
Practical, transparent operating system support for superpages

Juan N a v a r r C Si tararn Iyer~ P e t e r D r u s c h e l t Alan Cox~

{ jnavar ro , ssiyer, d rusche l , alc} @cs . r i ce . edu

tR ice Universi ty

*Rice Univers i ty and Univers idad Catd l ica de Chile

Abstract

Most general-purpose processors provide support for
memory pages of large sizes, called superpages. Su-
perpages enable each entry in the translation lookaside
buffer (TLB) to map a large physical memory region into
a virtual address space. This" dramatically increases
TLB coverage, reduces TLB misses, and promises per-
formance improvements for many applications. How-
ever, supporting superpages poses several challenges to
the operating system, in terms of superpage allocation
and promotion tradeoffs, fragmentation control, etc. We
analyze these issues, and propose the design of an ef-
fective superpage management system. We implement it
in FreeBSD on the Alpha CPU, and evaluate it on real
workloads and benchmarks. We obtain substantial per-
formance benefits, often exceeding 30%; these benefits
are sustained even under stressful workload scenarios.

1 Introduction

Modem general-purpose processors provide virtual
memory support, using page tables for address transla-
tion. Most processors cache virtual-to-physical-address
mappings from the page tables in a translation looka-
side buffer (TLB) [10]. TLB coverage is defined as the
amount of memory accessible through these cached map-
pings, i.e., without incurring misses in the TLB. Over
the last decade, TLB coverage has increased at a much
lower pace than main memory size. For most general-
purpose processors today, TLB coverage is a megabyte
or less, thus representing a very small fraction of physical
memory. Applications with larger working sets can incur
many TLB misses and suffer from a significant perfor-
mance penalty. To alleviate this problem, most modem
general-purpose CPUs provide support for superpages.

A superpage is a memory page of larger size than an
ordinary page (henceforth called a base page). They are
usually available in multiple sizes, often up to several
megabytes. Each superpage occupies only one entry in

the TLB, so the TLB coverage dramatically increases
to cover the working set of most applications. This re-
sults in performance improvements of over 30% in many
cases, as we demonstrate in Section 6.2. Recent research
findings on the TLB performance of modern applications
state that TLB misses are becoming increasingly perfor-
mance critical [9].

However, inappropriate use of large superpages can
result in enlarged application footprints, leading to in-
creased physical memory requirements and higher pag-
ing traffic. These I/O costs can easily outweigh any per-
formance advantages obtained by avoiding TLB misses.
Therefore the operating system needs to use a mixture
of page sizes. The use of multiple page sizes leads to
the problem of physical memory fragmentation, and de-
creases future opportunities for using large superpages.
To ensure sustained performance, the operating system
needs to control fragmentation, without penalizing sys-
tem performance. The problem of effectively managing
superpages thus becomes a complex, multi-dimensional
optimization task. Most general-purpose operating sys-
tems either do not support superpages at all, or provide
limited support [6, 19, 20].

This paper develops a general and transparent super-
page management system. It balances various tradeoffs
while allocating superpages, so as to achieve high and
sustained performance for real workloads and negligible
degradation in pathological situations. When a process
allocates memory, our system reserves a larger contigu-
ous region of physical memory in anticipation of sub-
sequent allocations. Superpages are then created in in-
creasing sizes as the process touches pages in this re-
gion. If the system later runs out of contiguous physical
memory, it may preempt portions of unused contiguous
regions from the processes to which they were originally
assigned. If these regions are exhausted, then the sys-
tem restores contiguity by biasing the page replacement
scheme to evict contiguous inactive pages. This system
is implemented in FreeBSD on the Alpha architecture,
and is evaluated on real applications and benchmarks. It

USENIX Association 5th Symposium on Operating Systems Design and Implementation 89

is shown to yield substantial benefits when memory is
plentiful and fragmentation is tow. Furthermore, it sus-
tains these benefits over the long term, by controlling the
fragmentation arising from complex workload scenarios,

The contributions of this work are four-fold. It ex-
tends a previously proposed reservation-based approach
to work with multiple, potentially very large superpage
sizes, and demonstrates the benefits of doing so; it is, to
our knowledge, the first to investigate the effect of frag-
mentation on superpages; it proposes a novel contiguity-
aware page replacement algorithm to control fragmen-
tation; and it tackles issues that have to date been over-
looked but are required to make a solution practical, such
as superpage demotion and eviction of dirty superpages.

Section 2 motivates the problem and establishes its
constraints and complexities. Section 3 examines the re-
lated work on superpages. Section 4 and 5 describe our
design and implementation, and Section 6 presents the
results of an experimental evaluation. Finally, Section 7
concludes.

2 The superpage problem

This section discusses the motivation, hardware con-
straints, issues and tradeoffs in operating system support
for superpages.

2.1 Motivation

Main memory has grown exponentially in size over at
least the last decade and, as cause or consequence, the
memory requirements of applications have proportion-
ally increased [20]. In contrast, TLB coverage has lagged
behind. The TLB is usually fully associative and its ac-
cess time must be kept low, since it is in the critical
path of every memory access [13]. Hence, TLB size
has remained relatively small, usually 128 or fewer en-
tries, corresponding to a megabyte or less of TLB cov-
erage. Figure 1 depicts the TLB coverage achieved as a
percentage of main memory size, for a number of Sun
and SGI workstation models available between 1986 and
2001. Relative TLB coverage is seen to be decreasing
by roughly a factor of 100 over ten years. As a con-
sequence, many modern applications have working sets
larger than the TLB coverage. Section 6.3 shows that
for many real applications, TLB misses degrade perfor-
mance by as much as 30% to 60%, contrasting to the 4%
to 5% reported in the 1980's [2, 24] or the 5% to 10% re-
ported in the 1990's [17, 23]. Another trend that has con-
tributed to this performance degradation is that machines
are now usually shipped with on-board, physically ad-
dressed caches that are larger than the TLB coverage. As
a result, many TLB misses require access to the memory

banks to find a translation for data that is aheady in the
cache, making misses relatively more expensive.

o~ 10%
CO
U

I%
CO

E

E 0.1%
l l)
03
t~

CO

> 0.01% o
O

£13
d
F-

r r r r r r ~ i

®

©
®

®

© ®

®

'86 '88 '90 '92 '94 '96 '98 '00 '02
Year of workstation manufacture

Figure 1: TLB coverage as percentage of main memory for
workstations, 1986-2001 (data collected from various websites).
(A) Sun 3/50; (B) Sun 3/180; (C) Sun 3/280; (D) Personal Iris;
(E) SPARCstation-5; (F) Iris Indigo; (G) SPARCstation-10; (H)
Indy; (I) Indigo2; (J) SPARCstation-20; (K) Ultra-l; (L) Ultra-2;
(M) 02; (N) Ultra-5; (O) Ultra-10; (P) Ultra-60; (Q) Ultra-450;
(R) Octane2.

We therefore seek a method of increasing TLB cover-
age without proportionally enlarging the TLB size. One
option is to always use base pages of a larger size, say
64KB or 4MB. However, this approach would cause in-
creased internal fragmentation due to partly used pages,
and therefore induce premature onset of memory pres-
sure [22]. Also, the I/O demands become higher due to
increased paging granularity.

In contrast, the use of multiple page sizes enables an
increase in TLB coverage while keeping internal frag-
mentation and disk traffic low. This technique, however,
imposes several challenges upon the operating system
designer, which are discussed in the rest of this section.

2.2 Hardware-imposed constraints

The design of TLB hardware in most processors imposes
a series of constraints on superpages. Firstly, the super-
page size must be among a set of page sizes supported
by the processor. For example, the Alpha processor pro-
vides 8KB base pages and 64KB, 512KB and 4MB su-
perpages; the i386 processor family supports 4KB and
4MB pages, and the new Itanium CPU provides ten dif-
ferent page sizes from 4KB to 256MB.

Secondly, a superpage is required to be contiguous in
physical and virtual address space. Thirdly, its starting
address in the physical and virtual address space must
be a multiple of its size; for example, a 64KB superpage
must be aligned on a 64KB address boundary.

Finally, the TLB entry for a superpage provides only
a single reference bit, dirty bit, and set of protection at-

90 5th Symposium on Operating Systems Design and Implementation USENIX Association

tributes. The latter implies that all base pages that form a
superpage must have the same protection attributes (read,
write, execute). Also, due to the coarse granularity of ref-
erence and dirty bits, the operating system can determine
whether some part of the superpage has been accessed or
written to, but cannot distinguish between base pages in
this regard.

2.3 Issues and tradeoffs

The task of managing superpages can be conceptually
broken down into a series of steps, each governed by a
different set of tradeoffs. The forthcoming analysis of
these issues is independent of any particular processor
architecture or operating system.

We assume that the virtual address space of each pro-
cess consists of a set of virtual memory objects. A mem-
ory object occupies a contiguous region of the virtual
address space and contains application-specific data, as
shown in Figure 2. Examples of memory objects include
memory mapped files, and the code, data, stack and heap
segments of processes. Physical memory for these ob-
jects is allocated as and when their pages are first ac-
cessed.

Allocation: When a page in a memory object is first
touched by the application, the OS allocates a physical
page frame, and maps it into the application's address
space. In principle, any available page frame can be used
for this purpose, just as in a system without superpage
support. However, should the OS later wish to create
a superpage for the object, already allocated pages may
require relocation (i.e., physical copying) to satisfy the
contiguity and alignment constraints of superpages. The
copying costs associated with this relocation-based allo-
cation approach can be difficult to recover, especially on
a busy system.

An alternative is reservation-based allocation. Here,
the OS tries to allocate a page frame that is part of an
available, contiguous range of page frames equal in size
and alignment to the maximal desired superpage size,
and tentatively reserves the entire set for use by the pro-
cess. Subsequently, when the process first touches other
pages that fall within the bounds of a reservation, the cor-
responding base page frames are allocated and mapped.
Should the OS later decide to create a superpage for this
object, the allocated page frames already satisfy the con-
tiguity and alignment constraints. Figure 2 depicts this
approach.

Reservation-based allocation requires the a priori
choice of a superpage size to reserve, without foreknowl-
edge of memory accesses to neighbouring pages. The OS
may optimistically choose the desired superpage size as
the largest supported size that is smaller or equal to the

size of the memory object, but it may also bias this deci-
sion on the availability of contiguous physical memory.
The OS must trade off the pertbrmance gains of using a
large superpage against the option of retaining the con-
tiguous region for later, possibly more critical use.

Object

address

Physical
address

,mapped pages mapping ,,

Virtual :~"""'---"--~ ~ " > ' - - , ,

spaoe page
.- ~.;.~:;a~. alignment

,~ bot.~ndary

space '~ [] [~] [~ .
allocated ,," unused ""~ reservation

page frame page frame

Figure 2: Reservation-based allocation.

Fragmentat ion control: When contiguous memory is
plentiful, the OS succeeds in using superpages of the
desired sizes, and achieves the maximum performance
due to superpages. In practice, reservation-based alloca-
tion, use of different page sizes and file cache accesses
have the combined effect of rapidly fragmenting avail-
able physical memory. To sustain the benefits of super-
pages, the OS may proactively release contiguous chunks
of inactive memory from previous allocations, at the pos-
sible expense of having to perform disk/ /O later. The
OS may also preempt an existing, partially used reserva-
tion, given the possibility that the reservation may never
become a superpage. The OS must therefore treat con-
tiguity as a potentially contended resource, and trade off
the impact of various contiguity restoration techniques
against the benefits of using large superpages.

Promotion: Once a certain number of base pages
within a potential superpage have been allocated, assum-
ing that the set of pages satisfy the aforementioned con-
straints on size, contiguity, alignment and protection, the
OS may decide to promote them into a superpage. This
usually involves updating the page table entries for each
of the constituent base pages of the superpage to reflect
the new superpage size. Once the superpage has been
created, a single TLB entry storing the translation for any
address within the superpage suffices to map the entire
superpage.

Promotion can also be performed incrementally.
When a certain number of base pages have been allo-
cated in a contiguous, aligned subset of a reservation, the
OS may decide to promote the subset into a small super-
page. These superpages may be progressively promoted

USENIX Association 5th Symposium on Operating Systems Design and Implementation 91

to larger superpages, up to the size of the original reser-
vation.

In choosing when to promote a partially allocated
reservation, the OS must trade off the benefits of early
promotion in terms of reduced TLB misses against the
increased memory consumption that results if not all con-
stiment pages of the superpage are used.

Demotion: Superpage demotion is the process of
marking page table entries to reduce the size of a su-
perpage, either to base pages or to smaller superpages.
Demotion is appropriate when a process is no longer
actively using all portions of a superpage, and memory
pressure calls for the eviction of the unused base pages.
One problem is that the hardware only maintains a single
reference bit for the superpage, making it difficult for the
OS to efficiently detect which portions of a superpage are
actively used.

Eviction: Eviction of superpages is similar to the evic-
tion of base pages. When memory pressure demands
it, an inactive superpage may be evicted from physical
memory, causing all of its constituent base page frames
to become available. When an evicted page is later
faulted in, memory is allocated and a superpage may be
created in the same way as described earlier.

One complication arises when a dirty superpage is
paged out. Since the hardware maintains only a single
dirty bit, the superpage may have to be flushed out in its
entirety, even though some of its constituent base pages
may be clean.

Managing superpages thus involves a complex set of
tradeoffs; other researchers have also alluded to some of
these issues [12, 13]. The next section describes previous
approaches to the problem, and Section 4 describes how
our design effectively tackles all these issues.

3 Related approaches

Many operating systems use superpages for kernel seg-
ments and frame buffers. This section discusses exist-
ing superpage solutions for application memory, which
is the focus of this work. These approaches can be clas-
sified by how they manage the contiguity required for
superpages: reservation-based schemes try to preserve
contiguity; relocation-based approaches create contigu-
ity; and hardware-based mechanisms reduce or eliminate
the contiguity requirement for superpages.

3.1 R e s e r v a t i o n s

Reservation-based schemes make superpage-aware allo-
cation decisions at page-t~ault time. On each allocation,
they use some policy to decide the preferred size of the
allocation and attempt to find a contiguous region of free
physical memory of that size.

Talluri and Hill propose a reservation-based scheme,
in which a region is reserved at page-~imlt time and pro-
moted when the number of frames in use reaches a pro-
motion threshold. Under memory pressure, reservations
can be preempted to regain free space [20]. The main
goal of Talluri and Hill's design is to provide a sim-
ple, best-effort mechanism tailored to the use of partial-
subblock TLBs, which are described in Section 3.3.

In contrast, superpages in both the HP-UX [19] and
IRIX [6] operating systems are eagerly created at page-
fault time. When a page is faulted in, the system may al-
locate several contiguous frames to fault in surrounding
pages and immediately promote them into a supe~age,
regardless of whether the surrounding pages are likely
to be accessed. Although pages are never actually re-
served, this eager promotion mechanism is equivalent to
a reservation-based approach with a promotion threshold
of one frame.

In IRIX and HP-UX, the preferred superpage size is
based on memory availability at allocation time, and on
a user-specified per-segment page size hint. This hint
is associated with an application binary's text and data
segments; IRIX also allows the hint to be specified at
runtime.

The main drawback of IRIX and HP-UX's eager pro-
motion is that it is not transparent. It requires experi-
mentation to determine the optimum superpage size for
the various segments of a given application. A subopti-
mal setting will result in lower performance, due to either
insufficient TLB coverage if superpages are too small, or
unnecessary paging and page population costs if super-
pages are too large.

3.2 Page relocation

Relocation-based schemes create superpages by physi-
cally copying allocated page frames to contiguous re-
gions when they determine that superpages are likely to
be beneficial. Relocation-based approaches can be en-
tirely and transparently implemented in the hardware-
dependent layer of the operating system, but they need
to relocate most of the allocated base pages of a super-
page prior to promotion, even when there are plenty of
contiguous available regions.

Romer et al. propose a competitive algorithm that uses
online cost-benefit analysis to determine when the ben-
efits of superpages outweigh the overhead of superpage

92 5th Symposium on Operating Systems Design and Implementation USENIX Association

promotion through relocation [16]. Their design requires
a software-managed TLB, since it associates with each
potential superpage a counter that must be updated by
the TLB miss handler. In the absence of memory con-
tention, this approach has a strictly lower performance
than a reservation-based approach, because, in addition
to the relocation costs, (1) there are more TLB misses,
since relocation is performed as a reaction to an exces-
sive number of TLB misses, and (2) TLB misses are
more expensive - - by a factor of four or more, according
to Romer et al. - - due to a more complex TLB miss han-
dler. On the other hand, a relocation approach is more
robust to fragmentation.

Reservations and page relocation can complement
each other in a hybrid approach. One way would be
to use relocation whenever reservations fail to provide
enough contiguity and a large number of TLB misses
is observed. Alternatively, page relocation can be per-
formed as a background task to do off-line memory com-
paction. The goal is to merge fragmented chunks and
gradually restore contiguity in the system. The IRIX co-
alescing daemon does this and is described in [6], but no
evaluation is presented.

3.3 Hardware support

The contiguity requirement for superpages can be re-
duced or eliminated by means of additional hardware
support.

Talluri and Hill study different TLB organizations.
They advocate partial-subblock TLBs, which essentially
contain superpage TLB entries that allow "holes" for
missing base pages. They claim that with this approach
most of the benefits from superpages can be obtained
with minimal modifications to the operating system [20].
Partial-subblock TLBs yield only moderately larger TLB
coverage than the base system, and it is not clear how to
extend the partial-subblock TLBs to multiple supelrpage
sizes.

Fang et al. describe a hardware-based mechanism that
completely eliminates the contiguity requirement of su-
perpages. They introduce an additional level of address
translation in the memory controller, so that the operat-
ing system can promote non-adjacent physical pages into
a superpage. This greatly simplifies the task of the oper-
ating system for supporting superpages [3].

To the best of our knowledge, neither partial-subblock
TLBs nor address-remapping memory controllers are
supported on commercial, general-purpose machines.

Our approach generalizes Talluri and Hill's reserva-
tion mechanism to multiple superpage sizes. To regain
contiguity on fragmented physical memory without re-
locating pages, it biases the page replacement policy to

select those pages that contribute the most to contiguity.
It also tackles the issues of demotion and eviction (de-
scribed in Section 2.3) not addressed by previous work,
and does not require special hardware support.

4 Design

Our design adopts the reservation-based superpage man-
agement paradigm introduced in [20]. It extends the ba-
sic design along several dimensions, such as support for
multiple superpage sizes, scalability to very large super-
pages, demotion of sparsely referenced superpages, ef-
fective preservation of contiguity without the need for
compaction, and efficient disk I/O for partially modified
superpages. As shown in Section 6, this combination
of techniques is general enough to work efficiently for
a range of realistic workloads, and is believed to be suit-
able for deployment in modem operating systems.

A high-level sketch of the design contains the follow-
ing components. Available physical memory is classified
into contiguous regions of different sizes, and is man-
aged using a buddy allocator [14]. A multi-list reser-
vation scheme is used to track partially used memory
reservations, and to help in choosing reservations for pre-
emption, as described in Section 4.8. A population map
keeps track of memory allocations in each memory ob-
ject, as described in Section 4.9. The system uses these
data structures to implement allocation, preemption, pro-
motion and demotion policies. Finally, it controls exter-
nal memory fragmentation by performing page replace-
ments in a contiguity-aware manner, as described in Sec-
tion 4.4. The following subsections elaborate on these
concepts.

4.1 Reservation-based allocation

Most operating systems allocate physical memory on ap-
plication demand. When a virtual memory page is ac-
cessed by a program and no mapping exists in the page
table, the OS's page fault handler is invoked. The handler
attempts to locate the associated page in main memory;
if it is not resident, an available page frame is allocated
and the contents are either zero-filled or fetched from the
paging device. Finally, the appropriate mapping is en-
tered into the page table.

Instead of allocating physical memory one frame at a
time, our system determines a preferred superpage size
for the region encompassing the base page whose access
caused the page fault. The choice of a size is made ac-
cording to a policy described in Section 4.2. At page-
fault time, the system obtains from the buddy allocator a
set of contiguous page frames corresponding to the cho-
sen superpage size. The frame with the same address

USENIX Association 5th Symposium on Operating Systems Design and Implementation 93

alignment as the faulted page is used to t3utt in the page,
and a mapping is entered into the page table for this page
only. The entire set of frames is tentatively reserved for
potential future use as a superpage, and added to a reser-
vation list. In the event of a page fault on a page for
which a frame has already been reserved, a mapping is
entered into the page table for the base page.

4.2 Preferred superpage size policy

Next, we describe the policy used to choose the desired
superpage size during allocation. Since this decision is
usually made early in a process's execution, when it is
hard to predict its future behaviour, our policy looks only
at attributes of the memory object to which the faulting
page belongs. If the chosen size turns out to be too large,
then the decision will be later overridden by preempting
the initial reservation. However, if the chosen size is too
small, then the decision cannot be reverted without relo-
cating pages. For that reason, the policy tends to choose
the maximum superpage size that can be effectively used
in an object.

For memory objects that are fixed in size, such as code
segments and memory-mapped files, the desired reserva-
tion size is the largest, aligned superpage that contains
the faulting page, does not overlap with existing reserva-
tions or allocated pages, and does not reach beyond the
end of the object.

Dynamically sized memory objects such as stacks and
heaps can grow one page at a time. Under the policy
for fixed size objects, they would not be able to use su-
perpages, because each time the policy would set the
preferred size to one base page. Thus a slightly differ-
ent policy is required. As before, the desired size is the
largest, aligned superpage that contains the faulting page
and does not overlap with existing reservations or alloca-
tions. However, the restriction that the reservation must
not reach beyond the end of the object is dropped to al-
low for growth. To avoid wastage of contiguity for small
objects that may never grow large, the size of this su-
perpage is limited to the current size of the object. This
policy thus uses large reservations only for objects that
have already reached a sufficiently large size.

4.3 Preempting reservations

When free physical memory becomes scarce or exces-
sively fragmented, the system can preempt frames that
are reserved but not yet used. When an allocation is re-
quested and no extent of frames with the desired size is
available, the system has to choose between (1) refusing
the allocation and thus reserving a smaller extent than de-
sired, or (2) preempting an existing reservation that has

enough unallocated frames to yield an extent of the de-
sired size.

Our policy is that, whenever possible, the system pre-
empts existing reservations rather than refusing an allo-
cation of the desired size. When more than one reserva-
tion can yield an extent of the desired size, the reserva-
tion is preempted whose most recent page allocation oc-
curred least recently, among all candidate reservations.
This policy is based on the observation that useful reser-
vations are often populated quickly, and that reservations
that have not experienced any recent allocations are less
likely to be fully allocated in the near future.

4.4 Fragmentation control

Allocating physical memory in contiguous extents of
multiple sizes leads to fragmentation of main memory.
Over time, extents of large sizes may become increas-
ingly scarce, thus preventing the effective use of super-
pages.

To control fragmentation, our buddy allocator per-
forms coalescing of available memory regions whenever
possible. However, coalescing by itself is only effec-
tive if the system periodically reaches a state where all
or most of main memory is available. To control frag-
mentation under persistent memory pressure, the page
replacement daemon is modified to perform contiguity-
aware page replacement. Section 5.1 discusses this in
greater detail.

4.5 Incremental promotions

A superpage is created as soon as any superpage-sized
and aligned extent within a reservation gets fully pop-
ulated. Promotion, therefore, is incremental: if, for in-
stance, pages of a memory object are faulted in sequen-
tially, a promotion occurs to the smallest superpage size
as soon as the population count corresponds to that size.
Then, when the population count reaches the next larger
superpage size, another promotion occurs to the next
size, and so on.

It is possible to promote to the next size when the pop-
ulation count reaches a certain fraction of that size. How-
ever, before performing the promotion the system needs
to populate the entire region, which could artificially in-
flate the memory footprint of applications. We promote
only regions that are fully populated by the application,
since we observe that most applications populate their
address space densely and relatively early in their execu-
tion.

94 5th Symposium on Operating Systems Design and Implementation USENIX Association

4.6 Speculative demotions

Demotion occurs as a side-effect of page replacement.
When the page daemon selects a base page for eviction
that is part of a superpage, the eviction causes a demo-
tion of that superpage. This demotion is also incremen-
tal, since it is not necessary to demote a large supelrpage
all the way to base pages just because one of its con-
stituent base pages is evicted. Instead, the superpage is
first demoted to the next smaller superpage size, then the
process is applied recursively for the smaller superpage
that encompasses the victim page, and so on. Demotion
is also necessary whenever the protection attributes are
changed on part of a superpage. This is required because
the hardware provides only a single set of protection bits
for each superpage.

The system may also periodically demote active super-
pages speculatively in order to determine if the superpage
is still being actively used in its entirety. Recall that the
hardware only provides a single reference bit with each
superpage. Therefore, the operating system has no way
to distinguish a superpage in which all the constituent
base pages are being accessed, from one in which only a
subset of the base pages are. In the latter case, it would be
desirable to demote the superpage under memory pres-
sure, such that the unused base pages can be discovered
and evicted.

To address this problem, when the page daemon re-
sets the reference bit of a superpage's base page, and if
there is memory pressure, then it recursively demotes the
superpage that contains the chosen base page, with a cer-
tain probability p. In our current implementation, p is 1.
Incremental repromotions occur when all the base pages
of a demoted superpages are being referenced.

4.7 Paging out dirty superpages

When a dirty superpage needs to be written to disk, the
operating system does not possess dirty bit information
for individual base pages. It must therefore consider all
the constituent base pages dirty, and write out the super-
page in its entirety, even though only a few of its base
pages may have actually been modified. For large, par-
tially dirty superpages, the performance degradation due
to this superfluous I/O can considerably exceed any ben-
efits from superpages.

To prevent this problem, we demote clean superpages
whenever a process attempts to write into them, and re-
promote later if all the base pages are dirtied. This choice
is evaluated in Section 6.7.

Inferring dirty base pages using hash digests: As an
alternative, we considered a technique that retains the
benefits of superpages even when they are partially dirty,

while avoiding superfluous b'O. When a clean memory
page is read from disk, a cryptographic hash digest of its
contents is computed and recorded. If a partially dirty set
of base pages is promoted to a superpage, or i fa clean su-
perpage becomes dirty, then all its constituent base pages
are considered dirty. However, when the page is flushed
out, the hash of each base page is recomputed and com-
pared to determine if it was actually modified and must
be written to disk.

A 160-bit SHA-1 hash has a collision probability
of about one in 28o [4], which is much smaller than
the probability of a hardware failure. Hence this tech-
nique can be considered safe. However, preliminary mi-
crobenchmarks using SHA- 1 reveal significant overhead,
up to 15 %, on disk-intensive applications. The patholog-
ical case of a large sequential read when the CPU is satu-
rated incurs a worst-case degradation of 60%. Therefore,
we did not use this technique in our implementation.

However, these overheads can be reduced using a va-
riety of optimizations. First, the hash computation can
be postponed until there is a partially dirty superpage,
so that fully-clean or fully-dirty superpages and unpro-
moted base pages need not be hashed. Second, the hash-
ing cost can be eliminated from the critical path by per-
forming it entirely from the idle loop, since the CPU
may frequently be idle for disk-intensive workloads. An
evaluation of these optimizations is the subject of future
work.

4.8 Multi-list reservation scheme

Reservation lists keep track of reserved page frame ex-
tents that are not fully populated. There is one reserva-
tion list for each page size supported by the hardware,
except for the largest superpage size. Each reservation
appears in the list corresponding to the size of the largest
free extent that can be obtained if the reservation is pre-
empted. Because a reservation has at least one of its
frames allocated, the largest extents it can yield if pre-
empted are one page size smaller than its own size. For
instance, on an implementation for the Alpha processor,
which supports 4MB, 512KB, 64KB and 8KB pages, the
64KB reservation list may contain reservations of size
512KB and 4MB.

Reservations in each list are kept sorted by the time
of their most recent page frame allocations. When the
system decides to preempt a reservation of a given size, it
chooses the reservation at the head of the list for that size.
This satisfies our policy of preempting the extent whose
most recent allocation occurred least recently among all
reservations in that list.

Preempting a chosen reservation occurs as follows.
Rather than breaking the reservation into base pages, it
is broken to smaller extents. Unpopulated extents are

USENIX Association 5th Symposium on Operating Systems Design and Implementation 95

transferred to the buddy allocator and partially populated
ones are reinserted into the appropriate lists. For exam-
ple, when preempting a 512KB reservation taken from
head of the 64KB list, the reservation is broken into eight
64KB extents. The ones with no allocations are freed and
the ones that are partially populated are inserted at the
head of the 8KB reservation list. Fully populated extents
are not reinserted into the reservation lists.

When the system needs a contiguous region of free
memory, it can obtain it fi'om the buddy allocator or by
preempting a reservation. The mechanism is best de-
scribed with an example. Still in the context of the Alpha
CPU, suppose that an application faults in a given page
for which there is no reserved frame. Further assume
that the preferred superpage size for the faulting page is
64KB. Then the system first asks the buddy allocator for
a 64KB extent. If that fails, it preempts the first reser-
vation in the 64KB reservation list, which should yield
at least one 64KB extent. If the 64KB list is empty, the
system will try the 512KB list. If that list is also empty,
then the system has to resort to base pages: the buddy
allocator is tried first, and then the 8KB reservation list
as the last resource.

4.9 Population map

Population maps keep track of allocated base pages
within each memory object. They serve four distinct pur-
poses: (1) on each page fault, they enable the OS to map
the virtual address to a page frame that may already be
reserved for this address; (2) while allocating contigu-
ous regions in physical address space, they enable the
OS to detect and avoid overlapping regions; (3) they as-
sist in making page promotion decisions; and (4) while
preempting a reservation, they help in identifying unal-
located regions.

A population map needs to support efficient lookups,
since it is queried on every page fault. We use a radix tree
in which each level corresponds to a page size. The root
corresponds to the maximum superpage size supported
by the hardware, each subsequent level corresponds to
the next smaller superpage size, and the leaves corre-
spond to the base pages. If the virtual pages represented
by a node have a reserved extent of frames, then the node
has a pointer to the reservation and the reservation has a
back pointer to the node.

Each non-leaf node keeps a count of the number of
superpage-sized virtual regions at the next lower level
that have a population of at least one (the s o m e p o p
counter), and that are fully populated (the f u l l p o p
counter), respectively. This count ranges from 0 through
I{, where R is the ratio between consecutive supmpage
sizes (8 on the Alpha processor). The tree is lazily up-
dated as the object's pages are populated. The absence

of a child node is equivalent to having a child with both
counters zero. Since counters refer to superpage-sized
regions, upward propagation of the counters occurs only
when s o m e p o p transitions between 0 and 1, or when
f u t l p o p transitions between/i~ - 1 and fL Figure 3
shows one such tree.

(somepop, fullpop)

Figure 3: A population map. At the base page level, the actual
allocation of pages is shown.

A hash table is used to locate population maps. For
each population map, there is an entry associating a
memory_object, page_index tuple with the map, where
page_index is the offset of the starting page of the map
within the object. The population map is used as follows:

Reserved frame lookup: On a page fault, the virtual
address of the faulting page is rounded down to a multi-
ple of the largest page size, converted to the correspond-
ing memory_object, page_index tuple, and hashed to de-
termine the root of the population map. From the root,
the tree is traversed to locate the reserved page frame, if
there is one.

Overlap avoidance: If the above procedure yields no
reserved frame, then we attempt to make a reservation.
The maximum size that does not overlap with previous
reservations or allocations is given by the first node in
the path from the root whose somepop counter is zero.

Promotion decisions: After a page fault is serviced,
a promotion is attempted at the first node on the path
from the root to the faulting page that is fully populated
and has an associated reservation. The promotion at-
tempt succeeds only if the faulting process has the pages
mapped with uniform protection attributes and dirty bits.

Preemption assistance: When a reservation is pre-
empted it is broken into smaller chunks that need to be
freed or reinserted in the reservation lists, depending on
their allocation status, as described in Section 4.8. The
allocation status corresponds to the population counts in
the superpage map node to which the reservation refers.

96 5th Symposium on Operating Systems Design and Implementation USENIX Association

5 Implementa t ion notes

This section describes some implementation specific is-
sues of our design. While the discussion of our solution
is necessarily OS-specific, the issues are general.

5.1 Contiguity-aware page daemon

FreeBSD's page daemon keeps three lists of pages, each
in approximate LRU (A-LRU) order: active, inactive and
cache. Pages in the cache list are clean and unmapped
and hence can be easily freed under memory pressure.
Inactive pages are those mapped into the address space
of some process, and have not been referenced for a long
time. Active pages are those that have been accessed
recently, but may or may not have their reference bit
set. Under memory pressure, the daemon moves clean
inactive pages to the cache, pages out dirty inactive
pages, and also deactivates some unreferenced pages
from the active list. We made the following changes to
factor contiguity restoration into the page replacement
policy.

(1) We consider cache pages as available for reservations.
The buddy allocator keeps them coalesced with the free
pages, increasing the available contiguity of the system.
These coalesced regions are placed at the tail of their re-
spective lists, so that subsequent allocations tend to re-
spect the A-LRU order.

The contents of a cache page are retained as long as
possible, whether it is in a buddy list or in a reservation.
If a cache page is referenced, then it is removed from
the buddy list or the reservation; in the latter case, the
reservation is preempted. The cache page is reactivated
and its contents are reused.

(2) The page daemon is activated not only on memory
pressure, but also when available contiguity falls low. In
our implementation, the criterion for low contiguity is
the failure to allocate a contiguous region of the preferred
size. The goal of the daemon is to restore the contiguity
that would have been necessary to service the requests
that failed since the last time the daemon was woken.
The daemon then traverses the inactive list and moves to
the cache only those pages that contribute to this goal. If
it reaches the end of the list before fulfilling its goal, then
it goes to sleep again.

(3) Since the chances of restoring contiguity are higher
if there are more inactive pages to choose from, all clean
pages backed by a file are moved to the inactive list as
soon as the file is closed by all processes. This differs
from the current behaviour of FreeBSD, where a page
does not change its status on file closing or process
termination, and active pages from closed files may

never be deactivated if there is no memory pressure.
In terms of overall performance, our system thus finds
it worthwhile to favor the likelihood of recovering the
contiguity from these file-backed pages, than to keep
them for a longer time for the chance that the file is
accessed again.

Controlling fragmentation comes at a price. The more
aggressively the system recovers contiguity, the greater
is the possibility and the extent of a performance penalty
induced by the modified page daemon, due to its devi-
ation from A-LRU. Our modified page daemon aims at
balancing this tradeoff. Moreover, by judiciously select-
ing pages for replacement, it attempts to restore as much
contiguity as possible by affecting as few pages as possi-
ble. Section 6.5 demonstrates the benefits of this design.

5.2 Wired page clustering

Memory pages that are used by FreeBSD for its internal
data structures are wired, that is, marked as non-pageable
since they cannot be evicted. At system boot time these
pages are clustered together in physical memory, but as
the kernel allocates memory while other processes are
running, they tend to get scattered. Our system with
512MB of main memory is found to rapidly reach a point
where most 4MB chunks of physical memory contain at
least one wired page. At this point, contiguity for large
pages becomes irrecoverable.

To avoid this fragmentation problem, we identify
pages that are about to be wired for the kernet's inter-
nal use. We cluster them in pools of contiguous physical
memory, so that they do not ti'agment memory any more
than necessary.

5.3 Multiple mappings

Two processes can map a file into different virtual ad-
dresses. If the addresses differ by, say, one base page,
then it is impossible to build superpages for that file in
the page tables of both processes. At most one of the
processes can have alignment that matches the physical
address of the pages constituting the file; only this pro-
cess is capable of using superpages.

Our solution to this problem leverages the fact that
applications most often do not specify an address when
mapping a file. This gives the kernel the flexibility to as-
sign a virtual address for the mapping in each process.
Our system then chooses addresses that are compatible
with superpage allocation. When mapping a file, the sys-
tem uses a virtual address that aligns to the largest su-
perpage that is smaller than the size of the mapping, thus
retaining the ability to create superpages in each process.

USENIX Association 5th Symposium on Operating Systems Design and Implementation 97

6 Evaluation

This section reports results of experiments that exercise
the system on several classes of benchmarks and real
applications. We evaluate the best-case benefits of su~-
perpages in situations when system memory is plentiffd.
Then, we demonstrate the effectiveness of our design, by
showing how these benefits are sustained despite differ-
ent kinds of stress on the system. Results show the effi-
ciency of our design by measuring its overhead in several
pathological cases, and justify the design choices in the
previous section using appropriate measurements.

6.1 Platform

We implemented our design in the FreeBSD-4.3 kernel
as a loadable module, along with hooks in the operat-
ing system to call module functions at specific points.
These points are page faults, page allocation and deal-
location, the page daemon, and at the physical layer of
the VM system (to demote when changing protections
and to keep track of dirty/modified bits of superpages).
We were also able to seamlessly integrate this module
into the kernel. The implementation comprises of around
3500 lines of C code.

We used a Compaq XP-1000 machine with the follow-
ing characteristics:

o Alpha 21264 processor at 500 MHz;
® four page sizes: 8KB base pages, 64KB, 512KB

and 4MB superpages;
• fully associative TLB with 128 entries for data and

128 for instructions;
® software page tables, with firmware-based TLB

loader;
• 512MB RAM;
® 64KB data and 64KB instruction L1 caches, virtu-

ally indexed and 2-way associative;
® 4MB unified, direct-mapped external L2 cache.

The Alpha firmware implements superpages by means
of page table entry (PTE) replication. The page table
stores an entry for every base page, whether or not it is
part of a superpage. Each PTE contains the translation
information for a base page, along with a page size field.
In this PTE replication scheme, the promotion of a 4MB
region involves the setting of the page size field of each
of the 512 page table entries that map the region [18].

6.2 Workloads

We used the following benchmarks and applications to
evaluate our system.
CINT2000: SPEC CPU2000 integer benchmark
suite [7].

CFP2000: SPEC CPU2000 floating-point benchmark
suite [7].
Web: The thttpd web server [15] servicing 50000 re-
quests selected from an access log of the CS departmen-
tal web server at Rice University. The working set size
of this trace is 238MB, while its data set is 3.6GB.
Image: 90-degree rotation of a 800x600-pixel image us-
ing the popular open-source lmageMagick tools [8].
Povray: Ray tracing of a simple image.
Linker: Link of the FreeBSD kernel with the GNU
linker.
C4: An alpha-beta search solver for a 12-ply position
of the connect-4 game, also known as the fhourstones
benchmark.
Tree: A synthetic benchmark that captures the behaviour
of processes that use dynamic allocation for a large num-
ber of small objects, leading to poor locality of reference.
The benchmark consists of four operations performed
randomly on a 50000-node red-black tree: 50% of the
operations are lookups, 24% insertions, 24% deletions,
and 2% traversals. Nodes on the tree contain a pointer
to a 128-byte record. On insertions a new record is allo-
cated and initialized; on lookups and traversals, half of
the record is read.
SP: The sequential version of a scalar pentadiagonal un-
coupled equation system solver, from the NAS Parallel
Benchmark suite [1]. The input size corresponds to the
"workstation class" in NAS's nomenclature.
FFTW: The Fastest Fourier Transform in the West [5]
with a 200x200x200 matrix as input.
Matrix: A non-blocked matrix transposition of a
1000x 1000 matrix.

6.3 Best-case benefits due to superpages

This first set of experiments shows that several classes
of real workloads yield large benefits with superpages
when free memory is plentiful and non-fragmented. Ta-
ble 1 presents these best-case speedups obtained when
the benchmarks are given the contiguous memory re-
gions they need, so that every attempt to allocate regions
of the preferred superpage size (as defined in Section 4.2)
succeeds, and reservations are never preempted.

The speedups are computed against the unmodified
system using the mean elapsed runtime of three runs
after an initial warm-up run. For both the CINT2000
and CFP2000 entries in the table, the speedups re-
flect, respectively, the improvement in SPECint2000 and
SPECfp2000 (defined by SPEC as the geometric mean
of the normalized throughput ratios).

The table also presents the superpage requirements of
each of these applications (as a snapshot measured at
peak memory usage), and the percentage data TLB miss
reduction achieved with superpages. In most cases the

98 5th Symposium on Operating Systems Design and Implementation USENIX Association

data TLB misses are virtually eliminated by superpages,
as indicated by a miss reduction close to 100%. The con-
tribution of instruction TLB misses to the total number
of misses was found to be negligible in all of the bench-
marks.

Superpage usage Miss

Bench- 8 64 512 4 reduc Speed-
mark KB KB KB MB (%) up

CINT2000
gzip
vpr
gcc
mcf
crafty
parser
e o n

perl
gap
vortex

bzip2
twolf

CFP2000

1.112
204 22 21 42 8 0 . 0 0 1.007
253 29 27 9 99.96 1.383

1209 1 17 35 70.79 1.013
206 7 10 46 9 9 . 9 7 1.676
147 13 2 0 99.33 1.036
168 5 14 8 9 9 . 9 2 1.078
297 6 0 0 0.00 1.000
340 9 17 34 96.53 1.019
267 8 7 47 99.49 1.017
280 4 15 17 99.75 1.112

I

196 21 30 42 99.90 I 1.140
238 13 7 0 99.87! 1.032

1.110
wupw 219 14 6 43 96.77 1.009
swim 226 16 11 46 98.97 1.034
mgrid 282 15 5 13 98.39 1.000
applu 1927 t647 90 5 93.53 1.020
mesa 246 13 8 1 9 9 . 1 4 0.985
galgel 957 172 68 2 9 9 . 8 0 1.289
art 163 4 7 0 99.55 1.122
equake 236 2 19 9 9 7 . 5 6 1.015
facerec 376 8 13 2 98.65 1.062
ammp 237 7 21 7 98.53 1.080
lucas 314 4 36 31 9 9 . 9 0 1.280
fma3d 500 17 27 22 9 6 . 7 7 1.000
sixtr 793 81 29 1 8 7 . 5 0 1.043
apsi 333 I 5 5 47 99.98 1.827

I

Web 30623 5 143 1 16.67 1.019
Image 163 1 17 7 75.00 1.228
Povray 136 6 17 14 9 7 . 4 4 1.042
Linker 6317 12 29 7 85.71 1.326
C4 76 2 9 0 9 5 . 6 5 1.360
Tree 207 6 14 1 97.14 1.503
SP t51 103 15 0 99.55 1.193
FVI'W 160 5 7 60 9 9 . 5 9 1.549
Matrix 198 12 5 3 9 9 . 4 7 7.546

Table 1 : Speedups and superpage requirements when plenty of
memory is available.

Nearly all the workloads in the table display benefits
due to superpages; some of these are substantial. Out
of our 35 benchmarks, 18 show improvements over 5%
(speedup of 1.05), and 10 show over 25%. The only ap-
plication that slows down is mesa, which degrades by
a negligible fraction. Matrix, with a speedup of 7.5, is
close to the maximum potential benefits that can possi-

bly be gained with superpages, because of its access pat-
tern that produces one TLB miss for every two memory
accesses.

Several commonplace desktop applications like
Linker (gnuld), gcc, and bzip2 observe significant per-
formance improvements. If sufficient contiguous mem-
ory is available, then these applications stand to benefit
from a superpage management system. In contrast, Web
gains little, because the system cannot create enough su-
perpages in spite of its large 315MB footprint. This is
because Web accesses a large number of small files, and
the system does not attempt to build superpages that span
multiple memory objects. Extrapolating from the results,
a system without such limitation (which is technically
feasible, but likely at a high cost in complexity) would
bring Web's speedup closer to a more attractive 15%, if
it achieved a miss reduction close to 100%.

Some applications create a significant number of large
superpages. FFTW, in particular, stands out with 60
superpages of size 4MB. The next section shows that
FFTW makes good use of large superpages, as there is
almost no speedup if 4MB pages are not supported.

Mesa shows a small performance degradation of 1.5%.
This was determined to be not due to the overhead of our
implementation, but because our allocator does not dif-
ferentiate zeroed-out pages from other free pages. When
the OS allocates a page that needs to be subsequently
zeroed out, it requests the memory allocator to preferen-
tially allocate an already zeroed-out page if possible. Our
implementation of the buddy allocator ignores this hint;
we estimated the cost of this omission by comparing base
system performance with and without the zeroed-page
feature. We obtained an average penalty of 0.9%, and a
maximum of 1.7%.

A side effect of using superpages is that it sub-
sumes page coloring [11], a technique that FreeBSD and
other operating systems use to reduce cache conflicts
in physically-addressed and especially in direct-mapped
caches. By carefully selecting among free frames when
mapping a page, the OS keeps virtual-to-physical map-
pings in a way such that pages that are consecutive in
virtual space map to consecutive locations in the cache.
Since with superpages virtually contiguous pages map to
physically contiguous frames, they automatically map to
consecutive locations in a physically-mapped cache. Our
speedup results factor out the effect of page-coloring, be-
cause the benchmarks were run with enough free mem-
ory for the unmodified system to always succeed in its
page coloring attempts. Thus, both the unmodified and
the modified system effectively benefit from page color-
ing.

USENIX Association 5th Symposium on Operating Systems Design and Implementation 99

6.4 Benefits from multiple superpage sizes

We repeated the above experiments, but changed the
system to support only one superpage size, for each of
64KB, 512KB and 4MB, and compared the resulting
performance against our multi-size implementation. Ta-
bles 2 and 3 respectively present the speedup and TLB
miss reduction for the benchmarks, excluding those that
have the same speedup (within 5%) in all four cases.

Benchmark

CINT2000
vpr
mcf
vortex
bzip2

CFP2000
galgel
lucas
apsi

Image
Linker
C4
SP
FFTW
Matrix

1.05 1.09 1.05 1.11
1.28 1.38 1.13 1.38
1.24 1.31 1.22 1.68
1.01 1.07 1.08 1.11
1.14 1.12 1.08 1.14

1.02 1.08 1.06 1.12
1.28 1.28 1.01 1.29
1.04 1.28 1.24 1.28
1.04 1.79 1.83 1.83

1.19 1.19 1.16 1.23
1.16 1.26 1.19 1.32
1.30 1.34 0.98 1.36
1.19 1.17 0.98 1.19
1.01 1.00 1.55 1.55
3.83 7.17 6.86 7.54

Table 2: Speedups with different superpage sizes.

The results show that the best superpage size depends
on the application. For instance, it is 64KB for SP,
512KB for vpr, and 4MB for FFTW. The reason is that
while some applications only benefit from large super-
pages, others are too small to fully populate large super-
pages. To use large superpages with small applications,
the population threshold for promotion could be lowered,
as suggested in Section 4.5. However, the OS would have
to populate regions that are only partially mapped by the
application. This would enlarge the application footprint,
and also slightly change the OS semantics, since some
invalid accesses would not be caught.

The tables also demonstrate that allowing the system
to choose between multiple page sizes yields higher per-
formance, because the system dynamically selects the
best size for every region of memory. An extreme case is
mcf, for which the percentage speedup when the system
gets to choose among several sizes more than doubles the
speedup with any single size.

Some apparent anomalies, like different speedups with
the same TLB miss reduction (e.g., Linker) are likely due
to the coarse granularity of the Alpha processor's TLB
miss counter (512K misses). For short-running bench-
marks, 512K misses corresponds to a two-digit percent-
age of the total number of misses.

Benchmark ~ ~ 4 4 ~ L AI ~
CINT2000

vpr 9 ~ ~ 9 ~ ' mcf
vortex
bzip2

.66

.18

.76

CFP2000
gatgel
lucas
apsi

Image
Linker
C4
SP
FFTW
Matrix

98.5l -98.71 0.00
/

12.79 96.98 87 .61 99.90 I
I

9.69 _98.70 99.98 99.98 I

50.00 I 50.00 50.00 75.00

57.14 I 85.71 57.14 85.71
95.65 95.65 0.00 95.65
99.11 93.75 0.00 99.55
7.41 7.41 99.59 99.59

90.43 99.47 99.47 99.47

Table 3: TLB miss reduction percentage with different superpage
sizes.

6,5 Sustained benefits in the long term

The performance benefits of superpages can be substan-
tial, provided contiguous regions of physical memory are
available. However, conventional systems can be subject
to memory fragmentation even under moderately com-
plex workloads. For example, we ran instances of grep,
emacs, netscape and a kernel compilation on a freshly
booted system; within about 15 minutes, we observed
severe fragmentation. The system had completely ex-
hausted all contiguous memory regions larger than 64KB
that were candidates for larger superpages, even though
as much as 360MB of the 512MB were free.

Our system seeks to preserve the performance of su-
perpages over time, so it actively restores contiguity us-
ing techniques described in Sections 4.4 and 5.1. To eval-
uate these methods, we first fragment the system memory
by running a web server and feeding it with requests from
the same access log as before. The file-backed memory
pages accessed by the web server persist in memory and
reduce available contiguity to a minimum. Moreover, the
access pattern of the web server results in an interleaved
distribution of active, inactive and cache pages, which
increases fragmentation.

We present two experiments using this web server.

Sequent ia l execution: After the requests from the
trace have been serviced, we run the FFTW benchmark
four times in sequence. The goal is to see how quickly
the system recovers just enough contiguous memory to
build superpages and perform efficiently.

Figure 4 compares the performance of two contigu-
ity restoration techniques. The cache scheme treats all
cached pages as available, and coalesces them into the

100 5th Symposium on Operating Systems Design and Implementation USENIX Association

buddy allocator. The graph depicts no appreciable per-
formance improvements of FFTW over the base system.
We observed that the system is unable to provide even a
single 4MB superpage for FFTW. This is because mem-
ory is available (47MB in the first run and 290MB in
the others), but is fragmented due to active, inactive and
wired pages.

The other scheme, called daemon, is our implemen-
tation of contiguity-aware page replacement and wired
page clustering. The first time FFTW runs after the web
server, the page daemon is activated due to contiguity
shortage, and is able to recover 20 out of the requested
60 contiguous regions of 4MB size. Subsequent runs get
a progressively larger number of 4MB superpages, viz.
35, 38 and 40. Thus, FFTW performance reaches near-
optimum within two runs, i.e., a speedup of 55%.

1 2 3 4
FF'IW runs

time ,~

Figure 4: Two techniques for fragmentation control.

The web server closes its files on exit, and our page
daemon treats this file memory as inactive, as described
in Section 5.1. We now measure the impact of this effect
in conjunction with the page daemon's drive to restore
contiguity, on the web server's subsequent performance.
We run the web server again after FFTW, and replay
the same trace. We observe only a 1.6% performance
degradation over the base system, indicating that the
penalty on the web server performance is small.

We further analyze this experiment by monitoring the
available contiguity in the system over time. We define
an empirical contiguity metric as follows. We assign 1,
2 or 3 points to each base page that belongs to a 64KB,
512KB, or 4MB memory region respectively, assuming
that the region is contiguous, aligned and fully available.
We compute the sum of these per-page points, and nor-
malize it to the corresponding value if every page in the
system were to be free. Figure 5 shows a plot of this con-
tiguity metric against experimental time. Note that this
metric is unfavorable to the daemon scheme Since it does
not consider as available the extra contiguity that can be
regained by moving inactive pages to the cache.

At the start of the experiment, neither scheme has all
of the system's 512MB available; in particular, the cache
scheme has'lost 5% more contiguity due to unclustered
wired pages. For about five minutes, the web server
consumes memory and decreases available contiguity to
zero. Thereafter, the cache scheme recovers only 8.8% of
the system's contiguity, which can be seen in the graph
as short, transitory bursts between FFTW executions. In
contrast, the daemon scheme recovers as much as 42.4%
of the contiguity, which is consumed by FFTW while it
executes, and released each time it exits. The FFTW exe-
cutions thus finish earlier, at 8.5 minutes for the daemon
scheme, compared to 9.8 minutes for the cache scheme.

80

~, 60

k ~
C
o 40
0

20

r r

Cache
" Daemon - -

0 2 4 6 8 10

Exper imental t ime (minutes)

Figure 5: Contiguity as a function of time.

To estimate the maximum contiguity that can be
potentially gained back after the FFTW runs complete,
we run a synthetic application that uses enough anony-
mous memory to maximize the number of free pages in
the system when it exits. At this point, the amount of
contiguity lost is 54% in the cache scheme, mostly due
to scattered wired pages. In contrast, the daemon scheme
in unable to recover 13% of the original contiguity. The
reason is that the few active and inactive pages that
remain at the end of the experiment are scattered in
physical memory over as many as 54 4MB chunks.
Since the experiment starts on a freshly booted system,
active and inactive pages were physically close at that
time, occupying only 22 such chunks. Part of the lost
13% is due to inactive pages that are not counted in
the contiguity metric, but can be recovered by the page
daemon. Therefore, the real loss in the long term for the
daemon scheme is bounded only by the number of active
pages.

Concurrent execution: The next experiment runs the
web server concurrently with a contiguity-seeking appli-
cation. The goal is to measure the effect of the page re-
placement policy on the web server during a single, con-

USENIX Association 5th Symposium on Operating Systems Design and Implementation 101

tinuous run. We isolate the effect of the page replacement
policy by disabling superpage promotions in this experi-
ment.

We warm up the web server footprint by playing
100,000 requests from the trace, and then measure the
time taken to service the next 100,000 requests. We wish
to avoid interference of the CPU-intensive FFTW appli-
cation with the web server, so we substitute it with a
dummy application that only exercises the need for con-
tiguity. This application maps, touches and unmaps 1MB
of memory, five times a second, and forces the page dae-
mon to recover contiguity rather than just memory.

The web server keeps its active files open while it
is running, so our page daemon cannot indiscriminately
treat this memory as inactive. The web server's active
memory pages get scattered, and only a limited amount
of contiguity can be restored without compacting mem-
ory. Over the course of the experiment, the dummy ap-
plication needs about 3000 contiguous chunks of 512KB
size. The original page daemon only satisfied 3.3% of
these requests, whereas our contiguity-aware page dae-
mon fulfills 29.9% of the requests. This shows how the
change in the replacement policy succeeds in restoring
significantly more contiguity than before, with negligi-
ble overhead and essentially no performance penalty.

The overhead of the contiguity restoration operations
of the page daemon is found to be only 0.8%, and the web
server suffers an additional 3% of performance degrada-
tion, as a consequence of the deviation of the page re-
placement policy from A-LRU.

6.6 Adversary applications

This section exercises the system on three synthetic
pathological workloads, and concludes with a measure-
ment of realistic overhead.

Incremental promotion overhead: We synthesized
an adversary application that makes the system pay all
the costs of incremental promotion without gaining any
benefit. It allocates memory, accesses one byte in each
page, and deallocates the memory, which renders the
TLB useless since every translation is used only once.
This adversary shows a slowdown of 8.9% with our im-
plementation, but as much as 7.2% of this overhead
is due to the following hardware-specific reason. PTE
replication, as described in Section 6.1, forces each page
table entry to be traversed six times: once per each of the
three incremental promotions, and once per each of the
three incremental demotions. The remaining 1.7% of the
overhead is mainly due to maintenance of the population
maps.

Sequential access overhead: Accessing pages se-
quentially as in our adversary is actually a common be-
haviour, but usually every byte of each page is accessed,
which dilutes the overhead. We tested the crop utility,
which compares two files by mapping them in memory,
using two identical 100MB files as input, and observed a
negligible performance degradation of less than 0.1%.

Preemption overhead: To measure the overhead of
preempting reservations, we set up a situation where
there is only 4MB of memory available and contigu-
ous, and run a process that touches memory with a 4MB
stride. In this situation, there is a pattern of one reser-
vation preemption every seven allocations. Every pre-
emption splits a reservation into 8 smaller chunks. One
remains reserved with the page that made the original
reservation; another is taken for the page being allocated,
and 6 are returned to the free list. We measured a perfor-
mance degradation of 1.1% for this process.

Overhead in practice: Finally, we measure the total
overhead of our implementation in real scenarios. We
use the same benchmarks of Section 6.2, perform all the
contiguous memory allocation and fragmentation man-
agement as before, but factor out the benefit of super-
pages by simply not promoting them. We preserve the
promotion overhead by writing the new superpage size
into some unused portion of the page table entries. We
observe performance degradations of up to 2%, with an
average of about 1%. This shows how our system only
imposes negligible overhead in practice, so the patholog-
ical situations described above are rarely observed.

6.7 Dirty superpages

To evaluate our decision of demoting clean superpages
upon writing, as discussed in Section 4.7, we coded a
program that maps a 100MB file, reads every page thus
triggering superpage promotion, then writes into every
512 th page, flushes the file and exits. We compared the
running time of the process both with and without demot-
ing on writing. As expected, since the I/O volume is 512
times larger, the performance penalty of not demoting is
huge: a factor of more than 20.

Our design decision may deny the benefits of super-
pages to processes that do not write to all of the base
pages of a potential superpage. However, according to
our policy, we choose to pay that price in order to keep
the degradation in pathological cases low.

6.8 Scalability

If the historical tendencies of decreasing relative TLB
coverage and increasing working set sizes continue, then

102 5th Symposium on Operating Systems Design and Implementation USENIX Association

to keep TLB miss overhead low, support for superpages
much larger than 4MB will be needed in the future. Some
processors like the Itanium and the Sparc64-III provide
128MB and larger superpages, and our superpage system
is designed to scale to such sizes. However, architectural
peculiarities may pose some obstacles.

Most operations in our implementation are either
O(1); or O(S), where S is the number of distinct su-
perpage sizes; or in the case of preempting a reservation,
O(S*R), where ./~ is the ratio between consecutive sizes,
which is never more than 8 on modern processors. The
exceptions are four routines with running time linear in
the size (in base pages) of the superpage that they oper-
ate on. One is the page daemon that scans pages; since
it runs as a background process, it is not in the critical
path of memory accesses. The other three routines are
promotion, demotion, and dirty/reference bit emulation.
They operate on each page table entry in the superpage,
and owe their unscalability to the hardware-defined PTE
replication scheme described in Section 6.1.

Promotions and demotions: Often, under no mem-
ory pressure, pages are incrementally promoted early in
a process's life and only demoted at program exit. In
such case, the cost amortized over all pages used by the
process is O(S), which is negligible in all of our bench-
marks. The only exception to this is the adversary exper-
iment of Section 6.6, which pays a 7.2% overhead due to
incremental promotions and demotions. However, when
there is memory pressure, demotions and repromotions
may happen several times in a process's life (as described
in Sections 4.6 and 4.7). The cost of such operations may
become significant for very large superpages, given the
linear cost of PTE replication.

Dirty/reference bit emulation: In many processors,
including the Alpha, dirty and reference bits must be em-
ulated by the operating system. This emulation is done
by protecting the page so that the first write or reference
triggers a software trap. The trap handler registers in the
OS structures that the page is dirty or referenced, and
resets the page protection. For large superpages, setting
and resetting protection can be expensive if PTE repli-
cation is required, as it must be done for every base page.

These problems motivate the need for more
superpage-friendly page table structures, whether
they are defined by the hardware or the OS, in order to
scalably support very large superpages. Clustered page
tables proposed by Talluri et al. [21] represent one step
in this direction.

7 Conclusions

This paper provides a transparent and effective solution
to the problem of superpage management in operating
systems. Superpages are physical pages of large size,
which may be used to increase TLB coverage, reduce
TLB misses, and thus improve application performance.
We describe a practical design and demonstrate that it
can be integrated into an existing general-purpose oper-
ating system. We evaluate the system on a range of real
workloads and benchmarks, observe performance bene-
fits of 30% to 60% in several cases, and show that the
system is robust even in pathological cases. These ben-
efits are sustained under complex workload conditions
and memory pressure, and the overheads are small.

Acknowledgments

We wish to thank our shepherd Greg Ganger and
the anonymous referees for their helpful comments.
This work was supported in part by NSF grant CCR-
98110603, Texas ATP grant 003604-0150-1999, and
equipment donations from Compaq WRL and HI ' Labs.
Juan Navarro was supported in part by a USENIX Stu-
dent Research Grant.

References

[1] D. Bailey, T. Harris, W. Saphir, R. van der Wijn-
gaart, A. Woo, and M. Yarrow. The NAS Paral-
lel Benchmarks 2.0. Report NAS-95-020, NASA
Ames Research Center, Moffett Field, CA, 1995.

[2] D. W. Clark and J. S. Emer. Performance of
the VAX-11/780 translation buffer: Simulation and
measurement. ACM Transactions Computer Sys-
tems, 3(1):31--62, Feb. 1985.

[3] Z. Fang, L. Zhang, J. Carter, S. McKee, and
W. Hsieh. Reevaluating online superpage promo-
tion with hardware support. In Proceedings of the
7th International IEEE Symposium on High Perfor-
mance Computer Architecture, Monterrey, Mexico,
Jan. 2001.

[4] FIPS 180-1. Secure Hash Standard. Technical Re-
port Publication 180-1, Federal Information Pro-
cessing Standard (FIPS), National Institute of Stan-
dards and Technology, US Department of Com-
merce, Washington D.C., Apr. 1995.

[5] M. Frigo and S. G. Johnson. FFTW: An adap-
tive software architecture for the FFT. In Proceed-
ings of the International Conference on Acoustics,

USENIX Association 5th Symposium on Operating Systems Design and Implementation 103

Speech, and Signal Processing, volume 3, Seattle,
WA, May t998.

[6] N. Ganapathy and C. Schimmel. General purpose
operating system support for multiple page sizes. In
Proceedings of the USENIX 1998 Annual Technical
Conference, Berkeley, CA, June 1998.

[7] J. L. Henning. SPEC CPU2000: Measuring CPU
performance in the new millennium. IEEE Com-
puter, 33(7):28-35, July 2000.

[8] Imagemagick. http://www.imagemagick.org.

[9] G. B. Kandiraju and A. Sivasubramaniam. Char-
acterizing the d-TLB behavior of SPEC CPU2000
benchmarks. In Proceedings of the ACM SIGMET-
RICS Conference on Measurement and Modeling of
Computer Systems, Marina del Rey, CA, June 2002.

[10] G. Kane and J. Heinrich. MIPS RISC Architecture.
Prentice-Hall, Upper Saddle River, NJ, 1992.

[11] R. E. Kessler and M. D. Hill. Page placement algo-
rithms for large real-indexed caches. ACM Trans-
actions on Computer Systems, 10(4):338-359, Apr.
1992.

[12] Y. A. Khalidi, M. Talluri, M. N. Nelson, and
D. Williams. Virtual memory support for mul-
tiple page sizes. In Proceedings of the Fourth
IEEE Workshop on Workstation Operating Systems,
Napa, CA, Oct. 1993.

[13] J. C. Mogul. Big memories on the desktop. In Pro-
ceedings of the Fourth IEEE Workshop on Worksta-
tion Operating Systems, Napa, CA, Oct. 1993.

[14] J. L. Peterson and T. A. Norman. Buddy systems.
Communications of the ACM, 20(6):421--431, June
1977.

[15] J. Poskanzer. thttpd- tiny/turbo/throttling HTTP
server, http://www.acme.com/software/thttpd/.

[16] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and
B. Bershad. Reducing TLB and memory overhead
using online superpage promotion. In Proceed-
ings of the 22nd Annual International Symposium
on Computer Architecture, Santa Margherita, Italy,
June 1995.

[17] M. Rosenblum, E. Bugnion, S. A. Herrod,
E. Witchel, and A. Gupta. The impact of architec-
tural trends on operating system performance. In
Proceedings of the 15th Symposium on Operating
Systems Principles, Copper Mountain, CO, Dec.
1995.

[18] R.L. Sites and R. T. Witek. Alpha Architecture Ref-
erence Manual. Digital Press, Boston, MA, 1998.

[19] I. Subramanian, C. Mather, K. Peterson, and

B. Raghunath. Implementation of multiple pa-
gesize support in HP-UX. In Proceedings of
the USENIX t998 Annual Technical Co@rence,
Berkeley, CA, June 1998.

[20] M. Talluri and M. D. Hill. Surpassing the TLB per-
formance of superpages with less operating system
support. In Proceedings of the Sixth International
Conference on Architectural Support fbr Program-
ming Languages and Operating Systems, San Jose,
CA, Oct. 1994.

[21] M. Talluri, M. D. Hill, and Y. A. Khalidi. A new
page table for 64-bit address spaces. In Proceed-
ings of the 15th Symposium on Operating Systems
Principles, Copper Mountain, CO, Dec. 1995.

[22] M. Talluri, S. Kong, M. D. Hill, and D. A. Patter-
son. Tradeoffs in supporting two page sizes. In Pro-
ceedings the 19th Annual b~ternational Symposium
on Computer Architecture, Gold Coast, Australia,
May 1992.

[23] R. Uhlig, D. Nagle, T. Stanley, T. Mudge,
S. Sechrest, and R. Brown. Design tradeoffs for
software-managed TLBs. ACM Transactions on
Computer Systems, 12(3): 175-205, Aug. 1994.

[24] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill,
J. M. Pendleton, S. A. Ritchie, G. Taylor, R. H.
Katz, and D. A. Patterson. An in-cache address
translation mechanism. In Proceedings of the 13th
Annual International Symposium on Computer Ar-
chitecture, Tokyo, Japan, 1986. ACM.

104 5th Symposium on Operating Systems Design and Implementation USENIX Association

