Proceedings of the 16th ACM Symposium on Operating Systems Principles, Saint-Malo, France, October 1997

A Decentralized Moddl for Information Flow Control

Andrew C. Myers

BarbaraLiskov

MIT Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139
{andru, |l i skov}@cs.nit.edu

Abstract

This paper presents a new model for controlling information
flow in systems with mutual distrust and decentralized au-
thority. The model alows users to share information with
distrusted code (e.g., downloaded applets), yet still control
how that code disseminatesthe shared information to others.
The model improves on existing multilevel security models
by allowing usersto declassify informationin adecentralized
way, and by improving support for fine-grained data sharing.
The paper also shows how static program analysis can be
used to certify proper information flowsin this model and to
avoid most run-time information flow checks.

1 Introduction

The common modelsfor computer security are proving inad-
equate. Security modelshavetwo goals: preventing acciden-
tal or malicious destruction of information, and controlling
the release and propagation of that information. Only the
first of these goals is supported well at present, by secu-
rity models based on access control lists or capabilities (i.e.,
discretionary access control, simply called “access control”
from this point on). Access control mechanisms do not sup-
port the second goal well: they help to prevent information
release but do not control information propagation. For ex-
ample, if user A isalowedtoread B’sdata, B cannot control
how A distributes the information it has read. Control of in-
formation propagation is supported by existing information
flow and compartmental models, but these models unduly

Thisresearchwas supportedin part by DARPA Contract NO0014-91-J-4136, monitored
by the Office of Naval Research, and in part by DARPA Contract F30602-96-C-0303,
monitored by USAF Rome L aboratory.

Copyright ©1997 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part or al of thiswork for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercia advantage and that new copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481,
or “permissions@acm.org”

restrict the computation that can be performed. The goal of
thiswork isto makeinformation flow control more useful by
relaxing these restrictions.

Information flow control is vital for large or extensible
systems. In a small system, preventing improper propaga-
tionof informationiseasy: youdon't passdatato codewhose
implementation is not completely trusted. This simple rule
breaksdown in larger systems, because the trust requirement
istransitive: any code the data might travel to must also be
trusted, requiring complete understanding of the code. As
the system grows larger and more complex, and incorpo-
rates distrusted code (e.g., web applications), complete trust
becomes unattainable.

Systems that support the downloading of distrusted code
are particularly in need of a better security model. For ex-
ample, Java [ GJS96] supports downloading of code from re-
mote sites, which creates the possibility that the downloaded
code will transfer private data to those sites. Java attempts
to prevent these transfers by using a compartmental security
model, but this approach largely prevents applications from
sharing data. Also, different datamanipulated by an applica-
tion have different security requirements. A security model
is needed that supports fine-grained information sharing be-
tween distrusted applications, while reducing the potential
for information leaks.

This paper contains exploratory work towards a new
model of decentralized information flow that is also inex-
pensive in both space and time. Our model allows users to
control the flow of their information without imposing the
rigid constraints of a traditional multilevel security system.
The goal of this model is to provide security guarantees to
users and to groups rather than to a monolithic organization.
It differsfrom previouswork on information flow control by
allowing users to explicitly declassify (or downgrade) data
that they own. When data is derived from several sources,
all the sources must agree to rel ease the data.

Our model can largely be checked statically, like some
existing information flow models [DD77, AR80]. We de-
fine user-supplied program annotations, called labels, that
describe the allowed flow of information in a program. An-



notated programs can be checked at compile time, in aman-
ner similar to type checking, to ensurethat they do not violate
information flow rules. Compile-time checks have no run-
time overhead in space or time, and unlike run-time checks,
when they fail, they do not leak information about the data
the program is using.

Our work extends existing models by allowing individu-
alsto declassify datathey own, rather than requiring acentral
authority to do it. In addition, we extend the static checking
model in three ways. First, we introduce an implicit form
of parametric polymorphism, called label polymorphism, to
express procedures that are parametric with respect to the
security labels of their arguments, and with respect to the
principal on whose behalf the procedure executes. Label
polymorphism extends the power of static analysis, and al-
lows programmers to write generic code. Second, since
purely static analysis would be too limiting for structures
like file systems, where information flow cannot be verified
statically, we define a new secure run-time escape hatch for
these structures, with explicit run-time label checks. Uses of
the run-time information flow mechanism are still partially
verified statically, to ensure that they do not leak informa
tion. Third, we show that despite these features, the labels of
local variables can be inferred automatically, easing the job
of adding flow annotationsto a program.

Our goal in exploring these techniques is to eventually
support the following useful applications:

e Secure servers and other heavily-used applications can
be written in programming languages extended with
information flow annotations, adding confidence that
sensitive information is not revealed to clients of the
service through programming errors.

e Secure compiled code may be transferred from a re-
mote site and run locally with less concern that it
might leak information. Codetransfer isuseful bothfor
clients, which download applicationsfrom servers, and
for servers, which upload code and data from clients
for remote evaluation.

The annotations could be used to extend many conven-
tional programming languages, intermediate code (such as
JVM [LY96]), or machine code, where the labeling system
defined here makes a good basisfor security proofs [Nec97].
Labeled machine code and security proofs could work to-
gether: proof annotations for object code would be gener-
ated as a byproduct of compiling a program that contains
information flow annotations.

The remainder of the paper describes the model and how
checking is done. The modél is intended to control covert
and legitimate storage channels; it does not deal with timing
channels, which are harder to control. The work assumes
the existence of a reliable, efficient authentication mecha-
nism, and of atrusted execution platform; for example, code

may be executed by a trusted interpreter, or generated only
by a trusted compiler. When the computational environ-
ment contains many trusted nodes connected by a network,
the communication links beween the nodes must be trusted,
which can be accomplished by encrypting communication
between nodes.

The organization of the remainder of this paper is as fol-
lows. Section 2 briefly describes some systemsthat can ben-
efit from decentralized information flow control, and which
are not well supported by existing models. Section 3 intro-
duces the fundamental s of the new information flow control
model. Section 4 discussesissuesthat arise when code using
the new model is statically checked for correctness. Sec-
tion 5 shows how the model can be integrated into asimple
programming language. Section 6 shows how to infer most
labels in programs automatically, making the job of anno-
tating a program much simpler. Section 7 describes related
work in the areas of information flow models, access control,
and static program analysis. We conclude in Section 8 and
discuss future work in Section 9.

2 Motivating Examples

Let us consider two examples for which a decentralized
model of information flow is helpful — the medical study
and the bank, depicted in Figures 1 and 2. The scenarios
place somewhat different demands on the information flow
model. They demonstrate that our approach permits legit-
imate flows that would not be alowed with conventional
information flow control, and that it is easy to determine that
information is not being leaked.

In the figures, an oval represents a principa within the
system, and islabeled with abol dface character that indi cates
the authority with which it acts. For example, in the medical
study (Figure 1), the important principals are the patient, p,
agroup of researchers, R, the owners of astatistical analysis
package, S, and atrusted agent, E. Arrows in the diagrams
represent i nformation flowsbetween principal's; square boxes
represent information that is flowing, or databases of some
sort.

Each principal can independently specify policiesfor the
propagation of its information. These policies are indicated
by labelsof theform {O : R}, meaning that owner O alows
the information to be read by readers R, where O isaprin-
cipal and R is a set of principals. The owner is the source
of the information and has the ability to control the policy
for its use. For example, in the medical study example, the
patient’smedical history may beread only by principalswith
the authority to act on behalf of either the patient principa p
or the hospital principal H.

In the diagrams, double ovals represent trusted agents
that declassify information (for example, E in the medical
study). These agents have the authority to act on behalf



. patient p's
patient medical
history
R p, R
RpR P pH)

(R RS
statistics
package
S

r R

results of statistical
study database
{3 {ss

Figure 1: Medical Study Scenario

of a principa in the system, and may therefore modify the
policies that have been attached to data by that principal.
One goal of these two examplesis show how our approach
limits the trust that is needed by participants in the system;
the double ovals identify the places where special trust is
needed.

2.1 TheMedical Study

The medical study example shows that it is possible to give
another party privateinformation and receivetheresultsof its
computation while remaining confident that the data given to
it isnot leaked. The purpose of the study isto perform asta-
tistical analysis of the medical records of alarge number of
patients. Obviously, the patients would like to keep specific
detailsof their medical history private. The patientsgive per-
mission to the researchers performing the study to use their
medical data to produce statistics, with the understanding
that their names and other identifying information will not
be released. Thus, the patients put some trust in the patient
dataextractor, E, which deliversto theresearchersasuitably
abridged version of the patient records. The data extractor
has the authority to act for the patient (p), so it can replace
the patient’s policy {p: p,H} with the researcher-controlled
policy, {R: p,R}, which allows the extracted data to be read
by the researchers and by the patient.

The researchers would like to use a statistical analysis
package that they have obtained from another source, but
the patients and researchers want the guarantee that the anal-
ysis package will not leak their data to a third party. To
accomplish this, the researchers relabel the patient data with
{R: RS}. Theanaysis packageis able to observe but not to

. customer |
request request
,,,,, {C: BC | (C: B, C}

{C: B,C}
private total
bank data | assets
{B: B}
per-customer
account data {B:B} | {B: B}
— {G: BGj} trusted
— industry-standard
[ totaller
— T

Figure 2: Bank Scenario

leak therelabeled datasince S isonly areader, not an owner.

The analysis package performs its computations, using
the patient data, now labeled {R: R,S}, and its own statistical
database, labeled {S S}. Thewritersof theanalysispackage
would also like some assurance that their statistical database
is not being leaked to the researchers. The result of the
computation must retain the policies of both R and S and
therefore acquires the joint label {R: RS, S: S}. This label
only allows flows to the principal S since S is the only
principal in both reader sets. The analysis package then
explicitly declassifiesthe result of the computation, changing
thelabel to {R: RS} so theresearcherscan read it. Notethat
since the analysis package can declassify the analysisresult,
it is not forced to declassify all information extracted from
the statistical database, which would probably require more
careful analysisof theanalysiscodeto show that the database
contents were not |leaked.

Finally, the researchers may declassify the result of their
study, changing the label {R: RS} to the unrestricted label
{}. Thischangeallowsthe general public to seetheir results,
and is acceptable aslong as there are so many patientsin the
study that information about individual patients cannot be
extracted from the final result.

This example uses declassification in four places. Each
time, declassification takes place accordingto thesimplerule
that a principal may modify its own flow policies. Conven-
tional information flow control has no notion of declassifi-
cation within the label system, and therefore, cannot model
this example.



2.2 TheBank

The bank scenario isillustrated in Figure 2. A bank serves
many customers, each of whom would like to keep his data
safe from other customers and non-customers. In addition,
the bank stores private information, such asits current assets
and investments, that it would like to keep safe from all
customers and non-customers.

The bank receives periodic requests from each customer,
e.g., to withdraw or deposit money. Each request should be
able to observe only information that is owned by that cus-
tomer, and none of the bank’ sprivatedata. The bank isbetter
than real banksin that it allows customersto control dissem-
ination of their account information; each customer has a
distinct information flow policy for his account information,
which preventsthe bank from leaking the information to an-
other party. The customer’s request, the account itself, and
the bank’s response to the request are all labeled {C: B,C},
allowing the bank to read the information but not to control
it. However, the bank’s private database, including itsrecord
of total assets, ismost naturally labeled {B: B}.

To keep the total assets up to date, information derived
from the customer’s request must be applied to the total
assets. To make this possible, the customer places trust in
the totaller, T, a small piece of the bank software that acts
with the authority of both the customer and the bank, and
therefore can declassify the amount of the customer request
in order to apply it to the total asset record. Conceivably,
the totaller is a certified, industry-standard component that
the customer trusts more than the rest of the bank software.
Another reasonable model is that the totaller is part of an
audit facility that is outside the bank’s contral.

3 Decentralized | nfor mation Flow Control

This section describes our new model of decentralized in-
formation flow. The model assumes a set of principals rep-
resenting users and other authority entities. To avoid loss
of generality, a process has the authority to act on behalf of
some set of principals.

Computations manipulate values. Values are obtained
from slots—variables, objects, other storage |ocations—that
can serve as sources and sinks for values, and from com-
putations; values can aso be obtained from input channels,
which are read-only slots that allow information to enter the
system. A value can bewritten either to aslot or to an output
channel, which serves as an information sink that transmits
data outside the system.

Values, dots, and channelsall haveattached labels, which
are amore flexible form of the security classes encountered
in most information flow models. The flexibility introduced
by our labels makes decentralized declassification possible.

Thelabel on avalue cannot change, but anew copy of the
value can be created with anew label. When this happenswe

say the value is relabeled, though it is really only the copy
that has a new label. The key to secure flow is to ensure
that any relabeling is consistent with the security policies of
the original labeling. Only values can be relabeled; slots
and channels cannot. This restriction allows us to check
information flows at compiletime. If either slotsor channels
could be relabeled, we would need run-time label checks
whenever they were used.

Sections 3.1 and 3.2 present our new model. Section 3.3
discusses principals in more detail and explains how we
achieve flexibility even though dots and channels cannot
be relabeled. Section 3.4 defines the relabeling rules, Sec-
tion 3.5 explains output channels further, and Section 3.6
discusses how our model forms a conventional security-class
lattice.

3.1 Overview

A label L contains a set of principals called the owner set,
or owners(L). The owners are the principals whose data
was observed in order to construct the data value; they are
the original sources of the information. For each owner O,
the label also contains a set of principals called the reader
set, or readers(L, O). The reader set for a particular owner
specifies the principals to whom the owner is willing to re-
lease the value. Together, the owners and readers functions
completely specify the contents of alabel. A useful concept
is the effective reader set of L: the set of principals that all
ownersof thedataagreeto allow toreleaseit to. Theeffective
reader set isthe intersection of every reader setin L.

An example of an expression that denotes a label L is
thefollowing: {ol: r1,r2; o2: r2,r3}, whereol, 02, r1, r2
denote principals. Theownersof thislabel areol and 02, the
reader sets for these owners are readers(L, ol) = {rl,r2}
and readers(L, 02) = {r2,r3}, and the effective reader set
is{r2}.

This label structure allows each owner to specify an in-
dependent flow policy, and thus to retain control over the
dissemination of its data. Code running with the author-
ity of an owner can modify the flow policy for the owner’'s
part of the label; in particular, it can declassify that data
by adding additional readers. Since declassification applies
on a per-owner basis, no centralized declassification process
is needed, as it is in systems that lack ownership labeling.
Thelabels maintain independent reader setsfor each owning
principal. If, instead, a label consisted of just an owner set
and a reader set, we would lose information about the indi-
vidual flow policies of the owners and reduce the power of
declassification.

The key to controlling information flow is to ensure that
the policies of each owner are enforced as data is read and
written. However, when avalueisread fromaslot, it acquires
the slot’s label, which means that whatever |abel that value
had at the time it was written to the slot is no longer known



whenitisread. In other words, writing avaluetoadlotisa
relabeling. This loss of information is acceptable provided
thereis no loss of control.

Therefore, we alow avalue to be assigned to aslot only
if the relabeling that occurs at this point is a restriction, a
relabeling in which the new label alowsfewer accesses than
the original; this happens, for example, if the dot’s label
allows fewer readers for an owner than the value's label. A
relabeling from label L; to label L, isarestriction, written
L, C Ly, if L has more readers and fewer ownersthan Lo:

Definition of L1 C Lo,

owners(L1)

C  owners(Ly)
VYO € owners(L1), readers(L1,0) 2O readers(Ly, O)

Note that the rules for readers and owners are opposites.

We could have used a different model in which a dot
stores both a value and the label of that value. However, in
that model thelabel that isstored in the slot becomes another
information channel. Also, this model would not permit
compile-timelabel checking. Our approach does permit this
checking, and thereforelabel s cause little run-time overhead.
As discussed in Section 5, labels can be values themselves;
thisfeature allowslabel checking to be deferredtill runtime,
overcoming the limitations of doing all checking at compile
time.

In addition to slots, the system contains channels, which
allow interaction with external devices: input channelsallow
information to be read and output channels allow informa-
tion to be written. Reading from an input channel isjust like
reading from a slot; the value is given the channel’s label.
However, writing to an output channel is different from writ-
ing to adlot; asdiscussed further in Section 3.5, writingto an
output channel is legal if the channel’s readers are a subset
of the readers allowed by the data being written. Creation of
new channelsis obviously a sensitive operation.

In this model, it is safe for a process to manipulate data
even though the current principal does not have the right to
read it. Thisfollows because all the process can do with the
dataiswriteit to aslot or achannel provided the data's |abel
allowsthis. Thus, access-control read checks aren’t needed!
Nevertheless, such checks might be desired, to reduce the
risk of exposure through covert channels of sensitive data
such as passwords. One possible extension would beto fold
read access checks into label checking: a process can read
information from a slot with label L only if the process can
act for some principa R in the effective reader set of L.

3.2 Derived Labels

During computation, values are derived from other values.
Since a derived value may contain information about its
sources, its label must reflect the policies of each of its

sources. For example, if we multiply two integers, the prod-
uct’s label must reflect the labels of both operands.

When a program combines two values labeled with L
and L, respectively, the result should have the least restric-
tive label that maintains all the flow restrictions specified by
L; and L,. Thisleast restrictive label, thejoin of Ly and L,
(written as Ly U Ly), is constructed as follows: The owner
set of Ly U L, isthe union of the owner sets of L, and Lo,
and the reader set for each owner in L1 and L; is the inter-
section of their corresponding reader sets. This rule can be
written concisely, assuming the following natural definition:
readers(L, O) for an O that isnot in the owner set is defined
to bethe set of all principals, since O imposes ho restrictions
on propagation. Thejoin ruleis then the following:

Labelsfor Derived Values (Definition of L1 LI L)

owners(Ly U Ly) = owners(Li) U owners(Ly)
readers(L, U Ly, O) readers(L1, O) N readers(Ly, O)

(The symbol @ has also been used to denote the join of two
security classes [DD77, AR80].)

Notethat L1 C Ly LI Ly for al labels Ly and L,. Joining
isarestriction and therefore it does not |eak information.

3.3 ThePrincipal Hierarchy

To alow compile-time analysis, slots must be immutably
labeled. Immutable slot labels might seem like a limitation,
but we provide two mechanisms to make the labels on dots
more flexible: run-time labeling, which is discussed later,
and modification of the rights of principals, which changes
the set of datathat principals can read.

Within asystem, principal sservevariousfunctions: some
represent the full authority of a user of the system; others
represent groups of users; and still others represent roles, re-
stricted formsof auser’sauthority. In practice, thesedifferent
principals are used quite differently, and many systems treat
them as entirely different entities. Some principals have the
right to act for other principals and assume their power. For
example, every member of agroup might havetheright to act
for the group principal. The acts for relation is reflexive and
transitive, defining a hierarchy or partial order of principals.
This model is similar to a speaks for hierarchy [LABW91],
though roles are treated here as first-class principals. We
assume that the principal structure can be queried using the
primitive acts-for function to discover whether the current
principal has the right to act for another principal.

Theright of one principal to act for another isrecorded in
a database. The database can be modified: for example, to
alter the membership of groups, or to transfer arole from one
employee to another. Obviously, modificationsto the princi-
pal structure are extremely powerful and must be restricted



by some form of access control. Also, to prevent modifi-
cations to the principal structure from serving as a covert
channel, the principal database must be labeled in away that
prevents information leaks, just as ordinary databasesin the
system must be.

3.4 Reabding Rules

This section restates and discusses our two relabeling rules,
restriction, which defines the legality of assignment, and
declassification, which allows an owner to modify its flow

policy:

Rulel: Restriction. A relabeling from L; to L, isvalid
if itisarestriction: Ly C Ly. Intuitively, it removesreaders,
adds owners, or both.

Rule 2: Declassification. A declassification either adds
readers for some owner O or removes the owner O. This
relabeling can be done only if the process acts for O.

Relabeling by restriction is independent of the principal
hierarchy and requires no special privilege to perform. De-
classification, by contrast, depends on the acts-for relation
and is legal only when the current process possesses the
needed authority. It introduces potential security leaks, but
only leaksof information owned by the current principal. The
current principa has the power to leak its own information,
but cannot leak data owned by other principals. Information
that isowned by a particular user can only be declassified by
code that runs with that user’s authority. Note that Rule 2
reflects the transitivity of the acts-for relation. For example,
if aprocess can act for aprincipal P, it can act for any prin-
cipal @ that P can act for, and therefore can declassify data
owned by Q.

Analysisof the safety of a piece of code reducesto analy-
sisof the uses of theserules. Aswe will see, the rules can be
largely checked at compile time, assuming the programmer
is willing to supply some annotations. Code that performs
a relabeling according to Rule 1 can be checked entirely at
compile time, but code that performs a relabeling accord-
ing to Rule 2 requires additional checking, to ensure that the
process acts for the owner. In the language discussed later
in the paper, we require that the use of Rule 2 be indicated
explicitly, sincelegal but unintended information leakscould
occur otherwise.

An important property of these rules is that the join op-
erator does not interfere with relabeling. It is possible to
independently relabel a component of a join: if the rela
beling Ly — L, islegd, then for any other label L3, the
relabeling L1 U Lz — Ly U Lz isaso legal. This property
automatically holdsfor Rule 1 becausethe set of labelsforms
alattice. The property also holdsfor Rule 2 becausethe join
operator ensuresthat the flow policiesof L3 are not violated.

This property isimportant because it permits code that is
generic with respect to alabel (or part of alabel) to perform

declassification. It is also helpful for writing code like the
statistical analysis package in the medical study example.
Because Rule 2 can be applied to part of ajoin, the analysis
package can compute answers using values from its private
database, then remove its label from the result that it gener-
ates. Without this property, it would have to declassify the
private database information immediately—forcingit to give
up some protection against leaks.

3.5 Channeds

Data enters the system through input channels and leaves
it through output channels. In either case, it is important
that the channel’s label reflect redlity. For example, if a
printer can be read by anumber of people, it isimportant that
the output channel to that printer identify all of them, since
otherwise an information leak is possible.

Therefore, channel creation is a sensitive operation since
it must get the labelsright. We assumeit is done by trusted
code, which makes use of its understanding of the physical
devices to determine whether the requested channel should
be created, i.e., whether the label proposed by the program
attempting to createthe channel matchesreality. The channel
creator might additionally rely on authentication, e.g., when
a user logs on, the authentication or login process might
associate the user’s principal with the channel for the display
being used.

A value read from an input channel is labeled with the
channel’s label. This is the same as what happens when
reading a value from a slot. However, the rule for writing
to an output channel is different from writing to aslot, since
owners don’t matter for writing. Instead, the rule is the fol-
lowing: for any reader R of the output channel, the effective
readers of the value's label must include a reader R’ such
that R can act for R'. This rule ensures that the data can
read only by readerswho have been authorized to seeit. The
reason to use the acts-for relation isthat by authorizing some
R’, we have implicitly authorized all principals who can act
for R'. Thisflexibility provides functionality not easily at-
tainabl e through other mechanisms such as declassification.
For example, it allows us to write data that is readable by a
group principal to achannel that is readable by a member of
the group, since the member principal can act for the group
principal.

3.6 Security ClassLattice

If we consider just Rule 1, the set of labels forms a conven-
tional security-class lattice [Den76], where each element in
the lattice is one of the possible labels. Labels exist in a
partial order as defined by the restriction operator, C. The
least restrictive label, denoted by L, correspondsto data that
can flow anywhere; the greatest restriction, T, corresponds
to data that can flow nowhere: it is readable by no one and



owned by everyone. Aswe go up in the lattice, labels be-
come strictly more restrictive. Data can always be relabeled
to flow upward in the lattice, because restriction does not
create a possible information leak.

Thelattice has awell-defined meet operator, M. Itsdefini-
tionis precisely dual to that of Li: it takes the intersection of
the owners and the unions of the readers. The meet operator
yieldsthe most restrictive label that is strictly lessrestrictive
than its operands. This operator doesn’t seem to be very
useful in describing computation, and its use is avoided in
order to preserve the ability to easily infer labels, as shown
in Section 6.

The effect of declassificationisthat each principal hasac-
cessto certain relabelingsthat do not accord with the I attice.
However, these relabelings do not leak information.

4 Checking Labels

L abels can be used to annotate code, and the annotated code
can be checked statically to verify that it contains no infor-
mation leaks. In this section, we discuss someissuesrelated
to static analysisof annotated code, though we defer i ssues of
how to extend a programming languagetill the next section.
In Section 4.1, we explain the importance of static checking
toinformationflow control, and the problem of implicit flows
[DD77]. In Section 4.2, we describe a simple way to pre-
vent implicit flows from leaking information by using static
analysis.

4.1 Staticvs. Dynamic Checking

Information flow checks can be viewed as an extension to
type checking. For both kinds of static analysis, the com-
piler determines that certain operations are not permitted to
be performed on certain data values. Type checks may be
performed at compile time or at run time, though compile-
time checksare obviously preferred when applicable because
they imposeno run-time overhead. Accesscontrol checksare
usually performed at run time, although some access control
checks may be performed at compile time [JL78, RSC92].
In general, it seems that some access control checks must be
performed dynamically in order to give the system sufficient
flexibility.

By contrast, fine-grained information flow control isprac-
tical only with some static analysis, which may seem odd,;
after all, any check that can be performed by the compiler
can beperformed at runtimeaswell. Thedifficulty with run-
time checks is exactly the fact that they can fail. In failing,
they may communicate information about the data that the
program is running on. Unless the information flow model
is properly constructed, the fact of failure (or its absence)
can serve as a covert channel. By contrast, the failure of
a compile-time check reveals no information about the ac-

x:=0

if b then
x:=1

end

Figure 3: Implicit information flow

tual data passing through a program. A compile-time check
only provides information about the program that is being
compiled. Similarly, link-time and load-time checks provide
information only about the program, and may be considered
to be static checksfor the purposes of thiswork.

Implicitinformation flows [DD77] aredifficult to prevent
without static analysis. For example, consider the segment
of code shown in Figure 3 and assume that the storage lo-
cations b and x belong to different security classes b and
x, respectively. (We will follow the literature in using the
notation e to refer to the label of the expression e.) In par-
ticular, assume b is more sensitive than x (more generaly,
b [Z x), so data should not flow from b to x. However, the
code segment stores 1 into x if b istrug, and O into x if b is
false; x effectively containsthe value of b. A run-time check
can easily detect that the assignment x := 1 communicates
information improperly, and abort the program at this point.
Consider, however, the case where b isfalse: no assignment
to x occurs within the context in which b affects the flow
of control. The fact of the program’s aborting or continuing
implicitly communicates information about the value of b,
which can be used in at least the case where b isfalse.

We could imagine inspecting the body of the if statement
at run time to see whether it contains disallowed operations,
but in general this requires evaluating all possible execution
paths of the program, which is clearly infeasible. Another
possibility isto restrict all writesthat follow the if statement
on thegroundsthat once the processhasobserved b, itisirre-
vocably tainted. However, thisapproach seemstoorestrictive
to be practical. The advantage of compile-time checking is
that in effect, static analysis efficiently constructs proofsthat
no possible execution path contains disallowed operations.

To provide flexibility, some information flow checks are
desirable at run time; such checks are allowed as long as
their success or failure does not communicate information
improperly—which must itself be checked statically! We
examine run-time information flow checks later, in Sec-
tion 5.10.

4.2 BasicBlock Labels

As described in Section 3.1, when a data value is extracted
fromadlot, it acquiresthe slot label. Furthermore, to ensure
that writing to a slot does not leak information, the label on
the slot must be more restrictive than the label on the data



x:=0

branch on b

Figure 4: Basic blocks for an if statement

value being written: x := vislegal only if v C x. However,
whilethisrestriction conditionisnecessary, itisnot sufficient
for avoiding information leaks, because of the possibility of
implicit information flows. The code in Figure 3 provides
an example. The variables x and b are both dots. The
expressions 0 and 1 do not give any information about other
data, so they are labeled by L. Therefore the assignment x
:= 1 appears to be legal. However, earlier we showed that
this assignment may be an information leak. Therefore, our
simpleruleisnot sufficient. The problem becomes clearer if
we rewrite the if statement:

x := (if b then 1 else x)

Clearly, the value of x after the statement completesis de-
pendent on the value of b, and the assignment islegal only if
b C x.

In general, the flow of control within a program depends
on the values of certain expressions. At any given point
during execution, various values v; have been observed in
order to decideto arrive at the current program location. Any
mutation that occurs can potentially leak information about
the observed values v;, so the slot that is being mutated must
be at least as restricted as the labels on al these variables:

Llyizgll_lyzl_l...l_lgn
i

This label | |, v; can be determined through straightfor-
ward static analysis of the program’s basic block diagram,
and will be called the basic block label, B. The basic block
label indicates information that might be inferred by know-
ing that the program is executing this basic block. Using the
basic block label, we can write the correct rule for check-
ing assignment: assignment to avariable x with avaluev is
permittedonly if viLI B C x.

Intuitively, a basic block label must include the labels
of all values that were observed to reach that point in the
execution. For example, consider the basic block diagram
shown in Figure 4, which corresponds to the code of Fig-
ure 3; each basic block, represented as a box in the diagram,
is characterized by asingle basic block label, and has one or

branchon b
F
x:=0
while b do X
x:=1 b
b :=fase
end (find) | B

Figure 5: Basic blocks for awhile statement

two exit points. Here the basic block for x := 1 haslabel b
because the value of b had to be observed to reach that point
in the program. However, the label of the “final” block is L
because at that point the program has no knowledge of any
values. Itistruethat the program could discover information
by performingteststhat read from slots(e.g., x); however, the
basic block label captures what the program knows without
any further reading.

Labels of basic blocks are derived as follows. The de-
cision about which exit point to follow from a block B; is
made based on the observation of somevaluewv;. Thelabel B
for aparticular basic block B isthejoin of some of thelabels
v;. A label v, isincluded inthejoiniif it is possible to reach
B from B;, and it is aso possible to reach the fina node
from B; without passing through B (if al paths from B; to
the final node pass through B, then arriving at B conveysno
information about v;.) The set of v, that must beincluded in
each B can be efficiently computed using standard compiler
techniques. This rule for basic block label propagation is
equivalent to the rule of Denning and Denning [DD77].

Now, consider the execution of a“while” statement, which
creates a loop in the basic block diagram. This situation is
illustrated in Figure 5. Notethat for thefinal basic block, we
obtainB = | byreasoninginthesameway aswedidfor the
“if” statement. Thislabeling might seem strange, since when
wearriveat thefinal block, weknow thevalueof b. However,
arriving at thefinal block givesno information about thevalue
of b before the code started, and thereis no way to use code
of this sort to improperly transmit information.

Thislabeling rule holdsaslong asall programsterminate,
or at least as long as there is no way to derive information
from the non-termination of aprogram [DD77, AR80]. The
way one decides that a program has not terminated is to
time its execution, either explicitly or through asynchronous
communication with another thread. We do not address
timing channelsin this paper.

If the language allows the raising of exceptions and of
return statements, the returned value must al so be labeled by
the label of the basic block that contains the return or raise.



This fact can be seen clearly by converting a procedure that
uses a return statement into one that uses boolean variables
to keep track of control flow.

5 Application toa Language

I n this section we define asimple programming language that
incorporates our model. The goal of this expositionis not to
seriously propose a programming language, but to demon-
strate that the information flow model can be applied prac-
tically to a rich computational model, providing sound and
acceptably precise constraints on information flow. These
annotations could be applied to other programming models,
such as compiled code or VM code [LY 96].

The language supports the usual simple types: integers,
strings, records, and arrays of any legal type including other
array types. Procedures may contain variable declarations,
assignments, if statements, and while statements; they return
results by assigning to specia return variables, asin Pascal.
Variables of record or array types are references to storage
on the heap, asin Java [GJS96] and CLU [LAB*84], so that
assignment of arecord or array (e.g., rl := r2 or al := a2)
makes the variables aliases for each other.

For simplicity, the language has no exceptions. Excep-
tions complicate the propagation of basic block labels, but
can be handled using the basic-block propagation described
in Section 4.2, assuming that procedures declare the excep-
tions they might raise. Not having exceptions makes some
programs clumsy, but programs written with exceptions can
be straightforwardly translated into programs without excep-
tions, so there isno loss of generality.

For simplicity of presentation, the language also lacks
global variables. Inour simplelanguage, thefirst basic block
in a procedure has label 1. Global variables could be sup-
ported by allowing procedures to accept a specia parameter
that definesthe label of their first basic block.

The language is extended with afew unusual featuresto
support information flow control:

e All variables, arguments, and procedure return values
have labeled types. If atypeisunlabeled, the label is
either a parameter or isinferred, depending on context.

¢ An explicit “declassify” operator allows the declassifi-
cation of information.

¢ A procedurecanexplicitly test with theif_acts_for state-
ment whether it is able to act for some principal, and if
itis, it may use the authority of that principal.

e A call to a procedure may grant some of the authority
possessed by the caller to the procedure being called,
and thecalled procedure may test and usethat authority.

e Variables and arguments may be declared to have the
special base type label, which permits run-time label

pinfo = record [ names, passwords: string{chkr: chkr} ]

check_password (db: array[pinfo{ L}]{L},
user: string {L},
password: string{client: chkr})
returns (ret: bool{client: chkr})
% Return whether password is the password of user

i int {chkr: chkr} := 0 % L
match: bool {client: chkr; %

chkr: chkr} := false % L

while i < db.length() do % L

if db[i].names = user & % L

dbli].passwords = password then %
match := true % {client: chkr;

end % chkr: chkr}
i=i+1 % L

end

ret := false % L

if_acts for(check_password, chkr) then % L
ret := declassify(match, {client: chkr}) % L
end
end check_password

Figure 6: Annotated password checker

checking. Variables of type label and argument-label
parameters may be used to construct labels for types
that are mentioned within the procedure body.

o A labelcase statement can be used to determine the
run-time labeled type of a value, and a specia type
protected conveniently encapsul ates values along with
their run-time labels.

We begin with an exampleof aprogramtoillustrate some
of the featuresin the language. Then we define the language
in more detail, including how to check the constructs using
label-checking rules.

5.1 An Example

Figure 6 shows the check_password procedure, which ac-
cepts a database of passwords, a password, and a user name,
and returnsabooleanindicating whether thestringistheright
password for that user. This exampleis simple, yet it uses
declassification to control information flow in afine-grained
way that is not possible under any previous model of which
we are aware.

Two principals are mentioned in this code: chkr repre-
sents the password checker role, and client represents the
principal of the calling client. The password database is an
array of records giving the passwords for users; it should be
protected by encapsulation (e.g., check_password should be
amethod) but this complexity is avoided here. In areal pro-
gram, client would be a parameter to the routine rather than



a single fixed principal; a more general (and more concise)
version of check_password is shown later, in Figure 9.

Inthefigure, all 1abels are declared explicitly by annotat-
ing types with label expressionsin braces. The type T{L}
describes a value of type T that is restricted by the label
{L}. For example, the password argument is readable by
the checker but owned by the client, which ensures that the
checker can examine the password but cannot distribute it
further. The annotations are onerous in this case partly be-
cause variable labels are not being inferred; Section 6 shows
how to infer labels for this procedure.

The comments (beginning with a“%") on the right-hand
side of the exampleindicate the static value of the basic block
label, B, and are not part of the code.

To perform its work, the procedure uses the db database
to find the password of the user. Asit looks at the data, its
basic block label picks up any dependencies. For example,
the if predicate examines password and the fields of db]i];
therefore, its body has the basic block label {client: chkr;
chkr: chkr}. Thismeansthat the label of match must be at
least this restrictive, or the assignment to match in the body
of the if statement would leak information (i.e., would result
in acompile-time error).

However, the client requires a result with label {client:
chkr}. To provide such aresult, the checker must explicitly
declassify match, removing chkr from the owner set. The
declassification can be carried out only if the procedure has
the proper authority (i.e., can act for chkr). Therefore, the
procedure checks whether it runs with this authority (in the
if_acts_for statement); in the then clause, the code runs with
the authority of the password checker; otherwise, it does not.

Codereceivesauthority by being granteditinthe principal
hierarchy; each procedure has its own principa that can
participate in acts-for relations. Of course, granting code
the right to act for a particular principal can only be done
by a process that acts for that principal, so chkr must have
explicitly granted check_password theright to act for it. The
expectation of the author of the procedure check_password
is that it has been given this right. However, the procedure
is constructed so that it does not leak information if the right
to act for chkr islater revoked.

Theneed for explicit declassificationisnot just an artifact
of our model. The return value of the procedure is owned by
the client, which means that the client has complete control
over the value. The procedure's result could conceivably
be used to determine the contents of the password database
through exhaustive search. In this case, the implementor of
the procedure has made a conscious decision that the amount
of information leaked by the boolean return value is small
enough that declassification is acceptable. Note that the
decision about declassification is made locally, by code that
actsfor the owner of the data; no appeal to an external trusted
agent isrequired.

It is not necessary to run the entire procedure under the

10

chkr authority. Instead this authority is used just whereitis
needed, for the declassification. Also, note that the proce-
dure only needs to declassify itsresult. It is not required to
declassify everything extracted from the password database,
and is therefore protected against accidentally leaking the
database contents (e.g., if it called a helping procedure that
acted on the database).

5.2 Label-Checking Rules

Now, we explain the constructs of the language and the cor-
responding label-checking rules. The process of verifying a
program according to these rules involves two major steps:
first, basic block |abels are propagated; then, each individual
statement is verified in the context of the basic block that
containsit. Verifying a statement requires that we check for
the satisfaction of corresponding label constraints, which is
discussed in more detail in Section 6.

If the language contained exceptions or gotos, B would
need to be computed through the basic-block label propaga-
tion rule of Section 4.2. For our simple constructs, the rules
for propagation of B can be stated directly; since control flow
isdetermined only by if and while statements, the basi c-block
propagation rule takes particularly simple forms. Note that
in each statement rule, B represents the label for the basic
block containing the statement. Many of theserulesare simi-
lar inintent to those found in Denning and Denning [DD77],
though these rules are different in that they are expressed
without using the meet operator (M).

5.3 Labeled Types

As described, values and slots have labels that restrict in-
formation flow. In statically-typed languages, values and
dlots also have static types that can be said to restrict flow.
These two restrictions can be combined, so that labels are
considered to be part of the type. This interpretation allows
usto use standard type-checking and notions of subtyping to
describe information flows.

Every variable, argument, and return typein the language
has a labeled type, which consists of a base type such as
int, plus a static label. For example, the labeled typeint{L}
represents an integer restricted by L. In general, label ex-
pressions, consisting of thejoin of several labels, may appear
within the braces. For example, int{chkr : chkr LI L,} isre-
stricted by both {chkr : chkr} and L.

The type and label parts of a labeled type act indepen-
dently. For any two types .S and T" where S isa subtype of T
(S <T),andfor any two labels L; and L, where Ly C L,
S{L1} < T{L,} [VSI96]. This formula aso implies that
S{L1} < T{LiU L3}, for any other label Ls.

Parametric types such as arrays and records explicitly
mention labels on their type parameters. For example, we
can form the type array[int{L}]{L2}, which is an array of



labeled integers, where the integers have label L, and the
array reference has label L2. In record types, similarly, the
individual fields have labeled types.

54 Assignment

Given an assignment of theformv := e, wherev isavariable
with type T'{v} and e is an expression with type S{e}, and
S < T, theassignment islega if eLiB C v, whereBis
the label for the basic block containing the statement. This
condition guarantees both that the information in e is not
leaked by placing it in the variablev, and that performing the
store operation does not |eak information because it happens
in this particular basic block.

Record and array assignments are similar to variable as-
signment, except that they may convey information by virtue
of the particular record or array being assigned to. Consider
record assignment of theformr.f := e. Inthisstatement, r is
arecord expression with label r, fisafield of the record type
with declared type T'{f}, and e is an expression with type
S{e}, S < T. Theassignmentislegal ifeLirUB C f. This
ruleisequivalent totheonein Denning and Denning [DD77].
Therulefor assignment to an array element is similar, except
that the label on the array index isincluded on the left-hand
side. Because r appears on the left-hand side of the rule,
fields and array elements become immutable if the variable
referring to the record or array becomes more protected than
thefield or element. For example, arecord fieldwithr [Z fis
immutable, since otherwise information could be leaked by
assigning to it.

5.5 if and while

Therules for if and while are similar to each other. Assume
that e isalegal boolean expression, and that S isan arbitrary
statement. The statement “if e then S end” islegal if S is
legal given the basic block label B LI e. The same condition
guarantees the legality of “while e then S end”. The label
e does not need to be part of the basic block label after
the execution of the if or while statement, because we are
not considering covert timing channels or covert channels
arising from non-termination, as discussed in Section 4.2.

5.6 Authority

A procedure executes with some authority that has been
granted to it. Authority may be granted through the prin-
cipal hierarchy or because the procedure's caller grants the
procedure the right to act for other principals.

At any given point within a program, the compiler under-
stands the code to be running with the ability to act for some
set of principals, which we call the effective authority of the
code at that point. The effective authority can never exceed
the true authority at any point during execution.

11

When a procedure starts running, it has no effective au-
thority. It may increase its effective authority by testing
whether it has the authority to act for aprincipal. If the test
succeeds, the effective authority is increased to include that
principal. Thistest is accomplished by using the if _acts_for
statement:

if_acts_for (P, P,) then Sy [ else Sz | end

(The brackets around the else clause indicate that it is op-
tional.)

In this statement, P, names a principal in the principal
hierarchy; P; names the current procedure or the specia
keyword caller. If it names the current procedure, it means
the procedure’s principal, as discussed in Section 5.1. If it
names caller, it denotes the principal(s) that the procedure’s
caller has granted it the right to act for, as discussed later in
Section 5.11.

The effect of if_acts_for isto executethe then block if the
specified acts-for relationship exists. If the if_acts_for test
fals, the else block, if any, is executed with no additional
authority. If the test succeeds, the effective authority of the
then block isincreased to include Ps.

5.6.1 Revocation

It is possible that while a procedure is executing the then
part of an if_acts_for statement, the principal hierarchy may
change in a way that would cause the test in the statement
tofail. Inthis case, it may be desirable to revoke the code’'s
permission to run with that authority, and we assume the
underlying system can do this, by halting the code' s process,
at some point after the hierarchy changes.

If arunning programiskilled by arevocation,information
may be leaked about what part of the program was being
executed. Thisconstitutesatiming channel, and onethat can
be made slow enough that it isimpractical to use.

5.7 Declassification

A program can explicitly declassify avalue. The operation
declassify(e, L)

relabels the result of an expression e with the label L, using
relabeling Rules 1 and 2 as needed.

Declassification is checked statically, using the effective
authority at the point of declassification; the authorization
for declassification must derive from a containing if_acts_for
control structure. Declassification is legal aslong as e per-
mits declassification to L, which implies the following rule.
Let L, be alabel in which every principa in the effective
authority is an owner, but with an empty reader set. The



most restrictive label that e could have and still be declassi-
fiableto Lis L U L 4, so the declassify() expressionislega
if e C LU Ly. For example, if the principal A is part of
the effective authority, the label {A: B,C; D: E} can be de-
classified to {A: C; D: E}, since {A: C; D:E} U {A: 0} =
{A: §; D: E},whichismorerestrictivethan {A: B,C; D: E}.

5.8 Label Polymorphism

Consider a library routine such as the cosine function (cos).
It would be infeasible to declare separate versions of cos for
every label in the system. Therefore, we alow procedures
to be generic with respect to the labels on their arguments,
which means that only one cos function need exist.

If alabel is omitted on the type of a procedure argument
a, the argument label becomes an implicit parameter to the
procedure, and may be referred to as a elsewhere in the pro-
cedure signature and body. For example, the cosine function
is declared asfollows:

cos(x: float) returns(y: float{x})

cos is generic with respect to the label on the argument x,
and x is an implicit argument to the routine.

Thissignatureallows cos to be used on any argument, and
the label on the return value is always the same as the | abel
on the argument. Since the code of cos does not depend
on what x really is, its code need not access the label, so
thereis no need either to recompile the code for each distinct
label or to passthe label at runtime. Therefore, implicit label
polymorphism has no run-time overhead.

5.9 Run-timelLabels

Implicit labels allow code to be written that is generic with
respect to labels on arguments. However, sometimes more
power isneeded: for example, to model theaccountsdatabase
of the bank example, where every customer account has a
distinct label. To allow such code to be written, we support
run-time labels.

A variable of type label may be used both as a first-
class value and as a label for other values. For example,
procedures can accept arguments with unknown labels, asin
the following procedure declaration:

compute(x: int, Ib: label) returns (float{x U Ib})

To simplify static analysis, first-class label variables are
immutable after initialization. When alabel variable is used
asalabel, it represents an unknown but fixed label. Because
labels form a lattice and obey the simple rules of a lattice,
static reasoning about this label is straightforward. For ex-
ample, if the procedure compute contains the assignment
z:= x + y, wherey hastypeint{lb}, the assignmentisvalid
aslong asit can be statically determinedthat z C IbUx. This

12

condition can be checked even when z and y do not declare
their labels explicitly, as discussed in Section 6.

Since label is atype, it too must be labeled wherever it
isused. Constant labels and implicit label parameters have
type label{_L}. Declarations of run-time labels can indicate
the label’s label explicitly; if the label’s label is omitted, it
treated like any other type: it isinferred in the case of alocal
variable, and it isimplicit in the case of an argument (thisis
the situation for the Ib argument of compute).

Inprinciple, codethat iswrittenintermsof implicit labels
can be expresssed in terms of run-time labels. We provide
implicit labels because when they provide adequate power,
they are easier and cheaper to use than run-time labels. For
example, without implicit labels the signature of the cos
function would be the following:

cos (x: float{Ix}, Ix: label{ L})
returns (y: float{Ix})

5.10 Lab€case

The labelcase statement is used to determine the run-time
label on avalue. It effectively alows a program to examine
variables of type label. For example, compute might use
labelcase to match the label Ix against other labels it has
available. A labelcase statement has the following form:

labelcase e as v
when L do Sy
when L, do S5
[elseSg]

end

The effect of this statement is to execute the first statement
S; suchthat e C L;, introducing a new variablev containing
the same value as e, but with the label L;.

Theblock label inthearm of thelabelcase does not reflect
thelabel of e, but it doesreflect thelabel of e's label. Suppose
thetypeof eisT{L.} where L. hasthetypelabel{L,}. Sim-
ilarly, supposethe labels L; have respectivetypeslabel{L;}.
Thelabelcase statement isvalid only if each of the statements
S; isvalid given abasic block label B;:

%
B, =B UL,U (l_lgj)

=1

This formula says that selecting which statement to execute
revealsinformation about the label's, but does not reveal any-
thing about information protected by the labels. Therefore,
the basic block labels B; depend on L, but not on L;. The
reason for joining all the L, up to i is that the arms of the



labelcase are checked sequentially, so each arm that fails
conveys some information to its successors.

In alabelcase, neither the tested expression e nor the la-
bels L; on any of the arms may mention the implicit labels
on procedure arguments; rather, the labelcase is limited to
constant labels and run-timelabels. Implicit procedure argu-
ment labels are only intended to help write code that doesn’t
care what the labels are on the arguments. This restriction
on the labelcase avoids the need to pass implicit labels to
the generic code that uses them, as discussed in Section 5.8.
Sincelabels may be passed as explicit arguments, and values
of type label may be used to label types, no power is lost
through this restriction.

5.11 Procedures

A procedure definition has the following syntax:

procedure — id [ authority}
( arguments)
[ returns( id: T, { L, }) ]

body end
< caller >

a: Ty [{Ll}] o an T, [{Ln}]

authority —

arguments —

The optiona authority clause indicates whether the proce-
duremay begranted someauthority by itscaller. A procedure
with an authority clause may try to claim this authority by
using caller in anif_acts_for statement. The a; are the names
of the argumentsto the procedure. The argumentshavetypes
T; and optional labels L;. Asin variable declarations, labels
in the arguments and results of a procedure signature may be
simple label expressions, including joins of other labels.

A call to aprocedureislegal only if each actual argument
to the procedure is assignable to the corresponding formal
argument. This meansthat the formals must have label s that
are more restrictive than the block label of the caller at the
time of the call, i.e., the normal rule for assignment given
in Section 5.4 applies here. Additionally, bindings must
be found for all the implicit label parameters such that for
each explicit or implicit formal argument label L; and actual
argument label L,;, theconstraint L,;L1B C L; holds, where
B denotes the basic block label of the call site. Determining
the bindings for the implicit labels that will satisfy all these
constraints is not trivial, since the formal argument labels
may bejoin expressionsthat mention other implicit argument
labels, asin the signaturef(a: int, b:int {a LI X}), where X
is some other label. The efficient solution of such constraint
systemsis considered in Section 6.

Furthermore, if the authority clause is present, the caller
may provide one or moreprincipalsthat it actsfor. Suchacall

13

protect(T: type, Ib: label, v: T{Ib})
returns (p: protected[T]{Ib})
% Create a new protected|[T] containing
% the value v and label Ib.

get_label(p: protected[T]) returns (Ib: label{p})
% Return the label that is contained in p

get (p: protected[T], expect: label)
returns (success: bool{p LI expect},

v: T{expect LI expect LI p})
% Return the value that is contained in p if
% the label expect matches the contained label.
% Set success accordingly.

Figure 7: The operations of protected[T]

can occur only within the scope of an if_acts_for statement,
since otherwise the effective authority of thecaller isnil. For
example, the following call from the procedure p grants the
authority of the principal my_principal to the proceduredoit:

if_acts_for (p, my_principal) then
doit<my_principal>>(...)
end

This model for granting authority protects the caller of
a procedure because it can select what part of its authority
to grant to the procedure. The implementor of the called
procedureis al so protected, because the procedure uses only
theauthority itsimplementor wishesto claim, and only where
needed. (Thisis similar to the CACL model [RSC92], but
provides more protection for the implementor.)

512 protected|[T]

Run-time label checking is conveniently accomplished by
using the special type protected[T]. A protected[T] is an
immutable object that contains two things: a value of type
T, and alabel that protectsthe value.

The type protected[T] is particularly useful for imple-
menting structures like file systems, where the information
flow policies of individual objects cannot be deduced stati-
cally. For example, afile system directory is essentially an
array of protected file objects. Navigating the file system
requires a series of run-time label checks, but this work is
unavoidable.

protected[T] has two methods: get, which extracts the
contained value, and get_label, which extracts the contained
label. It also has a constructor, protect, which creates a new
protected value. Thesignaturesof theseoperationsareshown
in Figure 7. The get method requires an expected label as
an argument. The value is returned only if the expected



label isat least as restrictive as the contained label, which is
determined at run time. The expected label must be either
a constant label or a variable label; implicit labels are not
allowed.

If the language is extended to support some form of data
abstraction with encapsulation, thetype protected can beim-
plemented in a natural manner by using the labelcase state-
ment. Without these extensions, the closest approximation
to protected[T]{Ib} is the following type:

record[ Ib: label, x: T{Ib} ]{lb} % immutable

Likethistype, the type protected[T] hasthe special prop-
erty that thelabel onthereferenceto aprotected[T] (thelabel
Ib) is assumed to be the label on the contained label, Ib. This
constraint can be maintained because protected[T] is im-
mutable, and because L1 C L, implies protected[T]{ L1} <
protected[T]{ L.}

A protected[T] alows information flow viaits contained
label: one could passinformation by storing different labels
in protected[T] objects, and then seeing whether get oper-
ations succeed. However, the signature of get prevents an
information leak because the success result is labeled both
by thelabel on the label being passedin (Ib), and by p’slabel
(p), which is the same as the label on the contained label.
Therefore, thisinformation flow does not create aleak.

5.13 TheBank Example

The bank example from Section 2 is a good example of the
need for run-time labels. Each customer account is owned
by the individual customer, rather than by the bank, which
givesthe customer more confidencein the privacy offered by
the bank. This example can be conveniently written using
protected[T] to protect each customer’s account with alabel
specific to the customer, as shown in Figure 8.

For example, the customer’s account can be a simple
record type, where the customer’sname is protected by (and
accessible to) the bank, but balance is protected by both
the bank label and a customer label that is stored inside the
protected[float]. Thisdesign givesthe customers protection
against dissemination of their balance information.

In this code, Bank represents a principal with the ability
to declassify the bank_label label. The current balance of an
account is obtained by the procedure get_balance, which ac-
ceptsafirst-classlabel asan argument. If thelabel customer
that is passed to get_balance is at least as restrictive as the
label in the account, the balanceisreturned as afloat labeled
by customer. The procedure fails either if no customer ex-
ists by that name, or if the label passed in is insufficiently
protected.

14

account = record [
name: string{bank_label},
balance: protected|float]{bank_label} ]

get_balance (name: string, customer: label,
accts: array[account{ L }]{L})
returns (success: bool {name LI customer LI
customer },
balance: float {name LI customer LI
customer})
... % find element i containing the right customer
s: bool{name LI customer LI customer LI bank_label}
b: bool{name LI customer LI customer LI bank_label}
s, b := get(accts]i].balance, customer)
if_acts.for (get_balance, Bank) then
success := declassify(s, {name LI customer LI
customer})
balance := declassify(b, {name LI customer LI
customer})

end
end get_balance

Figure 8: Bank Example

5.14 Output Channels

Output channels show up as the special opague type “chan-
nel” in the language. The type channel denotes an output
channel with a hidden reader set, whose members denote the
principals who are reading from the channel. Information
can be written to a channel using the “write” procedure:

write(c: channel{Ib}, s: string{Ib}, Ib: label{Ib})

When awriteisattempted, thelabel Ib iscompared against
the hidden reader set within the channel. If it passesthetests
of the effective reader set that are described in Section 3.5,
the writeis successful. Otherwise, it silently fails.

It isimportant that Ib capture all the possible information
flows that the write will cause, since otherwise write would
not perform a sufficiently stringent test against the channel’s
reader set. Because b is used to label s, the channel cannot
leak information through the contents of the data that is sent
out. Because Ib is used to label the argument c as well,
the channel cannot be used to leak information by choosing
among a set of channels to write to. Finally, because Ib
labels itself, the channel cannot be used to leak information
by changing thelabel that ispassed in asthelb argument, and
transmitting information by the fact of the write's success or
failure.

6 Verification and Label Inference

This section describes code verification and label inference
in moredetail. It demonstratesthat basic block |abels, |abels



on local variables, and labelsin declassify expressionscan be
inferred efficiently and automatically, making it much more
convenient to write properly annotated code. We present a
small example of this process.

6.1 Label Constraint Systems

Asdescribed earlier, procedure verificationisatwo-step pro-
cess that first determines basic block labels by propagat-
ing the labels of branch-determining expressions, and then
checking all the statements in the program in the context of
their basic blocks. Whilethe expressionsthat control branch
decisions can be identified statically, their labels depend on
the label of the basic block in which they occur. We seem to
have a chicken-and-egg problem.

The difficulty can be resolved by creating a label con-
straint system and solving for all theinferred labels simulta-
neously. We start by inventing fresh labels L; for each of the
branch expressionsin blocks B;. Theselabelsare propagated
according to the rulesfor determining basic block labels, and
fed into the statement verification stage. Verifying each
statement requires checking of corresponding constraintsin-
volving labels. To verify code, we collect all the constraints
that are demanded by the various statements, and solve them
as asystem. If the constraints are inconsistent and generate
a contradiction, the program contains an information leak.

Solving the constraint system is tractable because the
congtraints all take a particularly simple form. Each con-
straint has either alabel or ajoin of labels on both the | eft-
and right-hand sides, e.g., L1 Ll L, C L3 LI L4, This equa
tion is equivalent to the two equations Ly C L3z LI Ly and
L, C L3U Ly, and in general, we can convert the constraints
to acanonical form in which thereisonly onelabel (variable
or constant) on the left-hand side.

Explicitly declared label s (whether constantsor first-class
labels) and implicit argument labels are treated as constants;
basic block labels and undeclared labels on local variables
are treated as variables. The goa of verification is to de-
termine whether there are assignments to the local variable
labels and basic block labels that satisfy al the constraints.
This problem is similar in form to the problem of satisfying
propositional Horn clauses; in fact, a linear-time algorithm
for satisfying Horn clauses [DG84, RM96] can be adapted
easily tothisproblem. If, on the other hand, we had permitted
use of both the LI and M operators in constructing label ex-
pressions, the label satisfaction problem would have become
NP-complete [RM96].

The algorithm works by keeping track of conservative
upper boundsfor each unknown label. Initialy, all the upper
boundsaresetto T. Thealgorithm theniteratively decreases
the upper bounds, until either all equations are satisfied or
a contradiction is observed. At each step, the algorithm
picks an equation that is not satisfied when al variables are
substituted by their upper bounds. If the unsatisfied equation

15

check_password(db: array[pinfo{_L}], user: string,
pwd: string)
returns (ret: bool{user LI pwd LI db})
% Return whether pwd is the password of user

i:int := 0 % L
match: bool := false % L
while i < db.length() do % L1

if db[i].names = user & % L1

db[i].passwords = pwd then %

match := true % L1LL,
end %
i=i4+1 % Ly
end %
ret := false % L

if_acts for (check_password, chkr) %
ret := declassify(match) % L
end
end check_password

Figure 9: Password example with implicit labels

has a constant label on its left-hand side, a contradiction has
been detected. Otherwise, the upper bound estimate for the
variablelabel on theleft-hand side is adjusted to be the meet
() of its current upper bound and the value of the right-
hand side. In evaluating the right-hand side, all variablesare
replaced with their current upper bound estimates.

Like the algorithm for satisfying Horn clauses, this a-
gorithm requires a number of iterations that is linear in the
total size of the constraints; thetotal size of the constraintsis
at worst quadratic in the length of the code. Therefore, this
inference algorithm seems very practical.

Thelabelsfound by thisalgorithm are the most restrictive
labelsthat satisfy the constraints. However, the actual values
that theinference algorithm finds areirrelevant, because they
are never converted to first-class values of type label. What
isimportant is that there is a satisfying assignment to all the
labels, proving that the code is safe.

6.2 Inference Example

Figure 9 showsthe codefor amore flexible version of the
check_password procedure that was presented earlier. This
version of check_password is usable by any client principal.
Because the arguments db, user, and pwd have no declared
labels, their labels are implicit parameters to the routine.
Note that the local variables i and result do not explicitly
declaretheir labels. The resulting procedureis as safe asthe
previousversion of check_password, and easier to implement
and use. Let us now walk through the verification process
for this code.

Thefirst step in verificationisto construct the basi c-block
diagram and propagate fresh labels that represent branch



i:=0 L Cc i
match :=F 1L C match
while iudb = L
. i U user LI pwd L db
if = Ly
U {chkr: chkr} U L,
match :=T LiUuL, LC match
=i+l iuL, C i
ret:=F 1 C  userU pwd Ui db
declassify match C  LgU {chkr: 0}
ret:=... L; LC userU pwdLldb

Figure 10: Constraints for the password example

i,match, L1,L, = userll pwdll dbLl {chkr: @}
L; = wuserU pwdlU db

Figure 11: Constraint solutions

expressions. The comments in Figure 9 show the value of
the basic block labels for each basic block, in terms of the
two branch-expression labels L1 and L (for the if and while,
respectively.)

Next, the code is analyzed to generate the set of label
constraints shown in Figure 10, which include inequalities
corresponding to the statements in the program, plus some
equalitiesthat bind the basic-block branch-expression labels
to the labels for the corresponding expressions. The equali-
ties can be transformed into a pair of constraintsto preserve
the canonical constraint form. Notethat the use of declassify
generates an additional constraint, introducing a new vari-
able L, that represents the label of the declassified result.
This procedure provides a good example of why it is im-
portant for declassification to be able to apply to just one
component of ajoin, as discussed in Section 3.4. The fact
that declassification works at all in this procedure, let alone
is possible to verify automatically, is due to this property of
the declassification rule.

Applying the constraint-solving a gorithm just described,
a single backward pass through the canonical forms of these
constraints yields labels that satisfy them, as shown in Fig-
ure 11.

7 Related Work

There has been much work on information flow control and
on the static analysis of security guarantees. The lattice
model of information flow comesfrom the early work of Bell
and LaPadula[BL75] and Denning [Den76]. More recent
work on information flow policies has examined complex
aggregation policies for commercia applications [CW87,
BN89, Fol91]. We have not addressed policies that capture
conflictsof interest, though our fine-grained tracking of own-

16

ership information seems applicable. Many of these infor-
mation control models use dynamic labels rather than static
label sand therefore cannot be checked statically. 1X [MR92]
isagood exampleof apractical information flow control sys-
tem that takes this approach. Our propagation of ownership
information is also reminiscent of models of access control
that merge ACLs at run time [MMN9Q].

Static analysis of security guarantees also has a long
history. It has been applied to information flow [DD77,
AR80] and to access control [JL78, RSC92]. There has
recently been more interest in provably-secure program-
ming languages, treating information flow checks in the do-
main of type checking [V SI96, Vol97]. Also, integrity con-
straints [Bib77] have been treated as type checking [PO95].

We have avoided considering covert channel sarising from
time measurement and thread communication. A scheme
for statically analyzing thread communication has been pro-
posed [ARS80]; essentialy, a second basic block label is
added with different propagation rules. This second |abel
is used to restrict communication with other threads. The
same technique would remove timing channels, and could
be applied to our scheme. It is not clear how well this
scheme works in practice; it seems likely to restrict timing
and communication quite severely. Static side-effect and
region analysis [JG91], which aimstoinfer al possible side-
effects caused by a piece of code, may be able to capture
effects like timing channels.

8 Conclusions

This work was mativated by a desire to provide better se-
curity when using downl oaded applications, by making fine-
grained information flow control practical and efficient. This
paper isafirst step towards this goal.

A key limitation of most multilevel security models is
that there is a single, centralized policy on how information
can flow. Thiskind of policy does not match well with the
decentralized model in which each user isindependent. Our
model provides each user the ability to define information
flow policy at the level of individual data items. Each user
has the power to declassify his own data, but declassification
does not leak other users' data.

An important aspect of our label model is that labels
identify the owners, or sources, of the data. Each owner
listed in the label maintains its own separate annotation (the
reader set) to control whereits data may flow. When running
on behalf of aparticular principa P, aprogramisableto edit
P's portion of the label without violating other principals
policies. Labels form a familiar security class lattice, but
each principal has access to some non-lattice relabelings (by
declassifying).

We have aso shown how the labels we define can be
used to annotate a simple programming language, which



suggeststhat other programming languages and intermediate
code formats can be similarly annotated. To ensure proper
information flows, the labels in the resulting code can be
statically checked by the compiler, in a manner similar to
type checking. Also, as part of the label checking process,
the compiler can construct a trace of its checking process.
Some form of this trace can accompany the generated code,
and can be used | ater to verify information flowsin the code.

Labels are mostly checked statically, which has benefits
in space and time. Compiled code does not need to perform
checks, so the code is shorter and faster than with run-time
checks. Storage locationsthat are statically typed require no
extraspaceto store alabel. However, we have also defined a
mechanism for run-time label checking that allows the flex-
ibility of run-time checks when they are truly needed. This
mechanism guarantees that when the run-time checks fail,
information is not leaked by their failure. The mechanism of
implicit label polymorphism also extends the power of static
analysis, by alowing the definition of code that is generic
with respect to some or all of the labels on its arguments.
We have presented a simple algorithm that, despite our ex-
tensionsto the label system, isableto efficiently infer labels
for basic blocks and local variables. Label inference makes
the writing of label-safe code significantly less onerous.

We have provided some simple examples of code and
software designs that cannot be adequately expressed using
previousmodel s of accesscontrol or information flow. These
examplesdemonstrate that the new features of user declassifi-
cation, label polymorphism, and run-timelabel checking add
new power and expressivenessin capturing security policies.

9 FutureWork

There are many directions to explore with this new model.
An obvious next step is to implement the model by extend-
ing an existing language compiler, and developing working
applications for exampleslike those in Section 2.

It should also be possible to augment the Java Virtual
Machine [LY 96] with annotations similar to those proposed
in Section 5. The bytecode verifier would check both types
and |abel sat thetimethat codeisdownl oaded into the system.

The computational model described in Section 5 has a
reasonable set of data types. However, it ought to support
user-defined data abstractions, including both parametric and
subtype polymorphism.

Formal proofs of the soundness of the model might add
some confidence. In the absence of any use of the declassify
operation, labels are located in a simple lattice that applies
equally to all users, and previous results for the security of
latti ce-based information flow model s apply to thismodel as
well. However, because declassify isintended to allow infor-
mation to flow across or down the lattice, standard security
policies such as non-interference [GM84] are intentionally

17

inapplicable.

Because integrity [Bib77] constraints have a natural lat-
tice structure, supporting them may be an interesting exten-
sion to our label model; the label model can be augmented
to allow each owner to establish an independent integrity
policy, just as each owner now can establish an independent
information flow policy.

We have assumed an entirely trusted execution environ-
ment, which means that the model described here does not
work well in large, networked systems, where varying levels
of trust exist among nodes in the network. Different prin-
cipals may also place different levels of trust in the various
nodes. A simple technique for dealing with distrusted nodes
is to transmit opague receipts or tokens for the data. How-
ever, more work is needed to adapt our model to this kind
of system. Itisalso likely that the model of output channels
should be extended to differentiate among the different kinds
of outputs from the system.

We have not considered the possihility of covert channels
that arise from timing channels and from asynchronous com-
munication between threads, which can also be usedto create
timing channels. The technique of having atiming label for
each basic block, asin Andrews and Reitman [AR80], may
help with this problem, but more investigation is needed.

Acknowledgments

The authors would like to acknowledge the helpful com-
ments of the many people who have read this paper, in-
cluding Martin Abadi, Atul Adya, Kavita Bala, Phil Bogle,
Miguel Castro, Steve Garland, Robert Grimm, Butler Lamp-
son, Roger Needham, Matt Stillerman, and the anonymous
reviewers.

References

[ARS8O] Gregory R. Andrews and Richard P. Reitman.
An axiomatic approach to information flow in
programs. ACM Transactions on Programming

Languages and Systems, 2(1):56-76, 1980.

[Bib77] K. J. Biba. Integrity considerations for secure
computer systems. Technical Report ESD-TR-
76-372, USAF Electronic Systems Division,

Bedford, MA, April 1977.

[BL75] D. E.Bell and L. J. LaPadula. Secure computer
system: Unified exposition and Multics inter-
pretation. Technical Report ESD-TR-75-306,
MITRE Corp. MTR-2997, Bedford, MA, 1975.

AvailableasNTIS AD-A023 588.

D. F. Brewer and J. Nash. The Chinese wall
security policy. In Proc. of the |[EEE Symposium

[BN8Y]



[CW87]

[DD77]

[Den76]

[DG84]

[Fol91]

[GJS96]

[GM84]

[JGO1]

[JL78]

[LAB+84]

[LABWO1]

on Security and Privacy, pages 206-258, May
1989.

David Clark and David R. Wilson. A compari-
son of commerical and military computer secu-
rity policies. In Proc. of the IEEE Symposium
on Security and Privacy, pages 184194, 1987.

Dorothy E. Denning and Peter J. Denning. Cer-
tification of programs for secure information
flow. Comm. of the ACM, 20(7):504-513, 1977.

Dorothy E. Denning. A lattice model of se-
cure information flow. Comm. of the ACM,
19(5):236-243, 1976.

William F. Dowling and Jean H. Gallier. Linear-
time algorithms for testing the satisfiability of
propositional Horn formulee Journal of Logic
Programming, 1(3):267—284, October 1984.

Simon N. Foley. A taxonomy for information
flow policies and models. In Proc. of the IEEE
Symposium on Security and Privacy, pages 98—
108, 1991.

James Godling, Bill Joy, and Guy Stecle. The
Java Language Specification. Addison-Wesley,
August 1996. ISBN 0-201-63451-1.

J. A. Goguen and J. Meseguer. Unwinding and
inference control. In Proc. of the IEEE Sym-
posium on Security and Privacy, pages 1120,
April 1984.

Pierre Jouvelot and David K. Gifford. Algebraic
reconstruction of types and effects. In ACM
Symposiumon Principles of Programming Lan-
guages, pages 303-310, January 1991.

Anita K. Jonesand Barbara Liskov. A language
extension for expressing constraints on data ac-
cess. Comm. of the ACM, 21(5):358-367, May
1978.

BarbaralL iskov, Russell Atkinson, Toby Bloom,
J. Eliot Moss, J. Craig Schaffert, Robert Schei-
fler, and Alan Snyder. CLU Reference Manual.
Springer-Verlag, 1984. Also published as Lec-
ture Notes in Computer Science 114, G. Goos
and J. Hartmanis, Eds., Springer-Verlag, 1981.

Butler Lampson, Martin Abadi, Michael Bur-
rows, and Edward Wobber. Authentication in
distributed systems: Theory and practice. In
Proc. 13th ACM Symp. on Operating System
Principles (SOSP), pages 165-182, October
1991. Operating System Review, 253(5).

18

[Lam73]

[LY96]

[MMN90]

[MR92]

[Nec97]

[POYS5]

[RM96]

[RSCY2]

[Vol97]

[VSI96]

Butler W. Lampson. A note on the confine-
ment problem. Comm. of the ACM, 10:613-615,
1973.

T. Lindholm and F. Yellin. The Java Mrtual
Machine. Addison-Wesley, Englewood Cliffs,
NJ, May 1996.

Catherine J. McCollum, Judith R. Messing, and
LouAnna Notargiacomo. Beyond the pale of
MAC and DAC — defining new forms of access
control. In Proc. of the IEEE Symposium on
Security and Privacy, pages 190-200, 1990.

M. D.Mcllroy and J. A. Reeds. Multilevel secu-
rity in the UNIX tradition. Software—Practice
and Experience, 22(8):673-694, August 1992.

George C. Necula. Proof-carrying code. In
Proc. of ACM Symp. on Principles of Program-
ming Languages, pages 106-119, January 1997.

Jens Palsberg and Peter @rbak. Trust in the A-
calculus. In Proc. 2nd International Symposium
on Static Analysis, number 983 in L ecture Notes
in Computer Science, pages 314-329. Springer,
September 1995.

Jakob Rehof and Torben A Mogensen. Trac-
table constraints in finite semilattices. In Proc.
3rd I nter national Symposiumon Satic Analysis,
number 1145in Lecture Notesin Computer Sci-
ence, pages 285-300. Springer-Verlag, Septem-
ber 1996.

Joel Richardson, Peter Schwarz, and Luis
Felipe Cabrera. CACL: Efficient fine-grained
protection for objects. In Proceedings of the
1992 ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applica-
tions, pages 154-165, Vancouver, BC, Canada,
October 1992.

Dennis Vol pano. Provably-secure programming
languages for remote evaluation. ACM S G-
PLAN Notices, 32(1):117-119, January 1997.

Dennis Volpano, Geoffrey Smith, and Cyn-
thia Irvine. A sound type system for secure
flow analysis. Journal of Computer Security,
4(3):167-187, 1996.



