
Sigmetrics ‘96

Embra: Fast and Flexible Machine Simulation

Emmett Witchel
Laboratory for Computer Science

Massachusetts Institute of Technology
witchel@lcs.mit.edu

http://www.pdos.lcs.mit.edu/~witchel/

Mendel Rosenblum
Computer Systems Laboratory

Stanford University
mendel@cs.stanford.edu

http://www-flash.stanford.edu/SimOS/

Abstract
This paper describes Embra, a simulator for the processors,

caches, and memory systems of uniprocessors and cache-coherent
multiprocessors. When running as part of the SimOS simulation en-
vironment, Embra models the processors of a MIPS R3000/R4000
machine faithfully enough to run a commercial operating system
and arbitrary user applications. To achieve high simulation speed,
Embra uses dynamic binary translation to generate code sequences
which simulate the workload. It is the first machine simulator to use
this technique. Embra can simulate real workloads such as multi-
process compiles and the SPEC92 benchmarks running on Silicon
Graphic’s IRIX 5.3 at speeds only 3 to 9 times slower than native
execution of the workload, making Embra the fastest reported com-
plete machine simulator. Dynamic binary translation also gives
Embra the flexibility to dynamically control both the simulation
statistics reported and the simulation model accuracy with low per-
formance overheads. For example, Embra can customize its gener-
ated code to include a processor cache model which allows it to
compute the cache misses and memory stall time of a workload.
Customized code generation allows Embra to simulate a machine
with caches at slowdowns of only a factor of 7 to 20. Most of the
statistics generated at this speed match those produced by a slower
reference simulator to within 1%. This paper describes the tech-
niques used by Embra to achieve high performance, focusing on the
requirements unique to machine simulation, including modeling
the processor, memory management unit, and caches. In order to
study Embra’s memory system performance we use the SimOS
simulation system to examine Embra itself. We present a detailed
breakdown of Embra’s memory system performance for two cache
hierarchies to understand Embra’s current performance and to show
that Embra’s implementation techniques benefit significantly from
the larger cache hierarchies that are becoming available. Embra has
been used for operating system development and testing as well as
for studies of computer architecture. In this capacity it has simulat-
ed large, commercial workloads including IRIX running a relation-
al database system and a CAD system for billions of simulated
machine cycles.

1 Introduction
This paper describes Embra, a high speed simulator of the pro-

cessors, caches, and memory systems of uniprocessors and cache-
coherent multiprocessors. Embra models the hardware of these ma-
chines in enough detail to boot and run commercial operating sys-
tems with arbitrary application workloads. Embra’s high-speed,
detailed simulation has allowed us to construct a sophisticated ma-
chine simulation environment capable of supporting research on
operating systems and computer architecture. Using Embra, we can
run large, complex workloads, such as commercial database man-
agement systems, in a simulation environment, enabling us to study

the workload’s execution and how it interacts with the operating
system and computer architecture.

Embra achieves high speed through the aggressive use of on-
the-fly or dynamic binary translation. Rather than simulating CPUs
by interpreting a workload’s instructions, Embra translates blocks
of instructions into code that, when executed, simulates the execu-
tion of the original block. This use of binary translation allows Em-
bra to eliminate most of the overhead of instruction interpretation.
The result is that Embra can simulate workloads running at up to
one fourth the speed of the unsimulated workload, faster than any
other complete machine simulator described in the literature.

Binary translation also allows Embra to support a high degree
of simulation flexibility without high performance costs. Embra can
customize the translations it generates to model specific machine
features or to compute specific information about the simulated ex-
ecution. The translations only include the code needed to perform
the tasks specified by the user, so extra features incur no cost when
they are not being used. For example, operating system developers
can use Embra to test new algorithms with quick turn-around time.
Once the code is known to execute correctly, the developer can in-
struct Embra to model processor caches, producing more accurate
performance estimates. Embra’s cache modeling mode enables it to
generate workload statistics, most of which match a much slower
reference simulator within 1%.

The dynamic nature of Embra’s translations allows the user to
change the level of detail in the middle of a simulation run. This al-
lows the user to employ a high speed mode to skip over uninterest-
ing parts of the workload, and switch to a more detailed mode for
the sections of interest. This ability to simulate in detail only the in-
teresting parts of a workload is important when studying complex
workloads that have long initialization or setup periods before a
steady-state is reached.

In this paper, we describe Embra in enough detail to allow oth-
er developers to build similar systems. Section 2 describes the Si-
mOS machine simulation environment, of which Embra is a part.
SimOS both provides motivation for high speed simulation and
places requirements for features Embra must support. Section 3
presents a detailed description of the basic machine simulation
techniques used in Embra. This includes the use of on-the-fly binary
translation for fast instruction set interpretation and support for fast
modeling of memory management hardware for instruction fetches
and data accesses. We also describe a set of optimizations we found
were necessary to maintain high speed for large, complex work-
loads and for modeling multiprocessors. Section 4 presents Em-
bra’s technique of customized translations which provide flexibility
in what is modeled and reported. The section focuses on transla-
tions customized to include modeling of processor caches.

We measure the simulation speed and accuracy of Embra in
Section 5. This section also contains a study of Embra’s memory
system behavior for two different cache hierarchies. The study al-
lows us to better understand Embra’s current performance and to
predict its performance for future cache hierarchies. Section 6 pre-
sents related work and Section 7 concludes.

2 Machine simulation with SimOS
Embra is part of SimOS, a simulation environment developed

Page 2

for the study of operating systems and computer architecture. Si-
mOS, depicted in Figure 2.1, contains simulation models for all of
the hardware commonly present on modern computers including
processors, memory subsystems, DMA and interrupt controllers,
consoles, network interfaces, disks, frame buffers, mice, and key-
boards. SimOS models these devices in enough detail to run a com-
mercial Unix operating system complete with all its application
programs. A key feature of SimOS is its ability to run large, highly
realistic workloads such as commercial database management sys-
tems and commercial CAD packages.

SimOS contains a range of compatible simulation models of
processors (including Embra), memory systems, and I/O devices
that vary greatly in simulation speed and detail. The user of SimOS
is able to select the simulator that provides the desired level of sim-
ulation detail with the greatest possible speed. For example, a pro-
cessor pipeline study might use MXS, a SimOS resident CPU
simulator capable of accurately modeling next generation micro-
processors which feature multiple instruction issue with dynamic
scheduling. Like MXS, Embra is a selectable CPU model. Embra
models a simple processor pipeline, but it is several orders of mag-
nitude faster than MXS.

Combining Embra’s speed with the rest of the SimOS system
enables operating system and computer architecture studies that
would otherwise be very difficult or impossible. Embra’s speed en-
ables it to be used for positioning large, complex workloads for
more detailed study. In a recent computer architecture study
[Rosenblum95a], Embra was used to boot the operating system and
run a commercial database management system until it reached a
steady state. This setup took many tens of billions of instructions on
the simulated machine. Without a fast simulator such as Embra it
would have been extremely time consuming to study such work-
loads. For example, we used Embra interactively to setup a data-
base system and then used MXS to study how the next generation
of processors will run such a large and complex workload. Booting
and initializing the operating system and database with MXS would
have taken several years.

In addition, Embra has been used in the debugging, develop-
ment and testing of the Hive multiprocessor operating system
[Chapin95]. The Hive developers use Embra to run tests where fail-
ures were injected at different points and the behavior of the crash
recovery system was observed. The speed of Embra allowed them
to run many more tests than would have been possible on the slower
simulators in SimOS. Using Embra in a more detailed mode that in-
cludes a model of the processor’s caches, the Hive developers were

MIPS R4x00 SGI machine
IRIX 5.3 (host OS)

RAM Disk Other

IRIX 5.3 (target OS)

Host Platform

SimOS

Unaltered
Applications

Target Hardware

Pmake Sybase Ocean

Embra/Mipsy/MXS

Layer

Target OS

FIGURE 2.1. The SimOS Environment
SimOS runs as a layer on IRIX that can model the hardware of
MIPS uniprocessors and shared-memory multiprocessors such
that IRIX and any application run on it. Embra is the fastest of
several processor models within SimOS.

also able to study the memory system behavior of their code.

3 Embra implementation
This section describes the techniques used in Embra to achieve

its high simulation speed. We start the section with a description of
dynamic binary translation, the main technique used by Embra. Dy-
namic binary translation has previously only been used for user-lev-
el application simulation. Adapting this technique for machine
simulation required extensions to the basic techniques, as cataloged
in Section 3.2. The biggest challenge for this adaptation is model-
ing the address relocation hardware (i.e. the MMU) of the machine,
described in Section 3.3. Section 3.4 describes how Embra handles
multiprocessors. Having described the complications of using dy-
namic binary translation to model a machine, we conclude in
Section 3.5 with a discussion of how we maintain the speed found
in user-level tools by adapting an important optimization called
chaining.

3.1 Dynamic binary translation
The design of Embra was influenced by Shade [Cmelik94], a

high speed instruction set simulator that used dynamic binary trans-
lation. This subsection presents a brief description of the basic tech-
niques and terminology developed in Shade.

Rather than interpreting program instructions, a dynamic bina-
ry translation simulator translates them into code that, when execut-
ed, simulates their execution. The original code is translated into
code which operates on the simulated state rather than on the real
machine state (see Figure 3.1.) A basic translation consists of load-
ing the source registers of an instruction from the simulated register
file, simulating the instruction execution, and storing the result (if
any) back into the simulated register file. In Embra, basic blocks
(code sequences which end with a jump or branch instruction) are
the unit of translation.

To avoid having to frequently retranslate blocks of instruc-
tions, translated blocks are kept in a Translation Cache (TC). The
execution of a block of instructions is simulated by locating the
block’s translation in the TC and jumping to it. A data structure,
called the pc2tc hash table, maintains the mappings from a program
counter to the address of the translated code in the TC.

The main loop of a dynamic binary translation simulator is
shown in Figure 3.2. The loop checks to see if the current simulated

Binary Code

Translated Code

load r3, 16(r1)

add r4, r3, r2

load t1, simRegs[1]
*load t2, 16(t1)
store t2, simRegs[3]

load t1, simRegs[2]
load t2, simRegs[3]
add t3, t1, t2
store t3, simRegs[4]jump 0x48074

store 0x48074, simPC
j dispatch_loop

FIGURE 3.1. Instruction set simulation using binary
translation
This figure depicts the use of binary translation to simulate instruc-
tion execution. Here binary code to be simulated is translated into
instruction sequences that perform the equivalent function on the
simulated machine state stored in simRegs rather than the ma-
chine’s registers. The jump instruction is simulated by updating
the simulated PC (simPC) and returning to the main dispatch loop.
The * indicates where the translation uses a program virtual ad-
dress. Embra must use an MMU model to relocate these addresses.

Page 3

program counter address is present in the TC. If it is present in the
TC, the translated block is executed. If it is not, the translator is
called to add the block to the TC. Each block of translated code
ends by loading the new simulated program counter and jumping
back to the main loop for dispatching.

Several optimizations of the basic mechanism are possible.
Since some blocks always follow each other at run time, they can
be chained, so the translation for one block simply transfers control
to the next rather than returning to the dispatch loop. Chaining im-
proves performance by eliminating many of the lookups in the
pc2tc data structure. Better register allocation and usage in the
translations is also possible. For example, the reload of simulated
register r3 (simReg[3]) in Figure 3.1 is redundant and could be
eliminated.

3.2 Embra extensions for full machine simulation
The previous section describes dynamic binary translation as

implemented by Shade. Using this technique, Shade was able to
simulate the execution of user programs only 2 to 6 times slower
than they ran on the machine running Shade. User level simulators
such as Shade run a single application program, but they do not sim-
ulate the hardware of a machine. Although some of the tasks of
user-level application simulation and machine simulation are the
same, there are many machine features that are not visible to user
programs and hence are not addressed by user level simulators. In
order to run full system workloads, Embra needs to model all the
features of a machine and not simply those available to user level
processes.

Embra features required for complete machine modeling in-
clude:
• MMU address translation. Most modern machines contain a

memory management unit (MMU) that translates the virtual
addresses used by the software into physical addresses used to
access the memory and I/O devices of the machine. The MMU
is used by every instruction fetch and every load and store. User
applications deal only with virtual addresses and hence user
application simulators do not have an MMU model.

• Multiple virtual address spaces. In order to support multi-
user operating systems and multi-process applications, modern
machines, and hence Embra, support concurrent but disjoint

Translator

dispatch_loop:
if (IsPCinTC(PC))
 jump pc2tc(PC);
else
 tc = Translate(PC);
 pc2tc(PC) = tc;
 jump tc;

Reads a basic block
Writes translation

Code fragments
which end with
jump dispatch_loopcontrol flow

writes code

Call and
Return

FIGURE 3.2. Main loop of a dynamic translation
simulator
The main dispatch loop of a dynamic translation simulator checks
to see if the translation for the current simulated PC is present in the
translation cache. If the translation is present, it is executed, other-
wise the translator is called to generate it. Having translations con-
stantly return to the main dispatch loop is the performance concern
addressed by chaining.

 into TC

Main Dispatch
Loop

Translation
Cache (TC)

virtual address spaces. In addition to MMU translation, features
of the MMU that guarantee protection between processes must
also be modeled.

• Exceptions and interrupts. Modern machines contain a trap
architecture in which exceptions and externally generated inter-
rupts stop the current flow of execution, and invoke an OS-resi-
dent trap handler. For example, Embra detects references to
unmapped virtual pages and raises a page fault exception.
Embra also promptly detects and simulates the effect of inter-
rupts from I/O devices.

• Privileged instructions. Modern machines contain instruc-
tions only usable by the operating system kernel. Embra needs
to support instructions for manipulating the MMU, changing
the interrupt mask, and other privileged operations.

• Miscellaneous operations. There are several features of the
architecture that are either not visible to the user or are rarely
used. Since these features are necessary to the functioning of
the machine, they must be modelled by a machine simulator.
These features include uncached loads and stores to I/O
devices, DMA from I/O devices, self-modifying code, and
dynamically generated code.

Many machine simulation requirements are straightforward to
implement. For example, a privileged instruction, like any other in-
struction, can be translated into code which simulates its execution.
For privileged instructions that have complex semantics, the trans-
lation can simply call out to a support routine written in C that per-
forms the simulation. This solution is acceptable provided that
privileged instructions are rare, so their simulation does not need to
be fast. Similarly, instructions that always generate a trap, such as
system call and breakpoint instructions, are translated into calls to
routines that simulate the proper trap and change the simulated pro-
gram counter to the correct trap handler.

Unfortunately, some machine features require fundamental
modifications to a simulator. Modeling the MMU requires particu-
lar attention. User-level simulators can fetch instructions and access
data at the virtual address specified by the program. Because the
hardware MMU must relocate every instruction fetch and data ad-
dress generated by the CPU in a real machine, efficient modeling of
the MMU is crucial if Embra is to maintain the high speed achieved
by user-level dynamic translation simulators. In the following sec-
tion we present the fast MMU simulation techniques used in Embra.

3.3 MMU address translation in Embra
Embra models the MMU of the MIPS R3000 microprocessor.

The R3000 translates 32 bit virtual addresses to 32 bit physical ad-
dresses using a 64-entry, fully associative translation table (TLB).
Each TLB entry contains the address of a 4 kilobyte virtual memory
page and the corresponding physical memory address of the page
along with some protection bits. A lookup must match both the vir-
tual address and the current address space id (ASID) stored in the
TLB. The 6-bit ASID allows mappings from up to 64 different vir-
tual address spaces to be present in the TLB without having to flush
the TLB on context switches between processes.

Like several other RISC microprocessors, the R3000 has a
software reloaded TLB. When the CPU issues a virtual address that
is not found in the TLB, the R3000 generates a TLB-miss excep-
tion. This exception is normally handled by the operating system
which fills in a TLB entry using information from the page table.
The software reloaded TLB is visible to the operating system and
hence it must be modeled by Embra for the OS to run.

Embra could model the MIPS TLB by inserting a call to a
function that models the TLB’s fully-associative lookup every time
an address translation is needed. However, the cost of function in-
vocation and the cost of the TLB modeling code could easily con-
sume several tens of instructions, making Embra several orders of
magnitude slower than the native machine. The frequency of ad-

Page 4

dress translations necessitates an efficient solution.

3.3.1 Data access MMU modeling
Every load and store instruction simulated by Embra must first

translate the virtual address generated by the instruction into a
physical address. This physical address can then be used to index
into the array containing the simulated machine’s main memory. To
make this virtual to physical translation fast and compact enough to
be inlined with every translated load and store instruction, Embra
maintains an data structure called the MMU relocation array. The
MMU relocation array is an array indexed by the virtual page num-
ber (virtual address divided by page size) of the memory reference.
Each entry in the array contains the address of the physical page
mapped at that virtual page and the protection bits for the page. Em-
bra keeps this MMU relocation array synchronized with the simu-
lated TLB by applying any changes to the TLB to the MMU
relocation array as well. Therefore, only translations with a valid
entry in the TLB have a valid entry in the MMU relocation array.

For every load and store instruction translated, Embra adds a
sequence of instructions that does the following:
1. Retrieves the TLB information from the MMU relocation array

using the virtual page number of the memory address as an
index.

2. Performs the TLB permission checks by using the protection
bits in the MMU relocation entry. For loads the page must be
valid and for stores the page must be valid and writable.

3. Checks for exceptions and if one occurs calls out to a support
routine that will simulate the appropriate exception.

4. Combines the physical page address from the MMU relocation
array with the page offset bits of the memory address to form
the physical address to load or store.
Embra’s 8 instruction sequence to implement these four steps

takes 8 cycles (assuming cache and TLB hits on the host) on an
R4400 pipeline in the common case of a simulated TLB hit. Adding
even 8 cycles to load and store instructions is a large performance
overhead. Since roughly every third instruction is a load or store,
this implies Embra’s slowdown is at least a factor of 3 or 4. Unfor-
tunately, this overhead is necessary for full machine simulation.

To keep the MMU simulation instruction sequence compact
and fast, Embra does not check the TLB ASID. Embra only puts en-
tries in the MMU relocation array that are valid for the currently ex-
ecuting ASID. This necessitates updating the MMU relocation
array on MMU context switches (changes of the ASID). The entries
for the old ASID must be removed and the entries for the new ASID
must be added. Fortunately, the small size of the MIPS R3000 64-
entry TLB puts a low bound on the amount of work this switch re-
quires. Even if all TLB entries have to be replaced only 128 entries
in the array need to be modified. Additionally, changes in ASID are
infrequent relative to instruction interpretation.

Using the MMU relocation array in the generated code allows
it to be independent of the details of the TLB size or organization,
so Embra can modeling different size TLBs without changing the
code generator. The array does occupy a sizable amount of virtual
memory in the simulator. A 32-bit architecture with 4 kilobyte pag-
es requires the MMU relocation array to be 4 megabytes. We dis-
cuss the implication of this in Section 5.2.

Modeling different TLB sizes allows an important perfor-
mance optimization for Embra. By modeling a TLB which is much
larger than the R3000’s, Embra can reduce the number of TLB ex-
ceptions. Since these exceptions are handled in C code, they are
computationally expensive, and avoiding them increases the simu-
lation speed. Of course, the TLB miss rates reported with large
TLBs do not correlate with those reported by smaller TLB sizes.

3.3.2 Instruction fetch MMU modeling
Instruction fetches are also translated by the MMU. The use of

dynamic binary translation simplifies the simulation of the instruc-
tion MMU lookups. Unlike the data MMU modeling, the actual
computation of the physical address and access to main memory
need only be performed when a block of code is translated into the
translation cache. Once placed in the translation cache, the actual
instructions in the simulated main memory no longer need to be ac-
cessed, eliminating the need to translate addresses on every instruc-
tion fetch.

However, Embra must still detect attempts to execute from un-
mapped pages. When such an attempt is made Embra must simulate
the proper MMU exception. To detect this condition, Embra starts
each translated basic block with a highly optimized sequence of in-
structions which checks the TLB state of the code. This is done by
querying the MMU relocation array with the virtual address of the
code block being simulated. If the check determines that the page is
not in the TLB, a TLB miss exception is raised.

The instruction sequence used for instruction TLB lookups is
similar to the sequence preceding load and store instructions except
it need only perform the TLB residence check (no relocation is
needed). When Embra is running on the MIPS R4400, this check
(assuming hits in the host cache and TLB) takes 3 instructions (5
cycles including pipeline stalls) for uniprocessor modeling and 5
instructions (8 cycles including pipeline stalls) in the common case
of a simulated TLB hit.

3.3.3 Support for kernel address translation
In order to run real workloads, Embra needs to handle the spe-

cial address translation features expected by the operating system
kernel. On the MIPS platform these include uncached load and
store instructions used to access I/O devices and untranslated ac-
cess to physical memory using the KSEG0 region. Since uncached
operations in MIPS processors differ from cached operations only
by bits returned from the TLB lookup, the Embra translator can not
tell uncached loads and stores from normal loads and stores. Embra
handles these instructions at run time by setting the MMU reloca-
tion array entries for uncached pages to an invalid entry. This caus-
es the translated code to attempt to raise a TLB exception. The
routine that implements the TLB exception first checks to see if the
address is really mapped uncached, and if it is it forwards the un-
cached access to the appropriate I/O device simulator for handling.

When running in kernel mode, the operating system on the
MIPS architecture has access to all of physical memory using a part
of the address space called KSEG0. Since KSEG0 is not mapped
using the TLB, operating systems frequently put kernel text and
data in KSEG0 to avoid TLB misses. Embra models KSEG0 by fill-
ing in the MMU relocation array for the KSEG0 virtual address
range with the addresses of the corresponding physical memory
pages. This allows KSEG0 to be handled without having to special
case it in the translated code.

3.3.4 Support for self-modifying code
Self-modifying code is a problem for Embra because once a

block of code is cached in the translation cache the original instruc-
tions are not re-read when the code is executed. If the code has
changed, Embra is in danger of executing the old code from a stale
translation. To avoid this, Embra keeps track of the pages that have
translated code in the translation cache. When the contents of any
of these pages is overwritten, Embra detects the write and flushes
the entire translation cache. It would be possible to track which
translations should be flushed, but the rarity of this kind of event has
not warranted the additional bookkeeping.

3.4 Multiple processors
Embra can model the multiple processors of shared memory

Page 5

multiprocessors in two ways. The first way is to replicate the CPU
state and the MMU relocation array for each simulated CPU. These
simulated processors are then multiplexed within a single Embra
process so they share memory, disks and other devices. The simu-
lated processors are set up in a ring, and each is run for a user con-
figurable timeslice in a round-robin fashion. Long timeslices result
in low processor switch overheads but unrealistic execution inter-
leavings. Because Embra keeps the simulated integer register state
in memory, it must only save 6 simulator registers on a processor
switch. Embra also advances the processor clock, and saves the
floating point registers if they are being used. Because this is a small
amount of work, short timeslices can be efficient.

3.4.1 Parallel Execution
A second way of simulating multiple processors is to duplicate

the entire Embra CPU/MMU mechanism in multiple processes that
share the same simulated main memory. This mode of execution,
called Parallel Embra, is attractive when the machine running the
simulator has at least as many processors as are being simulated.
Using Parallel Embra, CPU simulations proceed in parallel so mul-
tiprocessor systems can be simulated on multiprocessor hosts with-
out the linear slowdowns typical of multiprocessor machine
simulation.

The primary disadvantage of parallel execution is that the ran-
dom interleaving (due to load, scheduling, etc.) among the Embra
processes makes the simulation non-deterministic. Running the
simulator twice with the same initial conditions can produce differ-
ent results. While non-determinism is inherent in parallel execu-
tion, the unrealistic interleaving introduced by simulated processors
running at different speeds can be controlled by synchronizing the
CPU processes using barriers. The frequency of sychronization can
be varied to trade performance for accuracy. Parallel Embra is use-
ful for testing and positioning tasks which do not require repeatabil-
ity or high degrees of accuracy.

3.5 Embra Chaining
Our experience with Embra confirms that chaining, the patch-

ing of translated blocks to bypass the translation cache lookup for
the current PC, is an important optimization for high performance
simulation. The average basic block is small (5.7 instructions for
pmake and 6.1 for Sybase), making the main dispatch loop a major
overhead. By default, all Embra translations end with a jump back
to the dispatch loop, as depicted in Figure 3.1. Embra implements
chaining by overwriting this jump with a jump to the next translated
block in program execution order. Embra chains both the taken and
not taken side of conditional branches.

Having the MMU translate addresses presents some interest-
ing design choices for the translation cache (TC). Although using
virtual addresses to index into the translation cache would have al-
lowed the lookup to proceed without having to translate the PC into
a physical address, Embra could not use this approach because dif-
ferent processes may have different code mapped at the same virtu-
al address. Instead, Embra uses physical addresses in the tags of the
translation cache.

Using physical address tags means that re-translation is only
necessary when the physical memory containing code is changed.
Since most operating systems cache code pages in physical memo-
ry between program invocations, they change infrequently. Be-
cause operating systems such as Unix make heavy use of shared
code segments and shared libraries, the benefits from physical ad-
dress tags include lower translation rates for multiprogrammed
workloads, lower space requirements for the translation cache, and
lower startup time for simulated applications.

Physical address tags have two performance disadvantages.
The first is that translation cache lookups require translating the vir-
tual address of the program counter to a physical address. This re-

sults in a slower main dispatch loop. Switching to physical
addresses also breaks the user level chaining optimization because
it is possible that a jump or branch instruction transfers control to
different physical memory pages for different processes. The effect
of slowing down the dispatch loop and increasing its execution fre-
quency causes significant performance degradation. To maintain
performance we redesigned the Embra chaining system to handle
physical addresses.

3.5.1 Chaining using physical addresses
Using physical addresses for translation cache tags means that

Embra can not implement chaining as easily as user-level simula-
tors. It is possible for two processes to map a common code page at
one virtual address and have different code pages mapped at anoth-
er virtual address. Control transfer instructions which jump be-
tween these two virtual addresses will generate chains that are not
valid for all of the processes sharing the page.

Fortunately, the condition causing this problem is fairly rare.
Most of the time in IRIX a code segment’s pages are mapped at the
same virtual address in all processes using the code segment. To de-
tect if code segments are mapped to different locations, Embra in-
cludes code at the start of all translations which checks that the
physical address of the current program counter is the same as the
physical address of the translation being executed. This lookup is
done by indexing into the MMU relocation array using the program
counter and comparing the physical address there with the physical
address of the translation—a constant known when the code was
translated. If these addresses are on the same physical memory
page, the rest of the translation is executed. If the addresses are not
on the same physical memory page, the code jumps to the main dis-
patch loop to go though the full lookup. In this case the old chaining
value is overwritten with a new chaining value so that future chains
will work for this process.

3.5.2 Additional chaining performance
Even with the above optimizations, we still measured a signif-

icant dispatch lookup overhead in Embra. We investigated the prob-
lem and found it was due to the heavy use of register indirect jumps
in many workloads. Register indirect jumps cause a problem for
chaining because the register could take on different values on each
invocation and hence can not be chained. These register indirect
jumps were mostly due to the procedure calling sequence used by
the MIPS compilers, which requires that most procedures are called
with a register indirect jump. At runtime these registers usually
have the same value each time a given jump instruction is executed.

To reduce the overhead of these register indirect jumps we im-
plemented speculative chaining which enables Embra to chain any
jump. Speculative chaining works by chaining indirect jumps to a
code fragment that checks to see if the destination code is at the cor-
rect virtual and physical address. This check is performed by com-
paring the current program counter virtual address with the virtual
address used to generate the translation. If the addresses match then
the chaining is valid and the rest of the translation can be executed.
If the addresses do not match, control is transferred to the slow path
of the main dispatch loop. Speculative chaining improved Embra
performance on some workloads by over 20%.

To avoid unnecessary checking during chaining, the prelude of
a basic block translation first checks to see if the virtual PC is cor-
rect, it then checks if the physical PC is correct, and finally it per-
forms the MMU residency check. Different kinds of chaining use
different entry points. The first entry point allows incorrect specu-
lative chains to be detected; the second entry point allows incorrect
non-speculative chains to be detected (where two unrelated pro-
cesses might be sharing a single physical code page). The MMU
residency check can be bypassed for chains between code that re-
sides on the same physical page, allowing one translation to transfer

Page 6

control directly to the next. This optimization reduces MMU mod-
eling overheads for application loops that are contained in a single
code page.

3.6 SimOS support in Embra
The previous section presented the features required of Embra

for efficient machine simulation. Being a part of SimOS places ad-
ditional requirements on Embra that are explained here.

3.6.1 Event callback queue
In the SimOS environment, CPU simulators must support the

event callback mechanism used by the I/O devices of the simulator.
The event callback mechanism permits device simulators to request
that a function be called at some point in the simulated future. For
example, a periodic interrupt timer might request a callback for 10
milliseconds in the future so it can post a timer interrupt. It is the
responsibility of Embra to call this function at the specified time.

To support this functionality without a large overhead, Embra
emits code in its translations to track simulated time. This is done
by incrementing the simulated time based on an estimate of how
long the instructions of the translation take to execute. The generat-
ed code also checks to see if the time has reached a particular value
and calls out to a support function when this occurs. When call-
backs are inserted, Embra simply insures that it will call out of the
translation cache when the first callback is due to be activated. This
allows Embra to execute for as long as possible in the translation
cache.

When modeling a multiprocessor, any processor can cause
events to be inserted in the callback queue. To avoid expensive per
processor checks, Embra only polls the callback queue after each
processor has executed a timeslice. This check only adds a few in-
structions to be the processor switching code of the multiprocessor
simulation described in Section 3.4.1.

3.6.2 Annotations
SimOS supports a mechanism called annotations which allow

user-provided routines to be called when simulated execution
reaches a particular address. Annotations allow SimOS to perform
non-intrusive execution monitoring. For example, by annotating
the context switch code of the kernel, annotations can track the cur-
rently running process. The study in [Rosenblum95a] demonstrates
how annotations can be used to track execution time and latencies
for various system services.

Embra implements annotations by noting when an annotated
code address is being translated. Embra emits code in the transla-
tion to call the annotation function. For annotations set at memory
accesses, Embra keeps the target page invalid in the MMU reloca-
tion array. All memory accesses to this page call out of translated
code so all references can be detected.

3.6.3 Debugging
One of Embra’s primary functions is for operating system de-

velopment. It is therefore useful to be able to access the state of the
operating system with a debugger. We have modified the serial in-
terface to gdb and added support to Embra so the two can work to-
gether. Embra listens on a port which a user can connect to and have
full gdb functionality including the examination of memory and the
setting of breakpoint and watchpoints (even in OS code where ex-
ceptions usually can not be tolerated). Breakpoints and watchpoints
are implemented in the same manner as the annotation mechanism
described above.

4 Customized translations
This section describes how Embra uses run time code genera-

tion to vary the simulation accuracy and output statistics while
maintaining high performance. Embra customizes its translations to

include code that collects desired statistics or adds additional preci-
sion to the machine model. The generation of customized transla-
tions can be selected at any time simply by informing the Embra
translator and flushing the translation cache. Each newly generated
translation will include the extra features.

The performance of customized translations depends on the
efficiency of the additional code. For example, if information about
instruction opcode frequency or register usage is desired, it is easy
to have the translator generate a few extra instructions to increment
counters based on the make up of the translated instructions. Since
the counter increments will be a small overhead compared to the ex-
ecution of the translation, this information can be obtained with lit-
tle additional slowdown. Embra can be configured to quickly gather
a number of different statistics including the dynamic counts of
floating point operations, taken and not taken branches, and basic
block sizes.

It is also possible to customize translations to include more ac-
curate modeling of the machine. For example, customized transla-
tions can include instructions that model the pipeline stalls of a
processor. Even if it is not reasonable to generate the code to fully
model a machine feature, customized translations can model the
common cases inline and call out to support routines to handle the
complex parts of the simulation. If the common case is fast, and the
complex cases infrequent, large slowdowns can be avoided.

4.1 Cache simulation
Currently the largest and most complex example of custom-

ized translations in Embra models the memory system stall time of
a workload. Memory system stall has been shown to be a large com-
ponent of many important workloads, particularly for shared mem-
ory multiprocessors because they use memory for inter-processor
communication. Since most modern machines employ a CPU cache
to hide memory stall from the processor, the cache must be modeled
to measure the memory stall.

Cache modeling is suited to customized translations because
the common case, a cache hit, is simple enough to be processed in
the translated code while a cache miss can handled by support rou-
tines. These routines model the more complex behavior of the
memory system. The challenge for Embra is to make the cache hit
detection small and fast enough that it can be included in the trans-
lated code. The performance of this check is critical because, like
the MMU, the processor cache is accessed on every instruction
fetch and data access instruction.

4.1.1 Data access cache check
Embra detects loads and stores to memory addresses not

present in the cache by using a scheme similar to the data MMU
strategy discussed in Section 3.3.1. To perform this check quickly
and compactly, Embra uses an array called the virtual quick check
or vQC that is indexed by virtual cache line number and contains
the access status of the cache line. The vQC is similar to the MMU
relocation array, except that there is one entry for each cache line in
the virtual address space rather than for each page.

The similarity of MMU lookup and cache residency checks al-
lows Embra to further optimize performance by combining the
checks in the translated code. All the places that Embra would have
to check for MMU relocation are places that it needs to check for
cache misses as well. By folding these two checks into one data
structure, the customized translation can simulate caches with less
slowdown than by adding a cache model on top of the existing
MMU relocation.

Each entry in the vQC is only a single byte, the smallest mem-
ory unit that can be accessed in a single instruction on the MIPS ar-
chitecture. This byte is used to encode both the TLB information for
the cache line as well as its residence status in the cache (shared or
exclusive). If the vQC lookup for an address succeeds, the reloca-

Page 7

tion using the MMU relocation array described in Section 3.3.1 is
allowed to proceed. The instruction sequence used by Embra on a
data load or store can perform the cache check, the TLB check, and
address relocation in 10 instructions, taking 10 cycles (assuming
cache and TLB hits in the host system) on an R4400 pipeline.

When an access “misses” in the vQC, the translation calls out
to a support routine which determines if the miss was in the TLB or
the cache. If it is a TLB miss the appropriate exception is raised and
the program counter is set to the OS exception vector. If it is a cache
miss, the support routine calls into the memory system simulator.
The memory system simulator models the memory stall caused by
the cache miss and updates the vQC to reflect the memory line be-
ing brought into the cache. Once the memory stall is over, the sup-
port routine returns, allowing the simulated instruction simulation
to continue.

Because the vQC encodes the state of both the TLB and the
cache, it must be updated both when the contents of either the cache
or the TLB changes. When a cache line is replaced, the correspond-
ing entry in the vQC must be marked as invalid. When a TLB map-
ping is removed, all cache lines on that virtual page must have their
vQC entry marked as invalid. When a TLB mapping is established,
all resident cache lines on the page have their vQC entry filled in.
For unmapped memory, Embra reloads the vQC lazily. The cache
miss support routine first checks to see if it is really a cache miss
before calling into the memory system simulator. If the address was
in the cache, the vQC entry is restored and no miss is recorded or
modelled.

4.1.2 Instruction fetch cache checks
Just as translated blocks must check for TLB residency on the

simulated instructions, as described in Section 3.3.2, each block
must also check for cache residency to insure that the code being
simulated is present in the cache. Instruction references use the
vQC for the TLB and cache residency check in the same way as
data references. In the translated code, checks for instruction cache
misses occur more frequently than those for TLB misses because
there is a much higher probability that an instruction block spans a
cache line than that it spans a page. The use of the vQC allows the
common case of an instruction cache hit to be processed just as fast
as the MMU residency check as described in Section 3.3.2.

4.1.3 Multiprocessor cache coherence
 When modeling the caches of a shared-memory multiproces-

sors there is an additional problem of keeping the caches of differ-
ent processors coherent. The Embra memory system models the
directory structure used in directory-based coherence schemes like
the one used in the Stanford DASH multiprocessor [Lenoski92]. As
in DASH, the memory system maintains a bitmap for each cache
line in physical memory. This bitmap tracks which processors are
currently caching the line. If one processor needs exclusive access
to a line (e.g. to store to that line), the memory system model inval-
idates the cached copies of the other processors in the bitmap. Sim-
ilarly, if the line is exclusive in a cache and another processor
accesses it, the first processor has its exclusive copy changed to a
shared copy.

The use of the directory bitmap in Embra provides a relatively
fast way to model a multiprocessor memory system. Rather than
having to check each of the processor’s caches, the bitmap allows
the Embra memory system to quickly determine which caches (if
any) contain a specific line.

4.1.4 Issues for cache simulation
The use of the virtual quick check in the translated code has

several benefits. Embra can perform the quick hit test using a single
load instruction, keeping the emitted code fast and compact. Like
the MMU relocation array, having the vQC handle the cache hits

means the generated code is independent of the cache parameters
used. The same hit test works regardless of the size or organization
of the cache.

Although the vQC can simulate the behavior of an arbitrary
cache organization, it does not necessarily collect the information
needed to simulate replacement policies such as LRU. To simulate
caches with (non-trivial) associativity, either the translated code can
be customized to maintain the LRU bits for a cache line, or the di-
rect mapped data structures can be used with only one line in a set
active at any time. In the latter case, the miss handler is responsible
for distinguishing real cache misses from LRU maintenance miss-
es. Customization can also support tracking of cache hits as well as
misses so that miss rates can be computed.

The chief disadvantage of the vQC is its size, which given in
bytes is

When using Embra to model the large second level caches found
many uniprocessor and multiprocessor systems, we have used a 32
bit address space and 128 byte cache line resulting in a vQC size of
32MB per processor. While it is natural to expect locality in access-
ing this array, this strategy is a bigger risk for cache simulation than
for MMU relocation because the bound on active entries is larger
than 64. This bound is dependent on the cache configuration, but for
a 1MB direct mapped cache the bound is 8192 entries. The danger
is that irregular, sparse access to the vQC will stress the host ma-
chine’s cache and TLB. This effect is studied in Section 5.2.

We use Embra with second-level cache configurations, be-
cause the virtual quick check will not work as well for smaller cach-
es like the on-chip caches of modern microprocessors. These small
caches tend to have small cache line sizes making the vQC quite
large. For example, the primary caches of the MIPS R4000 have a
16 byte line size, resulting in a vQC size of 256 megabytes. Al-
though only a very small fraction of these entries are in use at one
time, this is still a significant amount of virtual memory; particular-
ly when modeling multiple processors.

Smaller caches also have the problem that they tend to have a
higher miss rate than larger caches. Embra’s performance depends
on a cache hit rate. If a large percentage of the cache references
miss, the vQC optimization does not help performance and can ac-
tually hurt performance because of its size (see Section 5.2).

5 Experience and Performance
Embra first booted a multiprocessor operating system in July

of 1994 and since then it has been used extensively as both an op-
erating system development platform for the Hive operating system
[Chapin95] and as a tool for operating system and computer archi-
tecture studies [Rosenblum95a]. Embra has been used extensively
to run SGI’s IRIX version 5, a Unix SVR4-based operating system
and a large variety of applications running on IRIX. Workloads we
have run include large commercial software packages such as the
Sybase relational database system and the VCS verilog simulator.
Embra has successfully run every IRIX application we have tried.
Since the workloads all produce correct results, and many of them
contain internal consistency checks, we have a high degree of con-
fidence that Embra executed these workloads correctly.

5.1 Simulation speed
 To examine the speed of Embra, we measured the execution

time of a workload running “native” on an SGI machine and then
measured the speed at which Embra (running on the same SGI ma-
chine) could simulate the execution of the workload. By comparing
these two workload execution times, we compute the Embra simu-
lation slowdown.

Table 5.1 shows slowdown numbers for various uniprocessor

vQCsize
VirtualAddrSpaceSize

CacheLineSize
---=

Page 8

and multiprocessor workloads running under three configurations
of Embra. The base Embra simulator (Embra) is the fastest possible
configuration with the extended TLB support and a course multi-
processor interleaving using a 6000 cycle timeslice. This configu-
ration is intended to be representative of the use of Embra as a
workload positioning tool or operating system development plat-
form. In these environments, speed is of primary importance. The
Embra w/caches configuration is an accurate modeling of a ma-
chine using Embra. It uses customized translations to model caches,
a standard, 64 entry TLB, and a tight 80 cycle multiprocessing in-
terleaving timeslice. This configuration represents Embra being
used as a workload characterization tool. It is the same configura-
tion used in the validation presented in the following section. The
third configuration is Parallel Embra configured with one processor
per simulated processor, representing the fastest possible multipro-
cessor simulation using Embra.

The slowdown is presented as the ratio of the time to complete
the workload execution on Embra to the execution time on the na-
tive machine. Table 5.1 also presents Embra’s simulation speed as
millions of workload instructions simulated per second (MIPS) and
the percentage of the simulator execution time spent in the transla-
tion cache (%TC). %TC is correlated with performance because
Embra is fastest when executing its translations.

Table 5.1 shows that Embra in its fastest configuration can
simulate uniprocessor machines at a rate of over 20 million instruc-
tions per second, a slowdown of less than a factor of four from the
native execution. This makes it the fastest reported machine simu-
lator capable of running a commercial operating system and appli-
cations. In fact, Embra running on start-of-the-art machines in our
lab can execute workloads as fast or faster than previous generation
machines still in use in our lab.

A more detailed look at Table 5.1 shows that the uniprocessor
workload slowdown and instruction execution speed of the base
Embra simulator is dependent on the behavior of the workload.
052.alvinn and 056.ear, taken from the SPEC92 benchmark suite,
are floating point intensive and see less slowdown than the other,
chiefly integer, benchmarks. Embra makes minimal use of floating
point registers so the registers of the underlying machine can be
dedicated for use by the translated code, reducing traffic to the sim-
ulated register file. Dedicated registers and the low exception rates

Native Embra Embra w/caches Parallel Embra
Time Perf MIPS %TC Perf MIPS %TC Perf

Uniprocessor workloads n/a

052.alvinn 94 sec 3.5x 20.0 97% 7.9x 9.1 60%
056.ear 163 sec 5.2x 12.4 94% 6.6x 9.9 94%
023.eqntott 14.4 sec 5.9x 13.4 90% 18.9x 5.3 54%
008.espresso 30.7 sec 8.7x 11.1 92% 12.1x 8.0 86%
MAB 19.2 sec 8.9x 5.6 81% 20.5x 3.1 66%
Multiprocessor (4 CPU) workloads
ocean -r5000 -t40800 12.0 sec 12.8x 8.1 83% 94.3x 4.4 42% 7.3x
raytrace teapot.env 8.1 sec 13.1x 7.4 94% 81.4x 6.7 72% 4.6x
radix -n2621440 -m5242880 10.9 sec 13.2x 10.8 71% 121.9x 4.7 46% 6.2x
MAB pmake -J4 6.7 sec 38.1x 5.8 83% 221.0x 3.6 63% 9.8x

Table 5.1. Embra simulation speed
For each application we report the native execution time (wall clock times obtained using the shell’s timer, best of five trials), the
Embra slowdown (Perf), millions of simulated instructions per second (MIPS), and fraction of the Embra execution time spent in the
translation cache (%TC). We report these numbers for base Embra, Embra with cache modeling, and Parallel Embra. An SGI Chal-
lenge machine with four MIPS-R4400 processors running at 150 MHz was used for the tests. IRIX 5.3 was used as the operating
system for both the Challenge and for all the simulated workloads. The workload names starting with a number are from the SPEC92
suite[Dixit92]. The MAB workload is the Modified Andrew Benchmark [Ousterhout90], while the MAB pmake is a slightly modified
form of the MAB (described in [Rosenblum95a]). The other multiprocessor workloads are taken from the Splash benchmark
suite[Woo95]. Those applications run with settings different from the default have their arguments shown.

of these workloads, reflected by the large percentage of time spent
in the translation cache, accounts for their speed.

Embra shows larger slowdowns for applications that make
heavy use of machine features simulated in support routines rather
than translated code. The uniprocessor Modified Andrew Bench-
mark (MAB in Table 5.1) is the most complicated workload pre-
sented. It contains over ninety processes being created and
destroyed, and frequent traps into the operating system for system
calls, TLB misses, and interrupt handling. The simulation of these
traps by C language support routines results in the instruction sim-
ulation speed dropping to around 5 MIPS and the overall slowdown
increasing to a factor of 9. The cache and TLB activity of the host
machine, as examined in the next section, also contributes to the
larger slowdown for MAB. Nevertheless, being within factor of ten
of the real machine allows Embra’s user to interact with the simu-
lated workload as they would on the real machine. This feature is of
particular value for operating system development and testing.

Table 5.1 also shows the effectiveness of Embra’s customized
translations at efficiently modeling the details of workload behav-
ior. For the uniprocessor workloads, Embra can add accurate TLB
and cache simulation for less than a factor of three over the base
configuration. For workloads that have high cache hit rates and low
exception rates (like the 056.ear benchmark), the fast cache hit pro-
cessing of Embra allows cache modeling with a 25% slowdown.

For workloads with a high cache miss rate like the MAB
benchmark, the more accurate modeling increases the slowdown by
a factor of 2.3. The reduced performance, and reduced %TC, is due
to the overhead of handling cache and TLB misses in C support rou-
tines.

When modeling a four CPU shared-memory multiprocessor
using a single Embra process, Table 5.1 shows slowdowns ranging
from less than a factor of 15 for the parallel Splash applications to
a factor of 38 for the multiprogrammed workload of the parallel
MAB. Intuitively, we expect the simulation of a 4-CPU system us-
ing a single native CPU to experience a slowdown of at least 4 times
relative to the uniprocessor case. However, when Embra simulates
multiple processes in a single process, significant translation and
chaining work is shared among the processors, so Embra can do
better than linear slowdown. Thus we see parallel applications with
better per CPU performance than any uniprocessor application.

Page 9

MAB pmake provides an interesting comparison between the
uniprocessor and multiprocessor versions because the two versions
are similar. Embra adds only 7% overhead above the obvious 4x
slowdown for simulating four processors using a single real proces-
sor. With a large 6000 cycle processor interleaving timeslice, Em-
bra is close to linear slowdown in the number of processors.

By going to Parallel Embra, with each CPU simulated by a real
CPU, the slowdowns for multiprocessor simulation almost match
those of the uniprocessor workloads. Even for the complex multi-
processor MAB, Parallel Embra slowdown is less than a factor of
10. The cost of this speed increase is a lost of accuracy and deter-
minism making Parallel Embra more useful for positioning work-
loads and operating system development than for detailed workload
characterization.

Accurately modeling multiprocessors requires caches and a
tight, 80 cycle processor interleaving. These requirements greatly
increase the simulation overheads when compared to fast multipro-
cessor simulation of base Embra and Parallel Embra. The short
timeslices result in more realistic processor interleavings but they
increase the overheads due to processor switching. In addition, the
modeling of a multiprocessor memory system requires that Embra
maintain cache coherence between the processors and provide a
timing model for cache misses. These overheads can be seen in the
reduction of the percentage time spent in the translation cache.

These factors still do not fully explain the multiprocessor Em-
bra with caches slowdowns. Embra’s large data structures are caus-
ing memory and TLB stalls. This overhead is described and studied
in the following section.

5.2 Self-hosting studies
In implementing Embra we made several design decisions that

lower instruction counts at the expense of using large regions of vir-
tual memory. These decisions put pressure on the memory system
of the machine running Embra. For example, the loads used to ac-
cess the vQC array may take close to 1 cycle if the machine’s cache
and TLB hit rate is high. Otherwise these loads could stall for tens
of cycles, greatly reducing the speed of the check.

To better understand Embra’s speed on current generation ma-
chines and to see how it responds to larger caches, we used Embra
and the other CPU simulators of SimOS to study Embra itself. We
use Embra to boot the operating system and start an “inner Embra”
running on it. Once positioned, we used the more detailed simula-
tors in SimOS to model two different machine configurations run-
ning the inner Embra. The first configuration represents a machine
available today, and it is close in specifications to the machine used

1995 1996

L1 Cache (I) 16 KB, 2-way,
16 byte lines

32 KB, 2-way,
64 byte lines

L1 Cache (D) 16KB, 2-way,
16 byte lines

32 KB, 2-way,
64 byte lines

L2 Cache (U) 1 MB, 1-way,
128 byte lines

4 MB, 1-way,
128 byte lines

L1 Miss 50 ns
L2 Miss 500 ns

Table 5.2. 1995 and 1996 machine model cache
parameters
Two machine models are used to study Embra’s execution behav-
ior. The 1995 machine is modelled after the MIPS R4400-based
machines like the SGI Indy workstation running at 200 MHz. It
has a split primary (L1) instruction and data cache each 16K and a
large 1MB unified secondary cache. The 1996 machine has the
same clock speed and pipeline as the 1995 model except that it
uses the cache hierarchy of the next generation MIPS processors,
the MIPS R10000. The primary caches increase to 32KB and the
L2 cache increases to 4MB.

to measure Embra’s slowdown in Section 5.1. The second configu-
ration has the same processor with a more aggressive cache hierar-
chy which will be available in the near future. Figure 5.2 presents
the machine characteristics in detail.

SimOS allows us to examine the execution time breakdown of
Embra, including the memory system behavior. Figure 5.3 shows
this breakdown for Embra simulating a make (part of the MAB
benchmark from Section 5.1) on a uniprocessor and the parallel
make (the multiprocessor version of the MAB) on a 4-CPU multi-
processor using the two machine models specified in Table 5.2. Re-
sults are presented for Embra configurations both with and without
cache modeling.

On current machines (1995 model), Figure 5.3 shows Embra
spending only about around 40% of its execution time actually ex-
ecuting instructions. The rest of the time is spent stalled on cache
misses or TLB misses (these appear as kernel execution and stall
time because the MIPS TLB reload is done by an IRIX trap han-
dler). Most of the waiting time is due to primary instruction cache
misses, which account for almost 40% of the overall execution. Ex-
cept for modeling multiple processors with caches, these stall
breakdowns are consistent across the different configurations with

FIGURE 5.1. Execution time breakdown of Embra
running on the two machine models.
This graphs shows the execution time breakdown of Embra simulat-
ing the MAB workload running on the two machine models. Each
bar reaks down the execution time of a run in which Embra executed
400 million instructions (so times are comparable). Bars labeled 95
were run on the 1995 model while those labelled 96 were run on the
1996 model. Experiments include Embra running uniprocessor
without caches (PU), Embra uniprocessor with caches (CU), Embra
4-CPU multiprocessor without caches (PM) and Embra 4-CPU mul-
tiprocessor with caches (CM). The execution time is further divided
into kernel mode instruction execution (KInstr), kernel mode mem-
ory stall (Kstall), user mode instruction execution (UInstr), and user
mode memory stall. The latter is broken down into stall from prima-
ry instruction cache (UIL1Stall), stall from secondary unified cache
(UIL2Stall), and user data stall (UDStall). The numbers in the bars
are the portion’s percentage of the total execution time.

PU95 PU96 CU95 CU96 PM95PM96 CM95CM96

Embra memory system performance

0

2

4

6

8

E
xe

cu
ti

on
 T

im
e

(s
)

38

41

16

69

35

37

15

60

12

10

37

37

15

63

33

16

26

15

47

29

UDStall
UIL2Stall
UIL1Stall
UInstr
KStall
KInstr

Page 10

the modeling of uniprocessor caches and multiprocessors without
caches having similar breakdowns.

The high instruction cache stall means that the large amount of
code generated by Embra is causing performance problems. Al-
though the locality of original workload’s code may be good, ex-
pansion due translation makes Embra’s version unable to fit in the
16K instruction cache. The relatively small contribution to the exe-
cution time of second level (L2) stall implies that although the
translations do not fit in the primary cache they do fit in the 1MB
secondary cache.

A striking trend visible in Figure 5.3 is Embra’s performance
improvement on machines with larger caches. Moving from the
16KB caches of the R4000 to the 32KB caches which will be avail-
able on the next-generation MIPS R10000 reduces the instruction
stall to less than 20% of the execution time. With these caches the
user instruction execution time jumps to between 60% and 70% of
the overall execution time. This translates into a nearly 50% perfor-
mance gain for Embra when running with larger caches. Although
Embra’s performance is hurt by cache miss stall time on current ma-
chines, the larger caches of next generation machines should help
alleviate the problem for the studied workloads.

Figure 5.3 also helps explain some of the larger slowdown
numbers presented in the previous section. Unlike the other runs,
the 4-CPU simulation with cache modeling has a significant
amount of data cache stall. Added on top of the instruction cache
stall, this results in only a quarter of the execution time being spent
actually executing Embra instructions. The source of this data stall
is spread fairly evenly across the major data structures of Embra in-
dicating that the data working set size has simply grown too large
for the 1MB second level cache.

The data working set of the MP cache run does fit in the larger
secondary cache of the 1996 model as evidenced by the dramatic re-
duction in data stall time. The MP cache run on the 1996 model
shows that the percentage of time spent executing user instruction
doubles from the 1995 model. Unfortunately, the processor is still
only executing Embra instructions half the time. The chief bottle-
neck here is actually TLB misses which appear as kernel execution
and stall because the MIPS TLB reload is done by an IRIX trap han-
dler. Unless TLBs are able to map more virtual address space in the
future, Embra techniques, such as the vQC, which use large regions
of virtual memory may have their performance suffer from TLB
miss processing.

6 Validation and Accuracy
In this section we present the results of studying the accuracy

of Embra. Although it would have been desirable to present a com-
parison of Embra and some real machine as was done in
[Bedicheck95], Embra does not attempt to precisely model any par-
ticular machine. Furthermore, the information Embra can generate
such as cache miss and instruction counts is not normally available
on a real machine. Instead we compare Embra with a simulator that
has a similar machine model but uses a more traditional implemen-
tation method. Our experience with Embra has indicated that accu-
racy features that can be incorporated into a traditional simulator
can also be incorporated into Embra without extreme cost.

We compare Embra with a more detailed simulator in SimOS
called Mipsy. Mipsy is structured as a more conventional C pro-
gram that simulates instruction execution using a simple fetch, de-
code, and execution loop. We configured Mipsy to model the same
single cycle pipeline and single level cache hierarchy used in Em-
bra and compared the statistics reported by the two simulators when
running the same workload. We compared counts of instructions,
cache misses, OS traps, and the average disk latency. We use the Si-
mOS annotation mechanism to attribute this information to differ-
ent workload states (user mode, kernel mode, or idle).

The comparison shows that Embra generated statistics that are
very close to those generated by much slower, traditional machine
simulator. Since the Mipsy statistics have been validated against a
real machine [Rosenblum95a], the comparison builds confidence
that statistics measured using Embra are correct.

6.1 Uniprocessor validation
The validation workloads are chosen from [Rosenblum95a]

because their memory system and operating system behavior is
more complex than either the SPEC92 or the Splash benchmarks.
The workloads are described in detail in [Rosenblum95a]. The pro-
gram development workload consists of a parallel make of the mod-
ified Andrew benchmark. The database workload consists of
Sybase running a modified form of TPC-B. Table 6.1 shows that
most of Embra’s statistics are within 1% of Mipsy’s with the worst
case being within 2%. We also looked at more detailed statistics,
such as the average length in cycles of each of the different IRIX
system calls used in the workloads, and found them to also match.
For machine configurations that it can model, Embra can generate
the same results as a more conventional implementation an order of
magnitude faster.

6.2 Multiprocessor validation
Multiprocessor validation is more subtle than the uniprocessor

case. The basic problem is that even simple statistics, such as the
number of executed instructions, or the number of cache misses,

Program Development Database
Mipsy Embra Diff Mipsy Embra Diff

Workload Time (sec) 6.91 6.92 0.14% 6.53 6.56 0.05%
User Instructions 867032832 867777926 0.09% 163096576 166349727 1.99%
Kernel Instructions 85265664 85444791 0.21% 125053184 123438636 -1.29%
Idle Instructions 251906304 252412708 0.20% 763804672 770374261 0.86%
Data Cache Misses 924844 918413 -0.70% 1302177 1298654 -0.27%
Instruction Cache Misses 862080 861897 -0.02% 1234248 1227044 -0.58%
Data Misses User/Kern 47.56%/52.44% 46.87% 53.13% ±0.69% 63.18%/36.82% 63.19%/36.81% ±0.01%
Instr Misses User/Kern 76.29%/23.71% 76.40% 23.59% ±0.11% 70.47%/29.49% 70.53%/29.44% ±0.05%
TLB Read Miss Exception 699625 703282 0.52% 3072758 3083989 0.37%
TLB Write Miss Exception 54371 54666 0.54% 246928 245175 -0.71%
Avg Disk Latency (ms) 7.864 7.740 1.58% 2.950 2.945 0.02%
Simulation Time (secs) 6159 393 15.7x 12022 637 18.8x

Table 6.1. Embra uniprocessor simulation validation for program development and database workloads
Embra is compared against Mipsy, a machine simulator implemented as a conventional C program. The table shows that Embra can gen-
erate the same information, and the same breakdown of that information, an order of magnitude faster than traditional simulators.

Page 11

can be greatly effected by the precise timing of the system. The use
of spin locks, other busy waiting methods, and MIPS wait free syn-
chronization primitives means that a slight change in the arrival
time of an event could change the execution of hundreds or thou-
sands of instructions as well as affecting the number and distribu-
tion of both data and instruction misses.

Table 6.2 presents the comparison of Mipsy and Embra run-
ning a 4 CPU parallel make workload. Most of the counts generated
by the two simulators agree within 1%, with the disk and idle time
within 6% due to a difference in the way the simulators deliver de-
vice interrupts. Embra generated its statistics nearly an order of
magnitude faster.

7 Related Work
 Embra draws on two areas of current computer systems re-

search—fast simulators and binary translation. Binary translation is
a technique used to construct fast simulators, but it is also useful for
other types of problems such as software fault isolation[Wahbe93].

7.1 Fast Simulators
 The Shade simulator from Sun is a fast, cross architectural, in-

struction set simulator which uses dynamic translation of binary
code. Its influence on Embra has been discussed. Shade’s main op-
timizations are driven by its cross-architectural nature, for instance
it tries to balance register usage when the host and target architec-
tures have different numbers of registers. Its basic assumption is
that user-provided analysis functions will dominate execution time,
so the Shade designers did not extensively optimize the translations
or the simulator itself. Embra has a single function—to provide a
hardware model detailed enough to run a workload and measure its
properties. As such it can be very carefully performance tuned for
instruction set interpretation and memory system modeling.

Bedichek [Bedicheck90] and Magnusson [Magnusson93]
present complete machine simulators that have focused on execu-
tion speed. These simulations have sufficient detail to run arbitrary
workloads and can be used for studying system behavior. The fast-
est of them is still a factor of 20 times slower than real time. Embra
can be nearly seven times faster than these simulators while match-
ing their level of detail.

Talisman [Bedicheck95] is a fast simulator that uses threaded
code to do fast system simulation. Talisman is an impressive system
because it models supervisor mode, and it achieves timing accuracy
relative to a hardware prototype. The validation runs rely on several

pmake mab
Mipsy Embra Diff

Time (s) 13.2 13.5 1.95%
User Instrs 867165952 867814536 0.07%
Kernel Instrs 107628032 106895065 -0.68%
Idle Instrs 1028142080 1085801589 5.61%
Data $ Miss 4757166 4700457 -1.19%
Instr $ Miss 1697353 1696029 -0.08%
D$Miss U/K 36.48%/63.51% 37.32%/62.67% ±0.84%
I$Miss U/K 86.89%/13.09% 86.46%/13.52% ±0.43%
TLB RMiss 700349 699854 -0.07%
TLB WMiss 54920 54584 -0.61%
Av. Disk(ms) 10.279 10.908 6.12%
Sim Time 10432 1481 7.1x

Table 6.2. Embra multiprocessor simulation validation
for 4 processor MAB pmake
Embra is compared with Mipsy for a multiprocessor simulation.
While the vagarities of multiprocessor simulation are many, most
of the final statistics match to within 1%, and Embra generated
them much faster. Time is in seconds; U stands for user, K for ker-
nel and $ for cache.

micro-benchmarks that help isolate system components, but does
not necessarily give an accurate picture of the system under load.
While Talisman models supervisor mode, it does not execute a full
OS kernel. Instead, it runs a subset of Intel’s NX message passing
library. Finally, Talisman models a multicomputer which signifi-
cantly simplifies the timing model of the simulator (e.g. register in-
terlocks can be modeled by incrementing the cycle count). On
shared memory multiprocessors, every memory access acts as an
implicit time stamp, making timing accuracy far more complicated.

 Peter Magnusson branched off from Bedicheck’s work and
has been developing a fast SPARC system level simulator. His sim-
ulation system also deals with the complexities of MMU address
translation and physical memory. However, recently Magnusson
[Magnusson95] avoids running an operating system by emulating
system calls.

Some fast simulation techniques rely on some form of direct
execution of the workload. These are not simulators in the same
class as Embra because they do not simulate all parts of the execu-
tion of the workload, and therefore always lack the ability to collect
some specific data. The Wisconsin Wind Tunnel [Reinhardt93] uses
techniques to directly execute shared memory programs on a CM-
5. While this technique achieves great speed, it is not as flexible as
binary translation, requires an expensive host machine, and can not
obtain information about cache hits. Similarly trap driven simula-
tion [Uhlig93] uses direct execution to speed simulation, and it also
suffers the same problems of inflexibility and inability to gather
some information. Binary translation allows a gradual transition
where simulation time increases as more data is gathered.

Embra is fast enough to use as a positioning tool for large
workloads, obviating the need for hardware positioning. Embra’s
vQC is similar to the table lookup used by the Fast-Cache simulator
[Lebeck95]. Embra’s performance is close to Fast-Cache’s, even
though Fast-Cache simulates a uniprocessor cache without TLB in-
formation for user level programs only.

7.2 Binary Translation
Dynamic code generation and binary to binary translation is a

growing area of computer science research. Software fault isolation
showed how rewriting binaries statically can provide efficient pro-
tection domains. It uses some techniques similar to those in Embra
to insure that jumps stay within fault domains, and that code does
not loop forever. Some operating systems like Synthesis
[Massalin92] have used dynamic code generation to efficiently im-
plement system functionality. More recent experimental operating
systems, like the Exokernel [Engler95], are also using code gener-
ation to implement system services. [Engler96] describes exten-
sions to the C language to support dynamic code generation.

While the details of the nature and extent of code generation
used for the above tasks differ, all tasks share concerns about the
quality of code that must be generated quickly and that code’s in-
struction cache performance. Our study has shown that as caches
get larger, code generation and binary instrumentation will become
an even more attractive technique.

7.3 Static vs. Dynamic Translation
Our decision to use dynamic rather than static translation for

simulating the CPU and instrumenting the workload code differs
from the decision made by many of the user-level simulation plat-
forms such as ATOM [Srivastava94]. In fact, a static translator
could generate code that runs faster than the code generated by our
dynamic translator because its translation cost is not part of the ap-
plication running time.

 The dynamic scheme provides us with a number of advantag-
es when simulating entire workloads. Dynamic production of code
translations allows the degree of instrumentation to be changed at
run time. This enables us to totally remove the overhead of the in-
strumentation during uninteresting parts of the workload and add it

Page 12

back when it is needed. Additionally, dynamic production of these
code translations are essential to an OS simulation environment
where new code can be generated by compilers, or read in from disk
or from the network. Static instrumentation becomes burdensome
when studying the behavior of large, complex systems. We current-
ly boot our simulation system from a replica of the distribution disk
of a system containing many hundreds of megabytes of binaries. Fi-
nally, static instrumentation schemes have trouble with events that
are common in full system workloads, such as dynamically-linked
libraries and self-modifying or self-generated code (like Embra it-
self).

8 Conclusion
We have presented the design and measured the performance

and accuracy of Embra, a uniprocessor and cache-coherent multi-
processor machine simulator. From our experience with building,
performance tuning, and using Embra over the last year, we have
concluded the following:
• A high speed machine simulator, such as Embra, is an invalu-

able tool for developing and studying complex systems, such as
general-purpose machines and modern operating systems. It has
enabled us to perform studies on these systems that we would
not have attempted without Embra’s speed.

• Dynamic binary translation is a useful technique for building a
machine simulator that is both fast and accurate. Embra can run
arbitrary workloads (including large, complex systems such as a
commercial relational database system running on Unix) faster
than any reported machine simulator. Embra’s uniprocessor
cache simulation statistics match a more traditionally imple-
mented reference simulator to within 1%. Many statistics for
the more complicated case of multiprocessors also match within
about 1%.

• Dynamic binary translation allows Embra to give the user
control over the speed versus modeling-detail trade-off—a
trade-off traditionally built into the simulator. Rather than
having only one speed and a fixed level of simulation detail,
Embra provides the flexibility, through customized translations,
to change this trade-off even in the middle of a simulation run.

• Sparse data structures can be used in dynamically generated
code to implement fast simulation of MMU and cache checks.
This trade-off between the code size and virtual address space
size is a performance win for current machines but it does put
pressure on the memory system and the TLB. The larger caches
of future machines appear to help the memory system signifi-
gantly. The TLB may continue to be a problem.

Embra started as a project to explore the use of dynamic binary
translation for fast machine simulation. We found it to be well suit-
ed for this task. We believe that dynamic code generation has a
bright future in high performance computing.

9 Acknowledgments
Primary kudos to Edouard Bugnion whose keen eye for data

and general volubility proved instrumental to this paper’s creation.
Greg Ganger, John Chapin, Matt Frank, and Peter Magnusson all
made detailed and interesting comments on various drafts. Thanks
to big Ben Verghese in the network department, Steve Herrod, for
his Las Vegas legacy, Dan Teodosiu, Scott Devine, Roy Goldman,
Robert Bosch, Debby Wallach, Eddie Kohler, Helga Beck, and Dan
Yaverbaum. Special thanks to Frans Kaashoek and the MIT Lab for
Computer Science for supporting Emmett while he finished this
work.

Funding for this research was provided by NSF grant CCR-
9257104-03 and by ARPA grant DABT63-94-C-0054.

10 References
[Bedicheck90] Robert Bedichek. Some Efficient Architecture

Simulation Techniques, Winter 1990 Usenix Technical
Conference, Jan, 1990.

[Bedicheck95] Robert C. Bedicheck. Talisman: Fast and Accurate
Multicomputer Simulation, In SIGMETRICS, Ottawa, Ontario,
Canada, May, 1995.

[Chapin95] John Chapin, Mendel Rosenblum, Scott Devine,
Tirthankar Lahiri, Dan Teodosiu, and Anoop Gupta. Hive:
Fault Containment for Shared-Memory Multiprocessors.
SOSP, Colorado, 1995.

[Cmelik94] Robert F. Cmelik and David Keppel. Shade: A Fast
Instruction Set Simulator for Execution Profiling,
SIGMETRICS, Nashville, TN, 1994.

[Dixit92] Kaivalya M. Dixit. New CPU Benchmark Suites from
SPEC, 37th Annual IEEE International Computer Conference
— COMPCON Spring ‘92, San Francisco, CA, Feb. 1992.

[Engler95] Dawson R. Engler, M. Frans Kaashoek, and James
O’Toole Jr., Exokernel: An Operating System Architecture for
Application-Level Resource Management, SOSP, Colorado,
1995.

[Engler96] Dawson R. Engler, Wilson C. Hsieh, and M. Frans
Kaahsoek. `C: A Language for High-Level, Efficient, and
Machine-independent Dynamic Code Generation. POPL, St.
Petersburg, FL, 1996.

[Hastings91] R. Hastings, B. Joyce. Purify: fast detection of
memory leaks and access errors, Proceedings of the Winter
1992 USENIX Conference, Berkeley, CA, 1991, pages 125-36.

[Lenoski92] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber,
A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. The
Stanford DASH Multiprocessor. IEEE Computer 25(3):63-79,
March 1992.

[Magnusson93] Peter Magnusson. A Design For Efficient
Simulation of a Multiprocessor, MASCOTS `93 -Proceedings
of the 1993 Western Simulation Multiconference on
International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, La
Jolla, California, January 1993.

[Magnusson95] Peter Magnusson and Bengt Werner. Efficient
Memory Simulation in SimICS, 28th Annual Simulation
Symposium, Phoenix, April 1995.

[Massalin92] Henry Massalin. Synthesis: An Efficeint
Implementation of Fundamental Operating System Services,
Ph.D. Thesis, Columbia University 1992.

[Ousterhout90] John Ousterhout. Why Aren’t Operating Systems
Getting Faster as Fast as Hardware?, In Proceedings of the
Summer 1990 USENIX Conference, pp. 247-256, June 1990.

[Lebeck95] Alvin R. Lebeck, David A Wood. Active Memory: A
New Abstraction for Memory-System Simulation,
SIGMETRICS, Ottawa, Ontario, Canada, 1995.

[Reinhardt93] Steven K. Reinhardt, Mark D. Hill, James R.
LarPrototypingus, Alvin R. Lebeck, James C. Lewis, and
David A. Wood. “The Wisconsin Wind Tunnel: Virtual
Prototyping of Parallel Computers,” SIGMETRICS, Santa
Clara, CA, 1993.

[Rosenblum95a] Mendel Rosenblum, Edouard Bugnion, Stephen
A. Herrod, Emmett Witchel, and Anoop Gupta. The Impact of
Architectural Trends on Operating System Performance.
SOSP, Colorado, 1995.

[Rosenblum95b] Mendel Rosenblum, Steven A. Herrod, Emmett
Witchel, and Anoop Gupta. Complete Computer System
Simulation: The SimOS Approach. IEEE Parallel and
Distributed Technology, Fall 1995.

[Srivastava94] Amitabh Srivastava and Alan Eustace. ATOM: a
system for building customized program analysis tools,
SIGPLAN Notices , June 1994, vol.29, no.6, pages 196-205.

[Uhlig94] Richard Uhlig, David Nagle, Trevor Mudge and Stuart
Sechrest. Trap-driven Simulation with Tapeworm II, ASPLOS,
San Jose, 1994.

[Wahbe93] R. Wahbe, S. Lucco, T. Anderson, and S. Graham.
Efficient Software-Based Fault Isolation.” SOSP, December
1993.

[Woo95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2
Programs: Characterization and Methodological
Considerations. Proceedings of the 22nd ISCA, Santa
Margherita Ligure, Italy, June 1995.

