Machine Learning for On-Line Hardware Reconfiguration

Jonathan Wildstrom*, Peter Stone, Emmett Witchel, Mike Dahlin
Department of Computer Sciences
The University of Texas at Austin
{jwildstr,pstone,witchel,dahlin} @cs.utexas.edu

Abstract

As computer systems continue to increase in com-
plexity, the need for Al-based solutions is becom-
ing more urgent. For example, high-end servers
that can be partitioned into logical subsystems and
repartitioned on the fly are now becoming avail-
able. This development raises the possibility of re-
configuring distributed systems online to optimize
for dynamically changing workloads. However, it
also introduces the need to decide when and how
to reconfigure. This paper presents one approach
to solving this online reconfiguration problem. In
particular, we learn to identify, from only low-level
system statistics, which of a set of possible config-
urations will lead to better performance under the
current unknown workload. This approach requires
no instrumentation of the system’s middleware or
operating systems. We introduce an agent that is
able to learn this model and use it to switch config-
urations online as the workload varies. Our agent
is fully implemented and tested on a publicly avail-
able multi-machine, multi-process distributed sys-
tem (the online transaction processing benchmark
TPC-W). We demonstrate that our adaptive con-
figuration is able to outperform any single fixed
configuration in the set over a variety of work-
loads, including gradual changes and abrupt work-
load spikes.

1 Introduction

The recent introduction of partitionable servers has enabled
the potential for adaptive hardware reconfiguration. Proces-
sors and memory can be added or removed from a system
while incurring no downtime, even including single proces-
sors to be shared between separate logical systems. While
this allows for more flexibility in the operation of these sys-
tems, it also raises the questions of when and how the system
should be reconfigured. This paper establishes that automated
adaptive hardware reconfiguration can significantly improve
overall system performance when workloads vary.

*currently employed by IBM Systems and Storage Group. Any
opinions expressed in this paper may not necessarily be the opinions
of IBM.

Previous research [Wildstrom et al., 2005] has shown that
the potential exists for performance to be improved through
autonomous reconfiguration of CPU and memory resources.
Specifically, that work showed that no single configuration
is optimal for all workloads and introduced an approach to
learning, based on low-level system statistics, which config-
uration is most effective for the current workload, without di-
rectly observing the workload. Although this work indicated
that online reconfiguration should, in theory, improve perfor-
mance, to the best of our knowledge it has not yet been estab-
lished that online hardware reconfiguration actually produces
a significant improvement in overall performance in practice.

This paper demonstrates increased performance for a trans-
action processing system using a learned model that reconfig-
ures the system hardware online. Specifically, we train a ro-
bust model of the expected performance of different hardware
configurations, and then use this model to guide an online re-
configuration agent. We show that this agent is able to make
a significant improvement in performance when tested with a
variety of workloads, as compared to static configurations.

The remainder of this paper is organized as follows. The
next section gives an overview of our experimental testbed.
Section 3 details our methodology in handling unexpected
workload changes, including the training of our agent (Sec-
tion 3.1) and the experiments used to test the agent (Sec-
tion 3.2). Section 4 contains the results of our experiments
and some discussion of their implications. Section 5 gives an
overview of related work, and Section 6 concludes.

2 Experimental Testbed and System Overview

Servers that support partitioning into multiple logical subsys-
tems (partitions) are now commercially available [Quintero ef
al., 2004]. Each partition has independent memory and pro-
cessors available, enabling it to function as if it were an in-
dependent physical machine. In this way, partitions (and ap-
plications running on separate partitions) are prevented from
interfering with each other through resource contention.
Furthermore, these servers are highly flexible, both allow-
ing different quantities of memory and processing resources
to be assigned to partitions, as well as supporting the addition
and removal of resources while the operating system contin-
ues running. Hardware is also available that allows partition-
ing on the sub-processor level; e.g., a partition can use as little
as % of a physical processor on the hosting system [Quintero

I[JCAI-07
1113

et al., 2004]. Because reconfigurable hardware is not (yet)
easily available, the research reported in this paper simulates
reconfiguration of partitions on multiple desktop computers.
The remainder of this section gives a high-level overview
of the testbed setup. A brief description of the TPC-W bench-
mark and a discussion of some modifications in our testbed
can be found in Section 2.1. The software packages we use
are given in Section 2.2. The hardware and simulation of
sub-processor partitioning and reconfiguration are explained
in Section 2.3. Finally, an overview of the implementation of
the tuning agent is presented in Section 2.4. Further testbed
and system details can be found in [Wildstrom et al., 2006].

2.1 TPC-W

TPC-W is a standardized benchmark published by the Trans-
action Processing Performance Council. It dictates an instan-
tiation of an online bookstore, with 14 dynamically generated
web pages as the user interface. These pages are divided into
six browsing and eight ordering pages. Relative performance
of the System Under Test (SUT) is determined by using one
or more external machines, called the Remote Browser Em-
ulators (RBEs), running a set of Emulated Browsers (EBs).
These EBs represent individual users of the site and may be
browsing the store, searching, and/or placing orders.

Each user follows one of three defined workloads, or mixes:
shopping, browsing, or ordering. Given a current page re-
quested, the specification defines the respective probabilities
of each possible next page for each mix. This results in differ-
ent ratios of browsing and ordering page references for each
mix. These relative percentages are summarized in Table 1.

Mix
Browsing Shopping Ordering
Browsing pages | 95% 80 50
Ordering pages 5% 20 50

Table 1: Expected access percentages of different pages for the TPC-
W mixes, specified by [Garcia and Garcia, 2003].

A single run of the benchmark involves measuring the
throughput during a fixed-length measurement interval. The
system is allowed to warm up prior to the measurement inter-
val. Throughput is measured in Web Interactions Per Second
(WIPS), which is the overall average number of page requests
returning in a second.

Many commercial systems that publish performance re-
sults involve large numbers or heterogeneous machines in
complex setups. For simplicity, this work only considers the
situation with a single database server (back-end) and a sin-
gle web server (front-end); an illustration can be found in Fig-
ure 1. Although the throughput of this relatively small system
(reported in Section 4) is significantly less than that of a com-
mercially built system, this is due to the substantial difference
in overall resources, and the throughput is not unexpected for
an experimental system.

The TPC-W specification places some strict restrictions on
various facets of the system. One example is that most pages
contain a set of random promotional items displayed at the
top; these items are expected to be randomly selected each
time the page is generated. We relax this requirement: in our

Database
Server

1
] Server
TuningAgent [* = = === 1
1

Figure 1: The 3 machines used in the physical setup.

implementation, a set of items is cached for 30 seconds and
reused for all pages desiring these promotional items during
that time period. Other modified specifications can be found
in [Wildstrom et al., 2006].

The primary reason specifications are modified is that our
intention is to overwhelm the system, whereas the TPC-W
specifications are explicitly designed to prevent this from
happening. Nonetheless, we use TPC-W because it is a con-
venient way of generating realistic workloads.

2.2 Software

Any TPC-W implementation must implement at least 3 mod-
ules as part of the SUT: a database, an application server, and
an image server. The implementation used in this work uses
PostGreSQL 8.0.4 for the database and Apache Jakarta Tom-
cat 5.5.12 as both the application and image servers. The
Java code used by the application server (both for dynamic
web page generation and database interaction) is derived from
a freely available TPC-W implementation from the Univer-
sity of Wisconsin PHARM project [Cain et al., 2001]. Slight
modifications are made to the code: first, to use Tomcat and
PostGreSQL; second, to allow limited caching of data; and
third, to allow the number of connections to the database to
be limited. The number of connections is controlled through a
Java semaphore (with fairness enabled). The number of con-
nections allowed is one reconfigurable resource, controlled
through a new administrative servlet.

Furthermore, the RBE is modified in two ways. First, con-
nection timeouts are not treated as fatal and are rather retried.
Also, the EBs are not required to all run the same mix and can
change which mix they are using during a benchmark run.

2.3 Hardware

The physical hardware used in this work consists of 2 identi-
cal Dell Precision 360n systems, each with a 2.8 GHz proces-
sor and 2GB RAM. A gigabit ethernet switch networks the
systems through the built-in gigabit ethernet interfaces. As
show in Figure 1, one machine is used for each of the front-
and back-end systems, while a separate machine hosts the
RBE and the tuning agent. In a true reconfigurable system,
the tuning agent would likely reside either inside the parti-
tionable system or on a management system.

Although, in practice, the front- and back-end systems are
physically independent machines, they are meant to represent
partitions within a single reconfigurable system with a total
of 2.8GHz of processing power and 2 GB RAM. In order to
simulate partitioning such a system into 2 partitions, CPU and
memory are artificially constrained on the two machines. The

I[JCAI-07
1114

CPU is constrained by a highly favored, periodic busy-loop
process; memory is constrained using the Linux mlock() sub-
routine. The constraints on the two systems are set in such a
way as to only allow, overall, one full 2.8 GHz processor and
2GB memory to be used by the combined front- and back-
ends. For example, if the back-end is allowed 2.0 GHz, the
front-end only has 0.8 GHz available.

By using both of these constraining processes simultane-
ously, simulation of any desired hardware configuration is
possible. Additionally, the processes are designed to change
the system constraints on the fly, so we can simulate recon-
figuring the system. In order to ensure that we never exceed
the total combined system resources, we must constrain the
“partition” that will be losing resources before granting those
resources to the other “partition.”

2.4 The tuning agent

The tuning agent handles real-time reconfiguration. There
are three phases to the reconfiguration. First, the number of
allowed database connections is modified. Once this com-
pletes, any CPU resources being moved are constrained on
the machine losing CPU and added to the other; then memory
is removed from the donor system and added to the receiving
system. Each step completes before the next is begun.

There are two types of tuning agents we simulate. The first
is an omniscient agent, which is told both the configuration
to switch to and when the reconfiguration should occur based
on perfect knowledge. The omniscient agent is used to obtain
upper bound results. This uses a known set of configurations
that maximizes the system performance, thus allowing us to
have a known optimal performance against which to compare.

The second agent is one that makes its own decisions as to
when to alter the configuration. This decision can be based on
a set of hand-coded rules, a learned model, or any number of
other methods. The agent we discuss in this paper is based on
a learned model that uses low-level system statistics to predict
the better option of two configurations. This learned version
of the tuning agent is discussed in detail in Section 3.1

3 Handling Workload Changes

While provisioning resources in a system for a predictable
workload is a fairly common and well-understood is-
sue [Oslake er al., 1999], static configurations can perform
very poorly under a completely different workload. For ex-
ample, there is a common phenomenon known as the “Slash-
dot effect,” where a little-known site is inundated by traffic
after being featured on a news site. We consider the situation
where this site is an online store, which is configured for a
normal workload of ordering and shopping users. The large
number of unexpected browsing users appearing can over-
whelm such a site that is not prepared for this unexpected
change in workload. We call this situation a workload spike.

In addition to such drastic changes, the situation where the
workload gradually changes is also possible and must be han-
dled appropriately.

Unfortunately, in practice, the workload is often not an eas-
ily observable quantity to the system. While it is possible to
instrument the system in various ways to help observe part or

all of the workload, this would require customizing the mid-
dleware for each online store.

However, previous work [Wildstrom er al., 2005] has
shown that low-level operating system statistics can be used
instead to help suggest what configuration should be used in
a workload-oblivious way. This approach has the advantage
of not requiring any customized instrumentation. By instead
using out-of-the-box versions of software, this method allows
for easy replacement of any part of the system without need-
ing significant reimplementation. Low-level statistics also do
not refer to workload features, and so might be easier to gen-
eralize across workloads. For these reasons, we use the low-
level statistics in preference to customized instrumentation of
either the operating system or the middleware.

3.1 Training the model for a learning agent

In order to automatically handle workload changes, we train a
model to predict a target configuration given system statistics
about overall resource use. To collect these statistics, each
machine runs the vmstat command and logs system statistics.
Because it is assumed that a true automatic reconfigurable
system would supply these statistics through a more efficient
kernel-level interface, this command is allowed to take prece-
dence over the CPU constraining process.

vmstat reports 16 statistics: 2 concerning process quantity,
4 concerning memory use, 2 swapping, 2 1/0, 4 CPU use,
system interrupts, and context switches. In order to make this
more configuration-independent, the memory statistics are
converted to percentages. The resulting vector of 32 statis-
tics (16 from each partition), as well as the current config-
uration of the system, comprise the input representation for
our trained model. The model then predicts which configura-
tion will result in higher throughput, and the agent framework
reconfigures the system accordingly.

For our experiments, we consider two possible system con-
figurations using 3 resources: CPU, memory, and number of
connections (Table 2). A wide range of possible CPU, mem-
ory, and connection limits were investigated, and the selected
configurations maximize the throughput for the extreme situ-
ations. In particular, connection limits, although not a hard-
ware resource, were necessary to keep the database from
becoming overwhelmed by large numbers of queries during
heavy browsing periods.

Database Webserver
Config. ‘ CPU Mem. ‘ CPU Mem. ‘ Conn.
browsing ‘ i 075GB ‘ 2 125GB | 400
ordering | 1 125GB | X 0.75GB | 1000

Table 2: Configurations (resource distributions and database con-
nections allowed) used in the experiments.

In order to acquire training data, 100 pairs of varied TPC-
W runs are done. Each pair of runs consists of one run of a
set workload on each configuration; the workload consists of
500 shopping users and a random number (between 500 and
1000) of either browsing or ordering users (50 pairs each).
Each run has 240 seconds of ramp-up time, followed by a

I[JCAI-07
1115

400 second measurement interval, during which 200 seconds
of vmstat data are also collected.

From the combination of WIPS and system statistics gath-
ered on each run, a set of training data points are created for
each pair in the following way. First, the system statistics
from each run are divided into non-overlapping 30 second in-
tervals. The average system statistics over each interval are
the input representation for one data point. Next, the config-
uration with the higher throughput (in WIPS) is determined
to be the preferred configuration for all data points generated
from this pair. In this way, each of the 100 pairs of runs gen-
erates 12 data points.

Given training data, the WEKA [Witten and Frank, 2000]
package implements many machine learning algorithms that
can build models which can then be used for prediction. In
order to obtain human-understandable output, the JRip [Co-
hen, 1995] rule learner is applied to the training data. For the
generated data, JRip learned the rules shown in Figure 2.

As can be seen in Figure 2, JRip determines a complex rule
set that can be used to identify the optimal configuration for
unobserved workload. 8 of the 32 supplied systems statistics
are determined to be of importance; these 8§ are evenly split
over the front- and back-end machines. We can see that all
of the front-end statistics used are either related to execution
time or memory use, while the back-end statistics sample al-
most all statistic areas. We also note that the rules specify
a means of identifying one configuration over the other; the
browsing-intensive configuration is taken as the “default.”

If we look at the rules in some more depth, we can identify
certain patterns that indicate that the rules are logical. For
example, rules 1 and 3 both set a threshold on the amount of
time spent by the database waiting for I/O, while rule 5 indi-
cates that a large percentage of the memory on the database is
in use. All three of these indicators point to a situation where
more memory could be useful (as in the database-intensive
configuration). When memory is constrained, the database
files will be paged out more frequently, so more time will be
spent waiting on those pages to be read back in. Other trends
are discussed in [Wildstrom et al., 2006].

To verify our learned model, we first evaluate the perfor-
mance of JRip’s rules using stratified 10-fold cross valida-
tion. In order to prevent contamination of the results by hav-
ing samples from a single run appearing in both the training
and test sets, this was done by hand by partitioning the 100
training runs into 10 sets of 10 runs (each set having 120 data
points). The 10 trials each used a distinct set as the test set,
training on the remaining 9 sets. In this test, JRip correctly
predicts the better target configuration 98.25% of the time.

One important facet of the rules learned is that they are
domain-specific; although these rules make sense for our dis-
tributed system, different rules would be necessary for a sys-
tem where, for example, both processes are CPU-heavy but
perform no I/O (such as a distributed mathematical system).
While we do not expect rules learned for one system to apply
to a completely different system, training a new set of rules
using the same methodology should have similar benefits. By
learning a model, we remove the need to explore the set of
possibly relevant features and their thresholds manually.

3.2 Evaluating the learned model

We present two types of workload changes: the gradual
change and the workload spike. We concentrate our evalu-
ation on the workload spike, as sudden changes in workload
require faster adaptation than a gradual change.

For simplicity, we describe only the simulation of a
browsing spike below; ordering spikes are simulated in
a similar fashion. Three random numbers are generated
{X1, X5, X3} € [500,1000]. The base workload consists
of 500 shopping users with X; ordering users. This work-
load reaches the steady state (240 seconds of ramp-up time),
and then there are 200 seconds of measurement time. At that
point, the workload abruptly changes to a browsing inten-
sive workload, with Xy browsing users replacing the order-
ing users. The spike continues for 400 seconds. After this
time, the workload abruptly reverts to an ordering intensive
workload, with X3 ordering users. After 200 more seconds,
the measurement interval ends.

We also simulate a gradual change. For this, we begin
with a workload that consists of 500 shopping users and 800
browsing users. After 240 seconds of ramp-up time and 200
seconds of measurement time, 200 browsing users are con-
verted to the ordering mix; this repeats every 100 seconds un-
til all the users are running the ordering mix, at which point
the measurement interval continues for 300 more seconds.

Each workload is tested under 4 hardware configurations.
As baselines, both static configurations execute the workload.
Additionally, because we know when the spike takes place
and when it ends, we can test the optimal set of configura-
tions with the omniscient agent. For the gradual change, we
can see where each configuration is optimal and force the om-
niscient agent to reconfigure the system at that point. Finally,
the learning agent is allowed to completely control the con-
figuration based on its observations.

The agent continuously samples the partitions’ system
statistics and predicts the optimal configuration using a slid-
ing window of the most recent 30 seconds of system statis-
tics. If a configuration chance is determined to be beneficial,
it is made immediately. After each configuration change, the
agent sleeps for 30 seconds to allow the system statistics to
reflect the new configuration.

4 Results and Discussion

Evaluation of the learning agent is performed over 10 ran-
dom spike workloads. Of these workloads, half are browsing
spikes and half are ordering spikes. Each workload is run
15 times on each of the static configurations, as well as with
the learning agent making configuration decisions, and finally
with the omniscient agent forcing the optimal hardware con-
figuration. The average WIPS for each workload are com-
pared using a student’s t-test; all significances are with 95%
confidence, except where noted.

Overall, the learning agent does well, significantly outper-
forming at least one static configuration in all 10 trials, and
outperforming both static configurations in 7 of them. There
are only 2 situations where the adaptive agent does not have
the highest raw throughput, and in both case, the adaptive
agent is within 0.5 WIPS of the better static configuration.

I[JCAI-07
1116

The ordering-biased configuration should be used if any column in the following table is satisfied:
o | Execution time waiting for /O > 6.96% > 5.45%
§ Memory active > 82.76%
E Context switches per second > 509.38
) Blocks received per second < 2761.88
Execution time in user space < 44.90%
4, § Execution time in kernel space < 32.53%
& 5 [Memory active > 30.15%
“* ["Memory idle <49.19% | < 40.94%
Otherwise, the browsing-biased configuration should be used.

Figure 2: JRip rules learned by WEKA. Numbers are averages over a 30-second interval.

Configuration
Spike Type | adapt. | browsing | ordering | omnisc.
ordering 77.0 69.2 69.1 77.0
browsing 70.7 64.6 ‘ 69.5 ‘ 72.1

Table 3: Average results (in WIPS) of different configurations run-
ning a spike workload.

The agent never loses significantly to either static configura-
tion. Results can be found in Table 3.

In addition to performing well as compared to static con-
figurations, the learning agent even approaches the accuracy
of the omniscient agent. In 4 of the 5 ordering spike tests, the
adaptive agent is no worse than 0.5 WIPS below the omni-
scient agent, actually showing a higher throughput in 2 tests'.
One typical example of the throughputs of each of the four
configurations on an ordering spike can be seen in Figure 3.

Ordering Spike

WIPS

)) " ") y
R?nn 300 400 S00 600 700 800 00 1000 1100
Time (3)
|—hﬂw5ﬂg == grdéring == adaptive =" mrasci!ntl
Mumber of agents in each configuration

agents

00 300 200 500 600 700 00 800 000 1100
Time (s)

Figure 3: WIPS throughput for each of the configurations during
an ordering spike, averaged over 15 runs. The graph at the bottom
shows how many learning agents had chosen each configuration at a
given time; these choices are all averaged in the “adaptive” graph.

In handling browsing spikes, the agent consistently ex-
ceeds the throughput of one static configuration and always
performs at least as well as the other static configuration. In 2
of the 5 tests, the agent actually wins significantly over both
configurations. However, the agent has more room for im-

"Presumably due to measurement noise.

provement than in the ordering spike tests; on average, the
learning agent is 1.3 WIPS below the omniscient agent.

In many of the trials, we see some sudden, anomalous
drops in throughput (at approximately 900 seconds in the
browsing and omniscient configurations in Figure 3). These
drops can sometimes confuse the agent. We believe this
confusion is due to abnormal database activity during the
anomaly. The cause of the anomalies has been identified?;
future work will eliminate these anomalies.

In addition to spikes of activity, we test gradual changes in
workload to verify that the agent is capable of handling grad-
ual changes as detailed in Section 3.2. Over 20 runs, the aver-
age throughputs of the browsing- and ordering-intensive con-
figuration are 70.7 and 69.3 WIPS, respectively. The learning
agent handles this gradual change gracefully, winning overall
with an average throughput of 76.6 WIPS. There is also room
for improvement, as the omniscient agent, which switches
configurations when there are 400 users running each of the
browsing and ordering workloads, significantly outperforms
the learning agent with an average throughput of 79.1 WIPS.

This method for automatic online reconfiguration of hard-
ware has definite benefits over the use of a static hardware
configuration. Over a wide variety of tested workloads, it
is apparent that the adaptive agent is better than either static
configuration considered. While the agent has room for im-
provement to approach the omniscient agent, omniscience is
not a realistic goal. Additionally, based on the rule set learned
by the agent, it is apparent that the problem of deciding when
to alter the configuration does not have a trivial solution.

5 Related Work

Adaptive performance tuning through hardware reconfigura-
tion has only recently become possible, so few papers address
it directly. Much of the work done in this field thus far deals
with maintaining a service level agreement (SLA). While this
work is similar (relevant examples are cited below), this is a
fundamentally different problem than that which we are in-
vestigating, where there is no formal SLA against which to
determine compliance. This section reviews the most related
work to that reported in this paper.

IBM’s Partition Load Manager (PLM) [Quintero et al.,
2004] handles automatic reallocation of resources. While

’The database was not reanalyzed after population; as a result, all
administrative tasks took a very long time performing sorts, which
put a massive strain on the database

I[JCAI-07
1117

extensively configurable in terms of thresholds and resource
limits, it must be hand-configured and follows strictly the
rules set out by the thresholds. In contrast, our approach
learns the appropriate thresholds to invoke a reallocation.

Menascé et al. [2001] discuss self-tuning of run-time pa-
rameters (threads and connections allowed) using a model
based approach. The authors suggest that a similar method
should be extensible to hardware tuning. This requires con-
structing a detailed mathematical model of the system with
the current workload as an input; our work treats the system
as a black box and workload as an unobservable quantity.

Karlsson and Covell [2005] propose a system for estimat-
ing a performance model while considering the system as a
black box using a Recursive Least-Squares Estimation ap-
proach, with the intention that this model can be used as part
of a self-tuning regulator. This approach is intended to help
meet an SLA goal (using latency as the metric) but only to
get as close as possible to the SLA requirement without ex-
ceeding it, rather than maximizing performance.

Urgaonkar et al. [2005] use a queuing model to assist in
provisioning a multi-tier Internet application. This approach
is intended to handle multiple distinct servers at each tier and
assumes that there are unused machines available for later
provisioning. Our approach is intended to have just one server
at each tier with a fixed total amount of processing power.

Norris et al. [2004] address competition for resources in a
datacenter by allowing individual tasks to rent resources from
other applications with excess resources. This frames the per-
formance tuning problem as more of a competitive task; we
approach the problem as a co-operative task.

Cohen et al. [2005] use a clustering approach to catego-
rizing performance and related problems. Using similar low-
level statistics to us, they identify related problems, given a
signature summarizing the current system status. This work
is primarily geared toward simplifying problem diagnosis and
analysis, whereas our work works toward automatically cor-
recting the problem.

6 Conclusion

The rapid development of reconfigurable servers indicates
that they will become more commonly used. These servers
run large, distributed applications. To get the most out of the
server, each application should receive only the hardware re-
sources necessary to run its current workload efficiently. We
demonstrate that agents can tailor hardware for workloads for
a given application.

This work’s main contribution is the introduction of a
method for automatic online reconfiguration of a system’s
hardware. This method shows significant improvement over
a static allocation of resources. Although an agent is only
trained for one specific domain, the method is general and
is applicable to a large number of possible combinations of
operating systems, middleware, and workloads.

Our ongoing research agenda includes further work with
the learning agent to approach the optimal results, as well as
investigation on different workloads. We also want to predict
the benefit of a reconfiguration, both on our simulated recon-
figurable machines and on true reconfigurable hardware.

Acknowledgments

The authors thank Ray Mooney and the rest of the Cognitive Sys-
tems reading group for valuable input throughout the research and
helpful critiques of the paper. This research was supported in part
by NSF CAREER award I1S-0237699, a DARPA ACIP grant, and
an IBM faculty award.

References

[Cain et al., 2001] H. W. Cain, R. Rajwar, M. Marden, and M. H.
Lipasti. An architectural evaluation of Java TPC-W. In Proceed-
ings of the 7th International Symposium on High-Performance
Computer Architecture, January 2001.

[Cohen et al., 2005] 1. Cohen, S. Zhang, M. Goldszmidt,
J. Symons, T. Kelly, and A. Fox. Capturing, indexing,
clustering, and retrieving system history. In Proceedings of the
20th ACM Symposium on Operating Systems Principles, pages
105-118, October 2005.

[Cohen, 1995] W. W. Cohen. Fast effective rule induction. In Pro-
ceedings of the 12th International Conference on Machine Learn-
ing (ICML-95), pages 115-123, 1995.

[Garcia and Garcia, 2003] D. F. Garcia and J. Garcia. TPC-W
e-commerce benchmark evaluation. Computer, 36(2):42-48,
February 2003.

[Karlsson and Covell, 2005] M. Karlsson and M. Covell. Dynamic
black-box performance model estmation for self-tuning regula-
tors. In Proceedings of the 2nd International Conference on Au-
tonomic Computing, pages 172-182, June 2005.

[Menascé et al., 2001] D. A. Menascé, D. Barbar4, and R. Dodge.
Preserving QoS of e-commerce sites through self-tuning: A per-
formance model approach. In Proceedings of the 3rd ACM con-
ference on Electronic Commerce, pages 224-234, October 2001.

[Norris et al., 2004] J. Norris, K. Coleman, A. Fox, and G. Candea.
OnCall: Defeating spikes with a free-market application cluster.
In Proceedings of the 1st International Conference on Autonomic

Computing, pages 198-205, May 2004.

[Oslake et al., 1999] M. Oslake, H. Al-Hilali, and D. Guimbellot.
Capacity model for Internet transactions. Technical Report MSR-
TR-99-18, Microsoft Corporation, April 1999.

[Quintero et al., 2004] D. Quintero, Z. Borgosz, W. Koh, J. Lee,
and L. Niesz. Introduction to pSeries partitioning. International
Business Machines Corporation, November 2004.

[Urgaonkar er al., 2005] B. Urgaonkar, P. Shenoy, A. Chandra, and
P. Goyal. Dynamic provisioning of multi-tier Internet applica-
tions. In Proceedings of the 2nd International Conference on
Autonomic Computing, pages 217-228, June 2005.

[Wildstrom et al., 2005] J. Wildstrom, P. Stone, E. Witchel, R. J.
Mooney, and M. Dahlin. Towards self-configuring hardware for
distributed computer systems. In Proceedings of the 2nd Inter-
national Conference on Autonomic Computing, pages 241-249,
June 2005.

[Wildstrom et al., 2006] J. Wildstrom, P. Stone, E. Witchel, and
M. Dahlin. Adapting to workload changes through on-the-fly
reconfiguration. Technical Report UT-AI-TR-06-330, The Uni-
versity of Texas at Austin, Department of Computer Science, Al
Laboratory, 2006.

[Witten and Frank, 2000] I. H. Witten and E. Frank. Data Min-
ing: Practical machine learning tools with Java implementa-
tions. Morgan Kaufmann, San Francisco, 2000.

I[JCAI-07
1118

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

