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Error messages are cryptic

What is this and
how do I fix it?
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Troubleshooting is no longer local

I can diagnose
this fault online
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Software diagnostic scenario

Local state [v]

Diagnosis [T(v)]

Program faults Evaluation

v T(v)T

Diagnostic 
program

Detailed problem description
and solution guide
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Our goal: Protect user privacy

Local state [v]

• Program memory
• File snippets
• Other running programs
• Confidential information

“If you are concerned 
that a report might 
contain personal or 
confidential information, 
you should not send the 
report.”

Problem: Users with privacy concerns cannot participate
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Talk outline

Two unsatisfactory approaches
Overview of our approach
Building blocks
Protocol walkthrough
Applications
Performance
Conclusion
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User-side evaluation

Program faults

Evaluation

v T(v)T
TDiagnostic

• Proprietary ($)
• Reveals vulnerabilities
• Helps reverse engineer

Problem: Vendor also has privacy concerns
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Secure multiparty computation

Program faults

Evaluation

v

T(v)
T

Problem: circuit is too large to be practical

Eval(T,v)
Eval(T,v)

T

 

Circuit to apply T to v

Description of T
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Our approach: Securing T

Program faults Secure T (offline)

T T’

Evaluation

v T(v)T’ • Reveals nothing about T
• Valid for a single evaluation

T’
Secure
diagnostic

Goal: Build a practical system for real problems
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Local state

A snapshot of the user’s local state
A vector of attribute values, such as
• Function call counts
• Function return values
• Contents of memory locations

…
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Diagnostic branching program

Decision nodes compare an attribute value 
to a threshold
• Control flows to either the left or right branch

Classification nodes specify a label

Diagnostic branching program for mpg321
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Aside: Creation of diagnostics

Diagnostic programs are built in several ways
• Hand-designed using expert knowledge
• Automatically generated by data mining and 

analyzing user error reports
– For example, Microsoft’s Dr. Watson

Clarify [PLDI ‘07]
• Project at UT Austin to automatically build “black-

box” classifiers for anomalous program behavior
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Hiding the diagnostic program

Property to hide Technique

Per node: thresholds and
attributes

Global: subset of attributes
that are used

Private integer comparison 
(Yao’s method)

Global: program topology Unevaluated nodes are
hidden by encryption

Homomorphic encryption

Blinding

Hide everything about T
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Private integer comparison

We use Yao’s method for integer comparison
IF (vi > threshold) THEN kl ELSE kr

• Evaluator learns one of two keys conditional on 
comparison result

• Evaluator doesn’t learn comparison result or the 
threshold

vi

>tkl kr

Yao circuit
Encoded
input
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Protocol walkthrough

1. User encrypts attribute values using an 
instance of additively homomorphic encryption

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

Allows addition under encryption 1

2

3

4

5

6

7
plaintext
encrypted

Hiding subset of attributes that are used
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Protocol walkthrough

2. Vendor blinds attribute values under 
encryption for each decision node 

v1

v2

v3

v4

v5

v3+b1

v3+b2

v4+b3

v3+b1

v3+b2

v4+b3

randomblinding hides attribute index 1

2

3

4

5

6

7
plaintext
encrypted

Hiding subset of attributes that are used
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Protocol walkthrough

3. Blinded attribute values are converted to Yao 
circuit inputs using oblivious transfer

v3+b1

v3+b2

v4+b3

OT

User learns Yao representation of inputs
Vendor learns nothing

plaintext
encrypted
Yao-encoded



slide 18

Protocol walkthrough

4. Vendor replaces decision nodes with secure 
integer comparison circuits (offline)

1

2

3

4

5

6

7

v3+b1

>t1k2 k3

Output of comparison is key k2 or k3

-b1

plaintext
encrypted
Yao-encoded
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Protocol walkthrough

5. Vendor encrypts each node

k1

k2

k3

k4

k5

k6

k7

v3+b1

>t1k2 k3

-b1

Hiding topology of T

plaintext
encrypted
Yao-encoded
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Protocol walkthrough

6. User evaluates encrypted branching program

k1

k2

k3

k4

k5

k6

k7

v3+b1

>t1

-b1

1

2

3

4

5

6

7
plaintext
encrypted
Yao-encoded

K3
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Protocol walkthrough

6. User evaluates encrypted branching program

k1

k2

k3

k4

k5

k6

k7

v4+b3

>t3

-b3
1

2

3

4

5

6

7
plaintext
encrypted
Yao-encoded

k6
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Protocol walkthrough

6. User evaluates encrypted branching program

k1

k2

k3

k4

k5

k6

k7

Detailed problem
description and
solution guide 1

2

3

4

5

6

7
plaintext
encrypted
Yao-encoded
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Protocol generality

This is a general protocol
Any branching program, any attribute vector

Let’s look at some specific applications
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Application: Software diagnostics

Clarify [PLDI ‘07] automatically builds branching 
programs to classify anomalous program 
behaviors
We have a working system to evaluate these 
branching programs securely
The system is practical
• For example, classifier for 4 cryptic gcc errors

– 37 nodes, 2920 attributes
– CPU: 5 seconds vendor, 7 seconds user
– Bandwidth: 656kB vendor, 707kB user
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Application: Medical diagnostics

When the diagnostic T and the data v are both private, 
our tool can securely compute T(v)

My symptoms
and history
are personal

Diagnose.com

My diagnostic is
proprietary
and valuable

Patient
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Server performance: Size of T
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Server performance: Size of v
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User performance: Size of T
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User performance: Size of v
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Conclusions

Novel solution for secure branching program 
evaluation
Provably secure
Much more efficient than generic techniques
Well-suited to software diagnostics 
• Online computation is independent of the size of 

local state

Performance acceptable for real-world 
applications
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