
Operating Systems Should Provide Transactions
Donald E. Porter, Indrajit Roy, Andrew Matsuoka, Emmett Witchel

Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712
{porterde,indrajit,matsuoka,witchel}@cs.utexas.edu

Submission to OSDI ’08, please do not distribute

Abstract
Operating systems can efficiently provide system

transactions to user applications, in which user-level pro-
cesses can execute a series of system calls atomically and
in isolation from other processes on the system. The ef-
fects of system calls performed during a system transac-
tion are not visible to the rest of the system (other threads
or hardware devices) until the transaction commits. This
paper is the first to implement system transactions with
recent techniques from the transactional memory litera-
ture. TxOS, a variant of Linux 2.6.22 which we modified
to support system transactions, can solve problems in a
wide range of domains, including security, isolating ex-
tensions, and user-level transactional memory. We also
show that combining semantically lightweight system
calls to perform heavyweight operations can yield better
performance scalability: enclosing link and unlink
within a system transaction outperforms rename on
Linux by 14% at 8 CPUs.

1 Introduction

The challenge of system API design is finding a small
set of easily understood abstractions that compose nat-
urally and intuitively to solve diverse programming and
systems problems. Using the file system as the interface
for everything from data storage to character devices and
inter-process pipes is a classic triumph of the Unix API
that has enabled large and robust applications. We show
that system transactions are a similar, broadly applicable
abstraction: transactions belong in the system-call API.
Without system transactions, important functionality is
impossible or difficult to express.

System transactions allow a user to transactionally
group a sequence of system calls, for example guaran-
teeing that two writes to a file are either both seen by
a reader or neither are seen. System transactions pro-
vide atomicity (they either execute completely or not at
all) and isolation (in-progress results are not visible so
transactions can be serially ordered). The user can start
a system transaction with the sys xbegin()system
call, she can end a transaction with sys xend()and
abort it with sys xabort(). The kernel makes sure

that all system calls between an sys xbegin()and an
sys xend()execute transactionally.

This paper introduces TxOS, a variant of Linux 2.6.22
which supports system transactions. TxOS is the first
operating system to support transactions that allow any
sequence of system calls to execute atomically and in
isolation. It is also the first to apply current software
transactional memory (STM) techniques which make
transactions more efficient and which allow a flexible
contention management policy among transactional and
non-transactional operations. This flexibility lets the sys-
tem balance scheduling and resource allocation between
transactional and non-transactional operations.

We use TxOS to solve a variety of systems prob-
lems, which indicates that system transactions earn their
position in the API. System transactions can eliminate
time-of-check-to-time-of-use (TOCTTOU) race condi-
tions, they can isolate an application from some misbe-
haviors in libraries or plugins, and they allow user-level
transactions to modify system resources.

An important class of current security vulnerabil-
ities consist of time-of-check-to-time-of-use (TOCT-
TOU) race conditions. During a TOCTTOU attack, the
attacker changes the file system using symbolic links
while a victim (such as a setuid program) checks a par-
ticular file’s credentials and then uses it (e.g., writing the
file). Between the credential check and the use, the at-
tacker compromises security by redirecting the victim
to another file— perhaps a sensitive system file like the
password file. At the time of writing, a search of the U.S.
national vulnerability database for the term “symlink at-
tack” yields over 400 hits [28]. System transactions can
eliminate TOCTTOU race conditions. If the user starts a
system transaction before doing their system calls (e.g.,
an access and open), then the OS will guarantee that
the interpretation of the path name used in both calls will
not change during the transaction.

Having an API for transactions frees the system from
supporting complex semantics that have accrued in their
absence. For example, text editors [1] and source code
control systems [3] use the rename system call heavily
because of its strong atomicity and isolation properties—
renames either successfully complete or they leave no
trace of partial execution. Allowing the user to com-

1



bine semantically simple system calls, such as link and
unlink, within a transaction more clearly expresses his
intent, increases the performance scalability of the sys-
tem, and reduces the implementation complexity for the
operating system.

User-level transactions, such as those provided by a
transactional memory system, run into trouble if they
need to update system state. Such transactions cannot
simply make a system call, because doing so violates
their isolation guarantees. System transactions provide
a mechanism for the transactional update of system state
and in Section 3.4 we show how to coordinate user- and
system- level transactions into a seamless whole with full
transactional semantics.

In order to support system transactions, the kernel
must be able to isolate and undo updates to shared re-
sources. This adds latency to system calls, but we show
that it can be acceptably low (13%–327%) within a trans-
action, and 10% outside of a transaction). However, us-
ing system transactions can provide better performance
scalability than locks as we show with a web server in
Section 5.4, uses transactions to increase throughput 2×
over a server that uses fine-grained locking.

This paper makes the following contributions:

• a new approach to implementating system transac-
tions, that provides strong atomicity and isolation
guarantees with low performance overhead, imple-
mented in Linux 2.6.
• shows that semantically lightweight system calls

can be combined within a transaction to provide bet-
ter performance scalability and ease of implementa-
tion than complex system calls. Placing link and
unlink in a transaction outperforms rename on
Linux by 14% at 8 CPUs.
• demonstration of the use of system transactions to

avoid TOCTTOU races whose performance is su-
perior to the current state-of-the-art user-space tech-
nique [43].
• showing how system transactions can be used to

isolate some faults in software plugins and libraries
with minimal performance overhead.
• showing how to maintain transactional semantics

for user-level transactions that modify system state.

The paper is organized as follows: Section 2 provides
background on each of the example problems that we ad-
dress with transactions. Section 3 describes the design of
operating system transactions within Linux and Section 4
provides implementation details. Section 5 evaluates the
system in the context of the target applications. Section 6
provides related work and section 7 concludes.

2 Overview and motivation

This section defines system level transactions and ex-
plains how they can be used by applications. It then de-
scribes three case studies with system transactions. The
usage scenarios we choose demonstrate the applicabil-
ity and advantages of system transactions across a wide
range of systems problems.

2.1 System transactions

To describe system transactions, we must first make the
distinction between system state and application state.
Writes to the file system or forking a thread are actions
that update system state, whereas updates to the data
structures within an application’s address space represent
application state. System transactions are a novel and ef-
ficient way to provide the atomic and isolated access of
transactions to system state.

A complete transactional programming model must
provide an interface that is uniform with respect to both
system and application state. Several techniques for
supporting transactions that manage application state al-
ready exist, including transactional memory [18, 20] and
recoverable virtual memory [35, 37]. We show in Sec-
tion 3 that the operating system, by providing system
transactions, can coordinate with multiple implementa-
tions of application transactions, giving applications the
freedom to choose the best fit for their needs. For our
target applications, we use both software transactional
memory and an implementation of copy-on-write recov-
ery to provide application transactions.

In adding the support for system transactions in Linux
we have focused on system calls related to the file sys-
tem. Transactions are implemented at the virtual file sys-
tem layer. This has the advantage of providing a trans-
actional interface to non-transactional file systems. At
transaction commit, all of the changes are exposed to the
file system at once, maintaining the safety guarantees of
the underlying file system.

System transactions, as described in this work, com-
mit their results to memory—the effect of a successful
system transaction may not survive a reboot. Many ap-
plications can benefit from transactional semantics with-
out durability. For instance, a file writer might want to
make several updates to the contents of a file without
concurrent readers seeing any of the individual writes.
However, the writing application might be satisfied with
the durability semantics of the underlying file system and
does not require that the file contents by synced to disk
at the conclusion of its update. While durability would
be useful for system transactions, they are not necessary
so we defer support to future work.

Previous research on incorporating transactional se-
mantics into the operating system has focused on com-

2


