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ABSTRACT 
Faults that occur in production systems are the most important 

faults to fix, but most production systems lack the debugging 
facilities present in development environments.  TraceBack 
provides debugging information for production systems by 
providing execution history data about program problems (such as 
crashes, hangs, and exceptions).  TraceBack supports features 
commonly found in production environments such as multiple 
threads, dynamically loaded modules, multiple source languages 
(e.g., Java applications running with JNI modules written in C++), 
and distributed execution across multiple computers.  TraceBack 
supports first fault diagnosis—discovering what went wrong the 
first time a fault is encountered. The user can see how the 
program reached the fault state without having to re-run the 
computation; in effect enabling a limited form of a debugger in 
production code.  

TraceBack uses static, binary program analysis to inject low-
overhead runtime instrumentation at control-flow block 
granularity. Post-facto reconstruction of the records written by the 
instrumentation code produces a source-statement trace for user 
diagnosis. The trace shows the dynamic instruction sequence 
leading up to the fault state, even when the program took 
exceptions or terminated abruptly (e.g., kill -9).  

We have implemented TraceBack on a variety of 
architectures and operating systems, and present examples from a 
variety of platforms. Performance overhead is variable, from 5% 
for Apache running SPECweb99, to 16%–25% for the Java 
SPECJbb benchmark, to 60% average for SPECint2000.  We 
show examples of TraceBack’s cross-language and cross-machine 
abilities, and report its use in diagnosing problems in production 
software. 
Categories and Subject Descriptors D.2.5 [Testing and 
Debugging]: Debugging aids.  
General Terms   Performance, Design. 
Keywords   fault diagnosis, instrumentation 

1 Introduction 
TraceBack is a first fault diagnosis system.  It is a tool for 

diagnosing faults which occur in production environments, 
without the developer having to recreate the fault.  While 
relatively few software defects escape a mature development 
process into actual production deployment, the defects that do 
escape are typically the most difficult and expensive to find and 

fix. Often these problems occur only in production environments, 
or the cost in time and/or money to reconstruct them by the 
developer is prohibitive.  These problems can be timing 
dependent (such as deadlocks or race conditions), environment 
dependent (such as high load levels or mismatched versions of 
software libraries), or dependent on code that a customer cannot 
ship off-site even in binary form. 

Production bugs are the most important to fix, but they can 
present the greatest challenge because the developer often does 
not have enough information or resources to recreate the problem. 
Sometimes it is impractical to maintain a test environment that 
fully parallels the production environment, especially for 
distributed systems. TraceBack benefits the end user by allowing 
the developer to fix bugs actually experienced by the user, and it 
benefits the developer by freeing them from spending resources to 
recreate important bugs.   

TraceBack uses static binary translation to do efficient 
runtime execution tracing. A program is translated by TraceBack 
into another program that is functionally identical to the original, 
but which also records information about its own execution 
history. The instrumented program can usually run in a 
production environment because the additional execution time 
and memory overhead of recording the execution history is 
usually small. If a program fails in the production environment, 
the execution history information it collects allows an engineer to 
single step the program back from the fault location to discover 
why the program terminated abnormally. Using TraceBack is like 
having an implicit debugger in every program. 

By using binary rewriting, TraceBack operates on production 
program components, without the need for source code. This 
implementation technique depends on the specifics of the 
instruction set architecture, operating system interface, object 
module format, and compiler code generation style. We present 
an architecture that isolates these platform-specific details to the 
lowest levels of the system. 

TraceBack is the first binary rewriting system to focus on 
reconstruction of control flow for first-fault diagnosis.  As such, it 
differs from previous binary instrumentation systems [17][20][27] 
by integrating traces from multiple languages, robustly allowing 
parts of a program to be not traced, and by recording useful trace 
information up to the point of a crash, exception, or abrupt 
termination. It differs from previous systems that capture program 
control flow [4][18] by supporting multi-threaded applications 
and by supporting distributed execution.  It captures traces in a 
distributed system, across threads, machines, languages, and 
runtime systems and correlates these traces into a causal order.  It 
supports C, C++, Java, .NET, and VB6 on Microsoft Windows on 
IA32; C, C++, and Java on Sun Solaris on SPARC; Java on AIX, 
HP-UX, and Linux on x86; C and C++ on Linux on x86; and 
Cobol on IBM OS/390. 
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Our description of TraceBack is divided into the following 
sections: Tracing control flow, for collecting the trace data, 
Runtime, for the code supporting the instrumentation probes, 
Reconstruction, for raising the trace back to source level and 
displaying it, and Distributed tracing, for merging trace data from 
several sources, including distributed machines. Experimental 
evaluation, related work, and conclusions follow. 

2 Tracing Control Flow 
TraceBack instruments applications by statically rewriting the 

binaries, transforming the original program into a program that 
performs the same computation as the original, but which also 
records a history of its control flow.  

Binary rewriting begins by separating code from data.  Except 
for Cobol on IBM OS/390 (which is beyond the scope of this 
paper), TraceBack relies on known techniques to separate code 
from data [17][20][27].  After separation, code and data are lifted 
to an abstract graph representation, which is independent of 
machine specifics and which is analyzed, modified and then 
lowered back to a legal binary representation [26].  TraceBack 
uses well-known compiler algorithms like liveness analysis to 
allow instrumentation code to make use of architectural registers. 

TraceBack aims to accurately describe the execution history 
of a program, especially the execution history that directly 
precedes a crash or program hang.  It provides an exact, 
interprocedural, whole program profile [18].  Section 2.1 
describes how TraceBack probes work within a procedure, and 
then Section 2.2 progresses to interprocedural probes.  TraceBack 
supports multiple code modules which are dynamically loaded, so 
the next section describes cross-module calling.  Section 2.4 
discusses how TraceBack makes sure exception records refer to 
the correct source line, while Section 2.5 discusses support for 
multiple threads. 

2.1 Intraprocedural Control Flow 
We first consider the problem of summarizing control flow in 

a connected graph of code blocks, for instance a procedure. This 
section addresses control flow in a leaf procedure.  The next 
section considers more complex cases. 

 The problem of probe placement for procedural flow 
summary has been studied in detail [4][18]. However, the 
requirements for TraceBack differ from the usual needs of 
profiling. TraceBack must be able to capture the exact path of 
execution, even if a block is partially executed because of an 
exception. This means that it is generally not possible to omit 
probes from any execution paths. Furthermore, it is not always 
possible to recover the register state at the point of an exception, 
so we are not able to keep instrumentation data in registers across 
original instructions. 

A simple approach to instrumentation is to modify each block 
to append its address to a trace buffer. While this works, it fails to 
take advantage of the constrained execution orders imposed by 
the flow graph. The trace will be accurate, but unnecessarily 
voluminous at one word per block; this extravagance imposes 
runtime costs that can be avoided. 

Previous systems [4] record the address of an initial block in a 
run and then a succession of branch outcomes at block ends. Since 
the average number of control flow successors for a block is 
approximately 2, each additional block requires about 1 extra bit 
of information. TraceBack instrumentation splits the probes up 
into two basic categories: heavyweight probes to start the run, and 
lightweight probes within a run.  The probes write trace records, 

whose format is shown in Figure 1.  The heavyweight probes 
record the current execution location in the control flow graph, 
while the lightweight probes set bits in the trace record indicating 
the execution path.  

To keep the lightweight probes simple, they cannot involve 
conditional logic; this limits the number of bits in a trace record 
available for use by lightweight probes. The number of blocks 
that can be described by a trace record is thus likewise bounded. 
So the heavyweight probes must be placed in such a way that no 
path through the graph starting at a heavyweight probe can exceed 
the length limit.  

Blocks that end in unconditional branches do not require 
lightweight probes. Blocks that end in multiway branches will 
either require special lightweight probes to record the successor 
block, or, equivalently, one can just end the trace at this point and 
force all multiway branch targets to hold heavyweight 
probes.

The limit on run lengths also implies that each loop will contain at 
least one heavyweight probe (one can do better if the loop trip 
count is known, but in general it is not known). Also, a 
heavyweight probe is required at each external entry point to the 
graph. Because of this, the presence of the heavyweight probes 
effectively tiles the control flow graph into a set of directed, 
acyclic subgraphs (DAGs), each headed by a heavyweight probe. 
Hence, we call the process of identifying the placement for 
heavyweight probes DAG tiling.  An example of DAG tiling is 
seen in Figure 2.  

To keep trace records compact, the DAG ID and the path bits 
are stored in the same machine word.  Each heavyweight probe 
writes a fixed DAG ID in the upper bits of a trace record. The 
lower bits are then reserved for lightweight probes. To simplify 
matters, each block that contains a lightweight probe is assigned a 
particular bit in the lower portion; when the block is executed, 
that bit is set. For instance in Figure 2, DAG 1, block 1 sets bit 
0x1 when it is executed. 

To support later reconstruction of the control flow, the 
instrumentation process needs to build a table to translate block 
addresses to DAG Ids, and a table to map DAG bits to successor 

Figure 1 Trace record format.  The numbers in bold in top are 
bit positions (each record is 32 bits).  The DAG record includes 
fields for the DAG ID and which blocks in the DAG were 
executed.  The buffer end record is the sentinel value that the 
instrumentation code checks for buffer wrap.  Zero is an invalid 
record to support sub-buffering (Section 3.2).  The bad DAG ID 
is used if the DAG ID space is exhausted (Section 2.3).  An X 
denotes a “don’t care” bit which can be 0 or 1.  Extended 
records are used for SYNC records and timestamps.  They can 
span multiple words, so they have a length field. 

0…………………………………………………………………………0

Buffer End 1…………………………………………………………………………1 

DAG DAG ID blocks 

Bad DAG 

Invalid 

1……………………………………10 X……………………X 

Extended 1………………………………………1 type len 

Record type 31 11 10 2 0



blocks. This information is saved out alongside the instrumented 
executable in a file called the mapfile.  

The runtime support library (see section 3) provides a trace buffer 
to hold successive trace words. Each thread maintains a pointer to 
the last-written record in the buffer. The heavyweight probes load, 
increment, and then dereference this pointer to check if free space 
remains in the buffer. If so, the preshifted DAG ID is written to 
the buffer and the updated pointer is saved; if not, the probe calls 
into the runtime to free up space. The heavyweight probe then 
writes the pre-shifted, DAG ID into the trace buffer. Because 
these probes include conditional logic, TraceBack calls them as 
subroutines.  To avoid the overhead of an inter-module call, 
TraceBack statically adds these subroutines into every 
instrumented module. 

The lightweight probes simply OR their assigned bit as they 
are executed.  For Windows NT binaries on x86, our probes are 
implemented as shown below. Heavyweight probes are 8 
instructions, with two reads (the buffer pointer, and the old next 

record) and two writes (the updated buffer pointer and the new 
record): 
// Heavyweight probe: DAG ID is 0x800 
1010 call near 0x7000 
1015 mov [eax],dword 0x800 
 
// Helper subroutine for heavyweight 
// probe, use/return via EAX 
7000 mov eax,[dword fs:0xf00] 
7006 add eax,byte 0x4 
7009 cmp dword [eax],byte -0x1 
700c jnz short 0x7014 
// invokes runtime 
700e call [dword 0x51b4]  // buffer_wrap 
7014 mov [dword fs:0xf00],eax 
701a ret 
 

Lightweight probes are two instructions: a read to get the 
buffer pointer, and a read/write to update the bit. 
// Lightweight probe 
1048 mov eax,[dword fs:0xf00] 
104e or [eax],byte 0x2 
 

This probe architecture yields roughly one line of source code 
per byte of trace buffer. With a typical buffer of 64Kbytes per 
thread, TraceBack is able to display tens of thousands of source 
lines back in time. Furthermore, trace buffers are themselves 
readily compressible by a factor of 10 or more for ease of 
archiving or transmission. 

2.2 Interprocedural Control Flow 
If the control flow graph has a call, the return from that call  

establishes another entry point into the procedure-level flow 
graph. Thus, calls are handled by placing a heavyweight probe 
immediately after the call return point (e.g., the RPC call in 
Figure 2 breaks a DAG). 

In practice, breaking DAGs at calls is a limiting factor for 
path length, and therefore limits the performance of instrumented 
code.  Heavyweight probes require more instructions and memory 
references, so eliminating them increases performance.  But 
placing heavyweight probes at procedure returns solves problems 
related to cross-module control flow and refining the exception 
address, both of which are explained in the following two 
sections.  Because TraceBack collects interprocedural traces and 
must provide accurate traces for programs that terminate abruptly, 
it is less efficient at runtime than path profiling systems  
[4][5][15]. 

2.3 Cross-Module Control Flow 
Most systems allow separately linked modules to interact 

within a running process.  Trace records must have enough 
information to reconstruct module crossings.  If the architecture 
restricts module entry points so that they are all known at 
instrumentation time, the instrumentation package can simply add 
special “module entry” records to each entry points.  

But most architectures allow arbitrary procedure addresses to 
be saved in data structures as callbacks, so in general it is not 
possible to know the set of module entry points at instrumentation 
time. Thus, each module must use a distinct set of DAG Ids to 
reconstruct cross-module traces instead of using module entry 
point records. 

Figure 2 A sample control flow graph showing the placement of 
heavyweight and lightweight probes.  The RPC call forces 
TraceBack to tile this graph with two DAGs.  The line numbers 
and ranges show how code in the control flow graph corresponds 
to  lines (this particular mapping is illustrative, not realistic). 

; DAG 1 Header 
call HeavyProbeEAX 
mov [ eax ] , dword 0 x 800 
... 

; DAG 1 Block 1 
mov eax , [ dword fs : 0 xf 00 ] 
or [ eax ] , byte 0 x 1 
... 
mov [ eax ] , 0 
... 

; DAG 1 Block 2 
mov eax , [ dword fs : 0 xf 00 ] 
or [ eax ] , byte 0 x 2 
... 
call RPC 

; DAG 2 Header 
call HeavyProbeECX 
mov [ ecx ] , dword 0 x 1800 
... 

; DAG 2 Block 2 
mov eax , [ dword fs : 0 xf 00 ] 
or [ eax ] , byte 0 x 2 
... 

; DAG 2 Block 1 
mov eax , [dword fs : 0 xf 00]
or [ eax ] ,byte 0 x 1 
... 

Line 
1

Line 
2

Line 
3

Line 
4

Line 
5

Line 
6



Unfortunately, because users may separately or independently 
instrument modules, there is no general scheme for ensuring that 
all the different modules in a process use distinct ranges of DAG 
Ids. To address this problem, TraceBack uses DAG rebasing, 
similar to Windows DLL rebasing. When a module is loaded, the 
TraceBack runtime library is notified. Every module is compiled 
with a default DAG ID range.  The runtime checks to see whether 
if the default range conflicts with any existing module. If there is 
a conflict, the runtime uses an instrumentation-produced fixup 
table within the module to rewrite all DAG ID references in the 
module, so the inlined probe instructions end up using a distinct 
range of Ids. 

The DAG ID space is finite—TraceBack uses 21 bits for the 
DAG ID field—and in a heavily loaded process it is possible 
(though unlikely) that the runtime could run out of available DAG 
Ids. The runtime reserves one DAG ID value as a “bad DAG id.” 
If the runtime is unable to find a distinct ID range for a module, it 
rewrites all DAGs within the module to use this Id. In this case 
TraceBack does not recover a trace within the bad DAG ID 
module, but the module will continue to execute properly, and 
TraceBack can recover traces from other modules. 

To support DAG ID collision detection, the runtime must 
maintain a list of loaded modules. Many architectures support 
unloading and reloading of a module into a process, and in a long 
running server a module might be loaded and unloaded 
repeatedly. To keep from leaking DAG ID space, the runtime tries 
to assign the same DAG ID range to the module each time it is 
loaded. When instrumenting a module, TraceBack computes an 
MD5 checksum of most of it (omitting timestamps and other data 
that can change easily).  The runtime uses the checksum as a key 
for information related to the module.  TraceBack also stores the 
key value in the mapfile (which was generated at instrumentation 
time) so that it can properly match up mapfile and trace data 
during trace reconstruction.  

To avoid the module load-time penalty of DAG rebasing, 
TraceBack allows the user to supply a “DAG base” file that 
automatically assigns DAG ranges to different modules 
instrumented from the same source tree.  These ranges are used 
every time the module is rebuilt. 

2.4 Exception Records 
On exceptions, the runtime places additional information in 

the trace buffer so that the reconstruction  phase can determine 
how much of the current block actually executed before the 
exception (exceptions include signals on UNIX). For native code 
instrumentation, TraceBack needs to capture only the exception 
address.  If the exception is in an uninstrumented callee, or for 
architectures where instrumentation is done in intermediate code 
(like Java), TraceBack must sacrifice some performance to get 
accurate information about exceptions. 

If an exception occurs in an uninstrumented callee, the trace 
should stop at the call which causes the exception.  However, 
determining which function call that might be within straight-line 
code requires somehow recovering the return address to the 
instrumented section of code.  TraceBack could recover the return 
address by walking the stack, but the return address might not be 
in memory (it could be in a register), and reading stack memory 
after an exception can cause additional problems.  Recovering the 
return point after an exception has happened is difficult, so 
TraceBack inserts heavyweight probes at the return point of all 
calls, so even if an exception occurs in uninstrumented code, the 

trace accurately depicts which instrumented function call 
eventually lead to the exception. 

For architectures where instrumentation is done in 
intermediate code there is no easy way to relate the exception 
address (which is typically a JIT artifact) back to the intermediate 
code location. For instance, Java’s exception context does not 
directly indicate the bytecode offset of the faulting instruction. If 
a single block contains multiple exception-causing bytecodes, 
TraceBack is not able to say which bytecode actually causes the 
exception.  But users want the exact line number of an exception. 
In order to compensate for Java’s shortcoming, TraceBack inserts 
lightweight probes at each source line boundary. These additional 
probes allow TraceBack’s exception reporting to select the correct 
line number.  Since debug information and the TraceBack GUI 
operate in source lines, source line accuracy is all that is needed.  
The exact faulting block is not necessary. 

TraceBack will automatically trace any exception unwinding 
process that has an impact on instrumented code. Each catch or 
finally clause is treated just like another procedure entry 
point, and initiates a DAG header. 

2.5 Multiple Threads 
TraceBack supports multiple threads of control within a 

process. For tracing it is desirable to keep track of each thread’s 
execution separately, for two reasons: first, it avoids the need to 
synchronize access to the trace buffer (which slows execution and 
imposes artificial execution constraints on the threads); and 
second, it provides a per-thread trace. 

Most systems with threads also support thread-local storage. 
TraceBack uses thread-local storage to keep a per-thread buffer 
pointer, and the runtime tries to assign each thread its own trace 
buffer. Unfortunately, access to thread local storage is typically 
fairly slow, and usually requires a library call or equivalent. Since 
TraceBack needs to access the buffer pointer in the lightweight 
probe, a library call is out of the question. 

For Windows NT, we take advantage of the fact that the first 
64 thread-local storage (TLS) indexes can be accessed directly 
from the thread information block (TIB), which is accessed via 
the FS segment register. Instrumentation assumes that the runtime 
will be able to reserve TLS index 60 and all probes are set up to 
directly access this slot, which is at FS:0xF00. If this TLS index is 
not available, the runtime rewrites all the TLS indices in the inline 
probes using a fixup table, in a fashion similar to the DAG 
rebasing. TraceBack uses a similar technique on Linux, reserving 
an unused word at the start of the per-thread area  referenced by 
the GS segment register.  On Solaris, TraceBack uses a direct 
memory access to the normal libthread TLS area. 

3 Runtime 
The instrumentation introduced by TraceBack’s binary 

rewriting relies on an external runtime library to provide key 
services, such as trace buffers.  Section 3.1 explains the memory 
allocation issues with providing threads memory buffers to hold 
their trace records, and how multiple threads are handled 
efficiently.  Section 3.2 explains runtime support for 
reconstructing traces from threads that terminate abruptly.  
Section 3.3 describes the two approaches that support multiple 
source languages in a single process. Section 3.4 shows how 
TraceBack deals with the limited dynamic code generation done 
for many web servers.  Section 3.5 discusses how the runtime puts 
records in the trace that the reconstruction layer uses to order 
events.  Section 3.6 explains the runtime support for snapshots 



(snaps) of the current execution.  Finally, Section 3.7 discusses 
how the runtime interacts with the underlying operating system. 

3.1 Trace Buffers 
At startup, the runtime obtains configuration information that 

specifies how much memory it should allocate for trace buffers, 
and how many buffers to create. It allocates the desired memory 
and initializes the buffer structures. All of the main buffers are the 
same size. Each buffer is managed as a wrap-around, first-in first-
out queue of trace records. At the physical end of each buffer, the 
runtime writes a sentinel record. DAG header probes check for 
the sentinel value, and if they load it, they call buffer_wrap, 
a function in the runtime, allowing the runtime to periodically 
gain control of each instrumented thread. 

In addition to the main buffers, the runtime creates three 
special buffers, called the static, probation and desperation 
buffers. The static buffer is a small statically allocated buffer 
within the runtime image that the runtime can assign to threads if 
dynamic allocation requests fail. The runtime dynamically 
allocates the probation and desperation buffers.  

The probation buffer handles threads that are created, but 
which never run, or which run non-instrumented code.  
TraceBack initially assigns all threads to the probation buffer, 
which contains only the sentinel word – thus each thread 
immediately triggers a buffer_wrap the first time it hits 
instrumented code.  Only threads that execute instrumented code 
are allocated to real buffers, limiting the memory use of the 
runtime. 

If the runtime ever runs out of main trace buffers and cannot 
allocate more, subsequent threads coming off probation enter a 
shared desperation buffer. Since many threads may write trace 
records in an unsynchronized fashion into the desperation buffer, 
the trace data itself is not recoverable, but threads that are in the 
main buffers are traced normally.  Threads in the desperation 
buffer periodically call buffer_wrap (each thread has its own 
buffer pointer), so threads can leave the desperation buffer when 
resources become available. 

Buffers reside in memory mapped files, so they can be easily 
copied (by another process)  if the program terminates or becomes 
unresponsive. 

3.1.1 Buffer Assignment 
When a thread’s buffer wraps, the runtime has an opportunity 

to assign it to another buffer. The runtime uses a simple first-
come allocation scheme: as each probationary thread hits its first 
probe, it enters the runtime, which assigns it an unused main trace 
buffer.  

3.1.2 Reusing Buffers 
When a thread exits, the runtime writes a thread termination 

record into its buffer, and the buffer is freed for subsequent 
reassignment. The buffer maintains the buffer pointer and the 
trace records left by the old thread; these will gradually be 
overwritten by the next assigned thread provided that the thread is 
fairly active.  However, it is common to see several threads’ entire 
lifetimes packed into one buffer. 

The runtime may also periodically run a dead-thread 
scavenging pass to see if any threads have terminated without 
notifying the runtime (this can happen when threads terminate 
abruptly). If so, the runtime writes the appropriate thread 
termination record and frees the buffer for reassignment. 

3.2 Sub-Buffering for Exceptions 
Certain key pieces of state are lost when threads abruptly 

terminate; in particular, the current buffer pointer in thread-local 
storage. In general, the runtime cannot reliably locate the most 
recent trace record in a full buffer (and thus cannot recreate the 
flow of control before termination) unless it takes additional 
steps. 

The runtime partitions each main trace buffer into a set of 
sub-buffers so the reconstruction phase can provide some trace 
information if a thread terminates abruptly.  Each sub-buffer ends 
with a sentinel, and a count in the buffer header enables the 
runtime to distinguish a full buffer_wrap from a 
sub_buffer_wrap. At each sub_buffer_wrap the 
runtime “commits” the contents of the just-filled sub-buffer by 
writing the sub-buffer’s index into the overall trace header and 
zeroing the next sub-buffer so that the thread’s progress through 
the buffer can be distinguished by looking for the last non-zero 
entry. 

Sub-buffering imposes a runtime penalty because of the more 
frequent callbacks to the runtime and the clearing of the next sub-
buffer before returning back to the probe.  Sub-buffering also 
requires space in the trace buffer for additional sentinels, leaving 
less space for execution history records. 
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Figure 3: Runtime trace buffers and threads. This example shows 
the memory mapped file image with two trace buffers and four 
active threads. Each buffer is further partitioned into two sub 
buffers. Thread 0 is executing the program fragment from Figure 
2. Threads 2 and 3 are currently writing their records into the 
desperation buffer since there are no free buffers. 

3.3 Multiple Source Languages 
A single process may host instrumented modules created from 

different language technologies. In particular, Java and native 
code, or Microsoft intermediate language (MSIL) and native 



code, or even all three, can coexist in a process and interact. 
These mixed technology implementations often pose serious 
debugging challenges, since one debugger can’t provide a 
simultaneous view of all the languages; having traces which show 
cross-language interactions provides a natural debugging 
environment. 

TraceBack uses two different approaches to support cross-
language tracing. For MSIL/native it takes advantage of the fact 
that there are efficient techniques for invoking native code 
snippets via PInvoke; that a single module structure houses both 
kinds of code; that exception handling ultimately relies upon a 
single runtime mechanism (SEH); and that it is possible to hook 
MSIL module loads. Within TraceBack the native and MSIL code 
share the same native runtime, so the integration is seamless. 

For Java/native something different is required. The most 
natural solution might be to add instrumentation into the JIT, but 
the variety of JVM implementations and the lack of any standard 
interface for plugging into a JIT mean that any JIT-based 
approach is not portable. Furthermore, capturing control at 
exception points would require access to JVM internals. Instead, 
we treat the coexistence of instrumented Java and native code in 
one process as a simple form of distributed tracing (see Section 
5).  Thus the Java code and the native code write their records 
into different buffers. 

3.4 Dynamically Generated Code 
The runtime detects certain well-constrained types of dynamic 

code creation, such as ASP.NET .aspx pages and Java J2EE .jsp 
pages.  To handle these cases, the runtime hooks into the web 
server environment and monitors for newly-created code.  In the 
case of ASP.NET, for example, the runtime is notified about new 
DLLs and instruments them before use.  

All newly-instrumented modules are stored in a TraceBack-
specific on-disk cache.  When a module is instrumented it is 
placed in the cache, and a reference to it is returned to the 
ASP.NET environment by the TraceBack runtime in lieu of the 
normal module. Subsequent ASP.NET processes benefit from the 
on-disk cache by avoiding the performance penalty of re-
instrumenting the module.  When a module is rebuilt due to 
changes in the .aspx source, the TraceBack runtime notices a 
modified MD5 module checksum and re-instruments the module. 

3.5 Time and Ordering 
In addition to the DAG records written by instrumented 

modules, the runtime can write timestamp event records into trace 
buffers to help reconstruction order traces produced by different 
threads. Trace records for a given thread are inherently ordered by 
their position within the buffer.  

TraceBack makes use of the native high-performance real-
time clock on platforms that support it; for example, the RDTSC 
instruction on x86 or the gethrtime() routine on Solaris.  On other 
platforms TraceBack uses a simple “logical” clock, which 
increments on each important event (like a thread start/end, buffer 
wrap, exception, etc.).  The logical clock synchronizes threads 
within a process effectively but does not support cross-process 
interleaving of execution. 

TraceBack’s instrumentation heuristically recognizes 
language artifacts that relate to synchronization or OS services 
and will automatically insert timestamp probes into binaries at 
such points. This allows TraceBack to reconstruct thread 
interleavings that are relatively correct – for any two trace records 
A and B in separate threads, TraceBack determines either that A 

clearly happened before B, B clearly happened before A, or that 
there was no apparent constraint on the order of A and B. 

3.6 Snaps 
Traces of execution history are useless unless they are 

examined by a user.  A TraceBack snapshot (or snap) is a 
collection of execution histories and metadata from which 
TraceBack reconstructs program state to display to a user.  A user 
might want to “snap” a process if it were hung, or might want a 
snap in order to examine the system’s state when a particular 
event occurs, like an ArrayIndexOutOfBounds exception in Java.  
TraceBack also supports a program API for snapping.  Indeed, the 
main products of TraceBack from a user’s perspective are the 
trace snaps. Users control when snaps will occur, and how much 
data they will contain. 

TraceBack provides a variety of snap triggers, including 
program exceptions (language and low-level exceptions, UNIX 
signals), alerts from other runtime systems such as a memory fault 
detector, calls to a supplied “snap” API, and an external “snap” 
utility to deal with hung or unresponsive processes. Triggers are 
controlled by entries in a textual policy file that the runtime reads 
as it starts up in each instrumented process. 

In order to provide a consistent version of thread histories 
during a snap, the TraceBack runtime suspends all threads during 
a snap, writing the trace data to disk while the threads are 
suspended. Suspending threads gives the user a globally 
consistent picture of the threads in their execution histories, and 
allows for a synchronized dump of memory including stack and 
heap data. 

The snap file includes the raw trace buffers and their trace 
record contents as well as trace metadata describing details about 
the process – its name, the details about the host OS, the modules 
loaded into the process, the reason the trace file was generated, 
and so on. For instrumented modules, the metadata includes a 
copy of the module MD5 checksum, and the actual DAG ID 
ranges used by the module. 

Snaps may also include a memory or object dump, so that 
TraceBack can display the values of variables or objects at the 
point of the snap. 

3.6.1 Coordinating Related Processes 
In practice, the user’s concept of an “application” may 

include a group of related processes running on a machine, or 
across several machines. Sometimes a fault in one of these 
processes is actually the result of a failure in another of the related 
processes. Users configure process groups that are all snapped 
together if any one experiences a fault.  

In order to implement group snaps, each machine hosting 
TraceBack-instrumented processes also runs a separate service 
process. The TraceBack runtime in each instrumented process 
communicates with the service process using a local protocol, 
notifying it of snaps, and potentially getting snap requests from 
the service process. Group snaps are not perfectly synchronized, 
but they’re useful in practice, particularly for RPC-style 
interactions, where the calling thread in one process will suspend 
as the callee thread in another process executes the remote 
request. 

3.6.2 Snap suppression 
TraceBack aggressively suppresses snap triggers that appear 

to be redundant, such as the same exception coming from the 
same program location. This feature is under runtime policy 



control, and is a key factor in producing a usable system.  Useless 
snaps consume runtime resources to produce, disk space to store, 
and user attention to analyze. 

3.7 OS/Runtime Interactions 
The runtime typically requires some access to services of the 

host OS. At a minimum, the runtime must be able to write files or 
persist trace data in some other fashion. For maximum flexibility, 
the runtime needs fairly broad access to system services. But 
giving the runtime access to library and OS services is tricky, 
because: 

• Runtime calls should not modify the visible state of a 
process. This typically means not sharing the C runtime 
library, or carefully saving and restoring shared state like the 
errno value. 
• The runtime can be invoked in unpredictable contexts, 
especially at exception points. The thread that enters the 
runtime may hold locks or other critical resources, and a 
careless call into the OS might cause deadlock. The runtime 
itself also requires locking. 
• The thread that enters the runtime might invoke 
operations that cause thread synchronizations that did not 
exist in the original program. 
• The thread that enters the runtime might be operating 
with restricted privileges (say, from client impersonation). 
• The runtime might inadvertently invoke instrumented 
code or cause an exception, which can lead to an infinite 
regress as the runtime continues to invoke the same code 
which takes the same exception. 

To deal with these complications in full requires a fair amount 
of mechanism. To enter the runtime, a thread must save and 
restore any shared state, register itself as having entered the 
runtime (so that any exceptions caused by the thread can be 
suppressed), attempt to amplify its privilege level, and 
temporarily switch itself into the desperation buffer so that any 
trace records generated by instrumented code while in the runtime 
do not corrupt the user trace.  Runtime entry is layered, so the 
runtime only performs the operations it must for a given function. 

3.7.1 Gaining Control Initially 
The runtime must set itself up before instrumented code runs 

because the instrumentation probes do not include initialization 
checks (they would degrade performance). The runtime’s first 
task, therefore, is to load itself into a process and gain control 
before instrumented code executes. Typically, the runtime also 
needs control as each new thread enters the process for 
initialization. 

For Windows executables, instrumentation places a special 
probe at the executable main entry point (for exe files) or in 
DllMain (for dlls), and an import is added that resolves to an entry 
point in the runtime library. The runtime library is then 
automatically loaded into the process when the instrumented 
module is loaded, and immediately gains control when the 
module is given control. 

For Java, instrumentation places a special probe at the start of 
the static constructor for each class. 

In Windows and Java the runtime supports late loading into a 
process; that is, the first instrumented module may appear in the 
process well after the process has started and created threads. To 
support delayed loading, the runtime must be able to perform 
thread discovery, enumerating the threads within the process. 

3.7.2 Gaining Control at Exceptions 
The runtime must gain control at the point of each exception, 

preferably before the process has had a chance to do any 
exception handling (first-chance). This gives the runtime the 
ability to inspect the process state directly at the point of failure, 
when the forensic evidence is most complete. 

On Windows the runtime intercepts control by rewriting the 
code that is invoked when an exception is dispatched from the 
kernel back into the user process. The runtime routine thus has 
access to the exception context. 

In Java there is no portable way for the runtime to gain 
control when an exception is thrown. Directly modifying the 
Throwable class, perhaps via the bootclasspath setting, could 
work, but this would violate the Java usage license agreement in a 
commercial product. As a fallback, instrumentation inserts an 
outermost try/catch block into every method, and places a call 
into the runtime at the start of these new and any pre-existing 
catch blocks. The call passes the exception object to the runtime 
as an argument. This arrangement allows the runtime to gain 
control at the time the exception propagates to the first 
instrumented method and to use the exception object to perform 
policy checking (and possibly snap, if policy dictates). The 
runtime then returns control to the method. In inserted catch 
blocks the exception object is then immediately rethrown to allow 
exception propagation to continue as it would have without any 
instrumentation. The runtime relies on suppression (see section 
3.5.2) to avoid snapping repeatedly on the same exception as it 
propagates down the stack.  

3.7.3 Gaining Control at Signals 
On Unix the runtime must intercept signals appropriately.  
TraceBack provides a complete re-implementation of the signal 
API functions in the runtime, interposing on the real libc signal 
API functions.  Application code can set handlers without 
perturbing the handlers installed by the TraceBack runtime.  The 
TraceBack handlers are set up to handle a number of different 
scenarios.  For fatal signals that are unhandled by the application 
(SEGV, Control-C, etc.), the runtime sets up a signal handler that 
shuts down the runtime, creates a snap if requested, and then re-
issues the signal appropriately after uninstalling its handler.  To 
re-issue the signal the runtime either returns from the handler to 
cause the fault to be reissued (for synchronous machine-check 
signals like SEGV) or raises the signal directly from within the 
handler (for signals like Control-C).  For handled signals, the 
TraceBack runtime still needs to handle the signal itself, since it 
must write an exception record into the trace buffer (and, if it is 
specified by the user’s policy, performs a snap).  The exception 
record allows the reconstruction algorithm to cut the trace at the 
exact source line where the signal was delivered (see Section 
4.2).  The user's handler is then invoked, presumably writing more 
trace records into the buffer.  If control returns to the TraceBack 
signal handler (instead of transferring control, for example, via 
longjmp) the runtime writes an "exception end" record to the 
buffer, allowing TraceBack reconstruction to determine the exact 
source line where control resumed after the exception. 

3.7.4 Gaining Control at Termination 
To gain control at normal thread and process termination, the 

runtime hooks the in-process exit points, like ExitProcess in 
Windows. To distinguish normal from abnormal termination 
TraceBack also hooks the so-called last-chance exception handler 



in Windows, carefully preserving any previously installed 
handler. 

3.7.5 The Event Thread 
The runtime also creates an event thread. This thread remains 

entirely within the runtime, and has two main purposes: 
maintaining a heartbeat, and listening for communication from 
external processes (primarily snap requests).  The service process 
periodically sends a STATUS message to the event thread of 
every active runtime.  If the response times out the service 
concludes that the event thread (and thus the process) is hung, and 
can optionally snap or terminate the process.  

4 Reconstruction 
Trace reconstruction is the process of turning raw trace data 

into a line-by-line execution trace. Reconstruction requires (1) a 
trace file, (2) a set of mapfiles from the instrumentation process, 
one for each instrumented module, (3) (on some platforms) debug 
information to map from module-relative addresses to source 
locations, (4)  (on some platforms) the instrumented binaries, and 
(5) source files. This section explains the stages of the 
reconstruction algorithm, and how the GUI organizes the resultant 
trace.  An illustration of reconstruction is given in Figure 4. 

4.1 Trace Record Recovery 
TraceBack examines the trace file to verify its integrity. Sub-

buffer boundaries (if they exist) are removed to produce a 
contiguous span of trace data. Each buffer is then mined back-to-
front (newest record to oldest) to recover the trace records it 
contains. These record sequences are then split up by thread, if 
the buffer housed multiple threads. 

Within each thread sequence, each DAG record is checked to 
determine what module it came from, by extracting the DAG ID 
and comparing it to the ranges in the trace metadata. When a 
DAG is resolved to a particular module, the reconstruction 
algorithm makes a note that the associated mapfile is required to 
further process the trace.  The metadata may describe modules 
that do not appear in the trace, if all records for that thread have 
been overwritten, or if this thread executed only uninstrumented 
code.  

4.2 Execution Path to Source Lines 
The next processing pass converts the execution records into a 

trace of source lines.  Conceptually, each DAG record is 
expanded into a sequence of block records.  The recovery 
algorithm does this by expanding the lightweight probe bits to 
determine the path through each DAG.  Then the algorithm uses 
the DAG to block mapping data found in the mapfile to get the 
block trace.  

The reconstruction algorithm next expands each block into the 
source lines that the block covers. If the block is followed by an 
exception record giving an address within the block, the exception 
address is used to trim back the set of lines.  The exception 
address may fall outside of the block if the block ends in a call, 
and the exception address is within an uninstrumented callee.  

Reconstruction next looks at adjacent lines in the trace to 
determine if consecutive entries represent repeated executions of 
a line or if they are simply redundant. Redundancies arise from 
constructs like an expression with multiple function calls— 
instrumentation will break this into several blocks, since callee 
lines may need to be interposed, but if the callee is not 
instrumented no interposition will take place, and the now-
adjacent lines in the caller will be redundant. 

4.3 Trace Display 
With the completion of the above steps, trace reconstruction is 

complete – the trace displays a line-by-line history of the thread’s 
execution. Separate columns of the history can show the module, 
source file, and so on. However, this format is not always an ideal 
one for human comprehension. Users often have trouble keeping 
track of context in a flat list of lines. 

To provide neighboring line context, the GUI displays the 
trace in a lower pane and the source file containing the “current 
line” of the trace in an upper pane. The two panes are 
synchronized so that a user can step forward (or backward) 
through the trace and see the source pane update. 

Figure 4: Trace Reconstruction. Execution of the program in 
Figure 2 produces the trace buffer contents shown at top left. 
TraceBack parses the trace buffer contents to produce a stream of 
records. DAG records are then turned into block sequences, and 
sync points are kept as annotations. Blocks are then expanded into 
lines, and sync records guide the interleaving of records from 
other trace buffers to give a complete history 

4.3.1 Displaying the call hierarchy 
To provide call context, blocks that contain procedure entry 

or exit points, or a call or a return point are annotated as such in 
the mapfile. Reconstruction uses these annotations to recreate the 
stack of activation records. The trace pane can then support a 
hierarchical display mode where spans of records corresponding 
to a callee can be collapsed or expanded as desired. The GUI uses 
this information to provide useful debugger-like stepping 
operations, like “step out” or “step over” as well as “step back 
out” and “step back over”. 

4.3.2 Multi-threaded trace display 
To provide a sense of what other threads were doing when the 

current thread was executing this line, trace reconstruction 
produces a “plausible” interleaving of trace records from different 
threads (recall that timestamp instrumentation provides partial 
ordering relationships). The GUI also supports a multi-trace 
display, each one focused on a given thread. Stepping through one 
thread will highlight the potentially concurrently executing lines 
of other thread traces. 

4.3.3 Fault-directed view selection 
The GUI also attempts to display the most relevant data using 

heuristics driven by the “reason” the trace was produced. If this 
trace was triggered by an exception on a particular thread, the 
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GUI sets itself up with a call tree view with all active procedures 
expanded, and the exception-causing line highlighted. If, on the 
other hand, the trace was a snap in response to a potential 
deadlock, the trace will show one line per thread, to aid the user 
in understanding what is blocking each thread’s execution. 

5 Distributed Tracing 
Distributed tracing stitches together trace data from separate 

runtimes into a single master trace.  For multi-language systems, 
these runtimes may coexist within a single process, but in general 
they could come from separate processes or even separate 
machines. 

5.1 Logical Threads 
Our distributed trace model looks for RPC-style interactions 

across entities. Two physical threads that participate in an RPC 
call-enter-exit-return sequence are fused into a single logical 
thread for tracing purposes. 

TraceBack relies on a variety of mechanisms to connect up 
the discrete parts of logical threads. Each runtime creates a unique 
ID for itself when it is initialized, using a standard generation 
technique. If the runtime is able to detect when an RPC call is 
taking place, it allocates a unique logical thread ID and binds it to 
the calling physical thread. Associated with this thread ID is a 
sequence number. The runtime then attempts to augment the RPC 
payload with a triple of (runtime ID, logical thread ID, sequence 
number). In some cases, like Java calling native via JNI, this 
information can be passed directly, out of band. In other cases, 
like COM, a payload extension can be used to attach the data to 
the marshaled call arguments. The logical thread ID and sequence 
number are also written (along with a timestamp) into the current 
physical thread’s trace buffer as a SYNC record. 

On the receiving end, the callee runtime can access this extra 
payload.  It first looks at the runtime id, to see if this data comes 
from a known runtime, and if not the runtime adds it to the 
runtime partner list for the callee.  Next, the receiving thread is 
bound to the logical thread, then the the runtime increments the 
sequence number and adds a SYNC record to the thread’s trace 
buffer. The callee then proceeds normally. When it executes the 
RPC return, the runtime increments the sequence number again, 

and puts another SYNC into the callee buffer. Return status can 
also be captured at this time (e.g. a COM HRESULT). The callee 
runtime ID, logical thread ID, and updated sequence number are 
sent back as extra payload, and the caller uses these to update its 
runtime partner table and places one final SYNC record into the 
trace buffer of the caller. 

The net effect of an RPC call is four SYNC records with the 
same logical thread ID, successive sequence numbers and 
(assuming synchronized time sources) increasing timestamps, 
distributed in two separate trace buffers in two runtimes. The 
runtimes also have exchanged IDs.  If the RPC callee itself makes 
RPC calls it will likewise pass the logical thread ID along, 
establishing a causality chain of physical thread trace segments. 

5.2 Timestamp Correlation 
The sequencing provided by the SYNC records helps trace 

reconstruction compensate for clock skew among runtimes. 
Without SYNC records, trace reconstruction can use the real-time 
timestamps to suggest causality between events occurring in 
different runtimes, but this only works well for clocks with 
minimal skew. 

6 Experimental Results 
The focus of TraceBack is to provide useful data about 

program crashes in multi-threaded, multi-language, and multi-
computer environments. However, the performance of 
instrumented code must be good enough for users to run it in 
production.  We estimate TraceBack development on x86 
consumed 6 engineer-years, and about 20 engineer-years total for 
the functionality described in this paper on the major platforms. 

For CPU-intensive programs like SPEC, TraceBack’s 
overhead is in the neighborhood of 60%. Table 1 shows 
measurements made on a 3GHz P4 system, with 2GB of RAM, 
with SPECint2000 benchmarks compiled with VC7.1, and run on 
the reference inputs. All programs were instrumented with 
VERITAS’ Application Saver 1.2.0.36, the incarnation of 
TraceBack current when these experiments were run. In these 
binaries, the text section grew by approximately 60%.  Ratio is 
the ratio of TraceBack instrumented performance to Normal 
performance. 

TraceBack’s performance overhead, while high for several 
programs, compares favorably to previous approaches that report 
small integer factor slowdowns [18] or more recently, 87% 
average slowdown [28].  TraceBack collects less information than 
whole program profiling (because it allows older records to be 
overwritten), and more complete information than interprocedural 
path profiling, but it is closer to capturing whole program paths. 
Metric Normal TraceBack Ratio 

Response(ms) 347.7 364.8 1.049 

ops/sec 60.3 57.5 1.049 

Kbits/sec 345.3 328.7 1.051 
Table 2 SPECweb99 performance for native code (Normal) and 
its instrumented version (TraceBack). 

Table 2 measures performance for SPECweb99 on a 2.4 GHz 
Intel Pentium 4, with 256MB of RAM running Windows XP, 
Apache version 2.0.5, compiled with Visual Studio 6.  The client 
is a 700MHz Pentium 3 system with 128MB of RAM running 
Windows XP.  The two systems are connected with 100Mbps 
ethernet cards and a hub. The results are for the full SPECweb99 

Test Normal TraceBack Ratio 
ammp 374.9 462.4 1.23
art 330.4 364.3 1.10
bzip2 198.4 340.8 1.72
crafty 101.7 180.5 1.77
eon 122.5 208.2 1.70
equake 105.5 118.3 1.12
gap 98.6 171.9 1.74
gcc 97.7 193.8 1.98
gzip 152.7 300.1 1.97
mcf 237.4 288.2 1.21
mesa 203.9 239.6 1.18
parser 201.3 369.9 1.84
perlbmk 158.0 395.7 2.50
vortex 155.0 330.4 2.13
vpr 224.4 332.0 1.48
Geo Mean   1.59

Table 1 SPECint2000 performance for native code (Normal) 
and its instrumented version (TraceBack). 



test with 21 connections, which was the maximum sustainable 
load for both the instrumented and uninstrumented server (server 
CPU was the performance bottleneck).  All apache executables 
and dlls are instrumented.  

The table shows that for both latency (average response time 
in milliseconds) and throughput metrics (operations per second, 
and kilobits transferred per second), instrumentation slows down 
the web server by 5%.  This is similar to other web-based 
workloads we tested.  We ran the Microsoft .NET PetShop 
version 3.2 on a Dell 600SC running Windows 2003 (2.4GHz P4, 
512MB RAM), and used the Windows load generator from 3 
machines to saturate the CPU.  The baseline was 1,649 req/sec; 
with TraceBack it dropped to 1,633 req/sec, or a 1% throughput 
reduction. 

Table 3 shows the performance of SPECJbb, a server-side 
Java benchmark, for normal and instrumented code.  
Instrumentation reduces throughput for this benchmark from 
16%–25%. 

These measurements are commensurate with the performance 
of TraceBack in the field.  For example, TraceBack was deployed 
at Phase Forward (a data capture and management company) in 
an environment in which clients used web browsers to interact 
with a pharmaceutical trials application running on hundreds of 
centralized servers. TraceBack overhead was measured below 
5%.  These “real” applications have more system calls, more disk 
accesses, and they execute more code than standard benchmarks.  
All of these factors reduce the impact of instrumentation on 
performance.  In SPECint, the high overhead from gzip is due to a 
very tight loop which contains a DAG header probe.  The routine 
longest_match contains a DAG header, 2 lightweight probes 
and a register spill/restore which account for 30% of the total 
execution slowdown.  Most commercial applications spread their 
execution history over a larger number of basic blocks. 

6.1 Fault Diagnosis 
The most important use of TraceBack is also the hardest to 

quantify, namely how it helps software developers understand and 
fix production bugs.  Because a quantitative study would require 
access to bug fix information that companies do not generally 
make public, we offer several example uses of TraceBack for 
fault diagnoses. 

Phase Forward used TraceBack to diagnose an intermittent 
hang in their production C++ application.  The cross-machine 
traces demonstrated conclusively that the problem was in a third 
party database connection dynamically loaded library (dll). Phase 

Forward used this evidence to get a fix from the database 
company.  

A Fidelity C++ application was not stable in production, and 
would only stay up for three to four hours at a time.  TraceBack 
revealed that numerous calls to memcpy were overwriting 
allocated buffers and corrupting neighboring data structures.  
With the problem narrowed down, the developers were able to fix 
the worst corruptions giving them days of uptime. 

A customer who declined to be identified had a C++ 
application that crashed after being instrumented. The trace and 
dump file revealed that the program was passing uninitialized data 
to a routine, and it gave them the file name and line number of the 
bug.  

At Oracle, TraceBack revealed problems with a Java/C++ 
application.  Application performance was slow because it was 
taking a large number of Java exceptions.  TraceBack revealed 
that a call to sleep had been wrapped in a try/catch block.  The 
argument to sleep was coming directly from a random number 
generator, which could return a negative number.  When sleep 
was called with a negative argument, it threw an exception. 

Finally, the TraceBack GUI itself (written in C++) is 
instrumented with TraceBack.  While at eBay, one author (Ayers) 
was looking at traces in the GUI when it became unresponsive.  
Ayers took a snap, and sent the trace, in real time, to another 
author (Metcalf) who was back at corporate headquarters.  
Metcalf quickly determined that there was an O(n2) algorithm in 
the GUI which was making it unresponsive. Ayers told the 
engineers at eBay on the spot what the GUI bug was and how it 
would be fixed. 

6.2 Cross-language and Distributed Traces 
This section shows the output of TraceBack for a cross-

language and a cross-machine trace that depict typical failure 
scenarios. 

 
Figure 5 Cross-language trace, Java to C on Solaris. 
Figure 5 shows a trace from a Java program that uses the Java 
native interface (JNI) to call C code.  The Java code passes the C 
code a string, but unfortunately, the C code has only allocated 4 
characters for the string (result).  The comment betrays the 
programmer’s bad thinking, “we only get short strings.”  The Java 
code passes a long string, and the result is a stack corruption and a 
wild return which would prevent an accurate stack backtrace in a 
standard debugger.  The TraceBack trace does show the flow of 

System Normal TraceBack Ratio 
Win 1W 4,189 3,600 1.164
Win 5W 3,978 3,294 1.207
Lin 1W 4,128 3,376 1.223
Lin 5W 3,418 2,780 1.229
Sun 1W 3,238 2,612 1.240
Sun 5W 7,928 6,347 1.249

Table 3 Performance of SPECJbb.  1W means one warehouse, 
while 5W means 5 warehouses.  The Win system ran Windows NT 
on an Intel P3 550MHz, 2GB RAM.  The Lin system ran Linux 
RedHat 7 on an Intel P3 600MHz, 384MB RAM.  The Sun system 
ran Solaris 9, on a 4-way UltraSPARC 450MHz, 1 GB of RAM.  
The Normal and TraceBack columns have throughput measures 
(number of completed transactions) for the uninstrumented and 
instrumented version of each benchmark. 



control from the Java program to the native C code.  The figure 
depicts which source file each line is from (NativeString.java or 
NativeString.c).  The figure also shows the debugger-like controls 
at the top with which the user navigates through the trace as with 
a standard debugger.  

Figure 6 shows a trace across two machines in a C++ program 
that uses Microsoft’s distributed component object model 
(DCOM) to communicate.  This example is a modification to the 
Labrador COM example from MSDN.  The code makes a DCOM 
call to set the name of the pet, and then it retrieves the name.  
However, the programmer made m_szPetName a const 
WCHAR* instead of a WCHAR[32], so the wcscpy() into the 
string buffer fails with an access violation in the C runtime library 
code (msvcr70d.dll).  The server process catches the 
exception and sends it back to the client where it is converted into 
an RPC_E_SERVERFAULT exception in the client (the kernel 
explicitly raises this exception via a call to RaiseException, so the 
client sees the source of the exception as kernel32.dll).  The 
client code does not properly check the returned error code, so it 
continues on to call the GetPetName method, which succeeds, 
though the name the server returns is incorrect. 

 
Figure 6 Cross-machine trace, C++ on Windows using DCOM. 

7 Related Work 
There has been a great deal of interest in systems for defect-

finding and reliability such as TraceBack in both research and 
commercial spheres.  

Recent work [5][15][12][21] on path profiling [4] has 
decreased execution time overheads while maintaining most path 
information.  TraceBack collects a full program trace but retains 
only the most recent portion, so is more similar to interprocedural 
extensions to path profiling [28].  TraceBack breaks its path 
records at calls (see Section 2.4), reducing the effectiveness of 
many path profile optimizations.  Path profiling’s goal is to 
efficiently aggregate path information (i.e., into a path frequency 
table), while TraceBack and whole program path profiling 
maintain the temporal relationship between taken paths (i.e., an 
ordered path trace). 

TraceBack does not use the Ball-Larus path profiling 
algorithm because it must provide the exact location of exception 
points even in the face of abrupt thread termination.    TraceBack 

minimizes state kept in registers because it can be difficult to get 
register state information (including the PC) from a hung process, 
or one that terminated abruptly. 

Recent work [19] has demonstrated statistical techniques for 
aggregating multiple correct and incorrect runs of an application 
in order to find program bugs.  TraceBack does not use sampling, 
opting to reproduce control flow perfectly, and confine data 
sampling to snaps.  Both systems require a programmer to 
examine the data returned by the system. 

Virtutech recently announced support for Hindsight [29], an 
extension to their SimICS machine simulation environment that 
supports reverse execution in the debugger.  Their support 
indicates the utility of reverse execution, though Hindsight is not 
appropriate for production software because machine simulators 
are not fast enough to run in production.  

There is recent work on static analysis to find defects without 
needing to run the program. Examples include: Aiken’s work on 
alias analysis, applied to static data race detection [1], Dor’s 
CSSV to detect buffer overflows [11], Heine and Lam’s work on 
detecting memory leaks [14], and CCured for memory safety [10]. 
TraceBack uses static analysis to determine the control-flow of 
binaries to enable instrumentation, not to find defects directly. 

Recent work in problem diagnosis has used machine learning 
techniques to find faults in distributed systems [6].  These systems 
attempt to isolate program components that are involved in 
failures, and so operate at a coarser granularity than TraceBack, 
which provides detailed control flow information within a binary. 

TraceBack’s reconstruction of control flow across machines is 
unique among binary instrumentation systems, but the techniques 
for reconstructing control flow using RPC semantics across 
machines is similar to other work [2].  

Enabling software to trace its own execution is an example of 
a systems capability that implements autonomic computing [16], 
where computers shoulder a larger burden of bug finding and bug 
fixing. 

Previous systems used binary analysis and re-writing largely 
for performance-related purposes: ATOM [27] optimizes binaries 
and instruments them for performance analysis. Larus and 
Schnarr used EEL [17] to build profiling and tracing tools for 
SPARC/Solaris executables, primarily for performance and 
architectural research. Etch [20] has been used to build 
instrumentation and optimization tools for Windows/x86 binaries. 
Cifuentes and Gough [8] used binary analysis to reverse engineer 
legacy binaries for program understanding.  VEST [25] and 
FX!32 [7] translate from VAX and x86 (IA32) code, respectively, 
to Alpha code.  TraceBack uses binary instrumentation not for 
performance analysis or profiling, but rather to trace execution for 
debugging.  Microsoft's Phoenix project [20], which supports 
binary instrumentation of Windows executables, should make 
creation of TraceBack-like tools simpler and more reliable. 

Systems have been developed that analyze and transform 
programs “on the fly,” as they run: Dynamo [3] rewrites 
instructions for faster execution. Shade [9] is an instruction set 
simulator and trace generation tool for performance analysis.  
Valgrind [23] uses dynamic binary translation to instrument 
application code.  Embra [30] is a processor and memory system 
simulator. TraceBack uses static binary instrumentation to avoid 
run-time cost. 

Purify is a well-known product for detecting memory leaks 
based on binary modification. However, it can degrade 
performance 9 to 29 times according to a report published by 



Rational Software, the company that makes Purify [20]. Similarly, 
reverse execution debuggers, e.g., [11] , are 4 to 7 times slower. 
Hence, Purify, gdb and other debuggers are ill-suited for 
production use.   

Recent commercial systems have also arisen in similar areas, 
including: Identify Software’s AppSight, and OC Systems’ 
RootCause. Empirically, these systems appear to use heavier-
weight instrumentation techniques, forcing users to selectively 
insert instrumentation to avoid excessive performance overhead. 
In contrast, TraceBack’s low overhead enables it to run in 
production and to instrument entire executables without hints.  

8 CONCLUSION 
As performance of computer systems increase, users 

increasingly look to other features to distinguish systems.  
TraceBack trades some performance for ease of fault diagnosis.  It 
is a very robust system, supporting multi-threading, multiple 
languages and distributed tracing.  The overheads of TraceBack 
instrumentation vary greatly with the workload, from 60% 
average overhead for SPEC integer applications to 5% latency 
and throughput overhead for the Apache web server. There is 
ample anecdotal evidence that the TraceBack system has helped 
find production execution bugs, even when the bugs are 
irreproducible in a test environment.  
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