
Direct Addressed Caches for Reduced
Power Consumption

Emmett Witchel Sam Larsen C. Scott Ananian Krste Asanovi

MIT Lab for Computer Science

The Domain

n We are attempting to reduce power consumed by the
caches and memory system.
o Not discs or screens.
o 16% of processor + cache energy for StrongARM is

dissipated in the data cache.

n We focus on the data cache. The instruction cache is
amenable to hardware-only techniques.

n We are interested in power optimizations that are not
just existing speed optimizations.

n Exploit compile time knowledge to avoid runtime work.
o Partially evaluate a program for certain hardware

resources.

n We show how software can eliminate cache tag checks
which saves energy.

The First Problem — Cache Tags

n Both set-associative and CAM-tag caches spend the
major ity of their energy in the tag check.

Individual
accesses are
moderate power.
Most of the
energy is in the
tag check.

Individual
accesses are high
power because of
multiple tag and
data reads.

Individual
accesses are low
power.

Lowest miss
rates.

Moderate miss
rates.

High miss rates
which means
high energy
usage.

Each memory
location can be
anywhere in a
sub bank.

Each memory
location has a
small number
(e.g., 4) homes.

Each memory
location has a
unique home.

CAM-tagSet-AssociativeDirect Mapped

The Solution — Pass Software
Information To Hardware

n The compiler often knows when the program is
accessing the same piece of memory. Don’t
check the cache tags for the second access.

n HW challenge — make this path low power.

n SW challenge — find the opportunities for use.
o Two compiler algorithms for two languages (C and

Java).

n Interface challenge — minimize ISA changes,
don’t disrupt HW, don’t expose too much HW
detail.
o New flavors of memory ops are a common ISA

change.

n Security challenge — Protect process data
from other processes.
o Snoop on evicts, detect invalid state early in pipeline

Direct Addressed CAM Tag Cache
Virtually Indexed & Tagged

16 (Sign extended)

Instruction
Fetch

lwlda offset

32

r1

Register
File

r2

1 sub-bank

Data

32

Offset
Calculation

3 bank 18 tag

Hit?

CAM
Tag Stat

5 offset

DA registers

da2

Direct Addressing

5 (Sext)

Instruction
Fetch

lwda offset

32

r1 r2

1 sub-bank

Data

32

Offset
Calculation

3 bank 18 tag

Hit?

5 offset

DA registers

da2

CAM
Tag Stat

Software directly indexes
into data RAM:
No tag checksRegister

File

Spill Code Using Direct Address
Registers

n Old code
o subu $sp, 64

o sw $ra, 60($sp)

o sw $fp, 56($sp)

o sw $s0, 52($sp)

n Transformed code
o subu $sp, 64

o swlda $ra,60($sp),$da0

o swda $fp,56($sp),$da0

o swda $s0,52($sp),$da0

n One tag check per line used for spilling.

n It is a simple transformation.
o Similar to load/store multiple on StrongARM

l Ld/st multiple is a limited model – can’t handle
read-modify-write.

o Hardware only schemes capture many
references, but add latency.

Compiler Algorithm (C)

§ Find dominance
relationship.
§ E.g., Read of P[1] in A

dominates read of P[0] in
D.

§ Determine distance.
§ P[0] is offset –4 from P[1].
§ If dist == 0, done.

§ Determine alignment.
§ Stack & static data are

aligned by our backend.
§ Loop unrolling to

increase alignment.

§ Eliminate tag check in
the read of P[0].

temp = P[1];

if (temp < 0)

if (P[0] < temp) {

temp = -temp;

A

B

C

D

Code from gsm in mediabench

int P[8];

C Compiler Infrastructure

§ We use SUIF, with a C backend.

§ Loop unrolling to increase aligned references.

§ Distance information from memory object offset.
§ Use simple, local information for aliases.

§ Profile information to set pre-loop break condition.
for(i=0; i<N; i++) {

A[i] = 0;

}

for(i=0; i<N; i++) {

if(&A[I] % line_size == 0)
break;

A[I] = 0;

}

for(; i<N; i += 4) {

A[i + 0] = 0; A[i + 1] = 0;

A[i + 2] = 0; A[i + 3] = 0;

}

Results — C Implementation

Mediabench
n Data cache energy reduction 8.7 - 40%.

n Function entry/exit code not included — expect greater
savings.

Java Compiler Infrastructure

§ FLEX is a bytecode to native compiler
developed at MIT.

§ We wrote a MIPS back end
§ Modified GNU as to accept new memory operations.
§ Modified ISA simulator to track DAR state.

§ Loops are unrolled.

§ Object type is tracked for additional
opportunity.
§ Allows low level optimization of access to e.g., hash

code.

Results — Java Implementation

Tag Checks Eliminated

0%

10%

20%

30%

40%

50%

60%

70%

Jess Jack Zip DB

Load Store

n One big advantage —
function entry/exit
code was
transformed.
o Calling convention

modified.

n Data cache power
savings 26-31%

n No profile feedback.

SPEC JVM ‘98

Results — Comparison with L0
Cache

Tag Checks Eliminated

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

g72
1_

de
unt

oas
t

to
as

t
unep

ic

8 DAR L0
8 DAR + L0

n DARs usually tie L0
or exceed it.

n When L0 exceeds
DARs, DARs help L0.

Mediabench

Related Work

n Fisher & Ellis used loop unrolling to
reduce memory bank conflicts.
o Barua expanded the work with Modulo

Unrolling.

n Burd and Kin have proposed hardware L0
caches.

n Andras’ FlexCache does software way-
prediction to software controlled array of
tag registers.

Acknowledgements

n Mark Hampton — GNU assembler,
simulator.

n Ronny Krashinsky — Energy
modeling.

n Sam Larsen — SUIF compiler.

n C. Scott Ananian — Java compiler
(FLEX)

n DARPA, NSF, Infineon

