Improved Error Reporting for Software
that Uses Black-Box Components

Jungwoo Ha
Hany E. Ramadan

Christopher J. Rossbach
Donald E. Porter

Jason V. Davis
David L. Chen

Indrayit R
Emmett Witchel

Department of Computer Sciences
The University of Texas at Austin

{habals,rossbach,jdavis,indrajit,-amadan,porterde,dicc,witchel } @cs.utexas.edu

Abstract

An error occurs when software cannot complete a requestamhac
as aresult of some problem with its input, configuration ymir@n-
ment. A high-quality error report allows a user to underdtand
correct the problem. Unfortunately, the quality of errquads has
been decreasing as software becomes more complex anddayere
End-users take the cryptic error messages given to themdy pr
grams and struggle to fix their problems using search enginds
support websites. Developers cannot improve their err@sages
when they receive an ambiguous or otherwise insufficieiotr énr
dicator from a black-box software component.

We introduce Clarify, a system that improves error repgrbg
classifying application behavior. Clarify uses minimaifhwasive
monitoring to generate hehavior profile which is a summary
of the program’s execution history. A machine learning siféer
uses the behavior profile to classify the application’s bira
thereby enabling a more precise error report than the ooffthie
application itself.

We evaluate a prototype Clarify system on ambiguous error
messages generated by large, modern applicationgtike La-
TeX, and the Linux kernel. For a performance cost of less i8%an
on user applications and 4.7% on the Linux kernel, the pyptot
correctly disambiguates at least 85% of application beiravhat
result in ambiguous error reports. This accuracy does rptade
significantly with more behaviors: a Clarify classifier fot 8a-
TeX error messages is at most 2.5% less accurate than dielassi
for 27 LaTeX error messages. Finally, we show that withoyttan
man effort to build a classifier, Clarify can provide neamsighbor
software support, where users who experience a problenolare t

1. Introduction

Bad error reporting is more than an inconvenience for mastsus\
large part of modern software support cost comes from tinmsteda
with bad error messages, which we define as any message &sat do
not provide sufficient information for a user to fix the prahlén

a timely fashion. One recent study concluded that up to 2&goér
of a system administrator’s time may be spent following dblat-
leys suggested by poorly constructed and unclear mesiggsé
time and expertise required to administer modern compugirsy
tems is causing the cost of administrating, configuring gathting

a machine to surpass the cost of the hardware [22]. Imprairay
reporting will keep down computer ownership costs and imgro
end-user satisfaction.

An error or error behavioris any program behavior that is not a
successful completion of a task specified by a user. Errctade
bugs, which are program behaviors that do not match a prégram
specification. It is also an error when a program fails a ctescy
check on its inputs—possibly because the user entered padl in
or mis-configured the system. Errors cause programs to peodu
error reports, which are usually text messages or dialogbthat
inform the user that the requested action will not complétashes
and hangs cause the program to output the null error message.
The user must interpret an error report to figure out how to get
the program to complete her request, often resorting tockear
engines and support websites (I&gport.microsoft.com)
for more information.

Consider the following model of error reporting. A given &pp
cation has a sek' of errors, and a seR of error reports. Unfor-
tunately, one element € R can correspond to multiple elements

about 5 other users who might have had the same problem. On ave € E because an error report is often ambiguous across multiple

erage 2.3 of the 5 users that Clarify identifies have expeeiéthe
same problem.

Categories and Subject Descriptors D.2.7 Distribution, Mainte-
nance, and EnhanceménEnhancement

General Terms Documentation, Management, Reliability

Keywords Software support, Error report, Profiling, Classifica-
tion, Machine learning

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright(© ACM, (2007). This is the author’s version of the work. It issped here
by permission of ACM for your personal use. Not for redigitibn. The definitive
version will appear in the ACM SIGPLAN 2007 Conference ondgPaonming Lan-
guage Design and ImplementatidPL(D/'07). June 11-13, 2007, San Diego, Califor-
nia, USA.

causes. For example, the Linux operating system uses theret
codeEEXIST to signal diverse error conditions, such as an attempt
to create a file whose name already exists in a directory, @t-an
tempt to put a rule in a routing table that conflicts with thatiog
table’s current state. Defing as a set of vectors of runtime statis-
tics about an application. Then the tugtes)|r € R, s € S could
uniquely determine the propere E, even thoughr alone fails. In
fact,» might not be needed at all,alone might suffice.

We introduce Clarify, a system to improve error reportiniarC
ify consists of two parts: a runtime to monitor a black-bokware
component, and a classifier to interpret the output of thémem
Clarify monitors the program using minimally invasive ta@fues
like reading the program’s memory or counting functionsadllhe
Clarify runtime outputs dehavior profile(the s € S). Clarify’s
users collect the behavior profiles generated when the gnogx-
periences a particular error, and train a machine learriagsifier
that recognizes the application’s error behaviors. Thesesualso

Clarify monitors application

(A) machine-learning model construction

behavior profiles
e —

e e —

Black
box
component

training

Clarify runtime

deployed

behavior profiles

(B) behavior classification

machine learning classifier
better error report

Figure 1. Clarify consists of a runtime monitor and a machine-
learning classifier. The rectangles represent processesicong
and producing data. The Clarify runtime monitors a black-bo
component to generate a behavior profile that summarizesxthe
ecution history of the component. Section (A) shows a machin
learning classifier, trained offline from behavior profil&gction
(B) shows the trained classifier classifying behavior pesfto pro-
duce improved error reports.

machine learning algorithm
+

human labeled profiles

write an improved error report that describes the errorehand

how to fix or work around it (thee € FE). Classifier training is
done by a small minority of technically-savvy Clarify usetsch

as support engineers who reproduce user problems in-hBose.
users get the improved error reports by classifying thelrabr

profile. Clarify reduces the problem of improving error regdo

the problem of classifying error behaviors.

Figure 1 shows the major components of Clarify: the runtime
and the machine-learning classifier. Each time the blackeomn-
ponent executes, the Clarify runtime generates a behaxaditep
The behavior profile includes information about the conftolv
or data values of the program execution. Simple examplesef a
havior profile would include counts of each function exemutior
counts of how often each function returned zero.

Training the machine learning classifier happens in se¢fdn
of Figure 1. A machine learning algorithm takes labeled keha
ior profiles as input and produces a classifier. The classélers
a behavior profile as input and outputs a label. A label coed b
a non-ambiguous error code, or a lengthy description of thbe-p
lem and how to resolve it. The classifier improves error reloe-
cause users can train the classifier to recognize very spedaitirs
that have a generic error report. In settings where labed¢d i@
not available, Clarify employs a nearest-neighbor sofévgpport
method. Here, users are paired with others who have exjgeden
similar errors.

Non-technical end-users get improved error reports froar-Cl
ify in section (B) of Figure 1. Clarify classifies an end-usé&ehav-
ior profile, giving them more precise information about thetror
and how to resolve it. The machine learning classifier fsatsires
from the behavior profile to determine the error classifaratiA
feature is the value of a particular statistic, like the nemtf times
the functiondecode _audio _frame was called in an execution
of an mp3 player application. A value of zero can indicate raare
where no audio frames were ever played.

The contributions of this paper are:

¢ A system that combines runtime monitoring and machine fearn
ing in a novel way to improve error reports of black-box soft-
ware components.

¢ A new profiling technique calledall-tree profiling that rep-
resents software behaviors more accurately, on average, th
existing profiling techniques such as function profilingpath
profiling.

e Evaluation of a Clarify prototype on large, mature programs
that currently produce unclear error messages and cogfesin
ror behavior, such as tlgee compiler, and the Linux operating
system. Our evaluation includes an in-lab deployment of-Cla
ify.

¢ Introduction of nearest-neighbor software support, whsers
are paired with other users who have experienced the same
problem.

The next section provides an example use of Clarify that -moti
vates the design presented in Sections 3-5. Section 6 blesar
benchmarks and the ambiguous errors they report and Séttion
contains the evaluation of the Clarify prototype. Sectiaedews
related work and Section 9 concludes.

2. Improving error reports with Clarify: an
example

This section provides an example to elucidate the motimafio
Clarify and the benefit to its users. The example also previde-
tivation for the sections that discuss Clarify’s designattms 3-5).

2.1 Clarify scenario

mpg321 is a popular command-line mp3 player written by Joe
Drew that is included in many Linux distributions. Softwanep-
port options fompg321 are limited. There is a support forum on
SourceForge, and a mailing list for notification of new rekes Ad-
ditionally, users are invited to email Joe Drew directlyeTupport
forum has many requests for help with zero replies. Receness
include some with titles, “Problem playing mp3's” and “naisa.”
mpg321 tends to fail without printing diagnostic messages.

Imagine two users, SmartyP and Grandpa, who will use Clarify
to improve the error reports ahpg321. We will assume that
SmartyP posted the message about problems playing mp3s and
that Grandpa posted the no sound problem (Note, user names ha
been changed, but posting subject lines have not). SmargP h
figured out his problem, and wants to donate his solution o th
mpg321 support community using Clarify. SmartyP found that his
mp3 audio data was corrupt, which does indeed caysg321 to
run without producing audible output. Such a problem coualclio
if SmartyP were storing his files on a flash drive that wasrfgili
Clarify enables Grandpa, a non-technical user, to benefit the
diagnosis of a technical user—SmartyP.

Step 1: The Clarify runtime. We assume that SmartyP and
Grandpa have Clarify-enabled versionsmpg321, i.e., the bi-
naries are already linked with the Clarify runtime. Modifgi an
application to make it produce a behavior profile does natireq
source code, so it is reasonable to assume that Clarifytenhbb
naries can be distributed along standard software distoitbehan-
nels.

Step 2: Collect behavior profiles.With the Clarify runtime,
SmartyP runsnpg321 on a few corrupt mp3 files. The interface is
simple: when the software fails it queries the user about wieat
wrong. SmartyP can entenfpg321 produces no sound output due
to corrupted audio frame data in the source mp3 files. Cheak yo
mp3 files because their contents are probably corrupt.” Taef¢
enabled binary then uploads the problem description andviah
profiles generated by the executions that fail to the SouncgeF
support site.

Step 3: Train a classifier. A moderator for the SourceForge
support site would read SmartyP’s error description andigro
SmartyP’s behavior profiles with the profiles of other usel®w
experienced the same problem. Having a human in the loopesnsu
that the language in the error report is clear and underatdadnd

guards against malicious or inept users. If less centrdioaity is
desired, a peer reputation system can replace a human nmdera

The support site software (or moderator) will build a newssia
fier from the behavior profiles submitted by users. Users nagd
upload their profiles, they do not build classifiers. Theemany
policies for managing the classifier build such as doingriefery
new error report, or building it once a day.

Step 4: Use the classifierlnstead of posting “no sound” to
the SourceForge support forum, Grandpa runs his Clarifpkeal
binary. When Grandpa fails to hear any sound frampg321,
he hits a special help key which uploads his behavior profile t
the SourceForge support website. The site classifies Gaandp
behavior profile and provides him with SmartyP’s detailedier
description, telling him that his mp3 file has corrupt data.

2.2 Discussion

By classifying program behavior, Clarify enables a user mam
nity to improve software support. It also enables softwamedors
to improve software support. Microsoft has built distribditabel-
ing of problem reports into Windows Vista. In the documentat
for the new “Problem reports and solutions” control panein
Microsoft says it can ask end-users to provide addition&hitse
about their problem to create a solution that can be provided
other users [18].

The Clarify scenario presented has most computation aogurr
on the server, but classification can happen on a clientgitlient
has the latest classifier definition from the server. Clienight
periodically connect to the server to download classifietates,
like modern virus checkers update virus definition files. ©tie
information is cached locally, a client can diagnose ervgtlout
connecting to the network.

SmartyP treatsnpg321 like a black box. He does not change
the error reports generated by the source code. Maybe sadgeb
would be accepted by Joe Drew in a timely fashion, but maylbe no
Programs developed by more people or commercial orgaoirati
are difficult or impossible for an end-user to change.

The example motivates the following questions, which we ad-
dress in succeeding sections.

Feature collection(Section 3). What information does the Clar-
ify runtime collect? This section describes alternativasiie con-
tents of behavior profiles.

Deployment and security(Section 4). Can Grandpa run a min-
imally instrumented executable that is fast enough forydask, but
produces behavior profiles of sufficient detail to disambtgcur-
rently known errors? Does SmartyP’s contribution to thepsup

site mean that Grandpa can figure out what kind of mp3s SmartyP

listens to?

Minimizing human effort (Section 5). Clarify can give Smar-
tyP’s email address to Grandpa, even before SmartyP catedb
his labeled examples (or even figured out what his problenbés)
cause it can detect similarity between user executions witbout
a trained machine learning classifier. SmartyP only upl@afsv
behavior profiles, because he assumes that other will aleadip
profiles. A classifier trained on diverse examples usuallyega-
izes better than one trained on homogeneous exampleso®adti
measures how many labeled profiles are necessary to traio-an a
curate classifier (in our experimentapg321 requires 38 profiles
per error type).

3. Behavior profiles

The Clarify runtime should collect the most expressiveimatfea-
tures at the lowest cost. Expressive features are thosa thathine
learning algorithm can use to discriminate different eb@haviors
robustly. Intuitively, expressive features capture dstaf control
flow or important data values that are caused by a particutar e

Behavior
Profile Key Value
FP <function addr> # of times called
CSP < call-site addr> # of times invoked
PP <path in a func- # of times occurred
<bitvector of caller, # of times executed
CTP)
bitvector of callee-
< call-site addr, # of times executed
CSRV predicated return valug
SS <predicate> # of counts

Table 1. Summary of the type of feature that is collected by the
Clarify runtime.

ror behavior. For instance, an incorrectly formatted UREsaal to
a web browser can be correlated with the execution of funstio
that attempt every possible interpretation of the input UiREore
declaring the error.

Programs often have error-reporting routines, so one might
think that the execution of such routines is a surefire irtdica
of an error behavior. However, highly mature and factorea- pr
grams, likegcc, reuse error-reporting code for other purposes,
such as producing warnings during correct compilation.vierg
non-trivial program we have examined, simple correlatities
tween an error condition and the execution of a given functio
the presence of a given return code do not hold.

Clarify collects feature counts from black-box componargs
ing code instrumentation that does not require source dade.
cent binary-to-binary translators like Traceback [3] fisjaand
Dynamo(RIO) [4, 11] (dynamic), and fine-grained instrunagioin
systems like the OS-level instrumentation tool KernIng{[$un’s
DTrace [13], or Linux’s kprobes [24] (all dynamic) provideetop-
portunity to insert a small amount of instrumentation canlager-
level applications or the operating system with very lowaen®n-
time cost.

Clarify must limit the number of features it collects. Ertme-
havior is usually correlated with a small number of featues
collecting large numbers of features requires the macleiaming
algorithm winnow the large set of features down to the raieva
few. Having more than about 70,000 features pushes thesliohit
many machine learning algorithms often causing addresespa
haustion and unreasonable runtimes. This section diss3ise-
ify’s strategy for collecting information about controlfiand data
values.

3.1 Control flow

Clarify counts features that are related to control flow bsea
control flow is a good indicator of program behavior. In gaher
the more information Clarify collects about control flowetmore
accurate its model of program behavior, but this accuraoyesoat
the price of greater CPU and memory overhead.

One form of behavior profiling counts the execution of fuoti
call sites. Another counts intra-procedural paths using peofil-
ing [5]. Paths encode more information about control flovt,tbay
are more expensive to collect than function counts. Claii$p in-
troduces a new profiling method calledll-tree profilingthat sum-
marizes the calling behavior of a function and its callere Thall-
ing behavior contains some of the intraprocedural contot that
program paths represent, but it is less computationalgnive to
gather.

Clarify uses counts because counts preserve rare evemen Of
a program will make a unique sequence of function calls leefor
outputting a cryptic error report or crashing. Clarify ushsse
unique calls as the signature of the behavior. Some systems u

e are shared for basic blocks that cannot be called togetteesin-
gle path. When a function returns, CTP increments a counter f
the concatenation of the function’s and its caller’s biteecCTP

@ e (C (D E)),(A(BC)) also increments the counter on loop backedges, clearingutient
function’s bitvector. In this way, CTP bitvectors remaimguact.
@ G Path profiling is able to preserve more fine-grained inforomat
about paths within the function than CTP’s bitvector, butFCT

preserves more information about calling context by caating
Figure 2. An example of call-tree profiling. The left side of the the caller's bitvector. Because the order of the functidtscan be
diagram is the rightmost subtree of the dynamic call trechwit decoded offline with the control-flow graph and the bitved®¥P
arrows pointing in the direction of function calls. The rigide is distinct from calling context trees [2, 42] which are lpssith
is the CTP feature that is collected when function C retufitee respect to calling sequence. Experimental results in@eatshow
CTP feature is combination of call sequences of function €itn that CTP supports high classification accuracy.

caller A.

3.2 Data
event probabilities [8], which penalize the importancearkrcode Data values can provide robust characterization of errbater,
paths, especially for programs that run for long periodsroét though a naive implementation can greatly increase thebauof

We evaluate a number of approaches to behavior profiles that features thereby canceling any benefit. For instance, tocige
have different tradeoffs for performance overhead andllefe returnvalues with their call sites, Clarify can count céfésreturn

execution detail. value pairs. A function that has 100 distinct return valuel w
increase the number of features by 100. Such encodingsasere
3.1.1 Function and call-site profiling the complexity of the classification task considerably ashire

learning algorithms have performance and accuracy prabvemen
confronted with large numbers of features.
Predication is a standard technique to reduce the feataesp

of data values [27]. We define nine predicates which are egpli
iqud® Clarify data and return values; the predicates map rawegal
to feature values. The predicates indicate whether the adume\is
equal to zero, equal to 1 or -1, is a small or large positiveegiative
integer, or is a pointer to the stack or heap. The threshotdsnfiall
and large positive and negative integers are arbitraryvalue with
absolute value less than 100 is small, any value with absghltie
greater than 100 that is neither a stack or heap pointerngela

The first method usefunction profiling (FP) (sometimes called
function call profiling [31]). Each function has a counteatths
incremented when the function is executed. The order in kwthie

functions associated with it.

The second method all-site profiling (CSP). This is similar
to FP but the counter is associated with each call site, raltiae
with the call target. For direct calls, CSP differentiatesoag call
sites, while FP does not.

3.1.2 Path profiling

The third control-flow based behavior profiling methodpiath
profiling (PP) as described by Ball and Larus [5]. Each program
path within a procedure (unique sequence of basic blocks) ha
a counter that is incremented when the path is executed. Path
profiling distinguishes amongst program behaviors thatlltés

3.2.1 Call-site profiling with predicated return values

Call-site profiling with predicated return values (CSRV)unts
pairs of call sites and predicated return values. If caé-Aireturns
255 one hundred times and returns -1 once, then the featfre
large int> has a count of 100 and the featurd\, equals -1> has

different control flow within a function (intra-procedurabntrol a count of 1.
flow), something that function profiling cannot do. 3.2.2 Stack scraping
3.1.3 Call-tree profiling Stack scraping (SS) is a behavior profile that relies only fen t

dynamic data values from an execution instance, rather ¢iman
control flow. The insight behind stack scraping is that treeclst
contains control flow history in the form of return addressesne
of them residual in memory below the current stack pointed a
status information like function return codes.

At the moment the program returns an error code, its exatutio
is paused, the range of memory allocated to the program s&ack
traversed, and a feature vector representing that instafrexeecu-
tion is created by applying predication to each word in treelst
range. The representation trades some fidelity for conmeaiand
compactness, compared to instrumentation-based coruvohfk-
tories. The scraper obtains the stack and heap bounds dyaigmi
(from /proc/pid/maps on Linux) so it can differentiate point-
ers to the stack and pointers to the heap.

Stack scraping is unique in Clarify feature sources in that i
does not require instrumentation of the source prograrmpbses
very little runtime overhead, but it is also the least actaufaature
source.

The fourth control-flow based profiling techniquecill-tree pro-
filing (CTP). Since each function in a program is one processing
step, the dynamic call tree is a good representation of thgram
behavior. However, the size of the whole dynamic call tresnisr-
mous, it is impractical to use it for the classification dilecCTP
counts the number of times a particular calling sequencaredn
the current function and its caller. It counts the sequetneavery
function return or loop backedge. CTP is an approximatioth&
subtree of depth 2 in the call tree.

Figure 2 shows an example of a dynamic call tree and the CTP
pattern that is counted. Each arrow indicates the call ime@nd
the left sibling is called before the right sibling. The td®wn is
where A calls B (B may call other functions but that behavior i
ignored by CTP) and then calls C, and C calls D and then E. When
function C returns the call pattern for C is (C (D E)), and thd c
pattern for C’s caller A is (A (B C)). Therefore, CTP increnen
by one a counter for the entire pattern of C and its caller, (I{C
E Roplament CTP efficienty, each function gets a CTP bit

o implemen efficiently, each function gets a vec .

tor, where each corresponds to a call site in the functiomed@iace 4. Deployment ISSues
the number of bits used, a bit is assigned only once per baxi& b This section discusses the different deployment scentoidSlar-
because calls in a basic block happens in the same order.l8tsme ify, and addresses security issues of a Clarify deployment.

4.1 Forensic vs. live deployments

Clarify can be deployed in two ways: to improve any error répo
a program can givdiye deployment or to improve a fixed set of
error reportsforensic deploymehtA live deployment will instru-
ment an entire executable, sacrificing some performancellect
data about the entire application’s behavior. A forensjdalgment
only collects data that is known to help disambiguate a fixtdE
error reports.

4.2 Security

Clarify improves software support, but raises securityiéssfor
users and software vendors. Users would like to keep theratad
the way they use software private. Vendors do not want tolgiévu
information about the structure, control flow, and suppastdny of
their product to users or competitors.

Current software support systems suffer from this problem.
Windows Vista, there is a new control panel item called, tRro
lem reports and solutions,” [17] which is a refinement of the c
rent Windows support dialog. When a program malfunctiarzam
send a partial memory dump to Microsoft and Microsoft cardsen
the user a better error report. However the dump sent to Midto
can contain arbitrarily sensitive data (e.g., passwordsdiccard
information, etc.). Microsoft's privacy statement cutttgriscour-
ages users who are concerned about privacy from using teir s
vice [16].

Clarify decision trees can be evaluated on Clarify behagwior
files in such a way that the end-user learns only the infoonat-
lated to his error (and nothing about the software suppstohy or
control flow of the application). The software vendor whovides
the decision tree learns nothing about the user’s execufioa se-
curity details are in a separate paper [9], but the systeswalirees
with 255 nodes and 1,000 attributes to be securely evaldatetB
seconds of online computation and 4.5 MB of bandwidth for the
vendor, and 48 seconds of online computation time and 1.5MB o
bandwidth for the user.

5. Minimizing human effort

Clarify requires humans to label or generate examples dfyfau
error reports in order to train a machine learning classifieen
without a classifier, Clarify should help users. We descnibarest-
neighbor software support, an execution mode Clarify udeswit
has no classifier. The section next describes distributiegatork
of labeling profiles among a software support community.

5.1 Nearest neighbor software support

Clarify needs a certain number of labeled examples to build a
accurate machine learning classifier (exact numbers atg#emme
dependent and quantified in Section 7.4). Before it hasddam
classifier, Clarify uses nearest-neighbor search to matofias
behavior profiles. For instance, usersmpg321 can give their
email addresses to a a support website. If a user has a proble
that she does not understand, she sends her behavior podfile t
site which runs Clarify. The site returns the emails of 5 oteers

who opted in to the system and who likely experienced the same

application behavior. (The system might give out a particemail
address only 3 times and take other steps to make sure partisi
are not overwhelmed with email or put on spam lists.) As tlsalte
in Section 7.6 show, nearest-neighbor search is sometiighi/h
effective, but it is not as accurate in general as buildintaagifier.

5.2 Labeling behavior profiles

The Clarify classifier must be built from labeled behavioofies.
There are three ways this labeling can be done.

e Members of a support organization can do all labeling. This
approach is human resource intensive, but provides higlitgu
labeling.

e End-users can label their profiles, distributing the workoas
many more people, but enabling malicious or inept usersdo ad
noise in the form of incorrect labels. End-user contribigioan
be graded by support staff or by peer reputation (like what is
done on current support websites).

e Support engineers can write scripts to generate many yarian
inputs for each problem. All inputs exercise the same proble
so they all share the same label. We use this method to egaluat
Clarify. It requires the most expertise, and the inputs are n
guaranteed to accurately model real-life inputs.

6. Benchmarks

Clarify is intended to improve the error reporting of comyple
black-box software components. To evaluate Clarify, weosko
benchmarks that are common, heavily-used programs forhwhic
non-exotic error conditions lead to misleading or non-exiserror
messages. That common utilities provide shoddy error tiggpr
makes clear the motivation for Clarify.

We also use Clarify on programs that span the kernel/user
boundary, containing user-level code that interacts withné&l
modules. Interaction across a protection boundary crediab
lenges for error reporting due to fixed interfaces and thigcdify
of passing memory objects across the boundary.

This section summarizes the benchmarks and the kinds of prob
lematic errors they report. We explain the behavior undeglyhe
error reports—it is this underlying behavior that Clariyimtended
to discover.

6.1 User-level programs

gcc. The GNU C compiler is a popular compiler, containing both
hand-written and automatically generated source code. eQur
periments use version 3.1, executing only the compiler ¢tte
phase), using the “.i" file output of the pre-processor, dréom a
pool of 4,070 files pre-processed from the Linux kernel Z&lis-
tribution. A corruptor script randomly modifies correct smeicode
to exhibit mistakes from four error classes: adding a selmicaf-
ter anif() that has arelse clause, causing the compiler to fail
on theelse ; omitting the closing curly bracket of a switch block
causing an “end of file” error; deletion of a semicolon, yietfla
generic syntax error, often on a very different line fromrndeoved
semicolon; misspelling a keyword which also generates anien
syntax error. All error classes result in confusing and iecfse er-
ror messages.

mpg321.mpg321 is an mp3 player for Linux. This benchmark
has three failure modes: file format error (e.g. trying to/@avav
file as if it were an mp3), corrupted tag (mp3 metadata is dtore
ID3 format tags, e.g., artist name), corrupted frames (nmpfé

MHata is corrupt). The Clarify classifier distinguishes lesw these

three failure modes and normal execution. The applicatieslfi
does not give any consistent error message for any of these er
cases.

LaTeX. Latex is a typesetting program widely used by the re-
search community. Its error reporting is known to be obsdRs-
ber [34] is a tool that filters LaTeX’s output to make it morerco
prehensible to the user. However, many of LaTeX’s error agss
are generic and many have varied root causes, making ituiffic
for users to understand what went wrong and fix it.

Our LaTeX benchmark has 26 ambiguous error cases, too many
to summarize here, so we describe one illustrative exan#ple.
website [15] contains an explanation of all the classes.

If a table , array oregnarray has more separator char-
acters (ampersands) than columns, LaTeX prints the obsctoe
message, !Extra alignment tab has been changed\tor”. Most
LaTeX books and most LaTeX support websites recommend eheck
ing the number of ampersands if a user receives this erroneSo
websites and books are helpful enough to suggest a missthgfen
row symbol\\ on the previous line. While forgetting the double
backslash will cause the error report, the error report isinmue:
misuse of thacline command (a directive that draws a horizon-
tal line in the table) will result in the same message if on¢hef
arguments tacline refers to a non-existent column in the table.
Users who make theline mistake get an error message that al-
most all support options say are due to one of two possiblsesau
even though there is a third possible cause. Error repatsiased
to their most likely cause, leaving a user who executes diledg
scenario scratching her head, potentially for a long time.

6.2 Kernel benchmarks
To evaluate the applicability of Clarify across the usemiké

[App. || inst. [Er]] FP [CSP [CSRV | PP [CTP |
latex81][34,677] 81]] 395] 6,802] 61,202 1,504] 23,296
latex27 || 11,528 27| 395| 2,191| 21,425 1,504] 20,761
mpg321 || 263| 4| 128] 1,162 11,495] 21,954 1,318
gee 1582| 5| 2,920] 57,221 514,973| 40,513| 93,246
iptables || 131 5| 56| 70| NA| NA| NA
iproute2 || 146| 4| 146] 475 NA| NA| NA
mount || 1,920] 5| 292] 292] N/A| NA| NA

Table 2. Sizes of the Clarify behavior profiles for each benchmark.
The second and third columns show the number of instances (pr
gram executions) and the number of error classes for eaadhben
mark. The remaining columns show the number of featuresscin e
behavior representation. SS is not shown in the table simd@ays
has 9 features. Kernel utilities only generate the first tebdvior
profiles due to limitations in how the kernel can be instrutedn

This error message makes some sense because the remote proce

boundary, we chose three benchmarks that depend on both usergyre call daemon cannot find the proper program to handle the

space applications and kernel modulggables
andmount .

iptables. iptables is a popular open source Linux appli-
cation that does packet filtering, network address transiaand
other packet mangling. The policies for these operatiomsimr
kernel-space data structures, while the user applicaticamiin-
terface for the end-user.

The error reporting interface between the kernel and theisse
netlink .netlink simplifies the interaction between the kernel
and userspace, allowing anyone to create a kernel modulesand
the error reporting infrastructure. Bogetlink makes the error
reporting interface rigid, forcing the kernel to reuse ercodes
like EEXIST. The EEXIST code means both that a file the user
tried to create already exists, and that a new packet handlie
creates a conflict with the current rules. This ambiguitysigezially
confusing when an attempt to add a new packet handling rule
returns the string, File exist$ because that is the default string
for the EEXIST error code in the C runtime library.

The first behavior class for this benchmark includes the saisu
of tableSNAT, DNAT andSAME all of which produce the generic
“Invalid argumentserror. The second class is the misusévtARK
as a jump target, the third class is absence of the kernel letiuiat
is necessary to handle the user’s request, and the fouthaass
is using a forwarding chain name that does not exist. Theekern
returns the same error code for the last three classes, whides
the application to print,No chain/target/match by that nathe

iproute. iproute controls the contents of the kernel routing
tables. It has similar problems reporting errors as diptebles
because it also uses tinetlink error reporting standard. The
first error class is adding routing rules that conflict withisting
rules; the second is adding an IP address that conflicts witirey
IP address; the third is entry of a conflicting routing tabl>hat

, iproute

user’s request, but this might not be obvious to normal esetas
The fourth error class is NFS version configuration mismaeh
tween the server and the client. We tested with NFSv2 and RFSv
The error message iRRPC: Program/version mismatch; low ver-
sion = 1, high version = 2 While the problem detected the NFS
version mismatch, the error message reports the wrongoversi
numbers which is likely to confuse a user diagnosing thelprob

6.3 Complexity of Clarify benchmark dataset

Table 2 summarizes the complexity of the Clarify benchmark
dataset. Each program has at least three ambiguous or diislea
ing error classes and one normal class. Latex27 has 26 aousgu
error classes and 1 normal class. In general, more accutiep
have more features. For instance, there are 533 functiolageir,
but 6,802 call sites, and call-site profiling is more accuridian
function profiling.

Our benchmarks all have approximately equal number of in-
stances per error type. This distribution is not intendechtalel
the frequency of bugs occurring in the field, but rather sdime
classifier to distinguish among the given cases.

7. Evaluation

We evaluate Clarify according to four criteria: accuracgrfpr-
mance, training cost, and scalability. First, Clarify maetrectly
classify program behaviors that share ambiguous erroragess
Accuracy is summarized by the ratio of behavior profiles ectty
classified to the total number of profiles (Section 7.1). Afeetr
classifier would correctly identify each error scenariarirthe be-
havior profile for each benchmark. As further validation of olas-
sification models, we examine the decision trees genergt&dtn-

should produce an error, but does not due to a bug in the kernelify in Section 7.3. We show that the tree tests program featthrat

module. The error message for both the first and the secood err
classes areRTNETLINK answers: File existdue to the use of the
overloaded return codeEXIST.

nfs mount. Mounting a remote NFS server is a complicated op-
eration involving different kernel subsystems and cros&fine
communication. It is no wonder that the error reports geedra
from mount can be cryptic. The first error class is specifying the
wrong port number, which produces the unrelated error ngessa
“NFSv3 not supportetilor “Can'’t read superblock The second

intuitively correlate with the observed behavior.

The accuracy of Clarify must come at an acceptable perfor-
mance cost, which is measured in Section 7.2. A succesgildyle
ment of the Clarify system should incur minimal overhead<os

Labeled examples can be expensive to collect, as detemgninin
the error type of a given instance can require consideralean
effort. Section 7.4 shows how many labeled behavior proéites
required to generate a Clarify classifier. In the absencengf a
labeled data, Clarify employs a nearest-neighbor algoritivhere

error class is a TCP/UDP mismatch between the server and theusers are paired with other users who have experienced the sa

client, and the third error class is when the server is dowtoth
cases, the mount program printRPC: Program not registeréd

problem (Section 7.6). Section 7.7 shows data about the fise o
Clarify as deployed in our lab.

App CSP CTP
’ Forensic | Live Forensic | Live

latex 0.6% | 5.3% 1.1% 97%
mpg321 0.3% | 1.2% 1.3% 67%
gcc 1.0% | 7.0% 9.9% | 110%
iptables 1.1% | 3.2% N/A N/A
iproute2 47% | 7.6% N/A N/A
mount 1.1% | 3.1% N/A N/A

Table 3. Slowdown of programs running under the Clarify run-

7.2 Performance

Table 3 shows the performance of live and forensic deploysnen
of call-site profiling. All timing runs are on a dual-processntel
Xeon 3.0GHz with 2GB of RAM. Because there is no freely avail-
able static binary translator for the x86 architecture gkgeriment
modifies the assembly code of the programs to count call sites
exactly the way a binary modification tool would do it. On tl&6x

a count with a known address can be incremented with a single
instruction. The counters reside in a memory mapped filehso t

time using CSP and CTP for a forensic deployment (which can results can be collected after program termination.

only classify errors known during training), and a live dgphent
(which can classify new errors found after deployment).

Finally, section 7.5 examines how the accuracy of Clarify’s
classifiers scale with the number of error classes. The tobss
of the Clarify classifiers is demonstrated by the relativhigh
accuracy obtained for the latex benchmark with 81 classes.

7.1 Classification accuracy

Clarify uses decision trees to classify. Decision treeqasted if-
then-else statements where each leaf corresponds to a siagb
prediction. An advantage of decision trees (over more paotis
methods like support vector machines) is their ease ofprita-
tion. It is possible for a software engineer to validate tlessifier
based on knowledge of program structure. Further, in théegbn
of our experiments with Clarify, decision trees are as aateuas
other machine-learning methods. Although Clarify’s instenta-
tion computes thousands of features that describe eachapnaex-
ecution, the task of classifying error messages can be gilisirad
by analyzing only a few features. This can be seen througtethe
atively small size and high accuracy of Clarify’s decisioges. In
contrast, methods that optimize over the entire feature-sdd. lo-
gistic regression or support vector machines—tend to yoeket-
fitted models with lower accuracy. Other algorithms thairojzte
over only a subset of features, such as rule learning ancidmbos
decision stumps, yield classifiers we found to be competitiith
decision trees.

Each benchmark runs several inputs to obtain a running time
that is long enough to measure accuratglyc compiles the 23
largest .i files from the Linux 2.6.16 distributiompg321 decodes
256 frames of 200 mp3 files, and LaTeX processes 5 files with a
total of 27,587 lines. We average the user time of three ei@i
The remaining rows in Table 3 show benchmarks run on the2.6.1
version of the Linux kernel. The kernel behavior profile idthus-
ing the kprobes [24], a dynamic instrumentation package itha
standard in Linux. Kprobes uses breakpoints so it is a more ex
pensive form of instrumentation. We use it to collect onlgdtion
profiling and call-site profiling.

Performance overhead is low for call-site profiling, both fo
forensic and live deployments. The live deployment ovedhiea
call-site profiling is modest, less than 7.6%. The live dgplent
overhead for CTP is much higher. Live deployment requires in
strumenting the entire binary, while forensic deploymdmases
features that training runs indicate are necessary to digamate
a known set of problems and that are cheap to collect, egy, th
reside in functions that are called infrequently. We useldiglied
machine learning algorithm [19] that uses training datard the
minimum cost tree whose accuracy is within 1% with our cost-
oblivious tree. The increase in performance from live teefaic
for CTP is dramatic. The overhead of CSP is smaller to begih, wi
so the reduction is smaller, but the forensic overhead of @8P
user-level programs is less than 1%. The high cost of breatgo
in the kernel accounts for the higher overhead relative ¢o-level
programs. Forensic deployment is an effective means ofogiepl
ing richer behavior profiles like CTP at reasonable levelsesfor-
mance cost.

7.3 \Verifying the machine learning model

Figure 3 shows the accuracy of user and kernel benchmarks, Machine learning algorithms train classifiers without amynéin

for several different behavior representations. Theskesateport
accuracy using 5-fold cross validation, a standard teclaniipr
evaluating classifiers. The dataset is partitioned into $aetions,
the classifier is trained and tested five times; it is trainedour
sections of the data and its accuracy tested on the remdiftimg

knowledge regarding the underlying semantics of the prograe-
havior. Itis possible for a classifier to fail miserably orsaan data
because the classifier examines features that are sentigntica
related to the behavior it classifies. To make sure that f@lakas-
sifiers use program features that intuitively relate to tbkdviors

The average of these five tests is the reported accuracy of thethey classify, we examined several classifiers by hand.sGieis

classifier.

The decision trees are built using an implementation of #h&C
algorithm [32] found in the WEKA machine learning packagg][3
Call-tree profiling (CTP) demonstrates the best overallieszy.
Call-site profiling (CSP), path profiling (PP) and CTP have an
accuracy of over 85% on every user-level benchmark, and call
site profiling has over 85% accuracy for kernel benchmark$o 8
accuracy is a significant help for improving error reports.

To evaluate sampling, we present results for sampling FP and themad.layer _llI

trained using function profiling and call-tree profiling fine mp3
playermpg321 are shown in Figure 4. The trees show how each
behavior profile provides different clues to the classifieowt the
same underlying behavior.

The function profiling tree is composed of a simpler set oésul
that depict differences in control flow across the four edlesses.
At the root of the tree, the functiomadlayer _lll provides
near perfect discriminative information for the 'wav’ errdass:
routine is part of thdibmad library and is

CSP, with a sampling rate of 10% (which is generous for sys- called when the audio frame decoder runs. Since the wav fasma

tems that use sampling [27]). For example, the sampled ifimct
counts record one of every ten function calls, uniformlyaatcdom.
The sampled results are the stippled part of each bar, aebiev
lower classification accuracy than non-sampled data foostmv-
ery benchmarks. The poor accuracy of sampling confirms dus in
ition that sampling is the wrong approach for classifyinggram
behavior, because Clarify must be sensitive to rare events.

among the formats not supported by mpg321, it will not sugces
fully decode any audio frames, and titamad library will never
callmadlayer _lll .Theid3 _tag _delete routine differenti-
ates between the corrupted tag and and other classes. ThadD3
parser in théibid3tag library dynamically allocates memory to
represent tags and frees them wiB _tag _delete . Iftag pars-
ing fails, the memory for a tag is not allocated. Since no &gipg

—
latex81

latex26

gcc

mpg321

100 1
95 —
o FP 907 O FP
_ 85 m
o CSP E,\i?O B @ CSP
5 —
m PP 370 1
S65 |
m CTP 860 B
mCSRV <25
50
oSS 45 1
40 o]
35 |

iptables iproute2 mount

Figure 3. The figure shows the accuracy of the classifier used to disshghe error cases, based on behavior profiles, for eacthbek.
For each benchmark a classifier is built using different biglgrofiles: function profiling (FP), call-site profilin@SP), path profiling (PP),

call-tree profiling (CTP), call-site profiling with predia return value
versions of function profiling and call site profiling with arapling rate

succeeds in the corrupted frames céd®, _tag _delete is never
called to free the tag memory, making its absence discritivma
for that class. Théibmad audio library’s default error handler
error _default is used if the application does not specify one.
mpg321 does not specify its own error handler, so the presence
of the function indicates corrupted audio frames, and iteabe
indicates the corrupted id3 tags case. Findlly, freqinver
which performs subband frequency inversion for odd sanipés)

is called very frequently as part of the normal process obdieg
audio frame data. When there are corrupted frames, thisifumis
called less frequently, and the decision tree algorithmsfiad ap-
propriate threshold value to separate the normal from theipted
case.

The decision tree built on call-tree profiling data has aeich
combination of data sources than function profiling. Cadketpro-
filing uses the presence of tliemad library functionlll _side-
info (which decodes frame side information from a bitstream)
calling the utility functionmad.bit _read as an indicator of suc-
cessful audio frame decoding. The lack of that calling patte
reliably indicates a file format error. The corrupted francésss
is once again differentiated from the normal class by a thres
old value on a subtree dibmad functions that will only be
called during successful decoding of audio frame data, ssch
Il _scalefactors , the discrete cosine transform function
fastsdct , lll _huffdecode , and so on. Thdéibmad func-
tion scan encapsulates the process of reading mp3 files. A CTP
rule (decoded bitvector) wherestan calls a function that calls
a number of low-level stream manipulation routines suchmad-

_bit _read , andmad.timer _set , and so on, provides discrimi-
native power in combination with a similarly complex contilow
pattern inmain for the corrupted tags error class. The decision
tree node whose CTP rule involvesain, id3 _get _tag , and

so on differentiates between normal and error conditiongte
handling of ID3 tags, while the decision tree node whose GII® r
involvesscan discriminates between successful and unsuccessful
audio decoding. The high level pattern exposed by theses rsle
the combination of failed ID3 tag parsing with successfulliau
decoding, which precisely describes the corrupted tag elass.

7.4 How many labeled behavior profiles are needed?

The classifiers used by Clarify are trained with labeled bigha
profiles. Labeling profiles generally requires human effed it
should be minimized. In general, classifiers trained witveie
labeled training instances will result in less accurate @dn this

s (CSRV), and stack scraping (SS). The fascepresents sampled
of 10% (in the stippled, lower bar in the stadkBdor CSP entry).

Classes| Accuracy | Creation Time
10 97.8 % 25min
20 97.5% 1hr 37min
35 94.9 % 6hr 2min
50 94.3% 10hr 26min
65 93.9% 11hr 50min
81 93.6 % 18hr 28min

Table 4. The accuracy and time to create the classifier as the
number of behaviors is increased in the LaTeX benchmark.

section, we investigate the tradeoff between classifina@ruracy
and the amount of training data used in building the classifie
Figure 5 plots the classification accuracy of the latex berark

as a function of the number of instances used in training (the
benchmark includes 75 of the 81 distinct error classes) .0hé
algorithm used to build the decision tree is surprisinglipust:
with as few as 15 examples per class, the algorithm achiaves a
accuracy 0f86%. Looking at the legend in Figure 5, we can see
that to achieve accuracy withit?% of the maximum, only a small
subset of the training data is required. For example, gcdserly

105 instances to attain the accuracy leved®b% which is within

1% of the accuracy reached when we use all of 3f@ available
examples per class.

A human does not need to label each behavior profile individ-
ually. For our training sets we use a script to induce ernorhé
program input, producing large numbers of training exaspligh
little human involvement. However, inducing errors by aifcis
not necessarily an accurate model for the errors that @levaiuld
see in deployment.

7.5 Scalability

In this section we analyze how Clarify scales as the numberrof
classes increases. LaTeX has 247 unique error messageseand
evaluate the scalability on 81 behavior classes—aboutlore:af

all possible LaTeX errors.

Table 4 shows how model creation time and classification ac-
curacy scale as the number of error classes increases. \Afeleon
subsets of error classes with varying sizes. For each sipicked
10 random subsets of error classes and ran our experimemgs. T
curves shown in the graph are the average of the results ¢br ea
size.

We can see that as the number of error classes increases the
accuracy drops frori7.8% to 93.6%. This decrease is acceptable

Function profiling

| mad_layer_lII |

| id3_tag_delete |
v v

| HI_freqinver | | error_default |
v v

Y
| normal (77%) | |Corruptedframes(83%) | corrupted tags(97%)

| file format error(99%)

Call-tree profiling

Il_sideinfo:
(I_sideinfo(mad_bit_read))

A4

file format error(99%)

main: (id3_get_tag
id3_file_close (fclose finish_file)
raw_open(strncmp) http_open
ftp_open open _fstat64i32 calc_length))

4 v

| I1l_scalefactors:(mad_bit_read) |

fastsdct:()

0 /'
‘I o'
\ 5
0 "
kS .1 li_scalefactors:()
. .

| 1lI_huffdecode:(lll_requantize) |

scan: ((mad_bit_read mad_timer_set
mad_bit_init mad_stream_sync
mad_bit_next_byte))

corrupted tags(96%)

<

K- 3 \L Y

| normal (69%) | | corrupted frames(87%) |

Figure 4. Decision trees produced for thepg321 benchmark.
Dotted lines are taken when the normalized count of the featu
value is less than or equal to a threshold, while the solid lin
is taken when it is greater than the threshold. The threstwld
determined automatically for each benchmark by the detis&e
algorithm, and can be different for each node in the treeaiCle
boxes are features. FP features are normalized functiantgcand
call-tree profiling features are normalized counts of CTBtraes
(represented by the symbolic tree names in brackets, wiittifon
names for nodes in each call tree). Shaded boxes are erssesla

considering that the number of behaviors has increased agtarf

of 8. The training time of the model increases from under 30
minutes to more than 18 hours as the number of error classes

increases from 10 to 81. This increase does not hinder dlisiab
since the model is trained offline. Of greater practical esnds
the execution time needed to evaluate the decision tredjigs t
largely determines the amount of processing done at thaetclie

end. Our experiments show that the time to execute the models

averaged 10ns, with a maximum of 21ns, which is impercepfdl
almost any application. Clarify scales to nearly one huddneor
behaviors without much loss in accuracy or substantiakase in
processing time.

7.6 Nearest neighbor software support

In contrast to the decision trees used by Clarify’s clagsifighich
rely on only a small subset of all features, nearest-neiglabo
gorithms rely on averages over all features. For exampée Etlr
clidean distance between two instances, a popular meted us
for nearest-neighbor searches, is a function of the avesagee
squares of the difference between each pair of feature ¥aBiech

100

90

80

> 70| E

<

3 60| E

Q

<

% 50 g

< L latex81 :110 i

8 40 gce 1105

o mpg321 : 38 i

& %0 nfs 135

iproute : 30 B

20 iptables : 10

10 1

0 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

Number of Instances Per Latex Error Class

Figure 5. The curve shows how the accuracy increases as the num-
ber of training instances per error class is increased. atasdt is

the latex benchmark with 75 classes. The text on the grasgiv
the minimum number of training instances needed for a beadkm

to achieve accuracy within 1% of accuracy obtained usinghall
training data.

[App. | FP [CSP [CIP | CSRV |
latex26 0.75 | 1.01| 052 0.93
mpg321 | 2.22 | 421 | 152 1.40
gcc 273 | 267 | 219 0.97
iptables 1.12 | 1.03 N/A N/A
iproute2 | 3.10 | 2.77 N/A N/A
mount 271 | 2.40 N/A N/A

Table 5. In the absence of labeled training data, Clarify uses
a nearest-neighbor algorithm with linear-regression tdsature
scaling. This table shows the expected number of corretaksi
fied neighbors for a five-nearest-neighbor search.

distance functions are particularly susceptible to déffees of
scale among the various features.

In Clarify, features take on vastly different scales: sopatres
may have a count under ten, while others may have upwardseof on
million occurrences. Furthermore, for some features, thetis a
function of the length of the program execution, and for othieis
independent of program execution. For example, a parsileged
feature for gcc will be called many more times for a longertfilgt
contains many repetitions of particular construct, thamaater file.
Some sections of code—e.q. initialization functions—Wdélcalled
a (roughly) constant number of times and thus will take oniesl
independent of the program execution length.

To overcome such scaling challenges, Clarify employs afine
regression-based feature scaling method. For each fegtuae
least-squares line is fitted to correlate each feature valtieits
corresponding program execution lengtt{defined as the sum of
all feature values of a given execution instance). The featalue
is normalized to be the scaled difference between the feaalue
y and the fitted feature valu&z). The scaling factor is determined
such that the variance of each resulting feature is one. \tiéethat
for features that have no correlation with program lendta linear
regression step will have no effect on the final normalizeduie
values.

Table 5 gives the expected number of correctly classifieghaei
bors for a nearest neighbor search returning five neighitus.

clidean distance is used. For some benchmarks with mangedas
(the LaTeX benchmark in table 5 has 27 classes), accuradyeof t
nearest-neighbor search is somewhat lower. In such catagea
number of neighbors should be returned.

7.7 Deployment

To begin understanding the performance of Clarify in a dggdo
environment, we created a version of LaTeX that includescsta
instrumentation and a small runtime to generate call-sfigrima-
tion. We deployed the version of LaTeX to a user base of 6 users
over a period of 3 weeks. Our deployed version of LaTeX encoun
tered 57 distinct error inputs ranging over 17 error classebwas
able to classify 46% (26/57) of them correctly. LaTeX has 847
ror messages—the experiment was not limited to unclear er am
biguous messages. Classifying nearly 50% of a programavieh
correctly is much more difficult than disambiguating a smaiin-

ber of error behaviors.

8. Related work

We first contrast Clarify to several systems that appearlaimi
Clarify improves error reporting by classifying progranmhbeior,
it does not find program bugs [20, 27, 1, 14]. An ambiguous
error message or return code might meet the specificatiom for
program (e.g., theetlink standard for error reporting). Clarify
does not attempt to find the root cause of program faults [1R, 3
misconfigurations [38, 25], or program crashes [10, 29, 30tg
aim is to classify the application behavior to help the depel or
end-user get better error reports when these events happen.
The remainder of this section compares Clarify with probém
agnosis systems, and systems that classify program beh@lao-
ify does help software problem diagnosis and it classifieg@m
behavior.

8.1 Problem diagnosis systems

A group at Microsoft Research correlates low-level systgants

with error reports to automate problem diagnosis [40, 41t s
Clarify does. They currently focus only on forensic depleyis

(in our terminology), and on building models from sequencgs
system calls. Clarify uses control-flow and data from thegpam,
which allows it to deal with errors that involve only user eod

Ph [36] also uses sequences of system calls to build a model,
though their model detects host intrusions. While systelts ese

a good representation of certain types of program behaviany

programs make few systems calls (e.g., SPEC). Because ever}’

named system call has wrapper functions from user-spaceitls,
Clarify can detect system calls by detecting function ctdishe
wrapper functions, giving it a richer input source to detieln
program behavior.

Statistical bug isolation [27, 26] correlates low-levephga-
tion behavior with application behavior (bugs) and buildaadel,
as Clarify does. Statistical bug isolation requires a specmpiler
to insert invariant checks into the program, while Clariécords
a small amount of control-flow and data continuously. Stiaté
bug isolation samples the invariants it inserts to get goadop-
mance. Section 7.1 demonstrates a sharp loss of accuratgrif C
ify uses sampling. Statistical bug isolation must eliménsiib-bug
and super-bug predictors; Clarify has an analogous steuggiain
enough training instances to isolate the program behaveated
by the error condition. The systems could be used togettgatter
statistical data on crashes and provide better error messag
crashes and other misbehaviors.

DIDUCE [20] uses dynamic program invariants to detect pro-
gram behavioral anomalies. The anomalies can indicatergumog
bugs, but at a performance slowdown of 6x2QClarify is much
faster and can classify program behavior that is not anamalo

Stack backtraces are used by many remote diagnostic systems
like Dr. Watson [29], Microsoft's online crash analysis J3hd
GNOME'’s bug-buddy [7]. IBM has a system to classify stack
backtraces harvested on a crash [10], and the technologyetess
deployed in their TrapFinder tool. Their motivation is dianito
Clarify's—reduce the human effort needed to match problteom
different program executions. Clarify diagnoses a wideigeaof
problems than crashes, and it operates on behavior profitésh
are a richer source of data than stack backtraces.

8.2 Classifying program behavior

Classifying program behavior has received attention irstfavare
engineering literature. Podgurski al. [31] identify a similar mo-
tivation to Clarify and they also investigatec behavior. Clar-
ify is more accurate (over 85—-100% accurate, as compared-to 2
96%), and is more of a complete system, designed to address th
problem of improving error reporting. Bowringt al. [8] models
software behavior as Markov models using control flow betwee
basic blocks and then uses active learning to cluster theeln.od
Markov models use probabilities which make them inseresito/
rare events. Clarify needs sensitivity to rare events tmxaare
events often characterize an error behavior—see the sagngl
sults in Section 7.1. Bowring et. al. evaluate their method38
versions of SPACE, which is a very small 6,200 line program.

Liu et al. [28] use program behavior graphs as features for a
machine-learning model just as Clarify uses data relategrde
gram control flow. The number of program behavior graphs grow
quickly with program size, and can become computationatly i
tractable even for the small Siemens programs [23] usediio@ie
their method.

SimPoint [35] characterizes the phase behavior of appicsit
using basic block execution counts to maintain the accudicy
architectural simulation while executing fewer instroos. The
types of program behavior it detects are coarse-grainederigts
over much longer time windows than the errors that Clarify de
tects. SimPoint can reduce its dataset to 15 dimensions aimt m
tain phase-detection accuracy. Clarify’s classifiers rhastensitive
to small, localized changes in behavior that form the sigeaof
an error behavior. As seen in Table 2, Clarify’s represérathave
tens of thousands of features. We verified that using randojeg
tion to reduce the feature count, like SimPoint does, drealht
reduces Clarify’s accuracy.

Program paths [5] have been used to analyze runtime program
ehavior. Path Spectra [33] approximate an execution's\deh
with the occurrence (or frequency) of the individual patgectral
differences have been used to identify the portions of arpro
execution that differ with different inputs, notably, dugiY2K test-
ing [21]. Path Spectra focused on identifying path diffeenbe-
tween several program runs, whereas Clarify’s novel useati p
profiling uses machine learning to identify which paths eoen-
monto each error class. Clarify’s call-site profiling is much n@o
efficient and nearly as accurate as path profiling.

9. Conclusion

We present Clarify, a system that improves the error repgrf
black-box systems, e.g., third-party libraries, the ofjegesystem,
and external programs. Our Clarify prototype accurately af:
ficiently classifies the behavior of all of these systemsbing
improved error reporting.

Acknowledgments

Thanks to William Cook for help with writing. Thanks to Peter
Stone, Raymond Mooney and Kathryn McKinley for feedback
on earlier drafts of the paper. This research has been seppor

by a gift from Microsoft’s Phoenix compiler group, a DARPA

grant from the architectures for cognitive information gessing
program, and by NSF grant CNS-0615104.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distribiggstems
of black boxes. I'SOSPR Bolton Landing, NY, Oct. 2003.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performacne counters with flow and context sensitive pngfiliIn
PLDI '97, pages 4-16, June 1997.

[3] Andrew Ayers, Christopher Metcalf, Junghwan Rhee, Ridch
Schooler, Anant Agarwal, and Emmett Witchel. TracebackstFi
fault diagnosis by reconstruction of distributed controWil In PLDI,
June 2005.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a fpansnt
dynamic optimization system. BLDI, pages 1-12, 2000.

[5] T. Ball and J. R. Larus. Efficient path profiling. MICRO, 1996.

[6] R. Barrett, E. Haber, E. Kandogan, P. P. Maglio, M. Prabaknd
L. A. Takayama. Field studies of computer system admirittsa
Analysis of system management tools and practice\dh CSCW
(Computer-supported Cooperative WQrkp0o4.

[7] J. Berkman. Bug-buddy — GNOME bug-reporting utiljtp004.
http://directory.fsf.org/
All_Packages_in_Directory/bugbuddy.html

[8] J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active leaifor
automatic classification of software behavior| 88 TA Jul 2004.

[9] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, dfEmmett
Witchel. Secure remote software diagnostics, Under review

[10] M. Brodie, Sheng Ma, G. Lohman, L. Mignet, N. Modani, Milav
ing, J. Champlin, and P. Sohn. Quickly finding known software
problems via automated symptom matching. IGAC'05, pages
101-110, 2005.

[11] Derek Bruening, Timothy Garnett, and Saman AmarasngAn
infrastructure for adaptive dynamic optimization. @& 0-03 2003.

[12] Y. Brun and M. D. Ernst. Finding latent code errors viaamae
learning over program executions. I@SE, 2004.

[13] Bryan Cantrill and Mike Shapiro and Adam LeventhdDtrace,
2006. http://www.genunix.org/wiki/index.php/
DTrace_FAQ.

[14] Trishul M. Chilimbi and Vinod Ganapathy. Heapmd: Idérnihg
heap-based bugs using anomaly detectiorA3RLOS '062006.

[15] Latex Error Classeshttp://www.cs.utexas.edu/users/
habals/clarify/latex_errors.html ,2006.

[16] Microsoft corporation. Privacy statement for the romoft error
reporting service, 2006.

[17] Microsoft corporation. Reporting and solving compupeoblems,
2006.

[18] Microsoft Corporation.What information is sent to Microsoft when |
report a problem?2006.

[19] Jason V. Davis, Jungwoo Ha, Christopher J. Rossbachy Ha
Ramadan, and Emmett Witchel. Cost-sensitive decisiori¢sgaing
for forensic classification. IECML, 2006.

[20] S. Hangal and M. S. Lam. Tracking down software bugsagisin
automatic anomaly detection. I8SE 2002.

[21] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. &mpirical
investigation of the relationship between fault-revegliast behavior
and differences in program spectra. Journal of Software Testing,
Verification and Reliability, vol 10, no,2000.

[22] J. Humphreys and V. Turner. On-demand enterprises &ty u
computing: A current market assessment and outlook. Teahni
report, IDC, Jul 2004.

[23] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ekpents on
the effectiveness of dataflow- and controlflow-based testjagcy
criteria. InICSE 1994.

[24] Jim Keniston and Prasanna S Panchamukéinel Probes (Kprobes)
2006. Documentation/kprobes.txt

[25] N. Lao, J. Wen, W. Ma, and Y. Wang. Combining high levainptom
descriptions and low level state information for configimatfault
diagnosis. INLISA 2004.

[26] B. Liblit, A. Aiken, A.X. Zheng, and M. |. Jordan. Bug ifaion via
remote program sampling. PLDI, 2003.

[27] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. |. JordarScalable
statistical bug isolation. IRLDI, 2005.

[28] C. Liu, X. Yang, H.Yu, J. Han, and P. S. Yu. Mining behaviaphs
for "backtrace” of noncrashing bugs. Froc. of 2005 SIAM Int.
Conf. on Data Mining (SDM05Y005.

[29] Microsoft CorporationDr. Watson Overvien2002. http://www.
microsoft.com/TechNet/prodtechnol/winxppro/
proddocs/drwatson_overview.asp

[30] Microsoft Corporation. Online Crash Analysijs2004. http://
oca.microsoft.com/

[31] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,Sun, and
B. Wang. Automated support for classifying software falueports.
In ICSE 2003.

[32] R. Quinlan.C4.5: programs for machine learningylorgan Kaufmann
Publishers, 1992.

[33] T. Reps, T. Ball, M. Das, and J. Larus. The use of prograofilmg
for software maintenance with applications to the year 2ty@blem.
In M. Jazayeri and H. Schauer, editd&SEC/FSE 9,hages 432—449.
Springer-Verlag, 1997.

[34] Rubber.http://www.pps.jussieu.fr/"beffara/soft/
rubber , 2007.

[35] Timothy Sherwood, Erez Perelman, Greg Hamerly, andl Balder.
Automatically characterizing large scale program behavitn
ASPLOSOct 2002.

[36] A. Somayaji and S. Forrest. Automated response usistesy-call
delays. InProceedings of 9th Usenix Security Symposifnmgust
2000.

[37] Ariel Tamches and Barton P. Miller. Fine-grained dymam
instrumentation of commodity operating system kernelsO8D|,
pages 117-130, 1999.

[38] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y. Wang.ofatic
misconfiguration troubleshooting with PeerPressureD8D|, 2004.

[39] I. Witten and E. Frank.Data Mining: Practical machine learning
tools with Java implementationdlorgan Kaufmann, San Francisco,
2000.

[40] C. Yuan, N. Lao, J. Wen, J. Li, Z. Zhang, Y. Wang, and W. Ma.
Automated known problem diagnosis with event tracBtSR-TR-
2005-81 2005.

[41] C. Yuan, N. Lao, J. Wen, J. Li, Z. Zhang, Y. Wang, and W. Ma.
Automated known problem diagnosis with event tracesEuroSys
2006.

[42] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Caingl dong-
Deok Choi. Accurate, efficient, and adaptive calling conferfiling.
In PLDI, 2006.

