GPUnet: Networking Abstractions for GPU Programs

Sangman Kim Seonggu Huh Yige Hu Amir Wated Mark Silbersteih
XinyaZhang Emmett Witchel Technion — Israel Institute of Technology
The University of Texas at Austin
Abstract vanced NIC and GPU hardware capabilities and applies

Despite the popularity of GPUs in high-performanceSOPhiSticated code optimizations that yigld high appli-
and scientific computing, and despite increasingly gener§ftion performance equal to or exceeding hand-tuned
purpose hardware capabilities, the use of GPUs in neffaditional implementations. o
work servers or distributed systems poses significant GPUnet is designed to foster GPU adoption in two
challenges. broad classes of high-throughput data center applica-
GPUnetis a native GPU networking layer that providestions: network servers for back end data processing, e.g.,
a socket abstraction and high-level networking APIs fofn€dia filtering or face recognition, and scale-out dis-
GPU programs. We use GPUnet to streamline the gdributed computing systems I|I_<e MapReduce._Whlle dis-
velopment of high-performance, distributed application§"€t€ GPUs are broadly used in supercomputing systems,
like in-GPU-memory MapReduce and a new class otheir deployment in data centers has been limited. We

low-latency, high-throughput GPU-native network ser-blame the added design and implementation complexity
vices such as a face verification server. of integrating GPUs into complex software systems; con-

sequently, GPUnet’s goal is to facilitate such integration
1. Introduction Three essential characteristics make developing effi-

GPUs have become the platform of choice for man)}:ient network abstractions for discrete GPUs challeng-
types of parallel general-purpose applications from ma'd — massive parallelism, slow access to CPU mem-
chine learning to molecular dynamics simulatiod [°Y: and low single-thread performance. GPUnet accom-

However, harnessing impressive GPU computing Capa{nodates parallelism at the AP level by providing coa-
bilities in complex software systems like network serverdesced calls invoked by multiple GPU threads at the same
remains challenging: GPUs lack software abstractions 80Nt in data-parallel code. For instance, a GPU program
direct the flow of data within a system, leaving the devel€OmMPuting a vector sum may receive input arrays from
oper with only low-level control over I/O. Therefore, cer- e network by callingrecv() in thousands of GPU
tain classes of applications that could benefit from Gpudhreads. These calls will be coalesced into a single re-
computational density require unacceptable developmeREVe request to reduce the processing overhead of the
costs to realize their full performance potential. networking stack. GPUnet uses recent hardware support
While GPU hardware architecture has matured to sug®" Nétwork transmission directly into/from GPU mem-

port general-purpose parallel workloads, the GPU soft?"y to minimize slow accesses from the GPU to system
ware stack has hardly evolved beyond bare-metal intefl€MOry. It provides a reliable stream abstraction with
faces (e.g., memory transfer via direct memory accessPYU-managed flow control. Finally, GPUnet minimizes
(DMA)). Without core I/O abstractions like sockets avail- control-intensive sequential execution on performance-
able to GPU code, GPU programs that access the netwofkltic@l paths by offloading message dispatching to the

must coordinate low-level details among a CPU, cpWNIC via remote direct memory access (RDMA) hardware
and a NIC, for example, managing buffers in weakly conSupport. The GPUnet prototype supports sockets for net-

sistent GPU memory, or optimizing NIC-to-GPU trans-Work communications over InfiniBand RDMA and sup-
fers via peer-to-peer DMAs. ports inter-process communication on a local machine

This paper introduce§PUnet, a native GPU net- (Often called UNIX-domain sockets).
working layer that provides a socket abstraction and We build a face verlfl_cat|on server using the_GPUnet
high-level networking APIs to GPU programs. GPUnetPrototype that matches images and interacts with
enables individual threads in one GPU to communicatgémcached directly from GPU code, processing 53K
with threads in other GPUs or CPUS via standard and fe€/i€nt requests/second on a single NVIDIA K20Xm
miliar socket interfaces, regardless of whether they are ifPY: €xceeding the throughput of a 6-core Intel CPU
the same or different machines. Native GPU networking?_‘nd a CUDA-based server by k3and 2.3x respec-

cuts the CPU out of GPU-NIC interactions, simplifying UVely, while maintaining x lower latency than the CPU
code and increasing performance. It also unifies appl@Nd requiring half as much code than other versions. We

cation compute and 1/O logic within the GPU program, /S0 implement a distributed in-GPU-memory MapRe-

providing a simpler programing model. GPUnet uses agduce framework, where GPUs fully control all of the I/O:
they read and write files (via GPUf8]), and commu-

nicate over Infiniband with other GPUs. This architec-

1 Corresponding author: mark@ee.technion.ac.il

ture demonstrates the ability of GPUnet to support combenefits of P2P DMA, however, requires intimate knowl-

plex communication patterns across GPUs, and for worddge of hardware-specific APIs and characteristics, such

count and K-means workloads it scales to four GPUss the underlying PCle topology.

providing speedups of 2.9-3<5over one GPU. These issues dramatically complicate the design and
This paper begins with the motivation for building implementation of GPU-accelerated networking applica-

GPUnet §2), a review of the GPU and network hard- tions, turning their development into a low-level system

ware architecture§@), and high-level design considera- programming task. Modern CPU operating systems pro-

tions@4). It then makes the following contributions: vide high-level /O abstractions like sockets, which elim-

e |t presents for the first time a socket abstraction, APljnate or hide this type of programming complexity from

and semantics suitable for use with general purposerdinary application developers. GPUnet is intended to

GPU programsg§b). do the same for GPU programmers.
¢ |t presents several novel optimizations for enabling Consider an internal data center network service for
discrete GPUs to control network traffi¢g). on-demand face-in-a-crowd photo labeling. The algo-

¢ It develops three substantial GPU-native network aprithm detects faces in the input image, creates face de-
plications: a matrix product server, in-GPU-memoryscriptors, fetches the name label for each descriptor from
MapReduce, and a face verification ser) (a remote database, and returns the location and the name

¢ |t evaluates GPUnet primitives and entire application®f each face in the image. This task is a perfect candidate
including multiple workloads for each of the three for GPU acceleration because some face recognition al-

application types§8). gorithms are an order of magnitude faster on GPUs than
o on a single CPU cored] and by connecting multiple
2. Motivation GPUs, server compute density can be increased even

GPUs are widely used for accelerating parallel tasks ifurther. Designing such a GPU-based service presents
high-performance computing, and their architecture haseveral system-level challenges.
been evolving to enable efficient execution of complex, No GPU network control. A GPU cannot initiate net-
general-purpose workloads. However the use of GPUwork 1/O from within a GPU kernel. Using P2P DMA,
in network servers or distributed systems poses signifthe NIC can place network packets directly in local GPU
cant challenges. The list of 200 popular general-purposmemory, but only CPU applications control the NIC and
GPU applications recently published by NVIDIB][has perform send and receive. In the traditional GPU-as-
no mention of GPU-accelerated network services. Usingoprocessor programming model, a CPU cannot retrieve
GPUs in software routers and SSL protocdl§ [19, 37], partial results from GPU memory while a kernel produc-
as well as in distributed applicationtZ] resulted in sig- ing them is still running. Therefore, a programmer needs
nificant speedups but required heroic development efo wait until all GPU threads terminate in order to request
forts. Recent work shows that GPUs can boost power effa CPU to invoke network 1/0O calls. This awkward model
ciency and performance for web servesk put the GPU effectively forces I/O to occur only on GPU kernel in-
prototype lacked an actual network implementation bevocation boundaries. In our face recognition example, a
cause GPU-native networking support does not yet exisCPU program would query the database soon after de-
We believe that enabling GPUs to access network hardecting even a single face, in order to pipeline continued
ware and the networking software stack directly, via fafacial processing with database queries. Current GPU
miliar network abstractions like sockets, will hasten GPUprogramming models make it difficult to achieve this
integration in modern network systems. kind of pipelining because GPU kernels must complete

GPUs currently require application developers tobefore they perform I/O. Thus, all the database queries
build complicated CPU-side code to manage access twill be delayed until after the GPU face detection kernel
the host’s network. If an input to a GPU task is transterminates, leading to increased response time.
ferred over the network, for example, the CPU-side code Complex multi-stage pipelining Unlike in CPUs,
handles system-level I/O issues, such as how to ovewhere operating systems use threads and device inter-
lap data access with GPU execution and how to optirupts to overlap data processing and 1/0O, GPU code tra-
mize the size of memory transfers. The GPU applicatiowlitionally requires all input to be transferred in full to
programmer has to deal with bare-metal hardware idocal GPU memory before processing starts. To over-
sues like setting umpeer-to-peer (P2P) DMAver the lap data transfers and computations, optimized GPU de-
PCle bus. P2P DMA lets the NIC directly transfer datasigns use pipelining: they split inputs and outputs into
to and from high-bandwidth graphics double data ratesmaller chunks, and asynchronously invoke the kernel on
(GDDR) GPU local memory. Direct transfers betweenone chunk, while simultaneously transferring the next in-
the NIC and GPU eliminate redundant PCle transferput chunk to the GPU, and the prior output chunk from
and data copies to system memory, improving data tranghe GPU. While effective for GPU-CPU interaction, the
fer throughput and reducing latendiB8(1). Enjoying the pipeline grows into a complex multi-stage data flow in-

7
Bounce
buffer

volving GPU-CPU data transfers, GPU invocations and without peer-to-peer support With peer-to-peer support
processing of network events. In addition to the associ-
ated implementation complexity, achieving high perfor-,c) NiC)
pend on a particular generation of hardware. i ; < *
Complex network buffer management.If P2P DMA — — w
functionality is available, CPU code must set up the notfication ol notifioation
GPU memory buffers and registering them with the NIC the cPU must use a GPU DMA engine to transfer data from the CPU
Unfortunately, these GPU buffers are hard to manageounce buffer.
since the network transfers are controlled by a CPU. FQatched to an SM, it cannot be preempted and occupies
size, the CPU must allocate and register another GPU The primary focus of this work is on discrete GPUs,
buffer (which is slow and may exhaust NIC or GPU hard-yhich are peripheral devices connected to the host sys-
ware resources), or the buffer must be freed by copyingem via a standard PCI Express (PCle) bus. Discrete
must be modified to cope with input stored in multiplewith a separate address space that cannot be referenced
buffers. While on a CPU, the networking API hides sys-girectly by CPU programs. Moving the data in and out of
tem buffer management details and lets the applicatiogpy memory efficiently requires DMACPU prepares
rather than GPU and NIC hardware constraints. trieves the results after the kernel terminates.
GPUnet aims to address these challenges. It expoSggeraction with 1/0 devices.P2P DMA refers to the
a single networking abstraction across all system progpijity of peripheral devices to exchange data on a bus
Fhereby_ simplifying QPU development and facilitating gy discrete GPUs support P2P DMA between GPUs
integration of GPUs into complex software systems. hemselves, and between GPUs and other peripheral de-
. . i .g. . , Mel-
3. Hardware architecture overview vices on a PCle bus, e.g., NICs. For example, the Me
We provide an overview of the GPU software/hard-yansferring data directly to/from the GPU memory of
ware model, RDMA networking and peer—to-pger (P2PNVIDIA K20 GPUs (see Figurd). P2P DMA improves
DMA concepts. We use NVIDIA CUDA terminology the throughput and latency of GPU interaction with other
but most other GPUs that support the cross-platfornygnce buffers in CPU memory, and reduces load on
OpenCL standardlf share the same concepts. system memoryd7, 28].
3.1 GPU software/hardware model RDMA and Infiniband. Remote Direct Memory Access
mers to hierarchically structured hardware parallelismectly into application buffers over the network. Multiple
(for full details see 23]). They comprise several big RDMA-capable transports exist, such as Internet Wide
cores, Streaming MultiprocessoréSMg, each having Area RDMA Protocol (iWARP), Infiniband and RDMA
tion, Multiple Data (SIMD) units. All the SMs access fer rates grow, RDMA-capable technologies have been
global GPU memory and share an address space. increasingly adopted for in-data center networks, en-
The programming model associates a GPU threadbling high throughput and low latency networking,
grouped intdhreadblocksand all the threads in a thread- ciency [B]. For example, the state-of-the-art fourteen data
block are executed on the same SM. The threads withirate (FDR) Infiniband provides 56Gbps throughput and
a threadblock may communicate and share state via osub-microsecond latency, with the 40Gbps quad data rate
nization across threadblocks is possible but it is mucland is broadly used in supercomputing systems and en-
slower and limited to atomic operations. Therefore, mosterprise data centers, and analysts anticipate significant
GPU workloads comprise multiple loosely-coupled taskgrowth in the coming years.
allelized for tightly-coupled parallel execution by the (HCA) and like other RDMA networking hardware, it
threadblock threads. Once a threadblock has been dis-
2NVIDIA CUDA 6.0 provides CPU-GPU software shared memory for

mance requires tedious tuning of buffer sizes which de
request

GPU-NIC DMA channel by pre-allocating dedicated Figure 1: Receiving network messages into a GPU. WithoutiaR,
example, if the image data exceeds the allocated buffghat SM until all of the threadblock’s threads terminate.
the old contents to another GPU memory area. GPU codgpuys feature their own physical memory on the device,
determine the buffer size according to its internal logighe data in GPU memory, invokes a GRerne| and re-
cessors and allows using it via a standard, familiar APlyiinout sending data to a CPU or system memory. Mod-

lanox Connect-IB network card (HCA) is capable of
because we implement GPUnet on NVIDIA GPUS,saipherals because it eliminates an extra copy to/from

GPUs are parallel processors that expose prograniRDMA) allows remote peers to read from and write di-

multiple hardware contexts and several Single Instrucever Converged Ethernet (RoCE). As network data trans-
with a single element of a SIMD unit. Threads aresurpassing legacy Ethernet performance and cost effi-
die shared memory and synchronize efficiently. SynchrotlQDR) technology widely deployed since 2009. Infini-
each running in a single threadblock, and each par- An Infiniband NIC is called a Host Channel Adapter

automatic data management, but the data transfer costénrema

performs full network packet processing in hardware, en- cPU cpU GPU GPU

ables zero-copy network transmission to/from applica- Dsemon Worker | Daemon Worker — Worker Daemon Worker
Thread Thread | Thread Thread Thread Thread Thread

tion buffers, and bypasses the OS kernel for network API Blocks Blocks Blocks

Cal |S_ [accept — accept
(recv (.

The HCA efficiently dispatches thousandbg| of §§n"é""ﬁ copy
network buffers, registered by multiple applications. close
In combination with P2P DMA, the HCA may access copy
buffers in GPU memory. The low-lev®ERBinterface — lclose)
CPU server GPU-accelerated server GPU-net server

to RDMA is not easy to use. Instead, system soﬁwar%_ o Th hitect 2 network CPU, usiB§U
. . _ _|gure . e arcnitecture or a network server on a , BB

uses ,VERBS to |mplement hlgher level d?‘ta transfer abas a co-processor, and with GPUnet (daemon architecture).

stractions. For example, thsockets[32] library pro-

vides a familiar socket API in user-space for RDMA

transport. Rsockets are a drop-in replacement for sockets .
(via LD_PRELOAD), providing a simple way to perform tha_ltl(;ns ofn a GPU. GPUT are treated a}ls b;J”;—SYﬂChI’OI’IOUS
streaming over RDMA. igh-performance accelerators, so all of the inputs are

read on the CPU first and transferred to the GPU across
4. Design considerations a PCle bus. This design requires large batches of work

There are many alternative designs for GPU networke? B0 C® LRl et B S e
ing; this section discuses @portant high-level tradeoffs For example, SSLShadetq needs 1,024 independent
4.1 Sockets and alternatives network flows on a GTX580 GPU to surpass the perfor-

The GPUnet interface uses sockets because we belieygynce of 128-bit AES-CBC encryption of a single AES-
they offer the best blend of properties, being generic, fan| enabled CPU. Batching complicates the implemen-
miliar, convenientto use, and versatile (e.g., inter-pesc tation, and leads to increased response latency, because
communication over UNIX domain sockets). Alterna-gpy code does not communicate with clients directly.
tives like remote direct memory access (RDMA) via @ Gpunet makes it possible for GPU servers to handle
VERBs API are too difficult to programBf). Existing multiple independent requests without having to batch
message passing frameworks (e.g., MR dllow zero- them first (far right in Figure), much like multitasking
copy transfers into GPU memory, but they keep all netin multi-core CPUs. We call this theéaemon architec-
work /O control on the CPU, and suffer from the con-yre. It is also possible to have a GPUnet server where
ceptual limitations of the GPU-as-slave model that wesach threadblock acts as an independent server, accept-
address in this work. ing, computing, and responding to requests. We call this
4.2 Discrete GPUs theindependent architectur&Ve measure both ig8.

We develop GPUnet for discrete GPUs, even though This organization changes the tradeoffs a designer
hybrid CPU-GPU processors and system-on-chip optionust consider for a networked service because it removes
like AMD Kaveri and Qualcomm Snapdragon are gain-the need to batch work so heavily, thereby greatly simpli-
ing market share. We believe discrete and hybrid GPUing the programming model. We hope this model will
will continue to co-exist for years to come. They embodymake the computational power of GPUs more easily ac-
different tradeoffs between power consumption, producsessible to networked services, but it will require the de-
tion costs and system performance, and thus serve di¥elopment ohative GPU programs

ferent application domains. The aggressive, throughpul 4 |n-GPU networking performance benefits
optimized hardware designs of discrete GPUs rely heav- A native GPU networking layer can provide sig-
ily on a multi-billion transistor budget, tight integratio pjficant performance benefits for building low-latency
with specialized high-throughput memory, and increasederyers on modern GPUs, because it eliminates the over-
thermal design power (TDP). Therefore, discrete GPUgeads associated with using GPUs as accelerators.
outperform hybrid GPUs by an order of magnitude in rigyre 3 illustrates the flow of a server request on a
compute capacity and memory bandwidth, making themgaditional GPU-accelerated server (top), and compares
attractive for the data center, and therefore a reasonabje;g the flow on a server using GPU-native networking
choice for prototyping GPU networking support. support. In-GPU networking eliminates the overheads of
4.3 Network server organization CPU-GPU data transfer and kernel invocation, which pe-
Figure 2 depicts different organizations for a multi- nalize short requests. For example, computing the matrix
threaded network server. In a CPU server (left), a dageroduct of two 64x64 matrices on a TESLA K20c GPU
mon thread accepts connections and transfers the sockeguires about J4sec of computation. In comparison, we
to worker threads. In a traditional GPU-accelerated netheasure GPU kernel invocation requiring an average of
work server (middle) the worker threads invoke compu25usec and CPU-GPU-CPU data transfers for this size
input average 16@secs.

Memory Enque Run Memory
Recv Send
cogy SPU | GPU co;éy Unmodified GPU application
J.to PUJ. emne kernel | to PUJ. CPU application
L —T » GPU-accelerated GPUnet socket
server library
Run
GPU _nati Flow Data
Rec) function gSend /_ SG;L,J; ative II.II control buffers

NIC

Figure 3: The logical stages for a task processed on a GPtlezated
CPU server (top) and GPU-native network server(bottomjhtityhted

" A Figure 4: GPUnet high-level design.
stages are eliminated by the GPU networking support. g g 9

. o) GPUnet supports the main calls in the standard net-
In-GPU networking may eliminate the kernel invoca-yyork API, includingconnect |, bind |, listen

tion entirely, and provides a convenient interface to netaccept | send, recv , shutdown , andclose and
work buffers in GPU memory. One potential caveat, NOWynejr non-blocking versions. In the paper and in the actual

ever, is that I/O activity on a GPU reduces the GPU'§mplementation we add a “g” prefix to emphasize that
computing capacity, because GPU I/O calls do not relinghe code executes on a GPU. These calls work mostly as
quish the GPU’s resources, as discussed in SeBtion expected, though we introduce coalesced multithreaded
. API calls as we now explain.
>. _GPUnet DeSIQO) Coalesced API calls A traditional CPU network APl is
Figure4 shows the high level architecture of GPUnet.gjngle_threaded, i.e., each thread can make independent
GPU programs can access the network via standaiglp| cais and receive independent results. GPU threads,
socket abstractions provided by the GPUnet library,qever, behave differently from CPU threads. They are
linked into the application’s GPU code. CPU applica-ggers of magnitude slower, and the hardware is opti-
tions may use standard sockets to connect to remote GRY, o4 to run groups of threads (e.g. 32 in an NVIDIA
sockets. GPUnet stores network buffers in GPU memor)évarp or 64 in an AMD wavefront) in lock-step, per-

keeps track of active connections, and manages contrpf,ming poorly if these threads execute divergent control

flow for their associated network streams. The GPUnel g ‘Gpy hardware facilitates collaborative processing
library works with the host OS on the CPU via a GPUne€jsjde 4 threadblock by providing efficient sharing and

/O proxy to coordinate GPU access to the NIC and tqynchronization primitives for the threads in the same
the system’s network port namespace. =~ threadblock. GPU programs, therefore, are designed with
Our goals for GPUnet include the following: . this hierarchical parallelism in mind: they exploit coarse
1. Simplicity. Enable common network programming gain task parallelism across multiple threadblocks, and

practices and provide a standard socket APl and an ik cess a single task using all the threads in a threadblock
order reliable stream abstraction to simplify programyqingy, rather than in each thread separately. Performing
ming and leverage existing programmer expertise. yata narallelAPI calls in such code is more natural than
2. Compatibility with GPU programming. SUpport e traditional per-thread API used in CPU programs.
common GPU programming idioms like threadblock-grthermore, networking primitives tend to be control-
based task parallelism and using on-chip scratchpag, heavy and often involve large copies between sys-
memory for application buffers. tem and user buffers (e.gecv andsend), making per-
3. Compatibility with CPU endpoints. A GPUnet net- b readhiock calls superior to per-thread granularity.
work endpoint has identical capabilities as a CPUnet- - gpynet requires applications to invoke its API at
work endpoint, ensuring compatibility between net-yo granularity of a single threadblock. All threads in a
worked services on CPUs and GPUs. threadblock must invoke the same GPUnet call together
4. NIC sharing. Enable all GPUs and CPUs in & host 10, 5 coalesced manner: with the same arguments, at the
share the NIC hardware, allowing concurrent use of @3 me point in application code (similar to vectorized 1/0
NIC by both CPU and GPU programs. calls [42]). These collaborative calls together comprise
5. Namespace sharingShare a single network names- o6 |ogical GPUnet operation. This idea was inspired by
pace (ports, IP addresses,.UNIX domain socket nameskimilar design for the GPU file system ARY.
among CPUs and GPUs in the same machine to en- ye jjjystrate coalesced calls in Figue It shows a
sure backward compatibility and interoperability of i 16 GPU server which increments each received char-
CPU- and GPU-based networking code. acter by one and sends the results back. All GPU threads
5.1 GPU networking API invoke the same code, but each threadblock executes
Socket abstractionGPUnet sockets are similar to CPU it independently from others. The threads in a thread-
sockets. As in a CPU, a GPU thread may open and ud#ock collaboratively invoke the GPUnet functions to re-
multiple sockets concurrently. GPU sockets are shareckive/send the data to/from a shared buffer, but perform
across all GPU threads, but cannot be migrated to prasomputations independently in a data-parallel manner.
cesses running on other GPUs or CPUs in the same ho3the GPUnet functions are logically executed in lockstep.

increment by one server(int csoc) other hand, the CPU controls the NIC via a standard host
{ driver, keeping the NIC available to all system proces-
//buffer shared by all TB threads sors. In particular, GPUnet uses the standard CPU inter-
shared char buf[THREADS IN TB]; C e e .
/7collaborative recv into buf face toinitialize the GPU network buffers and register the
1en=THREADS IN TB; GPU memory with the NIC's DMA hardware.
grecv(csoc, buf, len);
//data parallel code per thread 5.3 Socket layer
buf[thread id]++; The GPU socket layer implements a reliable in-order
sond(asoe e, omy oM Bu stream abstraction over low-level network buffers and
} L ' reliable RDMA message delivery. We adopt an RDMA

Figure 5: A GPU network client using GPUnet (TB — threadb)ock term channelto refer to the RD_MA connection. The
CPU processes all channel creation related requests (e.g.,
bind), allowing GPU network applications to share the
OS network name space with CPU applications. Once
the channel has been established, however, the CPU steps
out of the way, allowing the GPU socket to manage the

5.2 GPU-NIC interaction
Building a high-performance GPU network stack re-
quires offloading non-trivial packet processing to NIC

hardware. network buffers as it sees fit.

The majority of existing GPU networking projects .
(with the notable exception of the GASPP packet pro-MaIOpIng streams to channelsGPUnet maps streams

cessing framework40]) employ the CPU OS network one-to-one onto RDMA channels. A channel is a low-
.) .. level RDMA connection that does not have flow confrol,
stack with network buffers in CPU memory, and explicit

application data movementto and from the GPU. Spech‘§O GPUnet must provide flow control using a ring buffer

ically, accelerated network applications, like SSL IorOto_descnbed in SectioB.1 By associating each socket with

. a channel and its private, fixed-sized send and receive
col offloading [L9], cannot operate on raw packets and . .
. . ; buffers, there is no sharing between streams and hence
first require transport-level processing by a CPU. How-

ever CPU-GPU memory transfers associated with cpU® costly synchronization. Pe_r—stream chann_els allows
: ; . GPUnet to offload message dispatch to the highly scal-
side network processing are detrimental to performan

) : Cble NIC hardware. The NIC is capable of maintaining
as we show in the evaluation. a large number of channels associated with one or more
P2P DMA allows network buffers to reside in GPU 9

: . memory buffers.
memory. However, forwarding all network traffic to a . . .
We considered multiplexing several streams over a
GPU would render the NIC unusable for processes runs - le channel. similar to SST4], which could improve
ning on a CPU and on other GPUs in the system. Further 9 ' ’ P

since a GPU would receive raw network packets, achieVr_fetwork buffer utilization and increase PCle throughput

ing the goal of providing a reliable in-order socket ab_due to the increased granularity of memory transfers. We

straction would require porting major parts of the CPUd|5m|ssed this design because handling multiple streams

network stack to the GPU — a daunting task, which over the same channel would require synchronlzauqn qf
- . concurrent accesses to the same network buffer, which is
be efficient requires thousands of packets to be batche

in order to hide the overheads of the control-heavy anﬁlOW _and cc;mp(ygates the |r|nple|T(13e|3r1ltJat|on. i h
memory intensive processing involvet. aming and address resolution net relies on the

To bypass CPU memory, eliminate packet processin ,PU standaérd namre]{ rre]solut?gn meg:handisn;z for RD'\fAA
and enable NIC sharing across different processors in t E,ansports(MA) which provide IP-based addressing for

system, we leverage RDMA-capable high-performanc&PMA services to initiate the connection.
NICs. The NIC performs all low-level packet manage-_N're protocol and congest|0r_1 controIQPUnet uses re-
ment tasks, assembles application-level messages aleP!eé RDMA transport services provided by the NIC
stores them directly in application memory, ready to pdardware and therefore relies on t.he underlying transport
delivered to an application without additional processingPacket management and congestion control.
The NIC can concurrently dispatch messages to multipl .
buffers and multiple applications, while placing source%' Implementatlon
and destination buffers in both CPU and GPU memory, Ve implement GPUnet for NVIDIA GPUs and use
As a result, multiple CPU and GPU applications Car{VIeIIanox Inf|n|banq Host Channel Adaptors (HCA) for
share the NIC without coordinating their access to théhter-GPU networking].
hardware for every data transfer.

GPUnet uses both a CPU and a GPU to interact with
It::eelglg n:;ig:isamiﬁz\tezﬂgzrzjgre?rsgmieslﬁzt:;résés message-oriented and we do not use it for streaming.

’ 4 ™ Millions for Mellanox Connect-IB, according to Mellanox So

mentto the GPU socket layer. The per-connectionreceiMgtion Brief http:/www.mellanox.com/related-docs/
and send queues are also managed by the GPU. On thglications/SB_Connect-1B.pdf

While the Infiniband transport layer does have its own flomticgnit

http://www.mellanox.com/related-docs/applications /SB_Connect-IB.pdf
http://www.mellanox.com/related-docs/applications /SB_Connect-IB.pdf

GPUnet Socket API Sender Receiver
Reliable in-order streaming 1)RDMA [faan |
. A IR HeA |
Reliable channel (2) recv,
GPUnet CPU prox rompletion|3)put ISSEN]
RDMA T > ringbuffer
ransports 600l
E_ (8) Ack (7)ACk ()po

) Figure 7: Ring buffer updates for GPU flow control mechanism i
Figure 6: GPUnet network stack. grecv() call.

GPUnet follows a layered design shown in Figére a CPU as a part of the completion notification handler,
The lowest layer exposeseliable channelbstractionto and by a GPU for evergsend /grecv call. To guaran-
upper layers and its implementation depends on the urtiee consistent concurrent updates, these writes have to be
derlying transport. We currently support RDMA, UNIX performed atomically, but the updates are performed via
domain sockets and TCP/IP. The middteket layeim- a PCle bus which does not support atomic operations.
plements a reliable in-order connection-based stream albhe solution is to treat the updates as two independent
straction on top of each channel. It manages flow contrahstances of producer-consumer coordination: between a
for the network buffers associated with each connectio®GPU and an HCA (which produces the received data in
stream. Finally, the top layer implements the blockinghe GPU network buffer), and between a GPU and a re-
and non-blocking versions of standard socket API for thenote host (which consumes the sent data from the GPU
GPU. network buffer). In both cases, a CPU serves as a medi-
6.1 Socket layer ator for updating the counters in GPU-accessible mem-

GPUnet's socket interface is compatible with and®'y ON behalf of the HCA or remote host. Assuming only
builds upon the open-sourasockets[32] library for ~ ON€ consumer and producer, each instance of a producer-

socket-compatible data streams over RDMA for CPUsCOnsumer coordination can be implemented using a ring-
Rsockets is a drop-in replacement for sockets buffer data structure shared between a CPU and a GPU.
(via LD_PRELOAD) which provides a simple way to use Figure 7 shows the ring buffer processing a receive
RDMA over Infiniband. GPUnet extends the library to call. The GPU receives the data into the local buffer via
use network buffers in GPU memory and integrates ifiréct RDMA memory copy from the remote host (1).
with the GPU flow control mechanisms. The _CPU gets notified by the _HCA that the data was
GPUnet maintains a private socket table in GPU. EacffCeived (2) and updates the ring buffer as a producer
active socket is associated with a single reliable channg®” Pehalf of the remote host (3). Later, the GPU calls
and holds the flow control metadata for its receive an@"€cv0) (4), reads the data and updates the ring buffer
send buffers. The primary task of the socket layer is t¢1t the data has been consumed (5). This update triggers
implement the reliable stream abstraction, which require@1 CPU (6) to send a notification (7) to the remote host

e

flow control management as we describe next. (8);I'h' desiand les the GPU AP call dthe CPU

Flow control. The flow control mechanism allows the Is design decouples the callsandthe

sender to block if the receiver's network buffer is full. /O transfer operations, allowing the CPU to handle GPU

Therefore, an implementation requires the receiver th request asyr!chronoutc,l-y. As aresult, the GPU 1/O call

update the sender upon buffer consumption returns faster, without waiting for the GPU 1/O request to
Unfortunately, our original design to handle flow Con_tp)ropa]}gate thdro(l;%fbthe hlgfl—I?tency PCle blus, ar(ljd _cli_ﬁ_ta

trol entirely on the GPU is not yet practical on current ransters an computations are overiapped. 1his

hardware. NVIDIA GPUs cannot yet control an HCA di- feature is essential to achieve high performance for bulk
rectly, without additional help from a CPU. They cannottranSfers'
access the HCA's “door-bell” registers in order to trigger6.2 Channel layer
a send operation, because accessing the door-bell regis-The channel layer mediates the GPU’s access to the
ters is done through memory mapped I/0, and GPUs camderlying network transport and runs on both CPU and
not currently map that memory. Further, the HCA driverGPU. On the GPU side it manages the network buffers
does not yet allow placement of completion queue strudgh GPU memory, while the CPU side logic ensures that
tures in GPU memory. The HCA uses completion queuethe buffers are delivered to and from the transport mech-
to deliver completion notifications, e.g., when new data@nism underneath, as we describe shortly.
arrives. Therefore, a CPU is necessary to assist evelemory managementGPUnet allocates a large con-
GPU send and receive operation. tiguous region of GPU memory which it uses for network
Using a CPU for handling completion natifications in- buffers. To enable RDMA hardware transport, the CPU
troduces an interesting challenge for the flow control im-code registers the GPU memory into the Infiniband HCA
plementation. The flow control counters must be sharedith the help of CUDA's GPUDirectRDMA mechanism.
between a CPU and a GPU, since they are updated @yhe maximum total amount of HCA registered memory

is limited to 220MB in NVIDIA TESLA K20c GPUs due from 2.5GB/s to 6.9GB/s for a threadblock with only 256
to the Base Address Register (BAR) size constraints ahreads.
the current hardware. We allocate the memory staticallRing buffer updates.Ring buffer updates were slow ini-
during GPUnet initialization because the memory registially because the metadata is shared between the CPU
tration is expensive, and also because we were unable #md GPU, and we placed it in “zero-copy” memory,
register it while the GPU kernel is running. GPUnet usesvhich physically resides on a CPU. Therefore, reading
this RDMA-registered memory as a memory pool for al-this memory from the GPU incurs a significant penalty
locating a receive and send buffer for each channel. of about 1-Z:sec. Updating the ring buffer requires mul-
Bounce buffers and support for non-RDMA transports. tiple reads, and the latency accumulates to tensset.
If P2P DMA functionality is not available, the underly- We improved the performance of ring buffer updates
ing transport mechanism has no direct access to GPU ndty converting reads from remote memory into remote
work buffers. Therefore, network data must be explicitlywrites into local memory. For example, the head loca-
staged to and frorhounce buffersn CPU memory. tion of a ring buffer, which is updated by a producer,
Using bounce buffers has higher latency and requireshould reside in the consumer’s memory in order to en-
larger system buffer than native RDMA, as we measure iable the consumer to read the head quickly. To implement
Section8.1 However, this functionality serves to bridge this optimization, however, we must map GPU mem-
current hardware constraints, which often make the usery into the CPU’s address space, which is not sup-
of RDMA impossible or inefficient. P2P DMA for GPUs ported by CUDA. We implement our own mapping using
and other peripherals has been made available only sind&&/IDIA's GPUDirect from a Linux kernel module. This
early 2013, and its hardware and software support is stithptimization reduces the latency of ring buffer updates to
immature. For example, on some modern server chipsegsbusec.
we encountered5x bandwidth degradation when stor- g 4 | imitations

ing send buffers in GPU memory, and as a result had t0 5pnet does not provide a mechanism for socket

use bounce buffers. Similarly, P2P DMA is only pOSSiblemigration between a GPU and a CPU, which might be

in a certain PCle topology, so for our dual socket configuz o \venient for load balancing.

ration only one of the three PCle attached GPUs can per- y1qre significantly, the prototype relies on the ability
form P2P DMA with the Infiniband HCA. Until the soft- ¢ 3 GpU to provide the means to guarantee consistent

ware and hardware support stabilizes, bounce buffers afg, s to jts memory when it is concurrently accessed by
an interim solution that hides t_he |_mplementa'_[|on COM34 running kernel and the NIC RDMA hardware. NVIDIA

plexity of CPU-GPU-NIC coordination mechanisms. gpys do not currently provide such consistency guaran-
6.3 Performance optimizations. tees. In practice, however, we do not observe consistency

Single threadblock I/O.While developing GPUnet ap- y|olat|ons n _GPUnet._ Specifically, to validate our Cl_ment
Lo L . ; implementation, we implement a GPU CRC32C library
plications we found that it is convenient to dedicate some '/ - . ;
: X . and instrument the applications to check the data integrity
threadblocks to performing network operations, while us- X .
) :) L of all network messages wittKB granularity. We detect
ing others only for computation, like therecelvmgthread—no data intearity violations for experiments reported in
block in MapReduce§{.1), or a daemon threadblock gnty b P

in the matrix product servegT). In such a design, the the paper (though this experiment surfaced a small bug

performance-limiting factor for send operations is lne in GPUnet itself).
tencyof two steps performed in theend call: mem- We hope, perhaps encouraged by GPUnet itself, that

ory copy between the system and user buffers in GPLPPU vendors will provide such consistency guarantees

. ih the near future. In fact, the necessary CPU-GPU mem-
and the update of the flow control ring buffer metadata. . . .
ory consistency will be supported in the future releases

Unfortunately, a single threadblock is allocated onlyof OpenCL 2.0-compliant GPU platforms, thereby sup-

a small fraction of the total GPU compute and mem. orting our expectation that it will become the standard
ory bandwidth resources, e.g. up to 7% of the total cpl 9 P

memory bandwidth according to our measurements. Imguarantee In future systems.
proving the memory throughput of a single threadblock; Applications
requires issuing many memory requests per thread in o

der to enable memory-level parallelis#i]. We resorted plemented entirely on the GPU, using both the daemon

to PTX, NVIDIA GPU low-level assembly, in order to . .

: : and independent architecturégl . In the daemon ar-

implement 128-bit/thread vector accesses to global men- .
chitecture the daemon threadblock (one or more) accepts

ory which also bypass the L2 and L1 caches. This by client connection, reads the input matrices, and en-

passing is required to ensure a consistent buffer stafe S R
when RDMA operations access GPU memory. This Optigueues a multiplication kernel. The multiplication kernel

mization improves memory copy throughput almost 3 gets pointers to the input matrices and the socket for writ-
P y copy gnhp ing the results. The number of threads — a critical param-

WMatrix product server. The matrix product server is im-

eter defining how many GPU computational resources buckets from remote GPUs. Each consumer threadblock
kernel should use — is derived from the matrix dimen4ds assigned a fixed number of connections from a remote
sions as in the standard GPU implementation. When th€PU. The receivers get data by making non-blocking
execution completes, the threadblock which finalizes thealls to grecv() on the mappers’ sockets in round-
computation sends the data back to the client and closesbin order (usingooll() on the GPU is left as future
the connection. work).

In the independent architecture each threadblock re- The network connections are set up at the beginning
ceives the input, runs the computations, and sends the refthe Map phase, between each pair of consumer thread-
sults back. block and remote threadblock. For example, a GPU node
Implementation details.The daemon server cannot in- in a GIimMR system with five GPUs, each with 12 map-
voke the multiplication kernel using dynamic parallelismper and 12 consumer threadblocks, will have a total of 48
(which is the ability to execute a GPU kernel fromincoming connections, one per mapper from every other
within an executing kernel, present since NVIDIA KeplerGPU. And each of its 12 consumers will handle 4 in-
GPUs). Current dynamic parallelism support in NVIDIA coming connections. Local mappers update local buckets
GPUs lacks a parent-child concurrency guarantee, anwlithout sending them through the network.
in practice the parent threadblock blocks to ensure the GPU mappers coordinate with a CPU-side centralized
child starts its execution. Our daemon threadblock mugnapper master, accessed over the network. The master
remain active to accept new connections and handle irgssigns jobs, balancing load across the mappers. The
coming data, so we do not use NVIDIAs dynamic paral-master tells each mapper the offset and size of the data
lelism and instead invoke new GPU kernels via CPU byt should read from its input file.

a custom mechanism. See Sect®@ for performance Similar to the Map, each Reduce function is also in-
measurements. voked in one threadblock. Each reducer identifies the set
of buckets it must process, (optionally) performs parallel

7.1 MapReduce design sort of all the key-value pairs in each bucket separately.
We design an in-GPU-memory distributed MapRe- nd finally invokes the user-provided Reduce function.

duce framework that keeps intermediate results of mal . ;
P s a result, the GPU exploits the standard coarse-grain

operation in GPU memory, while input and output are . :)
P y P b data parallelism of independent input keys, but also en-

read from disk using GPUfs3f]. We call the system
GimMR for GPU in memory Map Reduce. GImMR is ables the finer-grained parallelism of a function process-
ing values from the same key, e.g., by parallel sorting or

a native GPU application without CPU code. The num))
ber of GPUs in our system is small, so all of them arereductlon. Enabling each reducer to sort the key/values

used to execute both mappers and reducers. Shufflir:g@dependently of other reducers is important to avoid a

(i.e., the exchange of intermediate data produced by ma PU-wide synchronization phase at the end of sorting.

pers between different hosts) is done by mappers, and re- GimMR takes advantage of the dynamic communi-

ducers only start once all mappers and data transfer hggtion capabilities of GPUnet for ease and efficiency in

completed. Our mappers push data, while in traditiona'lmplementation' Without GPUnet, enabling overlapped

MapReduce, the reducers pully. Each GPU runs mul- communications and computations would require signif-

: : icant development effort involving fine-tuned pipelining
Eslfnmﬁglgegpﬁnt?wfggsers’ each of which are execmé\%ﬁong CPU sends, CPU-GPU data transfers, and GPU

At the start of the Map phase a mapper reads its part A?e mel invocations.)
the input via GPUfs. The input is split across all thread GIMMR workloads. We implement word count and K-

blocks, so they can execute in parallel. A GPU may rugn€ans. In word count, the mapper parses free-form input

tens of mappers, each with hundreds of threads. Map€xt and generatesword, 1> pairs, which are reduced
pers generate intermediatekey,value- pairs that they by summing up their values. CUDA does not provide text

assign tobuckes using consistent hashing or a predeProcessing functions, so we implement our own parser.
fined key range. Buckets contain pointers to data chunk¥/e Pre-sample the input text and determine the range of
A mapper accumulates intermediate keys and data infYS Peing reduced by each reducer. ,

local chunks. When a chunk size exceeds a threshold, 1€ mappers in K-means calculate the distance of
the mapper sends the chunk to the GPU which will rur?af:h po!nt to the cluster cgntrmds, anq then re—_c:lustgrthe
the reducer for the keys in that bucket, thereby overlapQO'”t to its nearest centroid. Intermediate data is pairs of

ping mapper execution with the shuffle phase, similar tg~Centroid number, point. The reducer sums the coordi-
ThemisMR p9. nates of all points in a centroid. K-means is an iterative

Each Map function is invoked in one threadblock&lgorithm, and our framework supports iterative MapRe-

and is executed by all the threadblock threads. On eadft/Ce: A CPU process receives the results of the reducers,
GPU, there are many mapper threadblocks and consunfépd calculates the new centroids for the next round.We
threadblocks, with the consumer threadblocks receivin§reProcess the inputfile to piecewise transpose the input

points, thereby coalescing memory accesses for threadss ICft"rleet CPU Intel CNE-SILIJDIA < software
in a threadblock. z |Inte a
e A E3-1220V3 RHEL 6.5, gcc 4.4.7

7.2 Face verification B8 |Haswell = [*%%° IN|Gpy ariver 331.38

A (_:Ilent_sgnds a photo of a fa_cg, a_long wit_h a text | |cg02 55-%628 ue| C2075 Y RHEL 6.3, gcc 4.4.6
label identifying the face, to a verification service. The andy bridge GPU driver 319.37
server responds positively if the label matches the photqp |s520 |2x L5630 3075 Y gl';'UE'a 6.3, %i%”g;"e
(i.e., the server has the same face in its database with fver 22,

. . Table 1: Hardware and software configuration. The DMA column
the proffered label), and negatively otherwise. The Servef ji-aies the presence of a DMA performance asymm@6y2(

uses a well-known local binary patterns (LBP) algorithm

for face verification §]. LBP represents images by a his-

togram of their visual features. The server stores all LBRONnections with the client andemcached server. This

histograms in anemcached database. In our testbed, we design is appropriate since the processing time per image

have three machines, one for clients, one for the verificds low and there is enough parallelism per request.

tion server and one for theemcached database. Implementation details.We use a standard benchmark-
We believe our organization is a reasonable choice, d8g face recognition datasetesized to 136x136 and re-

opposed to alternatives such as having the client perforfiormatted as raw grayscale images. We implementa GPU

the LBP and send a histogram to the server. Face veniremcached client library. memcached uses Infiniband

fication algorithms are constantly evolving, and placingRDMA transport provided by the rsockets library. We

them on the server makes upgrading the algorithm possinodified a single line ofnemcached to work with rsock-

ble. Also, sending actual pictures to the server providesets by disabling the use aktcept4 , which is not sup-

useful human-checkable log of activity. ported by rsockets.

Client. The client uses multiple threads, each running on .

its own CPU, and maintaining multiple persistent non8- Evaluation

blocking connections with the server. Clients use rsocketdardware. We run our experiments on a cluster with

for network communications with the server. For eacHour nodes (Tablel) connected by a QDR 40Gbps In-

connection, the client performs the following steps andiniband interconnect, using Mellanox HCA cards with

repeats them forever: MT4099 and MT26428 chipsets.

1. Read a (random) 136x136 grayscale image from a All machines use CUDA 5.5. ECC on GPUs, hyper-
(cached) file. threading, SpeedStep, and Turbo mode of all the ma-

2. Choose a (random) face label. chines are disabled for reproducible performance. Nodes

3. Send verification request to server. A and B feature a newer chipset with a PLX 8747 PCle

4. Receive response from server — 0 (mismatch) or $witch which enables full bandwidth P2P DMA between
(match). the HCA and the GPU. Nodes C and D provide full band-

Server. We implement three versions of the server: awidth for DMA writes from HCA to GPU (recv()),
CPU version, a CUDA version, and a GPUnet versionbut perform poorly with only 10% of the bandwidth for
Each server performs the following steps repeatedly (iDPMA reads from GPUdsend()). We are not the first to

different ways). observe such asymmetrg§).

1. Receive request from client. GPUnet delegates connection establishment and tear-

2. Fetch LBP histogram for client-provided name fromdown to a CPU. Our benchmarks exclude connection es-
the remote memcached database. tablishment from the performance measurement to mea-

3. Calculate LBP histogram of the image in the requestsure the steady-state behavior of persistent connections.
4. Calculate Euclidean distance between the histogramssing persistent connections is a common optimization
5. Report a match if the distance is below a threshold. technique for data center applicatiodd]|

6. Send integer response. 8.1 Microbenchmarks

The CPU server consists of multiple independent. We run microbenchmarks with two complementary
threads, one per CPU core. Each thread manages mulliaas: to understand the performance consequences of
ple, persistent, non—bl_ockmg connections with the clientgpynet design decisions, and to separate the essential

The CUDA server is the same as the CPU server, bifqijenecks from the ephemeral issues due to current
the face verification algorithm executes on the GPU by, qware. We run them between nodes A and B with 256
launching a kernel. (see Figuemiddle picture). threads per threadblock. All results are the average of 10

The GPUnet server is a native GPU-only applicationterations, with the standard deviation within 1.1% of the
using GPUnet for network operations. It uses the N egn.

dependent architecturg4.3), and consists of multiple
threadblocks running forever, with each acting as an in-

dependent server. Each threadblock manages persistéhip:/www.itl.nist.goviiad/humanid/feret/
feret_master.htm

http://www.itl.nist.gov/iad/humanid/feret/feret_master.htm
http://www.itl.nist.gov/iad/humanid/feret/feret_master.htm

cCG CG GG GG is still unclear. Specifically, when using a CPU end-point,

©C rDMA BB RDMA BB the throughput ofyrecv andgsend is 3.31 GB/s and
RTT 64 bytefisec) 2.86 269 603 500 117 2.63 GB/s respectively. As a result, in a GPU-GPU ex-
Bandwidth (GB/s) 3.44 344 348 338 346 periment with two opposite streams, the one-directional

Table 2: Single stream latency (round trip time) and bantwidr bandwidth is constrained by thgend performance on
GPUnet, CPU uses rsockets. C-CPU, G-GPU, BB-bounce buffer. oth sides, hence the aggregate bandwidth is 5.26 GB/s.

< Latency Multistream bandwidth. We measured the aggregate
eps (usec) bandwidth of sending over multiple sockets from one
Ty GPU ring buffer 1.4 GPU. We run 26 threadblocks (2 threadblocks per GPU
T5 GPU copies buffer 15.7 . . .
T; GPU requests to CPU 38 SM core) each having multiple non-blocking sockets.
T4 CPU reads GPU request 2.5 i i -
7 EPU RDMA write e completion 550 Each send is 32_KB. We test up to 416 active connec
tions — the maximum number of sockets that GPUnet
Total one-way latency 45.6

may concurrently maintain given 256KB send buffers,
which provide the highest single-stream performance.
]) . As we explained ir§ 6, the maximum number of sockets
Single stream performanceWe run a simple single- s constrained by the total amount of RDMA-registered
threadblock GPU echo server and client using a singlg,emory available for network buffers, which is currently
GPUnet socket. We implement the CPU version of th§mited to 220MB.

benchmark using the unmodified rsockets library. Ta- \ye run the experiment between two GPUs. Starting
ble 2 shows the round trip time (RTT) for 64 byte mes-fom 2 connections, GPUnet achieves a throughput of
sages and bandwidth for 64KB messages and 256KB 4Gp/s, and gradually falls to 3.2GB/s at 416 connec-
(512KB for bounce buffer) system buffers. The GPUijons, primarily due to the increased load on the CPU-
reaches about 98% of the peak performance of CPWUs;qe proxy having to handle more requests. Using bounce
based rsockets. Bounce buffers (entries marked BB if,ffers shows slightly better throughput, 3.5GB/s with

the table) increase latency two-fold versus RDMA transy,q connections, and 3.3GB/s with 208 connections.
fers, but its throughput is close to RDMA thanks to twice

larger system buffers for better latency hiding. 8.2W I\/I_atrii< produc;server . f1h . d
The latency of GPU transfers is significantly higher € imp emef?t t rﬁe ver?ons oft efrggf;rlx proGuct
than the baseline CPU-to-CPU latency. To understand tRTVer to examine the performance of different GPU

reasons, Tabl8 provides the breakdown for the latency server organizations. .
of individual steps ofisend() sending 64KB. The CUDA server runs the I/O logic on the CPU and

We measured}, T, T5 on the GPU by instrumenting offloads matrix product computations to the GPU using
the GPU code usirylgo,ck64() _the GPU intrinsic that standard CUDA. It executes a single CPU thread and

reads the hardware cycle countgy.is effectively the la- invokes one GPU kerngl per requgsta(trixMul) the
tency of thesend() call performed from the CPU, but matrix product kernel distributed with the NVIDIA SDK.
transferring data between memories of two GPUs. For Theda;?morserver usesF]GPGUnet and follows the dae-
this data size, the overhead of GPU-related processing fgon arc itecture §1.3. The GPU resources are par-
about 50%. The user-to-system buffer cdBy,is the pri- titioned between daemon threadblocks and computing

mary bottleneck. Accessing CPU-GPU shared data stryfreadblocks. The number of daemon threadblocks is an
tures (71, T3) and the latency of the update propagatio mportant server configuration parameter as we discuss

through the PCle busft) account for 20% of the total elow. Both the CUDA server and the daemon server in-
latency, but these are constant factors voke the matrix product kernel via the CPU, however the

We believe thaff’, andT, will improve in future hard- latter receives/sends data directly to/from GPU memory.

ware generations. Specificallfj; can be reduced by en- The independenserver also employs GPUnet, but

abling a GPU to access the HCA doorbell registers di!he GPU is not statically partitioned between daemon

rectly, without CPU mediation. We believe tHt can be and compute threadblocks. Instead, all the threadblocks
optimized by exposing the already existing GPU DMAhandIe I/0 and perform computations, and no additional
engine for performing internal GPU DMAs, similar to Gp%keéﬁeéiazje Iaunched(.j ind q .
the Intel I/OAT DMA engine. Alternatively, a zero-copy € » daemon and indepen ent Server versions
API may help eliminatd’, in software. are 894, 391 and 220 LOC for their core functionality.
Duplex performance.The CPU rsocket library achieves Resource allocation in the dae_mon s.erveThe perf_o.r-
6.65 GB/s of the aggregate duplex bandwidth for wwgnance of the daemon server is _p_arucularly sensitive to
concurrent data streams in opposite directions — twice i€ Way GPU resources are partitioned between I/O and

bandwidth of a single stream. With GPUnet, we founacompUte_ tasks perfprmed by _the SErver. The GPU non-
thatgsend andgrecv interfere when invoked concur- preemptive scheduling model implies that GPU resources

rently on two sockets, but the reasons for this interferenc@located to l/O tasks cannot execute computations even

Table 3: Latency breakdown for a GRjdend() request with a 64KB
message with peer-to-peer RDMA.

. . . Workload igz uCUDA
Configuration Light Medium Heavy Daemon design

nght 92% 81% 74% Independent design

Medium 44% 99% 88%
Heavy 12% 44% 100%
Table 4: The cost of misconfiguration: the throughput in @gigonfig- jg
uration relative to the maximum throughput using the besfigaration 2 I
for that workload. o
1 13 16 26 32 52 64 104 128

Number of clients

while I/O tasks are idle waiting for the input data. There-Figure 8: Throughput comparison for different matrix protiservers.
fore, if the server is configured to run too many daemon : :
threadblocks, the compute kernels will get fewer GPU e Lignt 4 Medum =~ Heawy
resources and computations will execute sIowa._ On the. Daemon (GFLOPS) 11 137 201
other handf too feyv da_emon threadblocks may fail to feeuIndependem (GFLOPS) 384x) 151 (L1x) 207 (L01x)
the e)_(ecutlon units with data fast enoth’ th_ereby del:able 5: The throughput of GPUnet-based matrix producessmmder
creasing the server throughgutin our current imple- giterent workload types.
mentation the number of daemon threadblocks is config- o _ _
ured at server invocation time and does not change duriyhich maximizes its throughput for this workload. The
execution. results are shown in Figug

The best server configuration depends on the work- Both GPUnet.-l_Jased implementations consistently out-
load. Intuitively, the more computation that is performedPerform the traditional CUDA server across all the work-
per byte of 1/0, the fewer GPU resources should be alloloads and are competitive with each other.
cated for 1/0 threadblocks and, consequently, more re- AS expected, the performance of the independent de-
sources allocated for computation. The optimal serve?idn IS sensitive to the number of clients. Our imple-
configuration depends on the compute-to-1/O ratio of itgnentation assigns one connection per threadblock, so the
tasks. number of clients equals the number of server thread-

Balancing the allocation of threadblocks betweerPlocks. Configurations where the number of clients are
computation and 1/O is a high-stakes game. Table divisible by the number of GPU SMs (13 in our case)
shows how we separate three matrix multiplication work1ave the best performance. Other cases suffer from load
loads by their compute-to-1/O ratio: light (64x64 and!mbalgnce. The performan(_:e of the independent design
128x128), medium (256x256) and heavy (512x512 anbﬁpartlcglarly low for one cI|e_nt becguse the server runs
1024x1024). with a single threadblock using a single SM, leading to

We exhaustively search the configuration space fopevere underutilization of GPU resources.
each workload (with varying number of clients) to find 1he performance of the independent desigRisto
the configuration of compute and I/O threadblocks tha£0x higher than a single-threaded CPU-only server that
maximizes throughput. Then we run all workloads on alluses the highly-optimized BLAS library (not shown in
configurations and measure the penalty for using the belte figure).
configuration for each class of workload. Splitting work- ~ 1ableS shows the throughput of the GPUnet servers
loads into three classes allows us to find configurationgerving different workload types. We fixed the number of
that perform very well for all instances of that class (the2Ctiveé connections to 26 to allow the independent server
diagonal is all above 90% of optimal). However, dedi-t réach its full performance potential.
cating too many or too few threadblocks to 1/O can be The independent server achieves higher throughput
terrible for performance, with the worst misconfigurationfor &l of the workload types, but its advantages are most
reducing throughput to 12% of optimal. Future work in_profo_und for light tasks (with low cor_npute—to-I/O ratios).
cludes a generic method of finding the best server configth€ independent server does not incur the overhead of
uration and dynamically adjusting it to suit the workload.GPU kernel invocations, which dominate the execution

time for shorter tasks in the daemon server. This perfor-

Performance comparison of different server designs. Mance advantage makes the independent design particu-

We compare the throughput of different server design?rly suitable for our face verification server which also
while changing the number of concurrent clients. We us ur|1$ tasl;s with low compute-to-I/O ratio as we describe
the 256 x 256 matrices for input, and configure the dae-P€loW € 8.4).
mon server to have the number of daemon threadblocl&3 Map reduce

We evaluate the standard word count and K-means
61n practice, the number of threads per a daemon threadblsck a tasks on our GlmMR_MapReduce_. Tatﬂe:o_mpares_the
affects the server performance, but we omit these techdiails for ~ P€rformance of the smgle_—GPU GimMR with the single-
simplicity. node Hadoop and Phoenix+3d| on a 8-core CPU. We

B oe e
X 9O N B @
S © o 8 o

Performance (GFLOPS)

Workload 8-core 1-Node 1-GPU 1
Phoenix++ Hadoop GimMR
K-means 12.2 sec 71.0 sec 5.6 sec 08
Wordcount 6.23 sec 211.0 sec 29.6 sec 0
Table 6: Single-node GimMR vs. other MapReduce systems. é
o 5 ++ CPU (6 Cores) - 35 kReq/s
0.4 B | ==' GPUnet - 53 kReq/s
: 2| = GPUnet BB - 17 kReq/s
02 : wwwww CUDA - 23.5 kReq/s
. . B s + CPU + GPUnet - 86.5 kReq/s
use RAM disk and IP over IB when evaluating K-Means & : =
on Hadoop. For both wordcount and kmeans on Hadoof 0. Qrummamtiace B <500

Latency [usec]

we run 8 map JObS and 16 reduce]Obs per node. Figure 9: Face verification latency CDF for different sesver

Word count. The word count serves as a feasibility proof
for distributed GPU-only MapReduce, but the workload

characteristics make it inefficient on GPUS. dataset and hand-modified images. All the reported re-

. sults have variance below 0.1% of their mean.
The benchmark counts words in a 600MB corpu ower latency, higher throughput.Figure9 shows the
of English-language Wikipedia in XML format. A sin- CDF of the request latency for different server imple-

alzdgfpub?g]gito?ué?e;zrrgitt?: 4S|7r:<gIselgx:retﬁ;orementations and some of their combinations. The legend

Phoenix++ B running on 8 CPU cores. GImMR word for each server specifies the effective server throughput

; . : C observed during the latency measurements. GPUnet and
count spends a lot of time sorting strings, which is expen%UDA are invoked with 28 threadblocks, 1024 threads

sive on GPUs because comparing variable length strin . .
create divergent, irregular computations. In the futur%Jer threadblock, which we found to provide the be_st
we will adopt the optimization done by ThemisMR9| rad_eoff betwe_en Igtency and throughput. Qt_her config-
which uses the hash of the strings as the intermediaférat'ons result in higher throughput but sacrifice latency,
kevs. in order to sort quickl or slightly lower latency but much lower throughput.

ys: q Y- The GPUnet server has the lowest average response

Scalability. When invoked on the same input on four_; : -

. . time of 524+41 sec per request while handling 53 KRe-
network-connected GPUs, GimMR performanceincreas e o
by 2.9x. The scalability is affected by three factors: (1) Sﬁests/sec, which is abatik faster per request, and 50%

h t of tation is 100 low to fully hide th more requests than the CPU server running on a single 6-
the amount of computation 1S too fow o Tully Nide € ., .o cpy The native CUDA version and GPUnet with
intermediate data transfer overheads, (2) reducers eXPeflounce buffers suffer frodx and3x higher response

ence imbalance due to the input data skew, (3) Only tW?lme, and2.3x and3x lower throughput respectively.

?aCh'ne; ;nable GPU-NIC RDMA, the other two useThey both perform extra memory copies, and the CUDA
ounce butlers. server is further penalized for invoking a kernel per re-

K-means. We chose K-means to evaluate GimMR under, o5t pynamic kernel invocation accounts for the greater

a computationally-intensive workload. We compute 50Q,japjlity in the response time of the CUDA server. The

clusters on a randomly generated 500MB input with 64K, hination of CPU and GPUnet achieves the highest

vectors each with hundreds of floating point elements. ,:q,ghput, and improves the server response time for all
Table 6 compares the performance of GimMR with requests, not only for those served on a GPU.

single-node Hadoop and Phoenix++ using 200 dimenIVIaximum throughput and multi-GPU scalability.The

sion vectors. GimMR on a single GPU outperforms, = - :
) throughput-optimized configuration for the GPUnet server
Eh(iezn;XH on 8 CPU cores by up to 2.2and Hadoop yifters from its latency-optimized version, with< more
yLe.fx. threadblocks, each withx fewer threads (112 thread-

Scalability. When invoked on the same input on four ek each with 256 threads). While the total number
network-connected GPUs, GimMR performance increasgs ihreads remains the same, this configuration serves

by 2.9x. With 100 dimension vectors, the 4-GPU GImMR

- ! more concurrent requests. Withx fewer threads
achieves up to 3:6 speedup over a single GPU.

processing each request, the processing time grows only
8.4 Face verification by about3 x. Therefore this configuration achieves about
We evaluate the face verification server on a differen80% higher throughput as shown in Talewhich is

cluster with three nodes, each with Mellanox Connectwithin 3% of the performance of two>26-core CPUs.

IB HCA, 2x Intel E5-2620 6-core CPU, and connected Adding another GPU to the system almost doubles
via a Mellanox Switch-X bridge. The server executes orthe server throughput. Achieving linear scalability, how-
NVIDIA K20Xm GPUs. The application’s client, server ever, requires adding a second Infiniband card. The PCle
and memcached server run on their own dedicated ma-topology on the server allows only one of the two GPUs
chines. We verified that both the CPU and GPU algoto use P2P DMA with the same HCA, and the second
rithm implementations produce the same results, and al$6PU has to fall back to using bounce buffers, which has
manually inspected the output using the standard FEREifferior performance in this case. To work around the

> B b g 2 accelerates stateful packet processing on GPUs, but it is
Server o) o < < c))
oo & o S 20 |l 2 5 5 2 not suitable for building client/server applications.
P d O |om| o > 20
N N+

Peer-to-peer DMA.P2P DMA is an emerging technol-
(TREE}S) a5k | sok || 23 | 17k || 67k | 136K| 188K | ©9Y: and published results comport with the performance
Table 7- F rsfion throunhout Tor difierent problems GPUnet has on all but the very latest hardware.
aple - race verfiication Throtgnptt for GTErent SEVETS potiuri et. al. 7, 28] use P2P DMA for NVIDIA GPUs
and Intel MICs in an MPI library, and report much less
andwidth with P2P DMA than communication through
problem, we added a second HCA to enable P2P DM PU. Kato et. al21] and APEnet+] also propose low-

for the second GPU. . . .
Finally, invoking both the CPU and GPUnet serversIatency networking systems with GPUDirect RDMA, but

. . report hardware limitations to their achieved bandwidth.
together results in the highest throughput. Because each. " . : S .
) ; rivedi et al. B9 point out the limitation of RDMA with
GPU in GPUnet requires one CPU core to run, the CP . ; . . .
ts complicated interaction with various hardware com-
server gets two fewer cores than the standalone CP

version, and the final throughput is lower than the Su’_Iﬁonents and the effect of architectural limits on RDMA.

of the individual throughputs. The total server throughpu etwork Staﬁ!‘ c;n achDI(laJratbor?]{\te: X_eon Zg' IS a Cot-'bl

is about 172% higher than the throughput of a px2-cor@rocessor akin 1o a , but featuring xet compatible

CPU-only server. cores and running embedded Linux. Xeon Phi enables
The GPUnet-based server I/O rate with a single cpflirect access to the HCA from the co-processor and runs

reaches nearly 1.1GB/s. I/O activity accounts for abouft complete network stack$l. GPUnet provides a simi-

40% of the server runtime. GPUnet enables high pel’fOIJ-ar functionality for GPUs, and naturally shares some de-

mance with a relatively modest development c:omplex—Sign concepts, like th_e CPU-side proxy seryice. However,
ity compared to other servers. The CUDA server has 59 PUs and Xeon Phi have fundamental differences, e.g.

LOC, CPU - 506, and GPUnet— only 245 lines of code ine-grain data parallel programming model, and the lack
’ ’ " of hardware support for operating system, which warrant

9. Related work different approaches to key design components such as
GPUnet is the first system to provide native network € coalesced AP and the CPU-GPU coordination.

ing abstractions for GPUs. This work emerges from aScaIabiIity on heterogeneous architecturd®andelion B1]
broader trend to integrate GPUs more cleanly with op!S & language and system support for data-parallel ap-
erating system services, as exemplified by recent WorR"C"?‘F'O”S on heterlogeneous architectures. It _prowdgs a
on a file system layer for GPUs (GPUf&4 and virtual familiar language mterfacg to programmers, insulating
memory management (RSVA2Q). them from the hetero_geneny.

OS services for GPU applicationsGPU applications %PMRh.[B’g IS a f\i/llitlnbutedl l}/_la_%RegL;ce systerr:(_for
operate outside of the resource management scope of trﬁ S, which USes over Infiniband for netv_vor Ng.
operating system, often to the detriment of system per- owever,.|t Uses both CPUs and GPUs depending on the
formance. PTask30| proposes a data flow programming characteristics of thg steps of the MapReduce. .
model for GPUs that enables the OS to provide fairnesy etwork server designScalable network server design
and performance isolation. TimeGrag2?] allows a de- has been heavily researched as processor and networking

vice driver to schedule GPU processors to support reaffchitecture advanca, 17, 24, 33, 43, 44], but most of
time workloads. this work is specific to CPUs.

Rhythm [] is one of the few GPU-based server ar-
glaitectures that use GPUs to run PHP web services. It
promises throughput and energy efficiency that can ex-

the effectiveness of tailoring a mature OS to the details o‘feed CPU-based servers, but its current prototype lacks

a heterogeneous architecture. GPUnet demonstrates hHW in-GPU network|r?g that GPUnet provides. o
to bring system services into a heterogeneous system. -OW-latency networking.More networked applications

GPUs for network accelerationThere have been sev- &€ demandmg low-latency netwprklng. RAMClou] .
eral projects targeting acceleration of network applicapOteS the high latency of conventional Ethernet as a major
tions on GPUs. For example, PacketShades] [and source of latency for a RAM-based server, and discusses

Snap B7] use GPUs to accelerate packet routing at WireBDMA as an alternative that is difficult to use directly.
speed, while SSLShadelrg] offloads SSL computations. 1
Numerous high-performance computing applications

g, D N | Network | i GPUs t ; AR
(e.g., Deep Neural Network learningd)) use > Foundation (grant No. 1138/14) and the Israeli Ministry

hi high per-nod f in distributed li) .
achieve Tignh per-node performance In distriblited appl f Science. We also gratefully acknowledge funding from

cations. These works use GPUs as co-processors, and
not provide networking support for GPUs. GASRPH[E‘g': grants CNS-1017785 and CCF-1333594.

OSes for heterogeneous architectur8arrelfish B]
proposes multikernels for heterogeneous systems bas
on memory decoupled message passing. 28 $hows

0. Acknowledgments
Mark Silberstein was supported by the Israel Science

References

[1] GPUnet project web page https:/sites.
google.com/site/silbersteinmark/GPUnet .

[2] MVAPICH2: High performance MPI over InfiniBand,
iWARP and RoCE. http://mvapich.cse.ohio-
state.edu

[3

—_—

Popular GPU-accelerated applicationsttp://www.
nvidia.com/object/gpu-applications.
html .

Efficient Object Detection on GPUs using MB-LBP fea-
tures and Random Forests. GPU Technology Conference,
2013. http://on-demand.gputechconf. [17]
com/gtc/2013/presentations/S3297-
Efficient-Object-Detection-GPU-\MB-

LBP-Forest.pdf

S. R. Agrawal, V. Pistol, J. Pang, J. Tran, D. Tarjan, and
A.R. Lebeck. Rhythm: Harnessing data parallel hardwarg18]
for server workloads. IProceedings of the ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASP| 2ZI8).

[6] T. Ahonen, A. Hadid, and M. Pietikainen. Face descrip-
tion with local binary patterns: Application to face recog-
nition. Pattern Analysis and Machine Intelligence, IEEE
Transactions on28(12):2037-2041, 2006.

[7] R. Ammendola, A. Biagioni, O. Frezza, F. L. Cicero, [20]
A. Lonardo, P. Paolucci, D. Rossetti, F. Simula, L. Toso-
ratto, and P. Vicini. APEnet+: a 3D Torus network op-
timized for GPU-based HPC Systems. Journal of
Physics: Conference Serjemlume 396. IOP Publishing,
2012.

[8] T. G. T. analysts. InfiniBand data center march, 2012.
https://cw.infinibandta.org/document/
di/7269

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schipbach, and A. Sin&gz]
hania. The multikernel: a new OS architecture for scal-
able multicore systems. IRroceedings of the ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP)pages 29-44. ACM, 2009.

[10] N. Z. Beckmann, C. Gruenwald Ill, C. R. Johnson, H. Kas-[23]
ture, F. Sironi, A. Agarwal, M. F. Kaashoek, and N. Zel-
dovich. PIKA: A network service for multikernel operat-
ing systems. Technical Report MIT-CSAIL-TR-2014-002, [24]
MIT, January 2014.

[11] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. Pmoceed-
ings of the ACM SIGCOMM Conference on Applications,[25]
Technologies, Architectures, and Protocols for Computer
Communicationspages 267—280. ACM, 2010.

[12] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
N. Andrew. Deep learning with COTS HPC systems.
In Proceedings of the 30th International Conference on2g]
Machine Learning (ICML-13)pages 1337-1345, 2013.

[13] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Froceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDJR004.

[4

—_

(5]

[19]

[14] B. Ford. Structured streams: A new transport abstacti

In Proceedings of the ACM SIGCOMM Conference on Ap-
plications, Technologies, Architectures, and Protocols f
Computer Communicationpages 361-372, New York,
NY, USA, 2007. ACM.

[15] K. Group. OpenCL - the open standard for parallel pro-

gramming of heterogeneous system&ttp://www.
khronos.org/opencl

[16] S. Han, K. Jang, K. Park, and S. Moon. PacketShader:

a GPU-accelerated software rout&GCOMM Comput.
Commun. Rey40:195-206, August 2010.

S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A new programming interface for scalable net-
work 1/0. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI)
2012.

InfiniBand Trade Association. InfiniBand Architecture
Specification, Volume 1 - General Specification, Release
1.2.1, 2007.

K. Jang, S. Han, S. Han, S. Moon, and K. Park.
SSLShader: cheap SSL acceleration with commodity pro-
cessors. IrProceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI)
Berkeley, CA, USA, 2011. USENIX Association.

F. Ji, H. Lin, and X. Ma. RSVM: a region-based software
virtual memory for GPU. IfProceedings of 22nd Interna-
tional Confreence on Parallel Architectures and Compila-
tion Techniques (PACTpages 269-278. IEEE, 2013.

21] S. Kato, J. Aumiller, and S. Brandt. Zero-copy /O pro-

cessing for low-latency GPU computing. Rroceedings
of the ACM/IEEE 4th International Conference on Cyber-
Physical System$CCPS '13, pages 170-178, New York,
NY, USA, 2013. ACM.

S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
Timegraph: GPU scheduling for real-time multi-tasking
environments. InProceedings of the USENIX An-
nual Technical ConferenceBerkeley, CA, USA, 2011.
USENIX Association.

D. B. Kirk and W. H. Wen-mei.Programming massively
parallel processors: a hands-on approadiorgan Kauf-
mann, 2010.

M. Krohn, E. Kohler, and M. F. Kaashoek. Events can
make sense. IRroceedings of the USENIX Annual Tech-
nical Conference Berkeley, CA, USA, 2007. USENIX
Association.

F. X. Lin, Z. Wang, and L. Zhong. K2: A mobile operat-
ing system for heterogeneous coherence domainBrdn
ceedings of the ACM International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems (ASPLQ$CM, 2014.

J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazieres, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, et al. The case for RAM-
Clouds: scalable high-performance storage entirely in
DRAM. ACM Operating Systems Revie#B(4):92—-105,
2010.

https://sites.google.com/site/silbersteinmark/GPUnet
https://sites.google.com/site/silbersteinmark/GPUnet
http://mvapich.cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu
http://www.nvidia.com/object/gpu-applications.html
http://www.nvidia.com/object/gpu-applications.html
http://www.nvidia.com/object/gpu-applications.html
http://on-demand.gputechconf.com/gtc/2013/presentations/S3297-Efficient-Object-Detection-GPU-MB-LBP-Forest.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3297-Efficient-Object-Detection-GPU-MB-LBP-Forest.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3297-Efficient-Object-Detection-GPU-MB-LBP-Forest.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3297-Efficient-Object-Detection-GPU-MB-LBP-Forest.pdf
https://cw.infinibandta.org/document/dl/7269
https://cw.infinibandta.org/document/dl/7269
http://www.khronos.org/opencl
http://www.khronos.org/opencl

[27] S. Potluri, D. Bureddy, K. Hamidouche, A. Venkatesh,[39] A. Trivedi, B. Metzler, P. Stuedi, and T. R. Gross.

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

K. Kandalla, H. Subramoni, and D. K. Panda. MVAPICH-
PRISM: A proxy-based communication framework using
infiniband and SCIF for Intel MIC clusters. [Rroceed-
ings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (S@w
York, NY, USA, 2013. ACM.

S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy,
and D. K. Panda. Efficient inter-node MPI communica-
tion using GPUDirect RDMA for InfiniBand Clusters with

On
limitations of network acceleration. Rroceedings of the
Ninth ACM Conference on Emerging Networking Experi-
ments and Technologies (CoNEXpages 121-126, New

York, NY, USA, 2013. ACM.
[40] G. Vasiliadis, L. Koromilas, M. Polychronakis, and

S. loannidis. Gaspp: A gpu-accelerated stateful packet
processing framework. [2014 USENIX Annual Technical
Conference (USENIX ATC 14)ages 321-332, Philadel-
phia, PA, June 2014. USENIX Association.

NVIDIA GPUs. InParallel Processing (ICPP), 2013 42nd [41] Vasily Volkov. Better performance at lower occupancy.

International Conference qipages 80—-89. IEEE, 2013.

A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam,
G. Porter, and A. Vahdat.
MapReduce. IrProceedings of the ACM Symposium on
Cloud Computing2012.

C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: operating system abstractions to man-
age GPUs as compute devices. Rrmoceedings of the
ACM SIGOPS Symposium on Operating Systems Princi-
ples (SOSR)pages 233-248, 2011.

C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D- Fet

vices.

GPU Technology Conference, 20Hitp://www.cs.
berkeley.edu/ ~volkov/ivolkov10-GTC.pdf

Themis: An I/O Efficient [42] V. Vasudevan, M. Kaminsky, and D. G. Andersen. Using
vector interfaces to deliver millions of IOPS from a net-
worked key-value storage server. Broceedings of the
ACM Symposium on Cloud Computindew York, NY,

USA, 2012. ACM.

[43] R. Von Behren, J. Condit, F. Zhou, G. C. Necula, and

E. Brewer. Capriccio: scalable threads for internet ser-
INACM Operating Systems Reviewolume 37,
pages 268-281. ACM, 2003.

terly. Dandelion: A compiler and runtime for heteroge- [44] M. Welsh, D. Culler, and E. Brewer. SEDA: an architec-

neous systems. IRroceedings of the ACM SIGOPS Sym-
posium on Operating Systems Principles (SQ$®Rpes
49-68, New York, NY, USA, 2013. ACM.

Sean Hefty. Rsockets.
Workshop, 2012. https://www.openfabrics.
org/index.php/resources/document-
downloads/public-documents/doc_
download/495-rsockets.html

L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
Isostack: Highly efficient network processing on dedicated
cores. InProceedings of the USENIX Annual Technical
ConferenceBerkeley, CA, USA, 2010. USENIX Associ-
ation.

M. Silberstein, B. Ford, |. Keidar, and E. Witchel. GRUf
integrating file systems with GPUs. Rroceedings of the
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (AS-
PLOS) ACM, 2013.

M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GRUf
integrating file systems with GPUACM Transactions on
Computer Systems (TOC3p14.

J. A. Stuart and J. D. Owens. Multi-GPU MapReduce on
GPU clusters. IrParallel & Distributed Processing Sym-
posium (IPDPS), 2011 IEEE Internationglages 1068—
1079. IEEE, 2011.

W. Sun and R. Ricci. Fast and Flexible: Parallel packet
processing with GPUs and Click. Proceedings of the
Ninth ACM/IEEE Symposium on Architectures for Net-
working and Communications Systempages 25-36, Pis-
cataway, NJ, USA, 2013. IEEE Press.

J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: mod-
ular mapreduce for shared-memory systemsProceed-
ings of the second international workshop on MapReduce
and its applicationspages 9-16. ACM, 2011.

ture for well-conditioned, scalable internet services. In
ACM Operating Systems Reviewolume 35, pages 230-

243. ACM, 2001.

OpenFabrics International[45] B. Woodruf. OFS software for the Intel Xeon Phi. Open-

Fabrics Alliance International Developer Workshop, 2013.

https://www.openfabrics.org/index.php/resources/document-downloads/public-documents/doc_download/495-rsockets.html
https://www.openfabrics.org/index.php/resources/document-downloads/public-documents/doc_download/495-rsockets.html
https://www.openfabrics.org/index.php/resources/document-downloads/public-documents/doc_download/495-rsockets.html
https://www.openfabrics.org/index.php/resources/document-downloads/public-documents/doc_download/495-rsockets.html
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

	Introduction
	Motivation
	Hardware architecture overview
	GPU software/hardware model

	Design considerations
	Sockets and alternatives
	Discrete GPUs
	Network server organization
	In-GPU networking performance benefits

	GPUnet Design
	GPU networking API
	GPU-NIC interaction
	Socket layer

	Implementation
	Socket layer
	Channel layer
	Performance optimizations.
	Limitations

	Applications
	MapReduce design
	Face verification

	Evaluation
	Microbenchmarks
	Matrix product server
	Map reduce
	Face verification

	Related work
	Acknowledgments

