
Beating the random assignment on
constraint satisfaction problems of bounded degree

Boaz Barak∗ Ankur Moitra† Ryan O’Donnell‡ Prasad Raghavendra§

Oded Regev¶ David Steurer‖ Luca Trevisan§ Aravindan Vijayaraghavan∗∗

David Witmer‡ John Wright‡

April 17, 2015

Abstract

We show that for any odd k and any instance = of the Max-kXOR constraint satisfac-
tion problem, there is an efficient algorithm that finds an assignment satisfying at least a
1
2 + Ω(1/

√
D) fraction of =’s constraints, where D is a bound on the number of constraints

that each variable occurs in. This improves both qualitatively and quantitatively on the recent
work of Farhi, Goldstone, and Gutmann (2014), which gave a quantum algorithm to find an
assignment satisfying a 1

2 + Ω(D−3/4) fraction of the equations.
For arbitrary constraint satisfaction problems, we give a similar result for “triangle-free”

instances; i.e., an efficient algorithm that finds an assignment satisfying at least a µ+Ω(1/
√

D)
fraction of constraints, where µ is the fraction that would be satisfied by a uniformly random
assignment.

∗Microsoft Research New England.
†MIT Mathematics Department.
‡Department of Computer Science, Carnegie Mellon.
§U.C.Berkeley, Department of Electrical Engineering & Computer Sciences.
¶Courant Institute of Mathematical Sciences, New York University.
‖Cornell University.
∗∗Courant Institute of Mathematical Sciences, New York University.

1 Introduction

An instance of a Boolean constraint satisfaction problem (CSP) over n variables x1, . . . , xn is a
collection of constraints, each of which is some predicate P applied to a constant number of the
variables. The computational task is to find an assignment to the variables that maximizes the
number of satisfied predicates. In general the constraint predicates do not need to be of the same
“form”; however, it is common to study CSPs where this is the case. Typical examples include:
Max-kSAT, where each predicate is the OR of k variables or their negations; Max-kXOR, where
each predicate is the XOR of exactly k variables or their negations; and Max-Cut, the special case
of Max-2XOR in which each constraint is of the form xi 6= xj. The case of Max-kXOR is particu-
larly mathematically natural, as it is equivalent to maximizing a homogenous degree-k multilinear
polynomial over {±1}n.

Given a CSP instance, it is easy to compute the fraction µ of constraints satisfied by a uniformly
random assignment in expectation; e.g., in the case of Max-kXOR we always have µ = 1

2 . Thus
the question of algorithmic interest is to find an assignment that satisfies noticeably more than a µ

fraction of constraints. Of course, sometimes this is simply not possible; e.g., for Max-Cut on the
complete n-variable graph, at most a 1

2 +O(1/n) fraction of constraints can be satisfied. However,
even when all or almost all constraints can be satisfied, it may still be algorithmically difficult to
beat µ. For example, Håstad [Hås01] famously proved that for every ε > 0, given a Max-3XOR
instance in which a 1− ε fraction of constraints can be satisfied, it is NP-hard to find an assignment
satisfying a 1

2 + ε fraction of the constraints. Håstad showed similar “approximation resistance”
results for Max-3Sat and several other kinds of CSPs.

One possible reaction to these results is to consider subconstant ε. For example, Håstad
and Venkatesh [HV04] showed that for every Max-kXOR instance with m constraints, one can
efficiently find an assignment satisfying at least a 1

2 + Ω(1/
√

m) fraction of them.1 (Here,
and elsewhere in this introduction, the Ω(·) hides a dependence on k, typically exponential.)
Relatedly, Khot and Naor [KN08] give an efficient algorithm for Max-3XOR that satisfies a
1
2 + Ω(ε

√
(log n)/n) fraction of constraints whenever the optimum fraction is 1

2 + ε.
Another reaction to approximation resistance is to consider restricted instances. One com-

monly studied restriction is to assume that each variable’s “degree” — i.e., the number of con-
straints in which it occurs — is bounded by some D. Håstad [Hås00] showed that such instances
are never approximation resistant. More precisely, he showed that for general CSPs with any mix
of predicates, one can always efficiently find an assignment satisfying at least a µ + Ω(1/D) frac-
tion of constraints.2 Note that this advantage of Ω(1/D) cannot in general be improved, as the
case of Max-Cut on the complete graph shows.

One may also consider further structural restrictions on instances. One such restriction is that
the underlying constraint hypergraph be triangle-free (see Section 2 for a precise definition). For
example, Shearer [She92] showed that for triangle-free graphs there is an efficient algorithm for
finding a cut of size at least m

2 + Ω(1) ·∑i
√

deg(i), where deg(i) is the degree of the ith vertex. As

∑i
√

deg(i) ≥ ∑i
deg(i)√

D
= 2m√

D
in m-edge degree-D bounded graphs, this shows that for triangle-free

Max-Cut one can efficiently satisfy at least a 1
2 +Ω(1/

√
D) fraction of constraints. (See [Alo97] for

a related result on Min-Bisection in degree-bounded graphs.)

1In [HV04] this is stated as an approximation-ratio guarantee: if the optimum fraction is 1
2 + ε then 1

2 + Ω(ε/
√

m) is
guaranteed. However inspecting their proof yields the absolute statement we have made.

2The previous footnote applies also to this result.

1

1.1 Recent developments and our work

In a recent surprising development, Farhi, Goldstone, and Gutmann [FGG14] gave an efficient
quantum algorithm that, for Max-3XOR instances with degree bound D, finds an assignment sat-
isfying a 1

2 + Ω(D−3/4) fraction of the constraints. In addition, Farhi et al. show that if the Max-
3XOR instance is “triangle-free” then an efficient quantum algorithm can satisfy a 1

2 + Ω(1/
√

D)

fraction of the constraints.
Farhi et al.’s result was perhaps the first example of a quantum algorithm providing a bet-

ter CSP approximation guarantee than that of the best known classical algorithm (namely Hås-
tad [Hås00]’s, for Max-3XOR). As such it attracted quite some attention.3 In this paper we show
that classical algorithms can match, and in fact outperform, Farhi et al.’s quantum algorithm.

We will present two results. The first result is about instances of Max-kXOR.

Theorem 1.1. There is a constant c = exp(−O(k)) and a randomized algorithm running in time
poly(m, n, exp(k)) that, given an instance = of Max-kXOR with m constraints and degree at most D,
finds with high probability an assignment x ∈ {±1}n such that∣∣∣∣val=(x)− 1

2

∣∣∣∣ ≥ c√
D

. (1.1)

Here val=(x) denotes the fraction of constraints satisfied by x.
In particular, for odd k, by trying the assignment and its negation, the algorithm can output an x satisfying

val=(x) ≥ 1
2
+

c√
D

. (1.2)

In Section 3 we give a simple, self-contained proof of Theorem 1.1 in the special case of Max-
3XOR. For higher k we obtain it from a more general result (Theorem 4.2) that gives a constructive
version of a theorem of Dinur, Friedgut, Kindler and O’Donnell [DFKO07]. This result shows how
to attain a significant deviation from the random assignment value for multivariate low-degree
polynomials with low influence. See Section 4.

We note that the deviation Ω(1/
√

D) in (1.1) is optimal. To see why, consider any D-regular
graph on n vertices, and construct a Max-2XOR instance = as follows. For every edge (i, j) in
the graph we randomly and independently include either the constraint xi = xj or xi 6= xj. For
every fixed x, the quantity val=(x) has distribution 1

m Binomial(m, 1
2), where m = nD

2 . Hence a
Chernoff-and-union-bound argument shows that with high probability all 2n assignments will
have |val=(x)− 1

2 | ≤ O
√

n/m = O(1/
√

D). This can easily be extended to Max-kXOR for k > 2.
We now come to the second result of the paper. As noted earlier, the case of Max-Cut on the

complete graph shows that for general CSPs, and in particular for Max-kXOR for even k, we cannot
guarantee a positive advantage of Ω(1/

√
D) as in (1.2). In fact, a positive advantage of Ω(1/D) is

the best possible, showing that the guarantee of Håstad [Hås00] is tight in general. However, our
second result shows that it is possible to recover the optimal advantage of 1/

√
D for triangle-free

instances of any CSP:

Theorem 1.2. There is a constant c = exp(−O(k)) and a randomized algorithm running in time
poly(m, n, exp(k)) time that, given a triangle-free, degree-D CSP instance= with m arbitrary constraints,
each of arity between 2 and k, finds with high probability an assignment x ∈ {±1}n such that

val=(x) ≥ µ +
c√
D

.

3As evidenced by the long list of authors on this paper; see also http://www.scottaaronson.com/blog/?p=2155.

2

http://www.scottaaronson.com/blog/?p=2155

Here µ is the fraction of constraints in = that would be satisfied in expectation by a random assignment.

This theorem is proved in Section 5.

1.2 Overview of our techniques

All three algorithms that we present in this work follow the same broad outline, while the details
are different in each case. To produce an assignment that beats a random assignment, the idea is to
partition the variables in to two sets (F, G) with F standing for ‘Fixed’ and G standing for ‘Greedy’
(in Section 4, these correspond to [n] \ U and U respectively). The variables in F are assigned
independent and uniform random bits and the variables in G are assigned values greedily based
on the values already assigned to F. We will refer to constraints with exactly one variable from G
as active constraints. The design of the greedy assignments and their analysis is driven by two key
objectives.

1. Obtain a significant advantage over the random assignment on active constraints.

2. Achieve a value that is at least as good as the random assignment on inactive constraints.

The simplest example is the algorithm for Max−3XOR that we present in Section 3. First, we
appeal to a decoupling trick due to Khot-Naor [KN08] to give an efficient approximation-preserving
reduction from an arbitrary instance = of Max−3XOR to a bipartite instance =̃. Specifically, the
instance =̃ will contain two sets of variables {yi}i∈[n] and {zi}i∈[n], with every constraint hav-
ing exactly one variable from {yi}i∈[n] and two variables from {zj}j∈[n]. Notice that if we set
G = {yi}i∈[n], then objective (2) holds vacuously, i.e., every constraint in =̃ is active. The former
objective (1) is achieved as a direct consequence of anticoncentration of low degree polynomials
(see Fact 2.3).

Our algorithm for triangle-free constraint systems begins by picking (F, G) to be a random
partition of the variables. In this case, after fixing a random assignment to F, a natural greedy
strategy would proceed as follows: Assign each variable in G a value that satisfies the maximum
the number of its own active constraints.

In order to achieve objective (2), it is sufficient if for each inactive constraint its variables are
assigned is independently and uniformly randomly. Since the constraint system is triangle-free,
for every pair of variables xi, xj ∈ G the active constraints of xi and xj are over disjoint sets of
variables. This implies that the greedy assignments for variables within each inactive constraint
are already independent. Unfortunately, the greedy assignment as defined above could possibly
be biased, and in general much worse than a random assignment on the inactive constraints. We
overcome this technical hurdle by using a modified greedy strategy defined as follows. Assign−1
to all variables in G and then for each variable xi ∈ G, consider the change in the number of active
constraints satisfied if we flip xi from−1 to 1. The algorithm will flip the value only if this number
exceeds an appropriately chosen threshold θi. The threshold θi is chosen so as to ensure that over
all choices of values to F, the assignment to xi is unbiased. Triangle-freeness of the constraint
system implies that these assignments are independent within each inactive constraint. Putting
these ideas together, we obtain the algorithm for triangle-free constraint systems discussed in
Section 5.

3

2 Preliminaries

Constraint satisfaction problems. We will be considering a somewhat general form of constraint
satisfaction problems. An instance for us will consist of n Boolean variables and m constraints. We
call the variables x1, . . . , xn, and we henceforth think of them as taking the Boolean values ±1.
Each constraint is a pair (P`, S`) (for ` ∈ [m]) where P` : {±1}r → {0, 1} is the predicate, and S`

is the scope, an ordered r-tuple of distinct coordinates from [n]. The associated constraint is that
P`(xS`

) = 1, where we use the notation xS to denote variables x restricted to coordinates S. We
always assume (without loss of generality) that P` depends on all r coordinates. The number r is
called the arity of the constraint, and throughout this paper k will denote an upper bound on the
arity of all constraints. Typically we think of k as a small constant.

We are also interested in the special case of Max-kXOR. By this we mean the case when all
constraints are XORs of exactly k variables or their negations; in other words, when every P` is of
the form P`(x1, . . . , xk) =

1
2 ±

1
2 x1x2 · · · xk. When discussing Max-kXOR we will also always make

the assumption that all scopes are distinct as sets; i.e., we don’t have the same constraint or its
negation more than once.

Hypergraph structure of constraint systems. We will be particularly interested in the degree
deg(i) of each variable xi in a constraint system. This is simply the number of constraints in
which xi participates; i.e., #{` : S` 3 i}. Throughout this work, we let D denote an upper bound
on the degree of all variables.

For our second theorem, we will need to define the notion of “triangle-freeness”.

Definition 2.1. The co-occurrence graph of a constraint system instance is defined to be the multi-
graph whose vertices are the variables and which has an edge for each co-occurrence of two vari-
ables in a constraint scope. We say the instance is triangle-free if it has no cycles of length at most 3;
i.e., no triangles and no multi-edges.

Fourier representation. We recall that any Boolean function f : {±1}n → R can be represented
by a multilinear polynomial, or Fourier expansion,

f (x) = ∑
S⊂[n]

f̂ (S)xS, where xS def
= ∏

i∈S
xi.

For more details see, e.g., [O’D14]; we recall here just a few facts we’ll need. First, E[f (x)] =

f̂ (∅). (Here and throughout we use boldface for random variables; furthermore, unless otherwise
specified x refers to a uniformly random Boolean string.) Second, Parseval’s identity is ‖ f ‖2

2 =

E[f (x)2] = ∑S f̂ (S)2, from which it follows that Var[f (x)] = ∑S 6=∅ f̂ (S)2. Third,

Infi[f] = ∑
S3i

f̂ (S)2 = E[(∂i f)(x)2],

where ∂i f is the derivative of f with respect to the ith coordinate. This can be defined by the
factorization f (x) = xi · (∂i f)(x′) + g(x′), where x′ = (x1, . . . , xi−1, xi+1, . . . , xn), or equivalently
by ∂i f (x′) = f (x′,+1)− f (x′,−1)

2 , where here (x′, b) denotes (x1, . . . , xi−1, b, xi+1, . . . , xn). We record
here a simple fact about these derivatives:

Lemma 2.2. For any predicate P : {±1}r → {0, 1}, r ≥ 2, we have Var[(∂iP)(x)] ≥ Ω(2−r) for all i.

4

Proof. The function ∂iP(x) takes values in {− 1
2 , 0, 1

2}. It cannot be constantly 0, since we assume P
depends on its ith input. It also cannot be constantly 1

2 , else we would have P(x) = 1
2 +

1
2 xi and

so P would not depend on all r ≥ 2 coordinates. Similarly it cannot be constantly− 1
2 . Thus ∂iP(x)

is nonconstant, so its variance is Ω(2−r).

Given a constraint system and an assignment x ∈ {±1}n, the number of constraints satisfied by
the assignment is simply ∑` P`(xS`

). This can be thought of as a multilinear polynomial {±1}n →
R of degree4 at most k. We would like to make two minor adjustments to it, for simplicity. First,
we will normalize it by a factor of 1

m so as to obtain the fraction of satisfied constraints. Second, we
will replace P` with P`, defined by

P` = P` −E[P`] = P` − P̂`(∅).

In this way, P`(xS`
) represents the advantage over a random assignment. Thus given a constraint

system, we define the associated polynomial P(x) by

P(x) =
1
m

m

∑
`=1

P`(xS`
).

This is a polynomial of degree at most k whose value on an assignment x represents the advantage
obtained over a random assignment in terms of the fraction of constraints satisfied. In general, the
algorithms in this paper are designed to find assignments x ∈ {±1}n with P(x) ≥ Ω(1√

D
).

Low-degree polynomials often achieve their expectation. Our proofs will frequently rely on
the following fundamental fact from Fourier analysis, whose proof depends on the well-known
“hypercontractive inequality”. A proof of this fact appears in, e.g., [O’D14, Theorem 9.24].

Fact 2.3. Let f : {±1}n → R be a multilinear polynomial of degree at most k. Then P[f (x) ≥ E[f]] ≥
1
4 exp(−2k). In particular, by applying this to f 2, which has degree at most 2k, we get

P
[
| f (x)| ≥ ‖ f ‖2

]
≥ exp(−O(k))

which implies that

E
[
| f (x)|

]
≥ exp(−O(k)) · ‖ f ‖2 ≥ exp(−O(k)) · stddev[f (x)] .

3 A simple proof for Max-3XOR

We begin by proving Theorem 1.1 in the case of Max-3XOR, as the proof can be somewhat stream-
lined in this case. Given an instance of Max-3XOR we have the corresponding polynomial

P(x) = ∑
|S|=3

P̂(S)xS = ∑
i,j,k∈[n]

aijkxixjxk,

where P̂(S) ∈ {± 1
2m , 0}, and where we have introduced aijk =

1
6P̂({i, j, k}) for i, j, k ∈ [n] distinct.

We now use the trick of “decoupling” the first coordinate (cf. [KN08, Lem. 2.1]); i.e., our algorithm
will consider P̃(y, z) = ∑i,j,k aijkyizjzk, where y1, . . . , yn, z1, . . . , zn are new variables. The algorithm

4We have the usual unfortunate terminology clash; here we mean degree as a polynomial.

5

will ultimately produce a good assignment y, z ∈ {±1}n for P̃. Then it will define an assignment
x ∈ {±1}n by using one of three “randomized rounding” schemes:

w.p. 4
9 , xi =

{
yi w.p. 1

2

zi w.p. 1
2

∀i; w.p. 4
9 , xi =

{
yi w.p. 1

2

−zi w.p. 1
2

∀i; w.p. 1
9 , xi = −yi ∀i.

We have that E[P(x)] is equal to

4
9 ∑

i,j,k
aijk(

yi+zi
2)(

yj+zj
2)(yk+zk

2) + 4
9 ∑

i,j,k
aijk(

yi−zi
2)(

yj−zj
2)(yk−zk

2) + 1
9 ∑

i,j,k
aijk(−yi)(−yj)(−yk)

= 1
9 ∑

i,j,k
aijk(yizjzk + ziyjzk + zizjyk) =

1
3P̃(y, z). (3.1)

Thus in expectation, the algorithm obtains an assignment for P achieving at least 1
3 of what it

achieves for P̃.
Let us now write P̃(y, z) = ∑i yiGi(z), where Gi(z) = ∑j,k aijkzjzk. It suffices for the algorithm

to find an assignment for z such that ∑i |Gi(z)| is large, as it can then achieve this quantity by
taking yi = sgn(Gi(z)). The algorithm simply chooses z ∈ {±1}n uniformly at random. By
Parseval we have E[Gi(z)2] = ∑j<k(2aijk)

2 = 1
9 Infi[P] for each i. Applying Fact 2.3 (with k = 2)

we therefore get E[Gi(z)|] ≥ Ω(1) ·
√

Infi[P]. Since Infi[P] = deg(i)/4m2, we conclude

E

[
∑
i
|Gi(z)|

]
≥ Ω(1) ·∑

i

√
deg(i)
m ≥ Ω(1) ·∑

i

deg(i)
m
√

D
= Ω(1) · 1√

D
.

As ∑i |Gi(z)| is bounded by 1, Markov’s inequality implies that the algorithm can with high prob-
ability find a z achieving ∑i |Gi(z)| ≥ Ω(1√

D
) after O(

√
D) trials of z. As stated, the algorithm then

chooses y appropriately to attain P̃(y, z) ≥ Ω(1√
D
), and finally gets 1

3 of this value (in expectation)
for P(x).

4 A general result for bounded-influence functions

One can obtain our Theorem 1.1 for higher odd k by generalizing the proof in the preceding sec-
tion. Constructing the appropriate “randomized rounding” scheme to decouple the first vari-
able becomes slightly more tricky, but one can obtain the identity analogous to (3.1) through
the use of Chebyshev polynomials. At this point the solution becomes very reminiscent of the
Dinur et al. [DFKO07] work. Hence in this section we will simply directly describe how one can
make [DFKO07] algorithmic.

The main goal of [DFKO07] was to understand the “Fourier tails” of bounded degree-k poly-
nomials. One of their key technical results was the following theorem, showing that if a degree-k
polynomial has all of its influences small, it must deviate significantly from its mean with notice-
able probability:

Theorem 4.1. ([DFKO07, Theorem 3].) There is a universal constant C such that the following holds.
Suppose g : {±1}n → R is a polynomial of degree at most k and assume Var[g] = 1. Let t ≥ 1 and
suppose that Infi[g] ≤ C−kt−2 for all i ∈ [n]. Then

P[|g(x)| ≥ t] ≥ exp(−Ct2k2 log k).

6

In the context of Max-kXOR, this theorem already nearly proves our Theorem 1.1. The reason
is that in this context, the associated polynomial P(x) is given by

P(x) =
1

2m

m

∑
`=1

b` ∏
j∈S`

xj, where b` ∈ {−1, 1}.

Hence Var[P] = 1/4m and Infi[P] = deg(xi)/4m2 ≤ D/4m2. Taking g = 2
√

m ·P and t =

exp(−O(k)) ·
√

m/D, Theorem 4.1 immediately implies that

P
[
|P(x)| ≥ exp(−O(k)) · 1√

D

]
≥ exp(−O(m/D)). (4.1)

This already shows the desired existential result, that there exists an assignment beating the ran-
dom assignment by exp(−O(k)) · 1√

D
. The only difficulty is that the low probability bound in (4.1)

does not imply we can find such an assignment efficiently.
However this difficulty really only arises because [DFKO07] had different goals. In their work,

it was essential to show that g achieves a slightly large value on a completely random input.5 By
contrast, we are at liberty to show g achieves a large value however we like — semi-randomly,
greedily — so long as our method is algorithmic. That is precisely what we do in this section
of the paper. Indeed, in order to “constructivize” [DFKO07], the only fundamental adjustment
we need to make is at the beginning of the proof of their “Lemma 1.3”: when they argue that
“P[|`(x)| ≥ t′] ≥ exp(−O(t′2)) for the degree-1 polynomial `(x)”, we can simply greedily choose
an assignment x with |`(x)| ≥ t′.

Our constructive version of Theorem 4.1 follows. It directly implies our Theorem 1.1, as de-
scribed above.

Theorem 4.2. There is a universal constant C and a randomized algorithm such that the following holds.
Let g : {±1}n → R be a polynomial with degree at most k and Var[g] = 1 be given. Let t ≥ 1 and suppose
that Infi[g] ≤ C−kt−2 for all i ∈ [n]. Then with high probability the algorithm outputs an assignment x
with |g(x)| ≥ t. The running time of the algorithm is poly(m, n, exp(k)), where m is the number of
nonzero monomials in g.6

The algorithm ADVRAND achieving Theorem 4.2 is given below. It is derived directly
from [DFKO07], and succeeds with probability that is inverse polynomial in n. The success prob-
ability is then boosted by running the algorithm multiple times. We remark that η

(k)
0 , η

(k)
1 , . . . , η

(k)
k

denote the k+ 1 extrema in [−1, 1] of the kth Chebyshev polynomial of the first kind Tk(x), and are
given by η

(k)
j = cos(jπ/k) for 0 ≤ j ≤ k. We now describe the algorithm below, for completeness.

ADVRAND: Algorithm for Advantage over Average for degree k polynomials

Input: a degree k-function g
Output: an assignment x

1. Let 1 ≤ s ≤ log2 k be a scale such that the weight of the Fourier transform of g on levels
between 2s−1 and 2s is at least 1/ log k.

5Also, their efforts were exclusively focused on the parameter k, with quantitative dependencies on t not mattering.
Our focus is essentially the opposite.

6For simplicity in our algorithm, we assume that exact real arithmetic can be performed efficiently.

7

2. For every i ∈ [n], put i in set U with probability 2−s. For every i /∈ U, set xi ∈ {−1, 1}
uniformly at random and let y be the assignment restricted to the variables in [n] \U.

3. Let gy be the restriction obtained. Let

T =
{

j ∈ U : |ĝy(j)| ≤ (2e)2k · ∑
S∩U={i}

ĝ(S)2
}

.

4. For every j ∈ T, set xj = sign(ĝy(∅)) · sign(ĝy({j})).

5. For odd k, pick r ∈ {0, 1, . . . , k} uniformly at random, and let η = η
(k)
r /2.

For even k pick r ∈ {0, 1, . . . , k + 1} uniformly at random, and let η = η
(k+1)
r /2.

6. For each coordinate j ∈ T, flip xj independently at random with probability (1− η)/2.

7. The remaining coordinates are set randomly to {±1}. Output x.

We now give the analysis of the algorithm, following [DFKO07]. The second step of the al-
gorithm performs a random restriction, that ensures that gy has a lot of mass on the first-order
Fourier coefficients. The key lemma (that follows from the proof of Lemma 1.3 and Lemma 4.1 in
[DFKO07]) shows that we can find an assignment that obtains a large value for a polynomial with
sufficient “smeared” mass on the first-order Fourier coefficients.

Lemma 4.3. Suppose g : {±1}N → R has degree at most k, t ≥ 1 and T ⊆ [N] such that that
∑i∈T ĝ({i})2 ≥ 1, and ∀i ∈ T |ĝ({i})| ≤ 1

2t(k+1) . Then a randomized polynomial time algorithm outputs
a distribution D over assignments x ∈ {−1, 1}N such that

P
x←D

[|g(x)| ≥ t] ≥ exp(−O(k)).

The algorithm proving Lemma 4.3 correspond to Steps (3-7) of the Algorithm ADVRAND.

Proof. We sketch the proof of the Lemma 4.3 here, highlighting the differences to Lemma 1.3 of
[DFKO07]. First we observe that by setting xi = sign(ĝ(∅)) · sign(ĝ({i})), we can maximize the
linear portion involving T (along with the constant term) as

|ĝ(∅) + ∑
i∈T

ĝ({i})xi| = |ĝ(∅)|+ ∑
i∈T
|ĝ({i})| ≥ 2t(k + 1).

Further, by setting the rest of x values (xi for i ∈ [N] \ T) to random in {±1}, due to symmetry we
have that the linear part satisfies

P
x

[
|ĝ(∅) + ∑

i∈[N]

ĝ({i})xi| ≥ 2t(k + 1)
]
≥ 1

2
. (4.2)

Let x∗ ∈ {±1}N be such an assignment that satisfies the event in equation (4.2). From this
point on, we follow the proof of Lemma 1.3 in [DFKO07] with their initial point x0 being set to x∗.

Let z ←η {±1}N be a random string generated by independently setting each coordinate
zj = −1 with probability (1− η)/2 (as in step 6 of the algorithm), and let

(Tη g)(x∗) = E
z←η{±1}n

[g(x∗ · z)].

8

Lemma 1.3 of [DFKO07], by considering (Tη g)(x∗) as a polynomial in η and using the extremal
properties of Chebyshev polynomials (Corollary 2.8 in [DFKO07]), shows that there exists η ∈
{ η

(k)
0
2 , η

(k)
1
2 , . . . , η

(k)
k
2 } such that

E
z←η{±1}n

[
|g(x∗ · z)|

]
≥ 2t(k + 1) · 1

(2k + 2)
≥ t. (4.3)

Consider g(x∗ · z) as a polynomial in z, with degree at most k. As in [DFKO07], we will now
use the hypercontractivity to give a lower bound on the probability (over random z) that |g(x · z)|
exceeds the expectation. Note that our choice of η ∈ [− 1

2 , 1
2] and hence the bias is in the interval

[1
4 , 3

4]. Using Fact 2.3, it follows that

P
z

[
|g(x∗ · z)|

]
≥ 1

4 exp(−2k).

Hence when x is picked according to D, with probability 1
2 equation (4.2) holds, then with prob-

ability at least 1/(k + 2) the algorithm chooses a η such that (4.3) holds, and then a random z
succeeds with probability exp(−O(k)), thereby giving the required success probability.

We now sketch the proof of the constructive version of Theorem 3 in [DFKO07], highlighting
why algorithm ADVRAND works.

Proof of Theorem 4.2. The scale s is chosen such that the Fourier coefficients of g of order [2s−1, 2s]

have mass at least 1/ log k. The algorithm picks set U randomly by choosing each variable with
probability 2−s, and gy is the restriction of g to the coordinates in U obtained by setting the other
variables randomly to y ∈ {−1, 1}[N]\U .

Let γi = ∑S∩U={i} ĝ(S)2. Fixing U and y, we pick the indices T = {i ∈ U : ĝy({i})2 ≤
(2e)2kγi}. The proof of Theorem 3 in [DFKO07] shows that after steps (1-3) of the algorithm,

P
U,y

[
∑
i∈U

ĝy({i})2 · 1[i ∈ T] ≥ 1
100 log k

]
≥ exp(−O(k)) .

When the above event is satisfied, we can apply Lemma 4.3 with the function

g′ = gy√
∑i∈T ĝy({i})2

.

To check that the conditions of Lemma 4.3 apply, note that γi ≤ ∑S3i ĝ(S)2 and g′ ≤ O(log k) gy.
Hence,

max
i∈T

ĝ′({i}) ≤ 100 log k · (2e)k max
i∈T

√
γi ≤

1
2t(k + 2)

.

Hence, applying Lemma 4.3, we get that

P
x∈D

[
|g(x)| ≥ t

]
= exp(−O(k)), (4.4)

where D is the distribution over assignments x output by the algorithm. Repeating this algorithm
exp(O(k)) log n times, we get the required high probability of success.

Remark 4.4. The proof of Theorem 4.2 and Lemma 4.3 can be modified to give a slightly more
general statement. For any polynomial g of degree at most k such that Var[g] = 1, the algorithm
runs in time poly(n, m, 2k) and finds with high probability an assignment x ∈ {−1, 1}n such that
g(x) ≥ exp(−O(k))∑i∈n

√
Infi(g).

9

5 Triangle-free constraint systems

In this section we present the proof of Theorem 1.2, which gives an efficient algorithm for beating
the random assignment in the case of arbitrary constraint systems that are triangle-free (recall
Definition 2.1). We now restate Theorem 1.2 and give its proof. As in the proof of Theorem 4.2, we
can easily move from an expectation guarantee to a high probability guarantee by first applying
Markov’s inequality, and then repeating the algorithm exp(k)poly(n, m) times; hence we will
prove the expectation guarantee here.

Theorem 5.1. There is a poly(m, n, exp(k))-time randomized algorithm with the following guarantee. Let
the input be a triangle-free constraint system over n Boolean variables, with m arbitrary constraints each of
arity between 2 and k. Assume that each variable participates in at most D constraints. Let the associated
polynomial be P(x). Then the algorithm outputs an assignment x ∈ {±1}n with

E[P(x)] ≥ exp(−O(k)) ·
n

∑
i=1

√
deg(i)

m
≥ exp(−O(k)) · 1√

D
.

Proof. Let (F, G) be a partition of [n], with F standing for “Fixed” and G standing for “Greedy”.
Eventually the algorithm will choose the partition randomly, but for now we treat it as fixed. We
will write the two parts of the algorithm’s random assignment x as (xF, xG). The bits xF will first
be chosen independently and uniformly at random. Then the bits xG will be chosen in a careful
way which will make them uniformly random, but not completely independent.

To make this more precise, define a constraint (P`, S`) to be active if its scope S` contains exactly
one coordinate from G. Let us partition these active constraints into groups

Nj = {` : S` is active and S` 3 j}, j ∈ G.

For each coordinate j ∈ G, we’ll define Aj ⊂ F to be the union of all active scopes involving j (but
excluding j itself); i.e.,

Aj =
⋃
{S` \ {j} : ` ∈ Nj}.

This set Aj may be empty. Our algorithm’s choice of xG will have the following property:

∀j ∈ G, the distribution of xj is uniformly random, and it depends only on (xi : i ∈ Aj). (†)

From property (†) we may derive:

Claim 5.1.1. For every inactive constraint (P`, S`), the random assignment bits xS`
are uniform and

independent.

Proof of Claim. First consider the coordinates j ∈ S` ∩G. By the property (†), each such xj depends
only on (xi : i ∈ Aj); further, these sets Aj are disjoint precisely because of the triangle-freeness
of the constraint scopes. Thus indeed the bits (xj : j ∈ S` ∩ G) are uniform and mutually in-
dependent. The remaining coordinates S` ∩ F are also disjoint from all these (Aj)j∈S`∩G, by the
“no multi-edges” part of the triangle-free property. Thus the remaining bits (xi : i ∈ S` ∩ F) are
uniform, independent, and independent of the bits (xj : j ∈ S` ∩ G), completing the proof of the
claim.

10

An immediate corollary of the claim is that all inactive constraints P` contribute nothing, in
expectation, to E[P(x)]. Thus it suffices to consider the contribution of the active constraints. Our
main goal will be to show that the bits xG can be chosen in such a way that

∀j ∈ G E
[

∑
`∈Nj

P`(xS`
)
]
≥ exp(−O(k)) ·

√
|Nj| (5.1)

and hence
E[P(x)] ≥ 1

m
· exp(−O(k)) · ∑

j∈G

√
|Nj|. (5.2)

Given (5.2) it will be easy to complete the proof of the theorem by choosing the partition (F, G)

randomly.
So towards showing (5.1), fix any j ∈ G. For each ` ∈ Nj we can write P`(xS`

) = xjQ`(xS`\{j})+

R`(xS`\{j}), where Q` = ∂jP` = ∂jP`. Since the bits xi for i ∈ S` \ {j} ⊂ F are chosen uniformly
and independently, the expected contribution to (5.1) from the R` polynomials is 0. Thus we just
need to establish

E
[

xj · ∑
`∈Nj

Q`

]
≥ exp(−O(k)) ·

√
|Nj|, where Q`

def
= Q`(xS`\{j}). (5.3)

We now finally describe how the algorithm chooses the random bit xj. Naturally, we will choose
it to be +1 when ∑`∈Nj

Q` is “large” and −1 otherwise. Doing this satisfies the second aspect of
property (†), that xj should depend only on (xi : i ∈ Aj). To satisfy the first aspect of property (†),
that xj is equally likely ±1, we are essentially forced to define

xj = sgn
(

∑
`∈Nj

Q` − θj

)
, (5.4)

where θj is defined to be a median of the random variable ∑`∈Nj
Q`.

(Actually, we have to be a little careful about this definition. For one thing, if the median
θj is sometimes achieved by the random variable, we would have to carefully define sgn(0) to
be sometimes +1 and sometimes −1 so that xj is equally likely ±1. For another thing, we are
assuming here that the algorithm can efficiently compute the medians θj. We will describe how to
handle these issues in a technical remark after the proof.)

Having described the definition (5.4) of xj satisfying property (†), it remains to verify the
inequality (5.3). Notice that by the “no multi-edges” aspect of triangle-freeness, the random vari-
ables Q` are actually mutually independent. Further, Lemma 2.2 implies that each has variance

Ω(2−k); hence the variance of Q def
= ∑`∈Nj

Q` is exp(−O(k)) · |Nj|. Thus inequality (5.3) is equiv-
alent to

E[sgn(Q− θj)Q] ≥ exp(−O(k)) · stddev[Q] = exp(−O(k)) · stddev[Q− θj].

Now
E[sgn(Q− θj)Q] = E[sgn(Q− θj)(Q− θj + θj)] = E[

∣∣Q− θj
∣∣] + E[xj · θj]. (5.5)

We have E[xj · θj] = 0 since E[xj] = 0. And as for E[
∣∣Q− θj

∣∣], it is indeed at least exp(−O(k)) ·
stddev[Q] by Fact 2.3, since Q is a degree-(k− 1) function of uniform and independent random
bits. Thus we have finally established (5.1), and therefore (5.2).

11

To conclude, we analyze what happens when the algorithm initially chooses a uniformly ran-
dom partition (F, G) of [n]. In light of (5.2), it suffices to show that for each i ∈ [n] we have

E

[
1[i ∈ G] ·

√
|Ni|

]
≥ exp(−O(k)) ·

√
deg(i). (5.6)

We have P[i ∈ G] = 1
2 ; conditioning on this event, let us consider the random variable |Ni|; i.e.,

the number of active constraints involving variable xi. A constraint scope S` containing i becomes
active if and only if all the other indices in S` go into F, an event that occurs with probability
2−k+1 (at least). Furthermore, these events are independent across the scopes containing i because
of the “no multi-edges” property of triangle-freeness. Thus (conditioned on i ∈ G), each random
variable |Ni| is the sum A1 + · · · + Adeg(i) independent indicator random variables, each with
expectation at least 2−k+1. Thus we indeed have E[

√
|Ni|] ≥ exp(−O(k))

√
deg(i) as needed to

complete the proof of (5.6). This follows from the well known fact that E[
√

Binomial(d, p)] ≥
Ω(min(

√
dp, dp)). (Alternatively, this follows from the fact that A1 + · · ·+ Adi is at least its ex-

pectation di2−k+1 with probability at least exp(−O(k)), by Fact 2.3. Here we would use that the
Aj’s are degree-(k− 1) functions of independent random bits defining (F, G)). The proof is com-
plete.

Remark 5.2. Regarding the issue of algorithmically obtaining the medians in the above proof: In
fact, we claim it is unnecessary for the algorithm to compute the median θj of each Qj precisely.
Instead, our algorithm will (with high probability) compute a number θ̃j and a probabilistic way
of defining sgn(0) ∈ {±1} such that, when xj is defined to be sgn(Q− θ̃j), we have

∣∣E[xj]
∣∣ ≤ δ,

where δ = 1/ poly(m, n, exp(k)) is sufficiently small. First, let us briefly say why this is sufficient.
The above proof relied on E[xj] = 0 in two places. One place was in the last term of (5.5), where
we used E[xj · θj] = 0. Now in the approximate case, we’ll have |E[xj · θ̃j]| ≤ δm, and by taking
δ appropriately small this will contribute negligibly to the overall theorem. The other place that
E[xj] = 0 was used was in deducing from Claim 5.1.1, that the inactive constraints contributed
nothing to the algorithm’s expected value. When we merely have

∣∣E[xj]
∣∣ ≤ δ (but still have the

independence used in the claim), it’s easy to see from Fourier considerations that each inactive
constraint still contributes at most 2kδ to the overall expectation, and again this is negligible for
the theorem as a whole if δ = 1/ poly(m, n, exp(k)) is sufficiently small. Finally, it is not hard
to show that the algorithm can compute an appropriate θ̃j and probabilistic definition of sgn(0)
in poly(m, n, exp(k)) time (with high probability), just by sampling to find a good approximate
median θ̃j and then also estimating P[Qj = θ̃j] to handle the definition of sgn(0).

Acknowledgments

We thank Scott Aaronson for bringing the paper of Farhi et al. [FGG14] to (some of) the authors’
attention. RO, DW, and JW were supported by NSF grants CCF-0747250 and CCF-1116594. DW
was also supported by the NSF Graduate Research Fellowship Program; JW was also supported
by a Simons Graduate Fellowship. OR, DS, and AV acknowledge the support of the Simons Col-
laboration on Algorithms and Geometry. OR was also supported by NSF grant CCF-1320188. DS
was also supported by a Sloan fellowship, a Microsoft Research Faculty Fellowship, and by the
NSF. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

12

References

[Alo97] Noga Alon, On the edge-expansion of graphs, Combin. Probab. Comput. 6 (1997), no. 2,
145–152. 1

[DFKO07] Irit Dinur, Ehud Friedgut, Guy Kindler, and Ryan O’Donnell, On the Fourier tails of
bounded functions over the discrete cube, Israel J. Math. 160 (2007), 389–412. 2, 6, 7, 8, 9

[FGG14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, A quantum approximate opti-
mization algorithm applied to a bounded occurrence constraint problem, Tech. report, 2014,
arXiv:1412.6062. 2, 12

[Hås00] Johan Håstad, On bounded occurrence constraint satisfaction, Inform. Process. Lett. 74
(2000), no. 1-2, 1–6. 1, 2

[Hås01] , Some optimal inapproximability results, J. ACM 48 (2001), no. 4, 798–859. 1

[HV04] Johan Håstad and S. Venkatesh, On the advantage over a random assignment, Random
Structures Algorithms 25 (2004), no. 2, 117–149. 1

[KN08] Subhash Khot and Assaf Naor, Linear equations modulo 2 and the L1 diameter of convex
bodies, SIAM J. Comput. 38 (2008), no. 4, 1448–1463. 1, 3, 5

[O’D14] Ryan O’Donnell, Analysis of Boolean functions, Cambridge University Press, 2014. 4, 5

[She92] James B. Shearer, A note on bipartite subgraphs of triangle-free graphs, Random Structures
Algorithms 3 (1992), no. 2, 223–226. 1

13

	Introduction
	Recent developments and our work
	Overview of our techniques

	Preliminaries
	A simple proof for Max-3XOR
	A general result for bounded-influence functions
	Triangle-free constraint systems
	References

