� cycles to re�load them� Newer architectures� for example� one that supports

hardware matrix multiply� can have even more state� I claim that a lot of this state

does not change between switch�in and switch�out� I propose hardware support to

e�ciently save and restore only the part of the state that was used	 a modi�ed�bit on

each register� and selective disabling of hardware function units� Modi�ed�bits on each

register lets the operating system save only those registers that have been changed

since switch�in� Selective disabling of function units lets the operating system defer

loading that unit�s state until it is needed� If a functional unit goes unused between

switch�in and the subsequent switch�out� its state will not have been loaded nor saved�

� Faster byte	operations� Many I�O�related functions tend to be byte�oriented�

whereas CPU and memory tends to be word�oriented� This means it costs no more

to fetch a full ���bit word as it does to fetch a byte� We can take advantage to this

with two new instructions	 �load���bytes� and �store���bytes�� These would move a

word from memory into four registers� one byte to a register� The program can then

operate on the four bytes in registers without referencing memory again�

Another suggestion� probably less useful� is a �carry�suppress� option for addition� to

suppress carry�out at byte�boundaries� allowing four additions or subtractions to take

place simultaneously on four bytes packed into a ���bit integer� I foresee the primary

use of this to be in low�level graphics routines that deal with ��bit pixels�

� Improved bit	wise operation support� The current complement of bitwise�logical

operations and shifts are already pretty good� what is lacking is a perfect shu e of

bits in a register� This is very useful for bit�mapped graphics operations� particularly

things like bit�matrix transpose� which is heavily used when unpacking byte�wide

pixels into separate bit�planes� as is required by certain framebu�er architectures�

�� Other Opinions

In any line of research� there are often signi�cant di�erences of opinion over what

assumptions and ideas are good ones� Synthesis is no exception� and it has its share of critics�

I feel it is my duty to point out where di�erences of opinion exist� to allow readers to come

���

to their own conclusions� In this section� I try to address some of the more frequently raised

objections regarding Synthesis� and rebut those that are� in my opinion� ill�founded�

Objection �
 �How much of the performance improvement is due to my ideas�
and how much is due to writing in assembler� and tuning the hell out of the
thing"�

This is often asked by people who believe it to be much more of the latter and much

less of the former�

Section ��� outlined several places in the kernel where code synthesis was used to

advantage� For data movement operations� it showed that code synthesis achieves ��� to

��� times better performance than the best assembly�language implementation not using

code synthesis� For more specialized operations� such as context switching� code synthesis

delivers as much as �� times better performance� So� in a terse answer to the question� I

would say ���% to ���%��

But those �gures do not tell the whole story� They are detailed measurements�

designed to compare two versions of the same thing� in the same execution environment�

Missing from those measurements is a sense of how the interaction between larger pieces of

a program changes when code synthesis is used� For example� in that same section� I show

that a procedural implementation of �putchar� using code synthesis is slightly faster than

the C�language �putchar� macro� which is in�line expanded into the user�s code� The fact

that enough savings could be had through code synthesis to more than amortize the cost of

a procedure call
 even in a simple� not�easily�optimized operation such as �putchar�

changes the nature of how data is passed between modules in a program� Many modules

that process streams of data are currently written to take as input a bu�er of data and

produce as output a new bu�er of data� Chaining several such modules involves calling

each one in turn� passing it the previous module�s output bu�er as the input� With a fast

�putchar� procedure� it is no longer necessary to pass bu�ers and pointers around� we can

now pass the address of the downstream module for �putchar�� and the address of the

upstream module for �getchar�� Each module makes direct calls to its neighbors to get the

data� eliminating the memory copy and all consequent pointer and counter manipulations�

Objection �
 �Self�modifying data structures are troublesome on pipelined
machines� and code generation has problems with machines that don�t allow �ne�
grained control of the instruction cache� In other words� Synthesis techniques
are dependent on hardware features that aren�t present in all machines� and�
worse� are becoming increasingly scarce��

���

Pipelined machines pose no special di�culties because Synthesis does not modify

instructions ahead of the program counter� Code modi�cation� when it happens� is restricted

to patching just�executed code� or unrelated code� In both cases� even a long instruction

pipeline is not a problem�

The presence of a non�coherent and hard�to�!ush instruction cache is the harder

problem� By �hard�to�!ush�� I mean a cache that must be !ushed whole instead of line�at�

a�time� or one that cannot be !ushed in user mode without taking a protection exception�

Self�modifying code is still e�ective� but such a cache changes the breakeven point when it

becomes more economical to interpret data than to modify code� For example� conditions

that change frequently are best represented using a boolean !ag� as is usually done� But for

conditions that are tested much more frequently than changed� code modi�cation remains

the method of choice� The cost of !ushing the cache determines at what ratio of testing to

modi�cation the decision is made�

Relief may come from advances in the design of multiprocessors� Recent studies show

that� for a wide variety of workloads� software�controlled caches are nearly as e�ective as

fully coherent hardware caches and much easier to build� as they require no hardware #��$ #�$�

Further extensions to this idea stem from the observation that full coherency is often not

necessary� and that it is bene�cial to rely on the compiler to maintain coherency in software

only when required #�$� This line of thinking leads to cache designs that have the necessary

control to e�ciently support code�modifying programs�

But it is true that the assumption that code is read�only is increasingly common� and

that hardware designs are more and more using this assumption� Hardware manufacturers

design according to the needs of their market� Since nobody is doing runtime code gener�

ation� is it little wonder that it is not well supported� But then� isn�t this what research is

for" To open people�s eyes and to point out possibilities� both new and overlooked� This

dissertation points out certain techniques that increase performance� It happens that the

techniques are unusual� and make demands of the hardware that are not commonly made�

But just as virtual memory proved to be a useful idea and all new processors now support

memory management� one can expect that if Synthesis ideas prove to be useful� they too

will be better supported�

Objection �
 �Does this matter" Hardware is getting faster� and anything
that is slow today will probably be fast enough in two years��

Yes� it matters�

���

There is more to Synthesis than raw speed� Cutting the cost of services by a factor

of �� is the kind of change that can fundamentally alter the structure of those services� One

example is the PLL�based process scheduling� You couldn�t do that if context switch was

expensive
 driving the time way below one millisecond is what made it possible to move

to a radically di�erent scheduler� with nice properties� besides speed�

For another example� I want to pose a question	 if threads were as cheap as proce�

dure calls� what would you do with them" One answer is found in the music synthesizer

applications that run on Synthesis� Most of them create a new thread for every note
 Driv�

ing the cost of threads to within a few factors of the cost of procedure call changes the

way applications are structured� The programmer now only needs to be concerned that the

waveform is synthesized correctly� The Synthesis thread scheduler ensures that each thread

gets enough CPU time to perform its job� You could not do that if threads were expensive�

Finally� hardware may be getting faster� but it is not getting faster fast enough� Look

at the window�system �gures given in Table ���� Synthesis running on ��year�old hardware

technology outperforms conventional systems running on the latest hardware� Even with

faster hardware� it is not fast enough to overtake Synthesis�

Objection �
 �Why is Synthesis written in assembler" How much of the reason
is that you wanted no extraneous instructions" How much of the reason is that
code synthesis requires assembler" How much of Synthesis could be re�written
in a high�level language"�

Section ����� answers these questions in detail�

���

Conclusion

A dissertation is never �nished�

You just stop writing�

� Everyone with a Ph�D�

This dissertation has described Synthesis� a new operating system kernel that pro�

vides fundamental services an order of magnitude more e�ciently than traditional operating

systems�

Two options de�ne the direction in which research of this nature may proceed� First�

ly� an existing system may be adopted as a platform upon which incremental development

may take place� Studying a piece of an existing system limits the scope of the work� ensures

that one is never far from a functioning system that can be measured to guide develop�

ment� and secures a preexisting base of users� upon completion� On the down side� such

an approach may necessarily limit the amount of innovation and creativity brought to the

process and possibly carry along any preexisting biases built in by the originators of the en�

vironment� reducing the impact the research might have on improving overall performance�

Alternatively one can start anew� Such an e�ort removes the burden of preexisting

decisions and tradeo�s� and allows use of knowledge and hindsight acquired from past

systems to avoid making the same mistakes� The danger� however� is of making new�

���

possibly fatal mistakes� In addition� so much valuable time can be spent building up the

base and re�inventing wheels� that little innovation takes place�

I have chosen the second direction� I felt that the potential bene�ts of an important

breakthrough far outweighed the dangers of failure� Happily� I believe that a positive

outcome may be reported� I would like to summarize both the major contributions and

shortcomings of this e�ort�

A basic assumption of this research e�ort has been that low overhead and low latency

are important properties of an operating system� Supporting this notion is the prediction

that as distributed computing becomes ubiquitous� responsiveness and overall performance

will su�er at the hands of the high overhead and latency of current systems� Advances

in networking technology� impressive as they are� will bear little fruit unless operating

systems software is e�cient enough to to make full use of the higher bandwidths� Emerging

application areas such as interactive sound� video� and the future panoply of interface

technologies subsumed under the umbrella of �multi�media� place strict timing requirements

on operating system services
 requirements that existing systems have di�culty meeting�

in part� because of their high overhead and lack of real�time support�

The current leading suggestion to address the performance problems is to move

function out of the kernel� thus avoiding crossing the kernel boundary and allowing cus�

tomization of traditional kernel services to individual applications� Synthesis shows that

it is not necessary to accept that kernel services will be slow� and to �nd work�arounds to

them� but rather that it is possible to provide very e�cient kernel services� This is impor�

tant� because ultimately communications with the outside world still must go through the

kernel�

With real�time support and an overhead factor ten times less than that of other sys�

tems� Synthesis may be considered a resounding success� Four key performance�improving

dynamics di�erentiate Synthesis	

� Large scale use of run�time code generation�

� Quaject�oriented kernel structure�

� Lock�free synchronization�

� Feedback�based process scheduling�

���

Synthesis constitutes the �rst large�scale use of run time code generation to speci�cal�

ly improve operating system performance� Chapter � demonstrates that common operating

system functions run �ve times faster when implemented using runtime generated code than

a typical C language implementation� and nearly ten times faster when compared with the

standard Unix implementation� The use of run time code generation not only improves

the performance of existing services� but allows for the addition of new services without

incremental systems overhead�

Further di�erentiating Synthesis is its novel kernel structure� based around �qua�

jects�� forming the building blocks of all kernel services� In many respects� quajects resem�

ble the objects of traditional Object�Oriented programming� including data encapsulation

and abstraction� Quajects di�er� however� in four important ways	

� A procedural rather than message�based interface�

� Explicit declaration of exceptions and external calls�

� Runtime binding of the external calls� and

� Implementation using runtime code generation�

By making explicit the quaject�s exceptions and external calls� the kernel may dynamically

link quajects� Rather than providing services monolithically� Synthesis builds them through

the use of one or more quajects eventually comprising the user�s thread� This binding takes

place dynamically� at runtime� allowing for both the expansion of existing services and for an

enhanced capability for creating new ones� The traditional distinction between kernel and

user services becomes blurred� allowing for applications� direct participation in the delivery

of services� This is possible because a quaject�s interface is extensible across the protection

boundaries which divide applications from the kernel and from each other� Such an approach

enjoys a further advantage	 preserving the partitioning and modularity found in traditional

systems centered around user�level servers� while bettering the higher performance levels of

the monolithic kernels which� while fast� are often di�cult to understand and modify�

The code generation implementation and procedural interface of quajects enhances

performance by reducing argument passing and enabling in�line expansion of called qua�

jects into their caller to happen at runtime� Quaject callentries� for example� require no

�self� parameter� since it is implicit in their runtime�generated code� This shows� through

quajects� that a highly e�cient object�based system is possible�

���

A further research contribution of Synthesis is to demonstrate that lock�free syn�

chronization is a viable� e�cient alternative to mutual exclusion for the implementation

of multiprocessor kernels� Mutual exclusion and locking� the traditional forms of synchro�

nization� su�er from deadlock and priority inversion� Lock�free synchronization avoids these

problems� But until now� there has been no evidence that a su�ciently rich set of concurrent

data structures could be implemented e�ciently enough using lock�free synchronization to

support a full operating system� Synthesis successfully implements a su�cient number of

concurrent� lock�free data structures using one and two�wordCompare���Swap instructions�

The kernel is then carefully structured using only those data structures in the places where

synchronization is needed� The lock�free concurrent data structures are then demonstrated

to deliver better performance than locking�based techniques� further supporting my thesis

for hardware that supports Compare���Swap�

New scheduling algorithms have been presented which generalize scheduling from

job assignments as a function of time� to functions of data !ow and interrupt rates� The

algorithms are based upon feedback� drawing from control systems theory� The applications

for these algorithms include support for real�time data streams and improved support for

dealing with the !ow of time� These applications have been illustrated by numerous de�

scriptions of real�time sound and signal processing programs� a disk�sector �nder program�

and a discussing on clock synchronization�

It is often said that good research raises more questions than it answers� I now explore

some open questions� point out some of Synthesis� shortcomings� and suggest directions for

future work�

Clearly� we need better understanding of how to write programs that create code

at run time� A more formal model of what it is and how it is used would be helpful in

extending its applicability and in �nding ways to provide a convenient interface to it�

Subsidiary to this� a good cost�bene�t analysis of runtime code generation is lacking�

Because Synthesis is the �rst system to apply run time code generation on a large�scale basis�

a strategic goal has simply been to get it to work and show that performance bene�ts do

exist� Accordingly� the emphasis has been in areas where the bene�ts have been deemed

to be greatest and where code generation was easiest to do� both in terms of programming

di�culty and in CPU cycles� Intuition has been an important guide in the implementation

process� resulting in an end product which performs well� It is not known is how much

more improvement is possible� Perhaps applying runtime code generation more vigorously

���

or structuring things in a di�erent way will yield even greater bene�ts�

Unfortunately� there is no high�level language available making programs that use

run time code generation easy to write and at the same time� portable� Aside from the

obvious bene�t of making the technique more accessible to all members of the profession�

a better understanding of the bene�ts of runtime code generation will sure accrue from

developing such a language�

An interesting direction to explore is to extend the ideas of runtime code generation

to runtime recon�gurable hardware� Chips now exist whose function is �programmed�

by downloading strings of bits that con�gure the internal logic function blocks and the

routing of signals between blocks� Although the chips are generally programmed once�

upon initialization� they could be reprogrammed at other times� optimizing the hardware

as the environment changes� Some PGAs could be set aside for computations purposes	

functions such as permuting bit vectors can be implemented much more e�ciently with

PGA hardware than in software� Memory operations� such as a fast memory�zero or fast

page copy could be implemented operating asynchronously with the main processor� As

yet unanticipated functions could be con�gured as research identi�es the need� A machine

architecture is envisaged having no I�O device controllers at all
 just a large array of

programmable gate array
PGA� chips wired to the processor and to various forms of I�O

connectors� Clearly� the types of I�O devices which the machine supports is a function of

the bit patterns loaded into its PGAs� rather than the boards which alternatively would

be plugged into its backplane� This is highly advantageous� for as new devices need to be

supported� there is no need for new boards and the attendant expense and delay of acquiring

them�

Currently� under Synthesis� users cannot de�ne their own services� Quaject com�

position is a powerful mechanism to de�ne and implement kernel services� but this power

has not yet been made accessible to the end user� At present� all services that exist do so

because located somewhere in the kernel is a piece of code which knows which quajects to

create and how to link them in order to provide each service� It would be better if this were

not hard coded into the kernel� but made user�accessible via some sort of service description

language� To support such a language� the quaject type system would need to be extended

to provide runtime type checking� which is currently lacking�

Another open question concerns the generality of lock�free synchronization� Lock�free

synchronization has many desirable properties as discussed in this dissertation� Synthesis

���

has demonstrated that lock�free synchronization is su�cient for the implementation of an

operating system kernel� �Is this accomplished at the expense of required generality� is a

question in need of an answer� Synthesis isolates all synchronization to a handful of concur�

rent data structures which have been shown to have an e�cient lock�free implementation�

Nonetheless� when lock�free data structures are used to implement systems policy� a loss

of generality or e�ciency may result� Currently� Synthesis e�ciently supports a scheduling

policy only if it has an e�cient lock free implementation� One approach to this issue is to

add to the list of e�cient lock�free data structure implementations� thereby expanding the

set of supportable policies� Another research direction is to determine when other synchro�

nization methods are necessary so that a policy may be followed literally� but also when the

policy can be modi�ed to �t an e�cient lock�free implementation� In addition� determining

how best to support processors without a Compare���Swap instruction would be valuable�

The behavior of feedback�based� �ne grained scheduling has not been fully explored�

When the measurements and adjustments happen at regular intervals� the schedule can

be modeled as a linear discrete time system and Z�transforms used to prove stability and

convergence� In the general case� measurements and adjustments can occur at irregular

intervals because they are scheduled as a function of previous measurements� It is not

known whether this type of scheduler is stable for all work load conditions� While empirical

observations of real�time signal processing applications indicate that the scheduler is stable

under many interesting� real�life workloads� it would be nice if this could be formally proven�

The current ����� assembly language implementation limits Synthesis� portability�

The amount of code is not inordinately large
������ lines� and much of it is macro invoca�

tions� rather than machine instructions� so an assembler�level port might not be nearly as

di�cult as it might �rst appear� A high level language implementation would be better� An

open question is the issue of runtime code generation� While one could create code which

inserts machine�op codes into memory� the result would be no more portable than the cur�

rent assembly language version� A possible approach to this problem would be to abstract

as many runtime code generation techniques as possible in simple� machine�independent

extensions to an existing programming language such as C� Using the prototypic language

and making performance comparisons along the way would go far toward identifying which

direction the �nal language should take�

While Synthesis holds out enormous promise� its readiness for public release is re�

tarded by the following factors	

���

� Known bugs need to be removed�

� The window system is incomplete� and lacks many ��D graphics primitives and mouse

tracking�

� The virtual memory model is not fully developed� and the pager interface should be

exported to the user in order to enhance its utility�

� The network driver works� but no protocols have as yet been implemented�

All of these enhancements can be made without risk to either the measurements presented

in this dissertation� or to the speed and e�ciency of the primitive kernel� My con�dence

rests partly because the signi�cant execution paths have been anticipated and measured� and

partly from past experience� when the much more signi�cant functionality of multiprocessor

support� virtual memory� ethernet driver� and the window system were added to the then

primitive kernel without slowing it down�

I want to conclude by emphasizing that although this work has been done in the

context of operating systems� the ideas presented in this dissertation
 runtime code gen�

eration� quaject structuring� lock�free methods of synchronization� and scheduling based on

feedback
 can all be applied equally well to improving the performance� structuring� and

robustness of user�level programs� The open questions� particularly those regarding runtime

code generation� may make this di�cult at times� nevertheless the potential is there�

While countless philosophers throughout Western Civilization have all pro�ered ad�

vice against the practice of predicting the future� most have failed to resist the temptation�

While computer scientists shall most likely fare no better at this art� I believe that Syn�

thesis brings to the surface an operating system of elegance and e�ciency as to accelerate

serious consideration and development of multiple microprocessor machine environments�

particularly those allied with multi�media and communications� In short� Synthesis and the

concepts upon which it rests are not likely to be eclipsed by any major occurrence on the

horizon of technology any time soon�

���

���

Bibliography

#�$ M� Accetta� R� Baron� W� Bolosky� D� Golub� R� Rashid� A� Tevanian� and M� Young�
Mach	 A New Kernel Foundation for Unix Development�
In Proceedings of the ���
 Usenix Conference� pages ������� Usenix Association� �����

#�$ Sarita V� Adve� Vikram S� Adve� Mark D� Hill� and Mary K� Vernon�
Comparison of Hardware and Software Cache Coherence Schemes�
In The ��th Annual International Symposium on Computer Architecture� volume ���
pages �������� �����

#�$ T�E� Anderson� B�N� Bershad� E�D� Lazowska� and H�M� Levy�
Scheduler Activations	 E�ective Kernel Support for the User�Level Management of
Parallelism�

In Proceedings of the ��th ACM Symposium on Operating Systems Principles� pages
������� Paci�c Grove� CA� October ����� ACM�

#�$ James Arleth�
A ����� multiuser development system�
Master�s thesis� The Cooper Union for the Advancement of Science and Art� New York
City� �����

#�$ Brian N� Bershad� Edward D� Lazowska� Henry M� Levy� and David B� Wagner�
An Open Environment for Building Parallel Programming Systems�
In Symposium on Parallel Programming� Experience with Applications� Languages and

Systems� pages ���� New Haven� Connecticut
USA�� July ����� ACM SIGPLAN�

#�$ A� Black� N� Hutchinson� E� Jul� and H� Levy�
Object Structure in the Emerald System�
In Proceedings of the First Annual Conference on Object�Oriented Programming� Sys�

tems� Languages� and Applications� pages ������ ACM� September �����

#�$ D�L� Black�
Scheduling Support for Concurrency and Parallelism in the Mach Operating System�
IEEE Computer� ��
��	������ May �����

#�$ Min�Ih Chen and Kwei�Jay Lin�
A Priority Ceiling Protocol for Multiple�Instance Resources�
In IEEE Real�Time Systems Symposium� San Antonio� TX� December �����

#�$ David Cheriton�
An Experiment Using Registers for Fast Message�Based Interprocess Communication�

���

ACM SIGOPS Operating Systems Review� ��
��	������ October �����

#��$ F� Christian�
Probabilistic Clock Synchronization�
Technical Report RJ����
������ Computer Science� IBM Almaden Research Center�
September �����

#��$ H�M� Deitel�
An Introduction to Operating Systems�
Addison�Wesley Publishing Company� second edition� �����

#��$ Richard P� Draves� Brian N� Bershad� Richard F� Rashid� and Randall W� Dean�
Using Continuations to Implement Thread Management and Communication in Oper�
ating Systems�

In Proceedings of the ��th ACM Symposium on Operating Systems Principles� pages
�������� Paci�c Grove� CA� October ����� ACM�

#��$ J� Feder�
The Evolution of Unix System Performance�
AT�T Bell Laboratories Technical Journal� ��
��	���������� October �����

#��$ P�M� Herlihy�
Wait�Free Synchronization�
ACM Transactions on Programming Languages and Systems� ��
��� January �����

#��$ Neil D� Jones� Peter Sestoft� and Harald Sondergaard�
Mix	 A Self�Applicable Partial Evaluator for Experiments in Compiler Generation�
Lisp and Symbolic Computation� �
�����	��� �����

#��$ David Keppel� Susan J� Eggers� and Robert R� Henry�
A Case for Runtime Code Generation�
Technical Report UW CS&E ��������� University of Washington Department of Com�
puter Science and Engineering� November �����

#��$ B�D� Marsh� M�L�Scott� T�J�LeBlanc� and E�P�Markatos�
First�Class User�Level Threads�
In Proceedings of the ��th ACM Symposium on Operating Systems Principles� pages
������� Paci�c Grove� CA� October ����� ACM�

#��$ H� Massalin and C� Pu�
Threads and Input�Output in the Synthesis Kernel�
In Proceedings of the Twelfth Symposium on Operating Systems Principles� pages ����
���� Arizona� December �����

#��$ Henry Massalin�
A ����� Multitasking Development System�
Master�s thesis� The Cooper Union for the Advancement of Science and Art� New York
City� �����

#��$ Motorola�
MC
���� and MC
���� Floating�Point Coprocessor User�s Manual�
Prentice Hall� Englewood Cli�s� NJ� ������ �����

���

#��$ Motorola�
MC
���� User�s Manual�
Prentice Hall� Englewood Cli�s� NJ� ������ �����

#��$ J� Ousterhout�
Why Aren�t Operating Systems Getting Faster as Fast as Hardware�
In USENIX Summer Conference� pages �������� Anaheim� CA� June �����

#��$ Susan Owicki and Anant Agarwal�
Evaluating the Performance of Software Cache Coherence�
In Proceedings of the �rd Symposium on Programming Languages and Operating Sys�

tems� ACM� �����

#��$ R� Pike� D� Presotto� K� Thompson� and H� Trickey�
Plan � from Bell Labs�
Technical Report CSTR (���� AT&T Bell Labs� �����

#��$ C� Pu� H� Massalin� and J� Ioannidis�
The Synthesis Kernel�
Computng Systems� �
��	������ Winter �����

#��$ J�S� Quarterman� A� Silberschatz� and J�L� Peterson�
���BSD and ���BSD as Examples of the Unix System�
ACM Computing Surveys� ��
��	�������� December �����

#��$ D� Ritchie�
A Stream Input�Output System�
AT�T Bell Laboratories Technical Journal� ��
��	���������� October �����

#��$ D�M� Ritchie and K� Thompson�
The Unix Time�Sharing System�
Communications of ACM� �
��	�������� July �����

#��$ J�A� Stankovic�
Misconceptions About Real�Time Computing	 A Serious Problem for Next�Generation
Systems�

IEEE Computer� ��
���	������ October �����

#��$ M� Stonebraker�
Operating System Support for Database Management�
Communications of ACM� ��
��	�������� July �����

#��$ Sun Microsystems Incorporated� ���� Garcia Avenue� Mountain View� California
������ �������������

SunOS Reference Manual� May �����

#��$ Peter Wegner�
Dimensions of Object�Based Language Design�
In Norman Meyrowitz� editor� Proceedings of the OOPSLA��� conference� pages ����
���� Orlando FL
USA�� ����� ACM�

#��$ Mark Weiser� Alan Demers� and Carl Hauser�
The Portable Common Runtime Approach to Interoperability�

���

In Proceedings of the ��th ACM Symposium on Operating Systems Principles� pages
�������� Litch�eld Park AZ
USA�� December ����� ACM�

#��$ W�A� Wulf� E� Cohen� W� Corwin� A� Jones� R� Levin� C� Pierson� � and F� Pollack�
Hydra	 The Kernel of a Multiprocessing Operating System�
Communications of ACM� ��
��	�������� June �����

���

Appendix A

Unix Emulator Test Programs

�define N ������
int x�N�

main��

int i

for�i��
 i��
 �

g��

printf�%"d&n"d&n%� x�N���� x�N����

�

g��

int i

x��� � x��� � �

for�i��
 i�N
 i���

x�i� � x�i�x�i���� � x�i�x�i����

�

Figure A��	 Test �	 Compute

���

�define N ���� �� or � or ��'� ��
char x�N�

main��

int fd����i

pipe�fd�

for�i������
 i��
 �

write�fd���� x� N�

read�fd���� x� N�

�
�

Figure A��	 Test �� �� and �	 Read�Write to a Pipe

�include �sys�file�h�
�define Test�dev %�dev�null% �� or �dev�tty ��
main��

int f�i

for�i������
 i��
 �

f � open�Test�dev� O�RDONLY�

close�f�

�
�

Figure A��	 Test � and �	 Opening and Closing

�include �sys�file�h�
�define N ����
char x�N�

main��

int f�i�j

f � open�%file%� O�RDWR ! O�CREAT ! O�TRUNC� �����

for�j�����
 j��
 �

lseek�f� �L� L�SET�

for�i���
 i��
 �

write�f� x� N�

lseek�f� �L� L�SET�

for�i���
 i��
 �

read�f� x� N�

�
close�f�

�

Figure A��	 Test �	 Read�Write to a File

