
slide 1

Justin Brickell
Donald E. Porter
Vitaly Shmatikov
Emmett Witchel

The University of Texas at Austin

Secure Remote Diagnostics



slide 2

Error messages are cryptic

What is this and
how do I fix it?



slide 3

Troubleshooting is no longer local

I can diagnose
this fault online



slide 4

Software diagnostic scenario

Local state [v]

Diagnosis [T(v)]

Program faults Evaluation

v T(v)T

Diagnostic 
program

Detailed problem description
and solution guide



slide 5

Our goal: Protect user privacy

Local state [v]

• Program memory
• File snippets
• Other running programs
• Confidential information

“If you are concerned 
that a report might 
contain personal or 
confidential information, 
you should not send the 
report.”

Problem: Users with privacy concerns cannot participate



slide 6

Talk outline

Two unsatisfactory approaches
Overview of our approach
Building blocks
Protocol walkthrough
Applications
Performance
Conclusion



slide 7

User-side evaluation

Program faults

Evaluation

v T(v)T
TDiagnostic

• Proprietary ($)
• Reveals vulnerabilities
• Helps reverse engineer

Problem: Vendor also has privacy concerns



slide 8

Secure multiparty computation

Program faults

Evaluation

v

T(v)
T

Problem: circuit is too large to be practical

Eval(T,v)
Eval(T,v)

T

 

Circuit to apply T to v

Description of T



slide 9

Our approach: Securing T

Program faults Secure T (offline)

T T’

Evaluation

v T(v)T’ • Reveals nothing about T
• Valid for a single evaluation

T’
Secure
diagnostic

Goal: Build a practical system for real problems



slide 10

Local state

A snapshot of the user’s local state
A vector of attribute values, such as
• Function call counts
• Function return values
• Contents of memory locations

…



slide 11

Diagnostic branching program

Decision nodes compare an attribute value 
to a threshold
• Control flows to either the left or right branch

Classification nodes specify a label

Diagnostic branching program for mpg321



slide 12

Aside: Creation of diagnostics

Diagnostic programs are built in several ways
• Hand-designed using expert knowledge
• Automatically generated by data mining and 

analyzing user error reports
– For example, Microsoft’s Dr. Watson

Clarify [PLDI ‘07]
• Project at UT Austin to automatically build “black-

box” classifiers for anomalous program behavior



slide 13

Hiding the diagnostic program

Property to hide Technique

Per node: thresholds and
attributes

Global: subset of attributes
that are used

Private integer comparison 
(Yao’s method)

Global: program topology Unevaluated nodes are
hidden by encryption

Homomorphic encryption

Blinding

Hide everything about T



slide 14

Private integer comparison

We use Yao’s method for integer comparison
IF (vi > threshold) THEN kl ELSE kr

• Evaluator learns one of two keys conditional on 
comparison result

• Evaluator doesn’t learn comparison result or the 
threshold

vi

>tkl kr

Yao circuit
Encoded
input



slide 15

Protocol walkthrough

1. User encrypts attribute values using an 
instance of additively homomorphic encryption

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

Allows addition under encryption 1

2

3

4

5

6

7
plaintext
encrypted

Hiding subset of attributes that are used



slide 16

Protocol walkthrough

2. Vendor blinds attribute values under 
encryption for each decision node 

v1

v2

v3

v4

v5

v3+b1

v3+b2

v4+b3

v3+b1

v3+b2

v4+b3

randomblinding hides attribute index 1

2

3

4

5

6

7
plaintext
encrypted

Hiding subset of attributes that are used



slide 17

Protocol walkthrough

3. Blinded attribute values are converted to Yao 
circuit inputs using oblivious transfer

v3+b1

v3+b2

v4+b3

OT

User learns Yao representation of inputs
Vendor learns nothing

plaintext
encrypted
Yao-encoded



slide 18

Protocol walkthrough

4. Vendor replaces decision nodes with secure 
integer comparison circuits (offline)

1

2

3

4

5

6

7

v3+b1

>t1k2 k3

Output of comparison is key k2 or k3

-b1

plaintext
encrypted
Yao-encoded



slide 19

Protocol walkthrough

5. Vendor encrypts each node

k1

k2

k3

k4

k5

k6

k7

v3+b1

>t1k2 k3

-b1

Hiding topology of T

plaintext
encrypted
Yao-encoded



slide 20

Protocol walkthrough

6. User evaluates encrypted branching program

k1

k2

k3

k4

k5

k6

k7

v3+b1

>t1

-b1

1

2

3

4

5

6

7
plaintext
encrypted
Yao-encoded

K3



slide 21

Protocol walkthrough

6. User evaluates encrypted branching program

k1

k2

k3

k4

k5

k6

k7

v4+b3

>t3

-b3
1

2

3

4

5

6

7
plaintext
encrypted
Yao-encoded

k6



slide 22

Protocol walkthrough

6. User evaluates encrypted branching program

k1

k2

k3

k4

k5

k6

k7

Detailed problem
description and
solution guide 1

2

3

4

5

6

7
plaintext
encrypted
Yao-encoded



slide 23

Protocol generality

This is a general protocol
Any branching program, any attribute vector

Let’s look at some specific applications



slide 24

Application: Software diagnostics

Clarify [PLDI ‘07] automatically builds branching 
programs to classify anomalous program 
behaviors
We have a working system to evaluate these 
branching programs securely
The system is practical
• For example, classifier for 4 cryptic gcc errors

– 37 nodes, 2920 attributes
– CPU: 5 seconds vendor, 7 seconds user
– Bandwidth: 656kB vendor, 707kB user



slide 25

Application: Medical diagnostics

When the diagnostic T and the data v are both private, 
our tool can securely compute T(v)

My symptoms
and history
are personal

Diagnose.com

My diagnostic is
proprietary
and valuable

Patient



slide 26

Server performance: Size of T



slide 27

Server performance: Size of v



slide 28

User performance: Size of T



slide 29

User performance: Size of v



slide 30

Conclusions

Novel solution for secure branching program 
evaluation
Provably secure
Much more efficient than generic techniques
Well-suited to software diagnostics 
• Online computation is independent of the size of 

local state

Performance acceptable for real-world 
applications


	Secure Remote Diagnostics
	Error messages are cryptic
	Troubleshooting is no longer local
	Software diagnostic scenario
	Our goal: Protect user privacy
	Talk outline
	User-side evaluation
	Secure multiparty computation
	Our approach: Securing T
	Local state
	Diagnostic branching program
	Aside: Creation of diagnostics
	Hiding the diagnostic program
	Private integer comparison
	Protocol walkthrough
	Protocol walkthrough
	Protocol walkthrough
	Protocol walkthrough
	Protocol walkthrough
	Protocol walkthrough
	Protocol walkthrough
	Protocol walkthrough
	Protocol generality
	Application: Software diagnostics
	Application: Medical diagnostics
	Server performance: Size of T
	Server performance: Size of v
	User performance: Size of T
	User performance: Size of v
	Conclusions

