I mproving the Performance of fsck in FreeBSD

Marshall Kirk McKusick
1614 Oxford Street
Berkelgy, CA 94709-1608

1. Introduction

While listening to the presentation of the first paperASTF 2013, ffsck: The Fast File System
Checker’ [Ma, Drag@, Arpaci-Dusseau, & Arpaci-Dusseau, 2013], | immediately wondered if | could
implement some of the ideas in FreeBSD. The researchers’ goal wasganimothe Linux &t3 filesys-
tem and to rewrite its filesystem checker so that a complete check of the filesystem could be done more
quickly. With the addition of a couple of hundred lines of code,asvable to implement both the
improvements tdfsck and the layout policin the FreeBSD filesystem (FFS).

Although the thrust of the paper was to makanges to the layout of the filesystem to enédoleto
run more quicklysome of the changes resulted in a reduction in performance of the filesystem. As | am
unwilling to accept a reduction in filesystem performance solely for the purpose of speedsak, up
chose to consider only on the subset of their changes thatvieniii.

2. Implementation

The paper describes changes thay thade to the on-disk layout of the filesystelnis very dificult
to get folks to change to a flifent filesystem format that is incompatible with the existing filesystem for
mat. Sojn my implementation, | was not willing to change the filesystem formatrukusing one of the
spare fields in the superblock to tune the layout yolesen with these limitations, | was able to get an
impressive improsement infsck’s running time and some small impamnents in filesystem performance.

In FFS the disk space is bekup into groups of contiguous blocks called cylinder groups similar to
the ext3 block groupsThe first block of each cylinder group contains the cylinder group descriptor that
includes a map shong the free and allocated blocks and a map showing the free and allocated inodes in
that cylinder group.Fdlowing the cylinder group descriptor are blocks that contain the metadata (inodes)
for the files in that cylinder group. Theganization of an inode is shown in Fig. 1. The remainder of the
cylinder group is made up of blocks that contain the indirect blocks and data blocks for the files and direc-
tories contained in the filesystenAn inode may reference blocks in one or more cylinder groups in the
filesystem though the polids that small files hae teir blocks allocated in the same cylinder group in
which the inode resided=or details, see Chapter 8 of [McKusick & Neville-Neil, 2005].

The ley idea in the paper is to resera snall area in eachytinder group immediately following the
inode blocks for the use of metadata, specifically indirect blocks and directory cortaetguires that
metadata be allocated in this area and does nat dlita blocks to be allocated in this areghus, the
paper has a long discussion ofahtw gze this areallf it is improperly sized the filesystem will report as
being full when it in fact still has plenty ofalable space since it reports a filesystem full error when
either the metadata area or the non-metadata area fills up.

The FFS separates the allocation of data blocks and inodes mtistimct layers: polig and imple-
mentation. Thepolicy layer is responsible for picking what it views as the ideal place to allocate the inode
or the data blockFor example, when asked to allocate a block for a file, it will usually ask for the block
that immediately follows the previously allocated block.

The implementation layer is responsible for managing the allocation bitmaps and ensuring that
resources do not get double allocated. Thus, theyplaier does not wva t worry about requesting an
already allocated blockif the implementation layer finds that a requested block is already allocated, it sim-
ply scans through the map to find the closealable free block. The result of this separation is that once
the implementation layer is working properfiyesystem designers are free to try out wieathair-brained
policy ideas that thewant without fear of corrupting the filesystem. In the case of FFS, the implementa-
tion layer was written and debugged in 1982 and has not been changedFsirtber refinements to the
filesystem hee keen done at the polidayer.

mode

owners (2)

timestamps (4)

size

direct blocks

~(aaa]
single indirect | I | “—»{ data |
double indirect —*W'L —{ data |
triple indirect . .
. - ata
block count . | ——={ data |
reference count =] —{ data]
flags (2) . : i
generation numbe . r%
blocksize — .
|~

extended attrsize

extended ,

attribute

blocks ~ ——{ data |

Figure 1. The structure of an inode

Falowing these design principles, | chose not to change the filesystem layout or the implementation
layer Instead | chose to implement it entirely aswa pelicy. Specifically the nev policy is to hold about
the first 4% of the data blocks in eaghlirder group for use of metadata. The pylioutines preferen-
tially place metadata in the metadata area aed/#hing else in the blocks that follothe metadata area.
In my implementation the size of the metadata area does not matter as it is just used as a hint by the polic
routines. Ifthe metadata area fills up, then the metadata just gets put irgther relocks area and vice
versa. And this decision happens on a cylinder groupybgder group basis (e.g., some cylinder groups
can werflow their metadata area while others do na#rftow it). For filesystem performance, it is usually
better to hae the metadata in the same cylinder group as its inode than it is to push it to the metadata area
of another cylinder group as is done by the design in the paper.

Another area where | chose to e¢ak dfferent approach than the paper is in the allocationypédic
the first indirect block of the fileThe BSD fast filesystem tries to place the first (single) indirect block
inline with the file data (e.g., it tries to contiguously lay out the first 12 direct blocke/éallonmediately
by the indirect block follwed immediately by the data blocks referenced from the indirect block). One of
the performance shadowns in the paper occurs for files that spill into only the first part of their first indi-
rect block. The sledowvn comes from moving this first indirect block to the metadata area thus causing tw
extra seeks when reading ito &oid this slavdown, | do not change the layout of the first indirect\ieg
it inline). Only the second and thirdvi indirects along with the indirects that yheference are nved to
the metadata areal’he nearly contiguous allocation of this metadata close to the inode that references it
noticeably impreges the random access time to the file as well as speeding up the running ftisde of
Also, as noted in the papdhe disk track cache is often filled with much of a dilektadata when the sec-
ond-level indirect block is read thus often speeding ugnehe sequential reading time for the file (though
in limited testing | did not see statistically significant differences in sequential reading times).

In addition to putting indirect blocks in the metadata area, Ma, et al suggest that it is also helpful to
put the blocks holding the contents of directories there Toay found that putting the contents of directo-
ries in the metadata areareg a peedup to directory tree trarsal since the data is a short seefafrom
where the directory inodeas read and may already be in the digldck cache from other directory reads
done in its cylinder groupl added this hint to the FFS block preference routines and observed a similar
improvement in the speed of pathname lookup and in the shorter running tfaeck. of

The final observation that | pluelt from the paper specifically for speedingfsg is to sae an in-
memory cop of the cylinder groups during passl so as not to need to re-read them in Paissbearly
doubles the memory footprint &ck, so if memory runs short (e.g., its mallocs begin to fail) this cache is
released as needed to ma&om for other allocations.

3. Resaults

| havebeen testing on an Intel Quad-core CPU running at 2.83GHz with 2Gb of memory and a 2Tb
Western Digital 7200rpm testing disk running FreeBSD 8.3-STABLE {&sion revision r246915M).
Filesystems are created with their default settings: 16K blocks, 2K fragments, soft updates, and 4% of the
data blocks held for metadatkor these tests, the filesystem is 75% full mostly populated with big files (to
exaggerate the metadatdesfs). Ineach case a mefilesystem was created and all the data copied into it
so that the ne layout could hee maximal efect. Thereare fav files and hence little directory informa-
tion, so the benefit to the running time for directories is minimal in these testspresently running tests
on a more corentionally populated filesystem.

Fsck times are also better as the filesystem has not been ageeverlaging effects in the FFS
filesystem tend to be a lot less noticeable than in others due to its use of dynamic block reallocation.
Notably the Hanard folks found that I/O performance droppetityf only about 10% after ten months of
simulated aging [Seltzer & Smith, 1996Also, fsck times are I because of the small number of files in
the filesystem and hence the smaller number of inodes needing to be inspected. Finally a technique similar
to the metadata compression discussion in the Ma, et al paper has been fiscigerithe directory meta-
data since 1988 which cuts down on running time.

Executve simmary on running time dck:

Baseline before gnchanges: 284 seconds (4 min 44 sec)

* Storing second and thirdel metadata (and their referenced indirect blocks) but not first indirect block
in the metadata area: 135 seconds (2 min 15 sec)

Adding directory data blocks to metadata area: 134 seconds (2 min 14 sec)

Caching glinder group blocks in passl toad the need to read them in pass5: 84 seconds (1 min 24
sec)

In Appendix 1 are the summary statistics for each rii@. listed as “Double Leel Indirect”
includes all double-indirect blocks referenced from inodes and all the singlérdirect blocks belw
them. Similarly “Triple Level Indirect’ includes all triple-indirect blocks referenced from inodes and all
the single- and doublexe indirect blocks bely them. Thekey obsenation is that while the number of
I/Os of each type of data remain similar from run to run, the percentage of time for reading the metadata
has dropped dramatically.

| ran just a fev tests on the speed with which data could be read from or written to files. Random read
times impraed a hit. The remaining tests were not statistically significantlfedént. Morethorough tests
would need to be run to get a reasonable idea of whether @x@akdifference. But first results imply no
degradation and some hints at impment.

4. Conclusions

This work has once again shown the power of separating the filesystem layoutrquaiices from
the implementation routined. was so gcited by the possibilities presented by this paper that | skipped
lunch after hearing it so | could try implementing it in FFB; the time the 90 minute lunch brealasv
over | had fully written the 100 lines of changes (half of which were comments) to the block layout polic

routine to implement the reserved metadata afewl | had no fears of bringing it up on my primary serv
to test it out since | kmethat at worst | wuld get some badly laid out files; certainly | was not running the
risk of corrupting my filesystems.

By retaining the same on-disk format, | did not need toa@ak changes tdsck. The stockfsck just
ran faster because of thewnkayout of metadatal did need to maé aout 100 lines of changes fsck to
add the caching of cylinder groups between passl and pass5. But that wakch#mge and one that will
provide equal impreement whether or not the wefilesystem layout is in useThe vast majority of my
time has been spent measuring the effects of the changes and writing thisHaajyey spent time writing
or tuningfsck for the past 30 years, | v would hare guessed that so much impement in running time
could be gotten out déck for so little effort.

The lesson to be learned is that separating yp&lam implementation is an important design princi-
ple when architecting sofave systems, especially when ythere mission-critical systems. The pdglic
layer allows ne ideas to be implemented and tested quicKgce validated, those ideas can be dggdo
without danger of compromising the integrity of the system.

I commend the authors of the paper for theorkv Unfortunatelythe filesystem on which the
worked is not separated into pgliand implementation layers so thbad to mak ®veal thousand lines of
changes in areas where bugs would compromise the filesystarityntd&he monolithic architecture lead
to a great deal more effort on their part than would otherwige lte@en necessaryFinally, the scope of the
change and the possibility of destabilizing a production filesystem wilk td&r more difficult for them
to get their changes accepted back into the mainline code base.

5. References

Ma, Dragga, Arpaci-Dusseau, & Arpaci-Dusseau, 2013.
A. Ma, C. Drag@, A. Arpaci-Dusseau, & R. Arpaci-Dusseau, “ffsck: The Fast File System €fieck
USENIX FAST ’ 13 Conference, available from wwwusenix.org/conference/fast13/ffsck-fast-file-sys-
tem-checker (February 2013).

McKusick & Neville-Neil, 2005.
M. K. McKusick & G. V. Neville-Neil, The Design and Implementation of the FreeBSD Operating
System, Addison-Weslg, Reading, MA (2005).

Seltzer & Smith, 1996.
M. Seltzer & K. Smith, A Comparison of FFS Disk Allocation AlgorithmsMnter USENIX Con-
ference, pp. 15-25, wailable from wwweecs.harvard.edu/margo/papers/useni¥®@¢danuary 1996).

Appendix 1
More details on the performance measurements
#
Baseline with no changes on 16K/2K filesystem
#

305 files, 447783558 used, 191768583 free (71 frags, 23971064 blocks, 0.0% fragmentation)
17.401u 0.830s 4:44.39r 6.4% 152t+978d (1131tot/43104max) 48723+33i0 21361r+0pf+0w

Final 1/O statistics
Running time: 284.263 sec

Buffer reads by type Count I/ORead Time
Cylinder Group: 14038 28.8% 94.199sec 35.3%
Single Level Indirect: 218 0.4% 2.15%ec 0.8%
Double Level Indirect: 23553 48.3% 141.592sec 53.0%
Triple Level Indirect: 3859 7.9% 23.330 sec 8.7%
Inode Block: 7020 14.4% 5.412 sec 2.0%
Directory Contents: 26 0.0% 0.068 sec 0.0%

#

Indirect blocks in reserved area on 16K/2K filesystem

#

329 files, 449870118 used, 186694875 free (91 frags, 23336848 blocks, 0.0% fragmentation)
18.072u 0.690s 2:15.84r 13.8% 156t+1007d (1163tot/42880max) 48780+31io 21267r+3pf+0w

Final 1/O statistics
Running time: 135.760 sec

Buffer reads by type Count I/ORead Time
Cylinder Group: 13972 28.6% 104.148sec 88.5%
Single Level Indirect: 235 0.4% 1.086sec 0.9%
Double Level Indirect: 23683 48.5% 6.022 sec 5.1%
Triple Level Indirect: 3859 7.9% 0.51%sec 0.4%
Inode Block: 6986 14.3% 5.757 sec 4.8%
Directory Contents: 26 0.0% 0.145 sec 0.1%
#

Include directory data blocks in reserved area

#

311 files, 448187974 used, 188377019 free (83 frags, 23547117 blocks, 0.0% fragmentation)
17.847u 0.802s 2:15.20r 13.7% 154t+995d (1149tot/43022max) 48656+38i0 21332r+0pf+0w

Final 1/O statistics
Running time: 134.734 sec

Buffer reads by type Count I/ORead Time
Cylinder Group: 13972 28.7% 103.372sec 88.5%
Single Level Indirect: 223 0.4% 1.006sec 0.8%
Double Level Indirect: 23581 48.4% 6.014 sec 5.1%
Triple Level Indirect: 3859 7.9% 0.51Gsec 0.4%
Inode Block: 6986 14.3% 5.754 sec 4.9%

Directory Contents: 26 0.0% 0.141 sec 0.1%

#

Add cylinder group block caching in fsck

#

311 files, 448187974 used, 188377019 free (83 frags, 23547117 blocks, 0.0% fragmentation)
17.539u 0.911s 1:24.75r 21.7% 152t+982d (1135t0t/99182max) 41670+50i0 49383r+0pf+0w

Final 1/O statistics
Running time: 84.622 sec

Buffer reads by type Count I/ORead Time
Cylinder Group: 6986 16.7% 53.453sec 79.8%
Single Level Indirect: 223 0.5% 1.098 sec 1.6%
Double Level Indirect: 23581 56.5% 5.965 sec 8.9%
Triple Level Indirect: 3859 9.2% 0.503 sec 0.7%
Inode Block: 6986 16.7% 5.754 sec 8.5%

Directory Contents: 26 0.0% 0.141 sec 0.2%

