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Abstract

Computer systems are rapidly changing. Over the next few years,
we will see wide-scale deployment of dynamically-scheduled
processors that can issue multiple instructions every clock cycle,
execute instructions out of order, and overlap computation and
cache misses. We also expect clock-rates to increase, caches to
grow, and multiprocessors to replace uniprocessors. Using SimOS,
a complete machine simulation environment, this paper explores
the impact of the above architectural trends on operating system
performance. We present results based on the execution of large
and redlistic workloads (program development, transaction
processing, and engineering compute-server) running on the IRIX
5.3 operating system from Silicon Graphics Inc.

Looking at uniprocessor trends, we find that disk 1/0 is the
first-order bottleneck for workloads such as program devel opment
and transaction processing. Its importance continues to grow over
time. Ignoring 1/O, we find that the memory system is the key bot-
tleneck, stalling the CPU for over 50% of the execution time. Sur-
prisingly, however, our results show that this stall fraction is
unlikely to increase on future machines due to increased cache
sizes and new latency hiding techniques in processors. We also
find that the benefits of these architectural trends spread broadly
across amajority of the important services provided by the operat-
ing system. We find the situation to be much worse for multipro-
cessors. Most operating systems services consume 30-70% more
time than their uniprocessor counterparts. A large fraction of the
stalls are due to coherence misses caused by communication
between processors. Because larger caches do not reduce coher-
ence misses, the performance gap between uniprocessor and multi-
processor performance will increase unless operating system
developers focus on kernel restructuring to reduce unnecessary
communication. The paper presents a detailed decomposition of
execution time (e.g., instruction execution time, memory stall time
separately for instructions and data, synchronization time) for
important kernel servicesin the three workloads.

1 Introduction

Users of modern computer systems expect the operating system to
manage system resources and provide useful services with
minimal overhead. In reality, however, modern operating systems
are large and complex programs with memory and CPU
requirements that dwarf many of the application programs that run
on them. Consequently, complaints from users and application
developers about operating system overheads have become
commonplace.

The operating system developer’s response to these complaints
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has been an attempt to tune the system to reduce the overheads.
The key to thistask is to identify the performance problems and to
direct the tuning effort to correct them; a modern operating system
isfar too large to aggressively optimize each component, and mis-
placed optimizations can increase the complexity of the system
without improving end-user performance. The optimization task is
further complicated by the fact that the underlying hardware is
constantly changing. As aresult, optimizations that make sense on
today’s machines may be ineffective on tomorrow’s machines.

In this paper we present a detailed characterization of a mod-
ern Unix operating system (Silicon Graphics IRIX 5.3), clearly
identifying the areas that present key performance challenges. Our
characterization has severa unique aspects: (i) we present results
based on the execution of large and realistic workloads (program
development, transaction processing, and engineering compute-
server), some with code and data segments larger than the operat-
ing system itself; (ii) we present results for multiple generations of
computer systems, including machines that will likely become
available two to three years from now; (iii) we present results for
both uniprocessor and multiprocessor configurations, comparing
their relative performance; and finaly (iv) we present detailed per-
formance data of specific operating system services (e.g. file 1/0,
process creation, page fault handling, etc.)

The technology used to gather these results is SSmOS [11], a
comprehensive machine and operating system simulation environ-
ment. SImOS simulates the hardware of modern uniprocessor and
multiprocessor computer systems in enough detail to boot and run
a commercial operating system. SImOS also contains features
which enable non-intrusive yet highly detailed study of kernel exe-
cution. When running IRIX, SimOS supports application binaries
that run on Silicon Graphics machines. We exploit this capability
to construct large, realistic workloads.

Focusing first on uniprocessor results, our data show that for
both current and future systems the storage hierarchy (disk and
memory system) is the key determinant of overall system perfor-
mance. Given technology trends, we find that /O is the first-order
bottleneck for workloads such as program development and trans-
action processing. Consequently, any changes in the operating sys-
tem which result in more efficient use of the I/O capacity would
offer the most performance benefits.

After 1/O, it is the memory system which has the most signifi-
cant performance impact on the kernel. Contrary to expectations,
we find that future memory systems will not be more of a bottle-
neck than they are today. Although memory speeds will not grow
as rapidly as instruction-processing rates, the use of larger caches
and dynamically-scheduled processors will compensate.

We find that on future machines, kernel performance will
improve as fast as application program performance resulting in
kernel overheads remaining relatively the same in the future. The
important services of the kernel tend to benefit equally from
improvements in execution speed so their relative importance
remains unchanged in the future.

Looking a small-scae shared-memory multiprocessors,
another likely architectural trend, we observe that the memory sys-
tem behavior becomes even more important for overall perfor-



mance. We find that extra memory stall corresponding to
communication between the processors (coherency cache misses)
combined with synchronization overheads result in most multipro-
cessor operating system services consuming 30% to 70% more
computational resources than their uniprocessor counterparts.
Because larger caches do not reduce coherence misses, the perfor-
mance gap between uniprocessor and multiprocessor performance
will increase unless operating system developers focus on kernel
restructuring to reduce unnecessary communication.

The rest of the paper is organized as follows. Section 2 pre-
sents our experimental environment, including SimOS, workloads,
and data collection methodologies. Section 3 describes the current
and future machine models used in this study. Sections 4 and 5
present the experimental results for the uniprocessor and multipro-
cessor models. Finally, Section 6 discusses related work and Sec-
tion 7 concludes.

2 Experimental Environment

In this section, we present the SimOS environment, describe our
data collection methodology, and present the workloads used
throughout this study.

2.1 The SmOS Simulation Environment

SiImOS [11] is a machine simulation environment that simulates
the hardware of uniprocessor and multiprocessor computer
systems in enough detail to boot, run, and study a commercial
operating system. Specifically, SimOS provides simulators of
CPUs, caches, memory systems, and a number of different I/O
devicesincluding SCSI disks, ethernet interfaces, and a console.

The version of SImOS used in this study models the hardware
of machines from Silicon Graphics. As a result, we use Silicon
Graphics' IRIX 5.3 operating system, an enhanced version of
SVR4 Unix. This version of IRIX has been the subject of much
performance tuning on uniprocessors and on multiprocessors with
as many as 36 processors. Although the exact characterization that
we provide is specific to IRIX 5.3, we believe that many of our
observations are applicable to other well-tuned operating systems.

Although many machine simulation environments have been
built and used to run complex workloads, there are a number of
unique features in SImOS that make detailed workload and kernel
studies possible:

Multiple CPU simulators. In addition to configurable cache and
memory system parameters typicaly found in simulation
environments, SimOS supports a range of compatible CPU
simulators. Each simulator has its own speed-detail trade-off. For
this study, we use an extremely fast binary-to-binary trandation
simulator for booting the operating system, warming up the file
caches, and positioning a workload for detailed study. This fast
mode is capable of executing workloads less than 10 times slower
than the underlying host machine. The study presented in this
paper uses two more detailed CPU simulators that are orders of
magnitude slower than the fastest one. Without the fastest
simulator, positioning the workloads would have taken an
inordinate amount of time. For example, booting and configuring
the commercial database system took severa tens of billion of
instructions which would have taken several months of simulation
time on the slowest CPU simulator.

Checkpoints. SImOS can save the entire state of its simulated
hardware at any time during a simulation. This saved state, which
includes the contents of al registers, main memory, and I/O
devices, can then be restored at a later time. A single checkpoint
can be restored to severa different machine configurations,
allowing the workload to be examined running on different cache
and CPU parameters. Checkpoints allow us to start each workload
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a the point of interest without wasting time rebooting the
operating system and positioning the applications.

Annotations. To better observe workload execution, SimOS
supports a mechanism called annotations in which a user-specified
routine is invoked whenever a particular event occurs. Most
annotations are set like debugger breakpoints so they trigger when
the workload execution reaches a specified program counter
address. Annotations are non-intrusive. They do not effect
workload execution or timing, but have access to the entire
hardware state of the simulated machine.

2.1.1 Data Collection

Because SimOS simulates all the hardware of the system, avariety
of hardware-related statistics can be kept accurately and non-
intrusively. These statistics cover instruction execution, cache
misses, memory stall, interrupts, and exceptions. The simulator is
also aware of the current execution mode of the processors and the
current program counter. However, this does not provide
information on important aspects of the operating system such as
the current process id or the service currently being executed.

To further track operating system execution, we implement a
set of state machines (one per processor and one per process) and
one pushdown automaton per processor to keep track of interrupts.
These automata are driven by atotal of 67 annotations. For exam-
ple, annotations set at the beginning and end of the kernel idle loop
separate idle time from kernel execution time. Annotations in the
context switch, process creation, and process exit code keep track
of the current running process. Since they have access to all regis-
ters and memory of the machine, they can non-intrusively deter-
mine the current running process id and its name. Additional
annotations are set in the page fault routines, interrupt handlers,
disk driver, and at al hardware exceptions. These are used to
attribute kernel execution time to the service performed. Annota-
tions at the entry and exit points of the routines that acquire and
release spin locks determine the synchronization time for the sys-
tem, and for each individual spin lock.

Additionally, we maintain a state machine per line of memory
to track cache misses. These state machines allows us to report the
types of cache misses (i.e. cold, capacity, invalidation, etc.) and
whether the miss was due to interference between the kernel and
user applications. We also track cache misses and stall time by the
program counter generating the misses and by the virtual address
of the misses. This allows us to categorize memory stall both by
the routine and the data structure that caused it.

2.1.2 Simulator Validation

One concern that needs to be addressed by any simulation-based
study is the validity of the simulator. For an environment such as
SimOS, we must address two potential sources of error. First, we
must ensure that when moving the workloads into the simulation
environment we do not change their execution behavior.
Additionally, we must ensure that the timings and reported
statistics are correct. Establishing that SimOS correctly executes
the workload is fairly straightforward.

First, the code running on the real machine and SimOS are
basically identical. The few differences between the IRIX kernel
and its SimOS port are mostly due to the I/O device drivers that
communicate with SImOS' timer chip, SCSI bus, and ethernet
interface. This codeis not performance critical and tends to be dif-
ferent on each generation of computer anyway. All user-level code
is unmodified.

Because SSImOS simulates the entire machine, it's difficult to
imagine these complex workloads completing correctly without
performing the same execution as on the real machine. As further
validation of correct execution, we compare workloads running on
a Silicon Graphics POWER Series multiprocessor and a similarly



configured SImOS. At the level of the system call and other traps
recorded by IRIX, the counts were nearly identical, and the differ-
ences are easily accounted for.

A second potential source of error isin the environment's tim-
ing and the statistics collection. Thiskind of error is more difficult
to detect since it is likely the workload will continue to run cor-
rectly. To validate the timings and statistic reporting, we configure
SimOS to look like the one-cluster DASH multiprocessor used in a
previous operating system characterization study [2] and examine
the cache and profile statistics of a parallel compilation workload.
Statistics in [2] were obtained with a bus monitor, and are pre-
sented in Table 2.1. Although the sources of these statistics are
completely different, the system behavior is quite similar.

Execution profile Fraction of misses

Kernel User Idle in kernel mode
SmoS 25% 53% 22% 52%
Bus monitor [2] 24% 48% 28% 49%

TABLE 2.1. SmOS validation results.

We compare several coarse statistics from SimOS to a published operating
system characterization. Workload profiles match quite closely, and we
attribute the reduced idle time in SSmOS to a slightly more aggressive disk
subsystem.

The absence of existing systems with dynamically-scheduled
processors makes validation of the next-generation machine model
difficult. However, the workloads do execute correctly, producing
the same results as the single-issue CPU model. While these vali-
dation exercises are not exhaustive, they provide confidence in the
simulation environment by showing that SimOS produces results
comparable to earlier experiments

2.2 Workloads

Workload selection plays alarge part in exposing operating system
behavior. Our choice of workloads reflects a desire to investigate
redlistic applications found in a variety of computing
environments. The three workloads that we use represent program
development, commercial data processing, and engineering
environments. Each workload has a uniprocessor and an eight-
CPU multiprocessor configuration.

For each workload, we first boot the operating system and then
log onto the simulated machine. Because operating systems fre-
quently have significant internal state that accumulates over time,
running the workloads directly after booting would expose numer-
ous transient effects that do not occur in operating systems under
standard conditions. To avoid these transient effects, we ensure in
our experiments that kernel-resident data structures, such as the
file cache and file system name translation cache, are warmed up
and in a state typical of normal operation. We accomplish this
either by running the entire workload once, and then taking our
measurements on the second run, or by starting our measurements
once the workload had run long enough to initialize the kernel data
structures on its own.

Program Development Workload. A common use of today’s
machines is as a platform for program development. This type of
workload typically includes many small, short-lived processes that
rely significantly on operating system services. We use a variant of
the compile phase of the Modified Andrew Benchmark [10]. The
Modified Andrew Benchmark uses the gcc compiler to compile 17
files with an average length of 427 lines each. Our variant reduces
the final serial portion of the make to a single invocation of the
archival maintainer (we removed another invocation of ar as well
as the cleanup phase where object files are deleted).

For the uniprocessor case, we use a parallel make utility con-
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figured to allow at most two compilation processes to run at any
given time. For the eight-CPU multiprocessor case, we launch four
parallel makes, and each allows up to four concurrent compila
tions. Each make performs the same task as the uniprocessor ver-
sion, and on the average, we still maintain two processes per
processor. To reduce the 1/0O bottleneck on the /tmp directory, we
assign separate temporary directories (each on a separate disk
device) to each make.

Database Workload. As our second workload, we examine the
performance impact of a Sybase SQL Server (version 10 for SGI
IRIX) supporting a transaction processing workload. This
workload is a bank/customer transaction suite modeled after the
TPC-B transaction processing benchmark [4]. The database
consists of 63 Mbytes of data and 570 Kbytes of indexes. The data
and the transaction logs are stored on separate disk devices. This
workload makes heavy use of the operating system, specifically
inter-processor communication.

In the uniprocessor version of this workload, we launch 20 cli-
ent processes that request atotal of 1000 transactions from asingle
server. For the multiprocessor workload, we increase the number
of server engines to 6 and drive these with 60 clients requesting a
total of 1000 transactions. The database log is kept on a separate
disk from the database itself. The multiprocessor database is
striped across 4 disks to improve throughpui.

Engineering Workload. The final workload we use represents an
engineering development environment. Our workload combines
instances of a large memory system simulation (we simulate the
memory system of the Stanford FLASH machine [7] using the
FlashLite simulator) aong with verilog simulation runs (we
simulate the verilog of the FLASH MAGIC chip using the
Chronologics VCS simulator). These applications are not
operating system intensive because they do few system calls and
require few disk accesses, but their large text segments and
working sets stress the virtual memory system of the machine.
This workload is extremely stable, and so we examine just over
four seconds of execution.

The uniprocessor version runs one copy of FlashLite and one
copy of the VCS simulator. The multiprocessor version runs six
copies of each simulator.

3 Architectural Models

One of the primary advantages of running an operating system on
top of a machine simulator is that it is possible to examine the
effects of hardware changes. In this paper we use the capabilities
of SImOS to model severa different hardware platforms. This
section describes three different configurations which correspond
to processor chips that first shipped in 1994, and chips that are
likely to ship in 1996 and 1998. Additionally, we describe the
parameters used in our multiprocessor investigations.

3.1 Common Machine Parameters.

While we vary several machine parameters, there are others that
remain constant. All simulated machines contain 128 Mbytes of
main memory, support multiple disks, and have a single console
device. Thetiming of the disk device is modeled using a validated
simulator of the HP 97560 disk! [6]. Data from the disk is
transferred to memory using cache-coherent DMA. No input is
given to the console and the ethernet controller during the
measurement runs. The CPU models support the MIPS-2

1. We found that the performance of the database workload was completely
1/0 bound using the standard disk model incorporated into SimOS. Given
that these disks do not represent the latest technology, we scale them to be
four times faster in the database workload.



Machine Model
1994 1996 1998
CPU Clock 200Mhz 200Mhz | 500Mhz
Pipeline MIPS R4400-like MIPS R10000-like
Statically-scheduled Dynamically-scheduled
Blocking caches Non-blocking caches
200 MIPS 800 MIPS 2000 MIPS
Performance
L1 Cache 16 KB, 2-way, 32KB, 2-way, | 64 KB, 2-way,
(Instructions) 16 bytelines 64 bytelines 64 byte line
L1 Cache 16 KB, 2-way, 32KB, 2-way, | 64 KB, 2-way,
(Data) 16 byte lines 32 bytelines 32 bytelines
L2 Cache 1MB, 1-way 1MB, 2-way, | 4 MB, 2-way,
(Unified) 128 byte lines 128 bytelines | 128 bytelines
L1 m|$/ 50 nanosecs 50 nanosecs 30 nanosecs
L2 hit time
L2 misstime 500 nanosecs 300 nanosecs 250 nanosec

TABLE 3.1. 1994, 1996, and 1998 machine model parameters.

The peak performance is achieved in the absence of memory or pipeline
stalls. The timings are the latency of the miss as observed by the processor.
All 2-way set associative caches use an LRU replacement policy.

instruction set. The memory management and trap architecture of
the CPU models are that of the MIPS R3000. Memory
management is handled by a software-reload TLB configured with
64 fully-associative entries and a 4 kilobyte page size.

3.2 1994 Model

We base the 1994 model on the Indigo line of workstations from
Silicon Graphics which contain the MIPS R4400 processor. The
R4400 uses a fairly simple pipeline model that is capable of
executing most instructions in a single clock cycle. It has a two
level cache hierarchy with separate level-1 instruction and data
caches on chip, and an off-chip unified level-2 cache. The MIPS
R4400 has blocking caches. When a cache miss occurs the
processor stalls until the missis satisfied by the second level cache
or memory system.

To model the R4400, we use a simple simulator which exe-
cutes all instructionsin asingle cycle. Cache missesin this simula-
tor stall the CPU for the duration of the cache miss. Cache size,
organization, and miss penalties were chosen based on the SGI
workstation parameters.t

3.3 1996 Model

Next-generation microprocessors such as the MIPS R10000 [9],
Intel P6, and Sun UltraSPARC, will incorporate several new
features including multiple instruction issue, dynamic scheduling,
and non-blocking caches. The multiple instruction issue feature
allows these processors to issue multiple consecutive instructions
every clock cycle. Dynamic scheduling alows the instructions
within a certain window to be shuffled around and issued out of
order to the execution units, as long as essential dependences are
maintained. This technique alows greater concurrency to be
exploited in executing the instruction stream. With branch
prediction, it is aso possible to speculatively execute past
branches whose outcome is yet unknown. Finally, non-blocking
caches allow multiple loads and stores that missin the cache to be

1. The R4400 level-1 caches are direct mapped, but the newer R4600 has
two-way set associative level-1 caches. We conservatively choose to model
two-way set associativity in our level-1 caches.
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serviced by the memory system simultaneously. Non-blocking
caches, coupled with dynamic scheduling, alow the execution of
any available instructions while cache misses are satisfied. This
ability to hide cache miss latency is potentialy a large
performance win for programs with poor memory system locality,
acharacteristic frequently attributed to operating system kernels.

We model these next-generation processors using the MXS
CPU simulator [1]. We configure the MXS pipeline and caches to
model the MIPS R10000, the successor to the MIPS R4400 due
out in early 1996.

The MXS simulator models a processor built out of decoupled
fetch, execution, and graduation units. The fetch unit retrieves up
to 4 instructions per cycle from the instruction cache into a buffer
caled the instruction window. To avoid waiting for conditional
branches to be executed, the fetch unit implements a branch pre-
diction algorithm that allowsiit to fetch through up to 4 unresolved
conditional branches and register indirect jumps.

As the fetch unit is filling the instruction window, the execu-
tion unit is scanning it looking for instructions that are ready to
execute. The execution unit can begin the execution of up to 4
instructions per cycle. Once the instruction execution has com-
pleted, the graduation unit removes the finished instruction from
the instruction window and makes the instruction’s changes per-
manent (i.e. they are committed to the register file or to the cache).
The graduation unit graduates up to 4 instructions per cycle. To
support precise exceptions, instructions are always graduated in
the order in which they were fetched.

Both the level-1 and level-2 caches are non-blocking and sup-
port up to four outstanding misses. The level-1 caches support up
to two cache accesses per cycle even with misses outstanding.

With cache miss stalls being overlapped with instruction exe-
cution and other stalls, it is difficult to precisely define a memory
stall. When the graduation unit cannot graduate its full load of four
instructions, we record the wasted cycles as stall time. We further
decompose this stall time based on the state of the graduation unit.
If the graduation unit cannot proceed due to aload or store instruc-
tion that missed in the data cache, we record this as data cache
stall. If the entire instruction window is empty and the fetch unit is
stalled on an instruction cache miss, we record an instruction cache
stall. Finally, any other condition is attributed to pipeline stall
because it is normally caused by pipeline dependencies.

Although MXS models the latencies of the R10000 instruc-
tions, it has some performance advantages over the real R10000.
Itsinternal queues and tables are slightly more aggressive than the
R10000. The reorder buffer can hold 64 instructions, the |oad/store
queue can hold 32 instructions, and the branch prediction table has
1024 entries. Furthermore, it does not contain any of the execu-
tion-unit restrictions that are present in most of the next-generation
processors. For example, the R10000 has only one shifter func-
tional unit, so it can execute only one shift instruction per cycle.
MXS can execute any four instructions per cycle including four
shift instructions. We use this slightly more aggressive model in
order to avoid the specifics of the R10000 implementation and pro-
vide results that are more generally applicable. Additional parame-
ters of the 1996 model are presented in Table 3.1.

3.4 1998 Mode

It is difficult to predict the architecture and speeds of the
processors that will appear in 1998 since they haven't been
announced yet. Processors like the MIPS R10000 have
significantly increased the complexity of the design while holding
the clock rate relatively constant. The next challenge appears to be
increasing the clock rate without sacrificing advanced processor
features [5]. We assume that a 1998 microprocessor will contain
the latency tolerating features of the 1996 model, but will run at a
500Mhz clock rate and contain larger caches. We also allow for



small improvements in cache and memory system miss times. The
exact machine parameters are again shown in Table 3.1.

3.5 Multiprocessor Model

Another trend in computer systems is to have multiple CPUs
sharing a common memory. Although shared-memory
multiprocessors have been around for a long time, recent
microprocessor trends have the potential of making these systems
much more common. Many next generation microprocessors, such
as the MIPS R10000 and the Intel P6, support “glue-less MP”
where shared memory multiprocessors can be built simply by
plugging multiple CPUs into a shared bus.

Our multiprocessor studies are based on an 8-CPU system with
a uniform memory access time shared memory. We use 1994
model processors; multiprocessor studies with the MXS simulator
were prohibitively time consuming. Each CPU has its own caches.
Cache-coherency is maintained by a 3-state (invalid, shared, dirty)
invalidation-based protocol. The cache access times and main
memory-latency are modelled to be the same as those in the 1994
model.

4 Uniprocessor Results

The vast majority of machines on the market today are
uniprocessors, and this is where we start our examination of
operating system performance. In this section we present a detailed
characterization of the workloads running on the three machine
configurations. In Section4.1, we begin by describing the
performance on the 1994 machine model. We then show in
Section 4.2 how the 1996 and 1998 models improve performance.
In Section 4.3 and Section 4.4, we show the specific impact of two
architectural trends: latency hiding mechanisms and increases in
cache size. Finally, in Section45 we present a detailed
examination of the relative call frequency, computation time,
memory system behavior, and scaling of specific kernel services.

4.1 Base Characterization

Table 4.2 describes the operating system and hardware event rates
for the workloads. In Figure 4.1, we provide a time-based profile
of the execution of the workloads

The program development workload makes heavy but erratic
use of the kernel services resulting in 16% of the non-idle execu-
tion time being spent in the kernel. The frequent creation and dele-
tion of processes result in the large spikes of kernel activity found
in the profile. The workload also generates a steady stream of disk
1/0s, but contains enough concurrency to overlap most of the disk
waits. As aresult, the workload shows only a small amount of idle
time.

The database workload makes heavy use of anumber of kernel
services. Inter-process communication occurs between the clients
and the database server and between the database server and its
asynchronous /O processes. The result of this communication is
both a high system call and context-switching rate. These effects,
combined with a high TLB miss rate, result in the kernel occupy-
ing 38% of the non-idle execution time. The database workload
also makes heavy use of the disks. Datais constantly read from the
database's data disk and log entries are written to a separate disk.
Although the server is very good at overlapping computation with
the disk operations, the workload is nevertheless idle for 36% of
the execution time.

The engineering workload uses very few system services.
Only the process scheduler and TLB miss handler are heavily
used, and the kernel accounts for just 5% of the total workload
execution time. The comb-like profile is due to the workload
switching between the VCS and Flashlite processes, each of which
has very different memory system behavior.
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FIGURE 4.1. Profiles of uniprocessor workloads.

The execution time of each workload is separated into the time spent in
user, kernel, and idle modes on the 1994 model. User and kernel modes
are further subdivided into instruction execution and memory stall.

Also visible in Figure 4.1 is the large amount of memory stall
time present in all of the workloads. Memory stall time is particu-
larly prevalent in the database and engineering workloads, the two
workloads that consist of large applications.



OSevents Prog-Dev Database Eng
Duration 8.5 secs 7.6 secs 4.1 secs
Process creations 11 <1 <1
Context switches 92 847 34
Interrupts 162 753 133
System calls 1133 4632 18
TLB refills 87x103 | 425x 103 486 x 103
VM faults 2195 9197 3386
Other exceptions 405 304 12

Hardwar e events
Instructions 129 x 108 111 x 106 101 x 108
L1-I cache misses 2738x 103 | 4441x 103 | 4162x 103
L1-D cache misses 1412x 103 | 1453x 103 | 1628x 103
L 2-cache misses 324x103 | 339x 103 460 x 103
Disk 1/0s 29 286 1

TABLE 4.2. Event ratesfor the uniprocessor workloads.
All rates are reported as events per second on the 1994 model.

4.2 Impact of Next-Generation Processors

In this section we examine the effect of future architectures on the
three workloads. Figure 4.3 shows the normalized execution time
of the workloads as the machine model is changed from the 1994
to the 1996 and 1998 models. The speedups for the 1998 model
range from a fairly impressive factor of 8 for the engineering
workload to a modest 27% for the database.

The primary cause of the poor speedup is delays introduced by
disk accesses. This is the classic 1/0O bottleneck problem and can
be seen in the large increases in idle time for the workloads with
significant disk 1/0O rates. For the database system, the fraction of
the execution time spent in the idle loop increases from 36% of the
workload on the 1994 model to 75% of the time in the 1996 model
and over 90% of the 1998 model. The program devel opment work-
load also suffers from this problem with the 1998 model spending
over 66% of the time waiting in the idle loop for disk requests to
complete.

The implications of this /O bottleneck on the operating system
are different for the database and program development work-
loads. In the database workload, almost all of the disk accesses are
made by the database server using the Unix “raw” disk device
interface. This interface bypasses the file system allowing the data
server to directly launch disk read and write requests. Given this
usage, there is little that the operating system can do to reduce the
1/0 time. Possible solutions include striping the data across multi-
pledisks or switching to RAIDs and other higher performance disk
subsystems.

In contrast, the kernel is directly responsible for the
1/O-incurred idle time present in the program devel opment work-
load. Like many other Unix file systems, the IRIX extent-based file
system uses synchronous writes to update file system meta-data
structures whenever files are created or deleted. The frequent cre-
ation and deletion of compiler temporary files results in most of
the disk traffic being writes to the meta-data associated with the
temporary file directory. Almost haf of the workload's disk
reguests are writes to the single disk sector containing the /tmp
meta-datal There have been a number of proposed and imple-
mented solutions to the meta-data update problems. These solu-
tions range from special-casing the /tmp directory and making it
a memory-based file system to adding write-ahead logging to file
systems [12]. 1
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FIGURE 4.3. Execution time on next-generation machines.
This figure shows execution time of the three workloads running on the
three machine models. The time is normalized to the speed of the 1994
model. The horizontal bars separate kernel, user, and idle time. Note that
the engineering workload has no idle time and little kernel time.

all show significant speedups. The advanced features of the 1996
model give it non-idle time speedups of 2.8x (Engineering), 3.0x
(Program Development), and 3.1x (Database). The larger caches
and higher clock rate of the 1998 model result in non-idle speed-
ups of 7.4x (Program Development), 7.9x (Engineering), and 8.3x
(Database).

Figure 4.3 highlights two other important points. First, the
overall performance gains of the future machine models appear to
apply equally to both user and kernel code. This implies that the
relative importance of kernel execution time will likely remain the
same on next-generation machines. While this means that the ker-
nel time will remain significant, it is certainly preferable to
increased kernel overhead.

Second, the fraction of execution time spent in memory stalls
does not increase on the significantly faster CPUs. This is a sur-
prising result given the increase in peak processor performance.
Figure4.4 shows the memory stall time on future machines
expressed as memory stall cycles per instruction (MCPI). We see
that next-generation machines have a significantly smaller amount
of memory stall time than the 1994 model. Thisisindeed fortunate
since the 1996 and 1998 models can execute up to 4 instruction per
cycle, making them much more sensitive to large stall times. If the
1996 and 1998 models had the 1994 model’s MCPI, they would
spend 80% to 90% of their time stalled.

Figure 4.4 also decomposes the MCPI into instruction and data
cache stalls and into level-1 and level-2 cache stalls. Although
instruction cache stalls account for a large portion of the kernel
stall time on the 1994 model, the effect is less prominent on the
1996 and 1998 models. For the program development workload,
the instruction cache stall time is reduced from 45% of the kernel
stall time in the 1994 model to only 11% of the kernel stall timein
the 1998 model.

Figure 4.4 emphasizes the different memory system behavior
of the workloads. The relatively small processes that comprise the
program development workload easily fit into the caches of future
processors. Thisresultsin anegligible user-level MCPI, especially

1. SGI's new file system, XFS, contains write-ahead logging of meta-data.
Unfortunately, XFS was not available for this performance study.

2.To ensure that this omission does not compromise accuracy, we exam-
ined the program development and database workloads with disks that
were 100 times faster. We found little differences in the non-idle memory
system behavior.



251 L2-1 )

L1-l
L2-D

2.0 -I L1-D ]

15+ B

) _I _
05+ B

0
94 96 98 94 96 98 94 96 98 94 96 98 94 96 98 94 96 98
Prg-K DB-K Eng-K Prg-U DB-U Eng-U

Memory cycles per instruction (MCPI)

FIGURE 4.4. Memory stall cycles per instruction.
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FIGURE 4.5. Kernél stall time hidden by the 1996 and 1998 models.
This figure shows the non-idle kernel MCPI of the dynamically scheduled
1996 and 1998 models and the part of the MCPI which is hidden. The
results for the level-1 instruction miss stall (L1-1), level-2 instruction miss
stall (L2-1) and level-1 (L1-D) and level-2 (L2-D) data stalls are shown.

when compared to the kernel’s memory system behavior. In con-
trast, the engineering and database workloads consist of very large
programs which continue to suffer from significant memory stall
time. In fact, their memory system behavior is quite comparable to
that of the kernel. Other studies have concluded that the memory
system behavior of the kernel was worse than that of application
programs [3]. We find that this is true for smaller programs, but
does not hold for large applications. Theimplication is that proces-
sor improvements targeted at large applications will likely benefit
kernel performance as well.

The improved memory system behavior of the 1996 and 1998
models is due to two features: latency tolerance and larger caches.
In Section 4.3 and Section 4.4 we examine separately the benefits
of these features.

4.3 Latency Tolerance

Dynamically scheduled processors can hide portions of cache miss
latencies. Figure 4.5 presents the amount of memory stall time
observed in the 1996 and 1998 models and compares it with the
memory stall time of the comparable statically-scheduled models.
The numbers for this figure were computed by running the 1994
model configured with the same caches and memory system as the
next-generation models and comparing the amount of memory
stall seen by the processor.

The figure emphasizes two results. First, dynamically sched-
uled processors are more effective at hiding the shorter |atencies of
level-1 misses than that of level-2 misses. Dynamically scheduled
processors hide approximately half of the latency of kernel level-1
misses. The notable exception is the engineering workload which
spends most of its limited kernel time in the UTLB miss handler.
We discuss the specia behavior of this routinein Section 4.5.

Unfortunately, level-2 caches do not benefit from latency hid-
ing as much aslevel-1 caches. The longer latency of alevel-2 miss
makes it more difficult for dynamic scheduling to overlap signifi-
cant portions of the stall time with execution. Level-2 miss costs
are equivalent to the cost of executing hundreds of instructions.
There is simply not enough instruction window capacity to hold
the number of instructions needed to overlap this cost. Although it
is possible to overlap level-2 stalls with other memory system
stalls, we didn't observe multiple outstanding level-2 misses fre-
quently enough to significantly reduce the stall time.

A second and somewhat surprising result from Figure 4.5 is

that the future processor models are particul arly effective at hiding
the latency of instruction cache misses. This is non-intuitive
because when the instruction fetch unit of the processor stalls on a
cache miss, it can no longer feed the execution unit with instruc-
tions. The effectiveness is due to the decoupling of the fetch unit
from the execution unit. The execution unit can continue executing
the instructions already in the window while the fetch unit is
stalled on an instruction cache miss. Frequent data cache misses
cause both the executing instruction and dependent instructions to
stall, and give the instruction unit time to get ahead of the execu-
tion unit. Thus, next generation processors overlap instruction
cache miss latency with the latency of data cache misses while
statically-scheduled processors must suffer these misses serialy.

4.4 Larger Cache Sizes

Future processors will not only have latency tolerating features,
but will also have room for larger caches. The sizes of the caches
are controlled by a number of factors including semiconductor
technology as well as target cycle time. We first examine sizes
likely to be found in on-chip level-1 caches and then explore the
sizeslikely to be found in off-chip level-2 caches.

4.4.1 Level-1Cache

Figure 4.6 presents the average number of cache misses per
instruction for each of the workloads. We explore a range of sizes
that could appear in level-1 caches of future processors. We model
separate data and instruction caches.

One of the key questions is whether increasing cache sizes will
reduce memory stall time to the point where operating system
developers do not need to worry about it. The miss rates in
Figure 4.6 trandate into different amounts of memory stalls on dif-
ferent processor models. For example, the maximum cost of a
level-1 cache miss which hits in the level-2 cache on the 1998
model is 60 instructions. A miss rate of just 0.4% on both instruc-
tion and data level-1 caches means that the processor could spend
half as much time stalled as executing instructions. This can be
seen in the memory stall time on the 1998 model.

Since larger caches will not avoid all misses, we next classify
them into 5 categories based on the cause of a line's replacement.
Cold misses occur on the first reference to a cache line. KERN-self
occur when the kernel knocks its own lines out of the cache and
KERN-other misses occur when a user process replaces the ker-
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FIGURE 4.6. Cache missesfor several |- and D-cache sizes.

All caches are two-way set-associative with LRU replacement. The
instruction caches (-1) have a cache line size of 64 bytes, and the data
caches (-D) have 32 byte lines. Misses are broken down by mode (user,
kernel) and by the cause of the miss. All cache sizes are in kilobytes.

nel’s cache lines. USER-self misses occur when a user process
knocks its own lines out of the cache and USER-other misses
occur when a cache line is replaced by the kernel or by a different
USEr process.

Figure 4.6 shows that larger caches are more effective at
removing self-inflicted misses in both the user applications
(USER-self) and the kernel (KERN-self) than they are at reducing
interference misses (USER-other and KERN-other). This is most
striking in the database workload where USER-self and KERN-
self misses steadily decline with larger caches while the USER-
other and KERN-other misses remain relatively constant.

Apart from techniques such as virtual memory page coloring,
the operating system has no control over user-self cache misses.
Any improvements will necessarily have to come from improved
memory systems. However, operating system designers can
address KERN-self cache misses. For example, recent work has
shown how code re-organization can reduce these instruction
misses [14].

Reducing the KERN-other and the USER-other missesis more
problematic. Most of the USER-other misses are due to interfer-
ence between the user and kernel rather than interference between
two user processes. In fact, these two miss types are quite comple-
mentary. When the kernel knocks a user line from the cache, the
user often returns the favor knocking akernel line out of the cache.
Although re-organizing the kernel to reduce its cache footprint
could decrease the amount of interference, the problem will
remain. Aslong as two large code segments are trying to share the
same level-1 instruction cache, there will be potential for conflicts.

We aso explored the impact of cache associativity by looking
at both direct-mapped and 4-way associative caches. Like cache
size increases, higher associativities reduce self-induced misses
significantly more than interference misses. We hypothesize that
the entire state in the relatively small level-1 caches is quickly
replaced after each transition between kernel and user mode. As
long as this is the case, associativity will not significantly reduce
interference misses.

4.4.2 Leve-2 Caches

Figure 4.7 presents the miss rates for cache sizes likely to be found
in off-chip, level-2 caches. These caches typically contain both
instructions and data, have larger line sizes, and incur significantly
higher miss costs than on-chip caches. For example, the latency of
a level-2 cache miss in the 1998 model is equivaent to the

FIGURE 4.7. Behavior of unified level-2 caches.
All caches are 2-way associative with LRU replacement and have 128 byte
lines. Asin Figure 4.6, we break the misses down by type.

execution of 500 instructions. A cache missrate of just 0.1% could
stall the 1998 processor for half as much time as it spends
executing instructions. The smallest miss rate shown in Figure 4.7
would slow down such a processor by as much as 25%.

Similarly to level-1 caches, larger level-2 caches reduce
misses substantially, but still do not totally eliminate them. For the
program development and database workloads, a 4MB level-2
cache eliminates most capacity misses. The remaining misses are
cold missesl.

4.5 Characterization of Operating System Services

In previous sections we have looked at kernel behavior at a coarse
level, focusing on average memory stall time. In order to identify
the specific kernel services responsible for this behavior, we use
SimOS annotations to decompose the kernel time into the services
that the operating system provides to user processes. Table 4.8
decomposes operating system execution time into the most
significant operating system services.

One common characteristic of these servicesis that the execu-
tion time breakdown does not change significantly when moving
from the 1994 to the 1996 and 1998 models. This is encouraging
since optimizations intended to speed up specific services today
will likely be applicable on future systems. We now examine sepa-
rately the detailed operating system behavior of the three work-
loads.

Program development workload. On the 1994 model, this
workload spends about 50% of its kernel time performing services
related to the virtual memory system calls, 30% in file system
related services, and most of the remaining time in process
management services. Memory stall time is concentrated in
routines that access large blocks of memory. These include
DEMAND-ZERO and copy-on-write (COW) faults processing as
well as the read and write system calls that transfer data
between the application’s address space and the kernel’s file cache.

The larger caches of the 1998 model remove most of the
level-2 capacity misses of the workload. The remaining stall time
is due mostly to level-1 cache misses and to level-2 cold misses.
The DEMAND-ZERO page fault generates more than 50% of all

1. Most of the cold misses are really misclassified capacity misses. The rea-
son that they are misclassified isthat theinitial accesses to the memory pre-
ceded the detailed simulation start. Had the detailed examination started at
boot time, these cold misses would have been classified as capacity misses.



%Kernel Computation 1994 configuration 1998 configuration Latency %
© Q © o | Events 9
i 8 2 2 T T = B — = = 5|l a9 9 o g

Service T8 2 & o = 2 o o =S 8| g A A per
S 8 8 28 S 3| = O @] = Z| = G O = = ) s g k=)
& & 8| g5 3 & = = ¥ % 5 = S § T S5 3 B Second | 3
<E & T 3 £ 08 - s £ B| IE g 2 2
DEMAND ZERO| 181 17.1 250 51 33 51| 3.75 052 223 4% 16%| L4 005 143 1% 35% 51 33 51 532| 54
QUICK FAULT 105 99 77 13 33 96| 209 080 0.30 6% 2%| 055 0.04 0.05 1% 1% 13 34 96 1224 0
execve 10.2 10.7 105 1180 30 69| 264 089 0.75 5% 4%| 095 012 038 2% 7% 1221 25 6.6 13 8
E write 10.0 94 104 47 33 6.8 297 073 124 4% 6%| 1.10 0.09 0.60 2% 10% 52 34 71 320 12
UE'I read 91 85 78 87 34 82| 352 098 154 4% 6%| 1.07 010 053 1% 7% 87 33 82 157 4
% C.O.W. FAULT 63 55 64 82 36 69 418 048 270 1% 6%| 1.53 0.04 110 0% 8% 82 36 69 115 12
d UTLB 47 84 70 008 17 46| 177 004 0.75 0% 3%| 096 0.00 007 0% 1% 0.08 17 46 87442 0
> |open 46 4.7 38 100 31 84| 327 173 054 4% 1%| 096 028 0.18 2% 1% 2594 09 10 69 0
LIQJ fork 42 43 45 568 30 65| 303 076 126 2% 3%| 117 012 062 1% 4%| 35ms 38 84 11 5
S |exit 35 42 34 481 26 74| 237 066 071 1% 2%| 0.80 011 0.23 1% 2% 482 26 74 11 0
E:( brk 28 27 22 33 33 91380 206 074 2% 1%| 1.04 037 017 1% 1% 33 34 91 130 0
8 PFAULT 24 24 18 14 32 92| 232 107 026 2% 0%| 0.64 0.12 0.05 1% 0% 14 32 92 266 0
g CLOCK INT 24 10 05 36 38 125 621 357 165 2% 1%| 1.70 063 042 0% 0% 37 38 123 100 0
close 19 19 15 31 32 91| 363 202 0.60 2% 0%| 0.99 030 0.17 1% 0% 916 12 12 92 0
unlink 15 14 12 197 32 88|35 184 072 1% 0%| 1.00 026 022 1% 0%| 17ms 10 10 11 0
Other 78 78 6.3 - - - - - - 6% 2% - - - 3% 2% - - - - 1
read 152 124 126 80 36 94394 211 083 12% 5%( 1.07 029 028 8% 7-% 20900 12 13 466 30
select 15.2 138 135 86 31 84| 280 099 081 8% 6%| 090 017 026 6% 9%| 44ms 12 1.2 431 0
UTLB 129 26.0 26.2 007 14 38| 135 000 035 0% 5% 090 0.00 008 0% 5% 0.07 14 38| 424582 0
write 84 70 68 88 33 88| 420 252 0.68 7% 2%| 1.28 051 021 6% 2% 734 17 29 233 0
ioctl 81 63 58 37 34 193|387 183 104 6% 3%| 1.05 027 026 3% 3% 5309 11 10 534 0
SWINT 72 57 54 62 37 103|526 293 133 6% 3% 1.30 044 030 4% 3% 62 3.7 103 283 0
% send 43 37 33 76 34 101 531 330 101 4% 1%| 1.31 054 025 3% 1% 138 35 10.2 138 0
é DEMAND ZERO| 41 37 58 69 32 55|48 137 252 2% 3%| 224 027 154 2% 9% 70 32 55 145 53
|<I~ DISK INT 34 26 21 28 36 114 458 270 0.88 3% 1% 1.02 032 018 2% 1% 28 36 114 289 0
g DBL_FAULT 30 19 15 087 15 49| 172 048 0.22 1% 1%| 0.87 0.10 0.17 0% 1% 088 15 49 8553 0
fentl 25 23 20 22 31 91| 565 313 152 2% 1%| 156 068 037 2% 1% 22 31 91 286 0
syscall 20 19 20 17 28 71| 247 104 043 1% 1%| 0.87 026 0.14 1% 1% 17 28 72 286 0
recv 18 15 13 31 34 104 342 19 045 1% 0%| 082 023 011 1% 0% 31 34 105 140 0
gettimeofday 14 15 15 9 27 72329 177 052 1% 0%]| 1.15 025 0.14 1% 0% 9 28 73 391 0
sigprocmask 12 13 13 5 28 68| 202 094 0.08 1% 0%| 0.74 019 0.03 1% 0% 5 28 68 571 0
Other 92 85 89 -- -- -- -- -- -- 6% 3% -- -- - 5% 5% -- -- -- - 12
UTLB 69.8 86.1 87.4 007 14 36| 149 0.01 047 1% 33%| 1.03 0.00 014 0% 41% 007 14 36| 485840 2
O |[CLOCK INT 125 27 09 58 28 84918 486 333 10% 7%| 269 097 106 1% 1% 5 28 84 100 1
5 DBL_FAULT 6.0 50 47 083 27 7.6| 189 044 041 2% 2%| 0.62 0.01 0.01 0% 0% 083 27 76 3365 0
ELIJ exit 29 21 29 1099 23 44| 227 034 093 1% 2%| 1.28 012 064 1% 5% 1099 22 44 1] 29
=z [DEMAND ZERO| 1.7 09 12 89 33 66| 646 250 295 1% 1%| 241 0.33 1.66 1% 3% 89 33 6.6 9 16
g‘) SWINT 14 05 04 44 24 55| 387 194 096 1% 0%| 1.08 031 028 0% 0% 74 20 42 14 2
w [DAEMONS 11 06 04 273 25 29| 789 139 551 0% 1%)| 794 074 6.69 0% 1% 273 25 29 2 28
Other 46 21 21 -- -- -- -- -- -- 3% 1% -- -- - 2% 2% -- -- -- - 16

TABLE 4.8. Detailed breakdown of the uniprocessor workloads' kernel activity.

The most significant services of the uniprocessor workloads are presented in order of their fraction of kernel computation time on the 1994 machine model.
Lower-case services denote UNIX system calls, and upper-case services denote traps and interrupts(INT). UTLB reloads the TLB for user addresses. A
DBL_FAULT occurs when the UTLB takes a TLB miss. A QUICK FAULT is a page fault where the page is aready in memory, and PFAULT denotes
protection violation traps used for modify bit emulation and other purposes. We compare the memory system behavior of the 1994 and 1998 models. The
cycles per instruction (CPI) as well as the instruction and data memory CPI (i-MCPI, d-MCPl), are indicators of processor performance. The concentration of
instruction and data memory stall (%stall (I) and %stall (D)) is expressed in percentage of all kernel memory stalls. Latency numbers can be compared to
computation time to determine the importance of 1/0 and scheduling on the latency of various services.

cold misses. This service amounts to 18% of kernel execution time
in the 1994 model and 25% of kernel execution time in the 1998
model. In general, the services with large concentrations of cold
misses, including the copy-on-write fault and the write system
call, increase in importance. Fortunately, the operating system can
address this problem. Many of the cold misses are due to the vir-
tual memory page alocation policy which does not re-use recently
freed pages that would potentially still reside in the level-2 cache.
The workload touches a total of 33 megabytes of memory. Given
the large number of process creations and deletions, it islikely that
this memory footprint could be reduced by modifying the page
allocator to return recently freed pages (the current allocation pol-
icy delays page reuse to deal with instruction cache coherency
issues).

In contrast, the latency tolerating features work well on the

block copy/zero routines. Non-blocking caches allow the proces-
sor to overlap cache miss stall with the block movement instruc-
tions. Additionally, they permit multiple outstanding cache misses,
alowing stall times to overlap. These features effectively hide all
level-1 block-copy stall time that is present in the 1994 model.
This effect can be seen in the relatively large speedups obtained by
the read and write system calls, and the large level-1 data
cache stall time hidden in the workload (see Prog L1-D in
Figure 4.5).

The operating system can still potentially improve the perfor-
mance of level-2 cache behavior in the block copy/zero routines.
The current routines fill the load/store buffer of the processor
before they are able to generate multiple outstanding level-2 cache
misses. By re-coding the functions to force cache misses out ear-
lier, we can overlap the stall time of multiple misses, substantially



reducing the total level-2 cache stall time. Re-coding this type of
routine to take advantage of next generation processors can reduce
the performance impact of the block-copy routines.

Database workload. This workload spends over half of its kernel
time in routines supporting inter-process communication between
the client and the database server and about one third of its time
performing disk 1/Os for the database server. Additionally, the
1994 model spends 13% of the kernel time servicing UTLB faullts.
Unlike the program development workload, the memory stall of
this workload is evenly spread among the kernel services. Kernel
instruction cache performance is particularly bad in the 1994
model, with instruction MCPIs of over 2.0 for several of the major
services.

Most services encounter impressive speedups on the 1996 and
1998 models. The improvement in the cache hierarchy dramati-
cally reduces the instruction and data MCPI of the main services.
Unfortunately, one of the major services only shows a moderate
speedup: the UTLB miss handler is only 1.4x (1996) and 3.8x
(1998) faster than the 1994 model. Because of this lack of speedup
the time spent in the UTLB handler increases to a quarter of the
kernel time (10% of the non-idle execution time) in the 1998
model. The UTLB handler is a highly-tuned sequence of 8 instruc-
tions that are dependent on each other. They do not benefit from
the multiple issue capabilities of the 1996 and 1998 models. Per-
formance improvements will need to come from a reduction of the
TLB miss rate. This can be achieved by improved TLB hardware
or through the use of larger or variable-sized pages

Engineering workload. This workload makes relatively few
direct requests of the operating system, and the kernel time is
dominated by the UTLB handler and by clock interrupt processing
(CLOCK INT). The UTLB miss handler has the same behavior as
in the database workload. Fortunately, it accounts for only 7% of
the total execution time. The importance of the clock interrupt
handler diminishes significantly on the 1996 and 1998 models. The
service is invoked fewer times during the workload and larger
caches can retain more of its state between invocations.

Latency effects. We have discussed the impact of architectural
trends on the computation time of specific services. We now focus
on their latency.

Table 4.8 aso contains the request rate and the average request
latency of the services. The average latency is an interesting metric
as user processes are blocked during the processing of that service.
For most services, the computation time is equivalent to the
latency. However, the computation time is only a small fraction of
the latency of some services. These services are either involved in
1/0, blocked waiting for an event, or descheduled.

Services such as the open, close, and unlink system calls of the
program development workload and the read and write system
calls of the database workload frequently result in disk 1/Os. These
system calls are limited by the speed of the disks on all processor
models, resulting in both long delays for the calling process and
show very little, if any, speedup. Only changes in the file system
will reduce these latencies. System calls which block on certain
events, such as select, also experience longer latencies. The long
latency of the fork system call results from the child process get-
ting scheduled before the forking parent is allowed to continue.

5 Multiprocessor Effects

The move to small-scale shared-memory multiprocessors appears
to be another architectural trend, with all major computer vendors
developing and offering such products. To evaluate the effects of
thistrend, we compare the behavior of the kernel on a uniprocessor
to its behavior on an 8-CPU multiprocessor. Both configurations
use the 1994 CPU model and memory hierarchy. The
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FIGURE 5.1. Profiles of multiprocessor workloads.

The execution time of each workload is separated into the time spent in
user, kernel, sync, and idle modes on the eight-CPU model. User and
kernel modes are further subdivided into instruction execution and
memory stall.

multiprocessor workloads are scaled-up versions of the
uniprocessor ones, as described in Section 2.2. The multiprocessor
version of the IRIX kernel is based on the uniprocessor version
and includes the requisite locking and synchronization code. It is



OSevents Prg-Dev Database Eng
Duration 4.7 secs 2.6 secs 4.4 secs
Process creations 80 11 <1
Context switches 1633 3929 193
Interrupts 1428 1853 843
System calls 8246 13546 51
TLB refills 655x 103 | 1374x 103 | 2653 x 103
VM faults 17166 30309 30481
Other exceptions 3216 3097 118

Hardware events
Instructions 1105x 108 | 1074 x 106 882 x 103
L1-I cache misses 18359 x 103 | 14961 x 103 | 25229 x 103
L1-D cache misses 10481 x 103 | 7124 x 103 | 10017 x 103
L 2-cache misses 1948x 103 | 2500x 103 | 3358x 103
Disk 1/0s 214 829 1

TABLE 5.2. Event ratesfor the multiprocessor workloads.
Results are aggregated over all eight processors. All rates are reported as
events per second.

designed to run efficiently on the SGI Challenge series of
multiprocessors, which supports up to 36 R4400 processors.

5.1 Basecharacterization

We begin our investigation with a high-level characterization of
the multiprocessor workloads. Table 5.2 presents hardware and
software event rates for the workloads (aggregated over all
processors), and Figure 5.1 presents the execution breakdown over
time. While the uniprocessor and multiprocessor workloads have
different compositions (also see Figure4.1 and Table4.2), the
workloads are scaled to represent a redistic load of the same
application mix running on the two configurations. The workloads
drive the operating system in similar ways, and thus provide a
reasonable basis for performance comparisons.

Compared to Figure 4.1, thereis an increase in idle time. This
idletimeis due to load imbalance towards the end of the program-
development and engineering workloads, and due to I/O bottle-
necks for the database workload. Two of the three workloads show
an increase in the relative importance of kernel time. The kernel
component increases due to worse memory system behavior and
synchronization overheads. The portion of non-idle execution time
spent in the kernel in the program development workload rises
from 16% to 24%, and in the engineering workload it rises from
4.6% to 5.3%. The database workload interestingly shows the
opposite behavior. Although the fraction of time spent in the kernel
decreases from 38.2% to 24.9% on the multiprocessor, this reduc-
tion is not due to improved kernel behavior. Rather, the multipro-
cessor version of the database server is a parallel application and
reguires more computation per transaction.

5.2 Multiprocessor Overheads

There are a number of overheads found in multiprocessor systems
that are not present in uniprocessors. This section examines two of
these overheads: synchronization and additional memory-stalls.

Synchronization. The multiprocessor IRIX kernel uses spinlocks
to synchronize access to shared data structures. Overheads include
the time to grab and release locks, as well as the time spent waiting
for contended locks. Spinlocks are not used in the uniprocessor
version of the kernel.

11

MP
|

Lar Upgrades

Coherence
Capacity T
Cold

12+

1.0

0.8

0.6

0.4

Kernel misses per 100 kernel instructions

0.2

512 1M 2M 4M

512 1M 2M 4M 512 1M 2M 4M

Program Devlopment Database Engineering

FIGURE 5.3. Level-2 cache missratesin kernel mode.

This compares uniprocessor and multiprocessor miss rates in kernel mode
for arange of cache sizes. We model a unified level-2 cache with 128 byte
lines. Misses are classified as cold, capacity, coherence, or upgrades.

The importance of synchronization time varies greatly with the
workload. Synchronization time accounts for 11.2%, 7.6%, and
1.4% of kernel execution time in the 8-CPU program-devel op-
ment, database, and engineering workloads respectively. To better
understand how this time will scale with more processors, we
examine synchronization behavior for individual system calls in
Section 5.3.

Memory stall time. For the multiprocessor configuration, SimOS
models an invalidation-based cache-coherence protocol. Cache-
coherence induces two new types of memory stalls that do not
occur on uniprocessors. A coherence miss occurs because the
cache line was invalidated from the requestor’s cache by a write
from another processor.l An upgrade stall occurs when a
processor writes to a cache line for which it does not have
exclusive ownership. The upgrade requires communication to
notify other processors to invalidate their copy of the cacheline.

Figure 5.3 compares the uniprocessor and multiprocessor ker-
nel missratesfor arange of level-2 cache sizes. In contrast to uni-
processors, larger caches do not reduce the miss rate as
dramatically. The reason is simple; coherence misses do not
decrease with increasing cache size. Coherence misses correspond
to communication between processors and are oblivious to
changesin cache size.

The implications of this observation are quite serious. In uni-
processors, larger caches significantly reduce the missrates, allow-
ing large performance gains in the 1996 and 1998 models. In
multiprocessors, larger caches do not reduce the miss-rate as effec-
tively, and we will see amuch higher stall timein future machines.

Although, we did not simulate a multiprocessor machine with
the next generation CPUs, it is possible to make rough estimates
regarding the magnitude of the problem. As mentioned in
Section 4.4.2, alevel-2 cache missrate of just 0.1% stalls the 1998
processor for half as much time as it spends executing instructions.
Figure 5.3 shows that for the program development and database
workloads we will have at least 0.8 misses per 100 kernel instruc-
tions. Thus, athough the memory stall times for the 1994 multi-
processor do not look too bad, the stall times for future machines
will be much worse. In the next section we examine specific oper-
ating system services and suggest possible improvements for

1. Cache-coherent DMA causes coherence misses in the uniprocessor
workloads, but they constitute a very small fraction of the total misses.
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QUICK FAULT | 10.8 105 20 53%| 33 17 8 3 30 9 20 54% - 0.24 8879 5 2
execve 104 102 1799 52%| 27 13 10 6 25 20 2241 84% 203 239 94| 572 337
E write 9.0 10.0 63 34%| 29 8 5 3 23 32 75 44% 4 8 2339 13 6
g PFAULT 78 24 59 340%| 19 13 13 6 30 19 447 3198% 36 352 2126 13 14
a [read 70 91 101 17% | 24 5 5 2 25 39 131 50% 0.36 29 1131 10 10
9 fork 49 42 998 76%| 21 15 12 7 19 26| 18ms -48% 27 17ms 80| 281 239
g open 49 46 158 58% | 23 9 1 5 40 12 2059 -21% 1462 439 503 51 33
A lexit 46 35 927 93%| 23 18 18 11 15 14 1322 174% 177 218 80| 345 335
S [C.OW. FAULT 44 63 109 Bw| 19 7 4 2 10 58 109 33% -- - 658 11 8
& UTLB 36 47 0.09 10%| 62 0 13 24 0.09 10% -- - | 654603 0 0
8 brk 35 28 60 84%| 16 15 13 2 33 20 61 85% - 0.53 944 18 15
% close 20 19 49 56%( 19 12 12 5 41 11 684 -25% 492 144 657 14 11
CLOCK INT 19 24 39 8% | 13 3 11 7 50 17 39 6% - - 798 1 8
unlink 16 15 323 64%| 19 10 15 7 38 12| 14ms -16%| 12ms 2491 8L| 8 92
Other 81 78 - e e - - -- - - - -
select 124 152 154 79%| 33 18 12 4 18 15| 47ms 6% 010 47ms 1088| 97 34
read 122 152 121 51%| 19 7 13 8 37 16 4217 102% 4051 45 1363 23 31
UTLB 10.2 129 0.10 4% 70 0 O O 3 27 0.10 34% - -- 11373819 0 0
ioctl 80 81 66 6% | 16 7 16 7 39 14 8281 56% 0.29 8215 1644 13 20
QUICK FAULT | 80 03 54 273%| 16 9 12 6 41 16 65  344% 4 7 1981 9 13
write 75 84 144 63% | 17 8 15 7 43 11 795 8% 608 44 705 27 40
rtnetd 57 00 196 0%| 18 10 18 8 29 17 198 0% - 2 39%5| 43 69
'('H END_IDLE 50 06 16 173%| 16 4 27 18 26 10 16 147% - - 4054 0 8
S |syscall 39 20 64 273%| 35 2 22 0 1 30 65  274% - 0.77 828 3 28
,i: DISK INT 32 34 48 69% | 17 6 15 7 47 8 48 69% - - 891 7 14
g PFAULT 32 00 24 69%| 27 10 12 5 37 9 32 124% 3 5 1784 7 5
send 25 43 83 9% | 19 8 1 5 46 12 84 -39% - 0.71 410 16 17
DBL_FAULT 24 30 1 38| 4 0 1 0 38 16 1 3% - -| 26894 0 0
exit 20 09 1136 8% 27 12 10 11 14 25 1146 73% 2 8 24| 481 231
CLOCK INT 1.8 09 30 B%w| 13 3 11 7 52 14 30 33% - - 798 1 6
fentl 16 25 26 19% | 15 4 9 3 51 17 26 20% - 0.44 828 4 4
recv 14 18 42 36%| 23 4 7 4 50 12 43 3% - 0.49 436 9 5
Other 9.0 205 - e - - - . - - -
UTLB 55.8 69.8 0.07 8% | 76 0 0 0 0 23 0.07 8% - -- 1 2652699 0 0
O [CLOCK INT 129 125 55 5%| 10 2 8 7 53 21 55 -6% -- - 799 2 8
g DBL_FAULT 106 6.0 1 55% | 36 0 0 2 51 11 1 55% - - 28062 0 0
ﬁ QUICK FAULT 80 0.7 12 -57% | 41 5 1 3 34 16 19 -29% 5 3 2361 4 0
Z |exit 6.6 29 5290 381% (| 30 6 7 17 4 35 5994 445% - 704 412085 780
g DAEMONS 15 11 510 87% | 34 3 2 7 8 47 512 87% - 1 10 48 17
w [DEMAND FILL | 1.2 17 110 23%| 14 3 3 4 34 42 110 23% - - 38 8 6
Other 35 53 - ~- - - - - - -- - - - -

TABLE 5.4. Detailed breakdown of the multiprocessor workloads kernel activity.

The most significant services of the multiprocessor workloads are presented in order of their importance along with several statistics. Again, lower-case
services denote UNIX system calls. Uppercase services are as described in Table 4.8. We compare the average computation time of each service to its
execution on the 1994 uniprocessor system. For each service, we indicate the fraction of computation time spent in execution, synchronization, suffering
coherence misses, requesting upgrades or memory stalls. Synchronization, coherence misses and upgrades are overheads that are inherent to multiprocessors
and not present in uniprocessors. The latency of each service is broken down into average computation time, blocked or 1/0 latency, and scheduling latency.
Coherence misses that occur in the synchronization routines are not part of the coherence columns but are factored in the synchronization categories.

reducing the number of coherence misses.

5.3 Characterization of Operating System Services

To better understand the effects of multiprocessor overheads on
kernel performance, Table5.4 compares the performance of
multiprocessor operating system services to their uniprocessor
counterparts. With a few notable exceptions, the relative
importance of each service remains the same. This implies that
most services suffer similar slowdowns in the transition to
multiprocessors.

Program development workload. The top four services of the
program development workload, DEMAND-ZERO, QUICK-
FAULT, execve, and write, account for about 45% of the
kernel execution time. These services suffer a slowdown of
between 30% and 50% compared to their uniprocessor
equivalents. Spinlock synchronization accounts from 8% to 17%
the execution time of these services. More than haf of
synchronization overhead is due to contention on a single lock
(memlock) that protects the data structures that manage the
physical memory of the machine.

Coherence misses and upgrades comprise between 8% and
19% of the time. Coherence misses and upgrades represent com-



munication between processors on shared-memory multiproces-
sors. Unfortunately, some of the coherence misses are caused by
false sharing. False sharing occurs when unrelated variables reside
on the same cache line. Whenever one of these variablesiswritten,
the entire cache line must be invalidated from other processors
caches. As a result, subsequent reads to any variable on the cache
line will miss. One extreme example of false sharing involves
memlock. The cache line containing memlock also contains 22
other variables that the compiler and linker happen to alocate
adjacently. This line alone accounts for 18% of all coherence
misses in the kernel. As the relative cost of coherence misses
increases, programmers and compilers will have to pay much more
attention to this type of datalayout problem.

Table 5.4 also compares the latency of the services on both
platforms. Unlike the comparison of computation time, which
always reports a slowdown, some services actually have a shorter
latency on multiprocessors. The fork system calls return in half
the uniprocessor time because of the presence of alternate CPUsto
run concurrently both the forking parent and the child. On a uni-
processor, the parent gets preempted by the newly created child
process. System calls that perform I/O such as open, close, and
unlink also show speedups of 15% to 25% over the uniprocessor
run. Thisis not due to areduction in 1/0 latency but again due to
the increased probability that a CPU is available when a disk 1/0
finishes. More specificaly, the IRIX scheduler does not preempt
the currently running process to reschedule the process for which
an 1/O finishes, and this causes the uniprocessor latency to be
longer than simply the disk I/O latency. This scheduling policy
also increases the latency of functions that synchronize with block-
ing locks. This can be seen in the 32-fold slowdown of the
PFAULT exception.

Database wor kload. The general trends for the database workload
look similar to those in the program development workload. The
fraction of computation time taken by key system callsremainsthe
same across uniprocessor and multiprocessor implementations.
However, several aspects are unique to this workload. The
database workload heavily utilizes inter-process communication,
which is implemented differently by the uniprocessor and
multiprocessor kernels. The uniprocessor kernel implements the
socket send system call by setting a software interrupt (SW INT
in Table4.8) to handle the reception of the message. The
multiprocessor version hands off the same processing to a kernel
daemon process (rtnetd). The advantage of this latter approach
is that the daemon process can be scheduled on another idle
processor. As Table 5.4 shows, this reduces the latency of a send
system call by 39% on the multiprocessor version.

Another significant difference is the increased importance of
the END_IDLE state which takes 0.6% of kernel time on the uni-
processor but 5.0% of the time on the multiprocessor. This state
captures the time spent between the end of the idle loop and the
resumption of the process in its normal context. Two factors
explain this difference. First, in the multiprocessor, al idle proces-
sors detect the addition of a process to the global run queue, but
only one ends up running it. The rest (approximately one quarter of
the processors in this workload) return back to the idle loop, hav-
ing spent timein the END _ IDLE state. Second, a process that gets
rescheduled on a different processor than the one it last ran on
must pull several data structures to the cache of its new host pro-
cessor before starting to run. This explains the large amount of
communication measured during this transition, which amounts to
45% (coherence plus upgrade time) of the execution time for
END IDLE.

The frequent rescheduling of processes on different processors
increases the coherence traffic. Three data structures closely asso-
ciated with processes (the process table, user areas, and kernel
stacks), are responsible for 33% of the kernel’s coherence misses.
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To hide part of the coherence miss latency, the operating system
could prefetch all or part of these data structures when a processis
rescheduled on another processor. The operating system may aso
benefit by using affinity scheduling to limit the movement of pro-
cesses between processors.

Engineering workload. Kernel activity in the engineering
workload is not heavily affected by the transition to
multiprocessors. The UTLB miss handler dominates the minimal
kernel time of the engineering workload. The multiprocessor
UTLB handler contains two extra instructions, resulting in a small
impact on its performance.

6 Related Work

A number of recent papers have characterized multiprogrammed
and multiprocessor operating system behavior. One interesting
point of comparison between these studies and ours is the
methodology used to observe system behavior. Previous studies
were based on the analysis of traces either using hardware
monitors [2][8][13] or through software instrumentation [3]. To
these traditional methodologies, we add the use of complete
machine simulation for operating system characterization. We
believe that our approach has several advantages over the previous
techniques.

First, SimOS has an inherent advantage over trace-based simu-
lation since it can accurately model the effects of hardware
changes on the system. The interaction of an operating system with
the interrupt timer and other devices makes its execution timing
sengitive. Changesin hardware configurations impact the timing of
the workload and result in a different execution path. However,
these changes are not captured by trace-based simulations as they
are limited to the ordering of events recorded when the trace was
generated.

When compared to studies that use hardware trace generation
to capture operating system events of interest, SImOS provides
better visibility into the system being studied. For example, operat-
ing system studies using the DASH bus monitor [2][13] observe
only level-2 cache misses and hence are blind to performance
effects due to the level-1 caches, write buffer, and processor pipe-
line. Furthermore, because the caches filter memory references
seen by the monitor, only alimited set of cache configurations can
be examined. SSMOS simulates all of the hardware and no events
are hidden from the simulator. SimOS can model any hardware
platform that would successfully execute the workloads.

Studies often use software instrumentation to annotate a work-
load’s code and to improve the visibility of hardware monitors.
Unfortunately, this instrumentation is intrusive. For example,
Chen[3] had to deal with both time and memory dilations.
Although this was feasible for a uniprocessor memory system
behavior study, it becomes significantly more difficult on multipro-
cessors. The SImOS annotation mechanism alows non-intrusive
system observation at levels of detail not previously obtainable.

Our results confirm numerous studies [2][3][8][13]: memory
system performance, block copy, and instruction miss stall time are
important components of operating system performance. Like
Maynard [8] and Torrellas [13], who used hardware-based traces,
we were able to examine large applications and confirm their
results. Using SimOS, however, we were able to examine the oper-
ating system in more detail and explore the effects of technology
trends.

7 Concluding Remarks

We have examined the impact of architectural trends on operating
system performance. These trends include transition from simple
single-instruction-issue processors to multiple-instruction-issue



dynamically-scheduled processors, moves towards higher clock-
rates and larger non-blocking caches, and a transition from
uniprocessors to multiprocessors. The workloads studied include
program development, commercial database, and engineering
compute-server environments.

Our data show that the 1/O subsystem is the primary bottleneck
for the program development and the database workloads, and that
its importance continues to increase over time. For the program-
development workload this result emphasizes the need for the
removal of synchronous writesin the handling of file system meta-
data. Since the database effectively bypasses the operating system
by using “raw” disk devices, there islittle the operating system can
do about 1/0 problemsin this case.

The memory system is the second major bottleneck for al of
the workloads. While in the kernel, the processor is stalled for
more than 50% of the time due to cache misses. Fortunately, archi-
tectural trends appear to be improving the situation; we find the
memory stall time actually reduces slightly when moving from the
1994 to 1998 CPU model, even though the peak processor-execu-
tion rates grow very rapidly. The reasons for this are two-fold.
First, the larger caches in subsequent years help reduce the miss
rate, and second, the ability of dynamically-scheduled processors
to overlap outstanding misses with computation helps hide the
latency of misses.

Kernel builders wishing to improve performance beyond that
provided by the architectural improvements should invest in tech-
niques to improve cache reuse and to exploit the increased concur-
rency to be found in future memory systems. Suggested changes
include having the virtual memory page allocator factor in the
probability of the page being in the cache when doing allocation
and re-writing al memory copy routines to optimally exploit the
non-blocking caches.

The multiprocessor results show that each of the kernel ser-
vices takes substantially more computation time than on the uni-
processors. The reasons vary al over for the different kernel
services; they could be any combination of overhead and conten-
tion due to locks, stalls due to coherence misses, and extrainstruc-
tions and/or misses due to use of different data structures. These
need specia attention from kernel developers since improvements
in hardware are not expected to help much (e.g., larger caches do
not reduce coherence misses), and changes in data structures and
locking will be required.

The multiprocessor results also point out the importance of
simulation environments such as SimOS in guiding future
improvements in the kernel. SimOS provides detailed information
regarding the cause(s) of performance bottlenecks for individual
operating system services. Without such detailed understanding of
the bottlenecks, especially on complex architectures as expected in
the future, tremendous effort could be wasted in ad hoc optimiza-
tions that increase kernel complexity without improving perfor-
mance.
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