New NP-hardness results for 3-Coloring and 2-to-1 Label Cover*

Per Austrinf Ryan O’Donnell* Li-Yang Tan® John Wright¥

July 16, 2013

Abstract

We show that given a 3-colorable graph, it is NP-hard to find a 3-coloring with (% +e¢€) of
the edges bichromatic. In a related result, we show that given a satisfiable instance of the 2-to-1
Label Cover problem, it is NP-hard to find a (23 + ¢)-satisfying assignment.

*A preliminary version of these results appeared as [AOW12]

tDepartment of Computer Science, University of Toronto. Funded by NSERC.

tDepartment of Computer Science, Carnegie Mellon University. Supported by NSF grants CCF-0747250 and
CCF-0915893, and by a Sloan fellowship.

$Department of Computer Science, Columbia University. Work done while visiting CMU.

TDepartment of Computer Science, Carnegie Mellon University.

1 Introduction

Graph coloring problems differ from many other Constraint Satisfaction Problems (CSPs) in that
we typically care about the case of perfect completeness, e.g. when the graph under consideration
is 3-colorable rather than almost 3-colorable. Unfortunately, this means that many of the powerful
tools which have been developed for proving inapproximability results are no longer applicable.
Most prominently, Raghavendra’s [Rag08] optimal inapproximability results for all CSPs, which are
conditioned on the unproven Unique Games Conjecture (UGC), only apply to the case of imperfect
completeness. The UGC states that it is NP-hard to distinguish between nearly satisfiable and
almost completely unsatisfiable instances of Unique, or 1-to-1, Label Cover. As a result, by starting
a reduction with the UGC, one has already lost perfect completeness. Thus, any inapproximability
result for a graph coloring problem must begin with a different unproven assumption, such as
P # NP or Khot’s [Kho02] 2-to-1 Conjecture.

The motivation of this paper is to study both of these assumptions as they relate to the graph
k-Coloring problem, specifically in the & = 3 case. In the k-Coloring problem, the input is a
k-colorable graph G, and the task is to find a k-coloring of the vertices of G which maximizes
the number of bichromatic edges. This problem has previously gone under the names “Max-k-
Colorability” [Pet94] and “Maximum k-Colorable Subgraph” [GS09]. Graph k-Coloring, along with
its many studied variants, is a central problem in Computer Science, and pinning down its exact
approximability is an important open problem. The main result of our paper is an improved
inapproximability result for 3-Coloring, predicated only on P # NP:

Theorem 1.1. For all e > 0, (1, % + €)-deciding the 3-Coloring problem is NP-hard.

Here by (c, s)-deciding a CSP we mean the task of determining whether an instance is at least c-
satisfiable or less than s-satisfiable. In fact, this is the best known hardness result for the 3-Coloring
problem, even assuming conjectures such as the 2-to-1 Conjecture. The previous best NP-hardness
for 3-Coloring was due to Guruswami and Sinop [GS09], who showed a factor %—hardness via
a somewhat involved gadget reduction from the 3-query adaptive PCP result of [GLST98]. In
contrast, the best current algorithm achieves an approximation ratio of 0.836 (and does not need
the instance to be satisfiable) [GWO04]. As for larger values of k, [GS09] construct a reduction which
directly translates hardness results for 3-Coloring into hardness results for k-Coloring, for k£ > 3.
Applying this to our Theorem 1.1 yields

Theorem 1.2. Forallk > 3 and € > 0, it is NP-hard to (1,1— 5

m—i-e)—decide the k-Coloring

problem. Here ¢, = k (mod 3).

This is the best known NP-hardness for k-Coloring. For sufficiently large k, stronger inapprox-
imability results are known to follow from the 2-to-1 Conjecture:

2-to-1 Conjecture ([Kho02]). For every integer € > 0, there is a label set size q such that it is
NP-hard to (1,€)-decide the 2-to-1 Label Cover problem.

In the 2-to-1 Label Cover problem, one is given a bipartite graph G = (UUV, E), a label set [K], and
a 2-to-1 map 7 : [2K] — [K] for each edge e € E. The instance is a-satisfiable if there is a labeling
f:UUV — [2K] such that for at least an a-fraction of the edges e = (u,v), me(f(v)) = f(u).
Guruswami and Sinop [GS09] have shown that the 2-to-1 Conjecture implies that it is NP-hard to
(1,1 — % + O(llr;—f))—decide the k-Coloring problem. This result would be tight up to the O(-) by
an algorithm of Frieze and Jerrum [FJ97]. In a prior result, Dinur, Mossel, and Regev [DMR09]
showed that the 2-to-1 Conjecture implies that it is NP-hard to C-color a 4-colorable graph for

any constant C'. (They also showed hardness for 3-colorable graphs via another Unique Games
variant.) It is therefore clear that settling the 2-to-1 Conjecture is important to the study of the
inapproximability of graph coloring problems.

Interestingly, to a certain extent the reverse is also true: it is “folklore” that hardness results for
graph 3-Coloring immediately imply hardness results for the 2-to-1 Label Cover problem with label
sizes 3 & 6 by a simple “constraint-variable” reduction. Indeed, Theorem 1.1 by itself would give
the best-known NP-hardness for 2-to-1 Label Cover. However, we are able to get an even better
hardness result than this by studying a CSP closely related to 3-Coloring. Our hardness result is:

Theorem 1.3. For alle > 0, (1, % +€)-deciding the 2-to-1 Label Cover problem with label set sizes
3 & 6 is NP-hard.

By duplicating labels, this result also holds for label set sizes 3k & 6k for any & € NT. To
the best of our knowledge, no explicit NP-hardness for this problem has previously been stated in
the literature. Combining the constraint-variable reduction with the above-mentioned 3-Coloring
hardness of [GS09] gives an NP-hardness of (1, % +¢€) for the problem with label sizes 3 & 6, which
we believe to be the best previously known. It is not known how to take advantage of larger label
set sizes. On the other hand, for label set sizes 2 & 4 it is known that satisfying 2-to-1 Label Cover
instances can be found in polynomial time.

Regarding the hardness of the 2-to-1 Label Cover problem, the only evidence we have is a
family of integrality gaps for the canonical SDP relaxation of the problem, in [GKOT10]. Re-
garding algorithms for the problem, an important recent line of work beginning in [ABS10] (see
also [BRS11, GS11, Stel0]) has sought subexponential-time algorithms for Unique Label Cover
and related problems. In particular, Steurer [Stel0] has shown that for any constant 5 > 0 and
label set size, there is an exp(O(n?))-time algorithm which, given a satisfiable 2-to-1 Label Cover
instance, finds an assignment satisfying an exp(—O(1/3?))-fraction of the constraints. E.g., there is
a 200" _time algorithm which (1, sg)-approximates 2-to-1 Label Cover, where sy > 0 is a certain
universal constant.

In light of this, it is interesting not only to seek NP-hardness results for certain approximation
thresholds, but to additionally seek evidence that nearly full exponential time is required for these
thresholds. This can done by assuming the Exponential Time Hypothesis (ETH) [IP01] and by
reducing from the Moshkovitz—Raz Theorem [MR10], which shows a near-linear size reduction
from 3Sat to the standard Label Cover problem with subconstant soundness. In this work, we
show reductions from 3Sat to the problem of (1,s + €)-approximating several CSPs, for certain
values of s and for all € > 0. In fact, though we omit it in our theorem statements, it can be

checked that all of the reductions in this paper are quasilinear in size for e = €(n) = © <7(1 11 5),
oglogn)
for some 8 > 0.

1.1 Our techniques

Let us describe the high-level idea behind our result. The folklore constraint-variable reduction
from 3-Coloring to 2-to-1 Label Cover would work just as well if we started from “3-Coloring with
literals” instead. By this we mean the CSP with domain Z3 and constraints of the form “v; —v; # ¢
(mod 3)”. Starting from this CSP — which we call 2NLin(Z3) — has two benefits: first, it is at
least as hard as 3-Coloring and hence could yield a stronger hardness result; second, it is a bit more
“symmetrical” for the purposes of designing reductions. Finally, having proven a hardness result
for 2NLin, it seems reasonable that it can be modified into a hardness result for 3-Coloring. We
obtain the following hardness result for 2NLin(Z3).

Theorem 1.4. For all € > 0, it is NP-hard to (1, % + €)-decide the 2NLin problem.

As 3-Coloring is a special case of 2NLin(Zs3), [GS09] also shows that (1,22 + €)-deciding 2NLin
is NP-hard for all € > 0, and to our knowledge this was previously the only hardness known for
2NLin(Zs). Further, the 0.836-approximation algorithm for 3-Coloring from above achieves the same
approximation ratio for 2NLin(Z3), and this is the best known [GWO04]. To prove Theorem 1.4,
we proceed by designing an appropriate “function-in-the-middle” dictator test, as in the recent
framework of [OW12]. Although the [OW12] framework gives a direct translation of certain types
of function-in-the-middle tests into hardness results, we cannot employ it in a black-box fashion.
Among other reasons, [OW12] assumes that the test has “built-in noise”, but we cannot afford this
as we need our test to have perfect completeness.

Thus, we need a different proof to derive a hardness result from this function-in-the-middle test.
We first were able to accomplish this by an analysis similar to the Fourier-based proof of 2Lin(Zs)
hardness given in Appendix F of [OW12]. Just as that proof “reveals” that the function-in-the-
middle 2Lin(Zs2) test can be equivalently thought of as Hastad’s 3Lin(Zs2) test composed with the
3Lin(Zs2)-to-2Lin(Z2) gadget of [TSSWO00], our proof for the 2NLin(Z3) function-in-the-middle test
revealed it to be the composition of a function test for a certain four-variable CSP with a gadget.
We have called the particular four-variable CSP 4-Not-All-There, or 4NAT for short. Because it
is a 4-CSP, we are able to prove the following NP-hardness of approximation result for it using a
classic, Hastad-style Fourier-analytic proof.

Theorem 1.5. For all € > 0, it is NP-hard to (1, % + €)-decide the 4NAT problem.

Thus, the final form in which we present our Theorem 1.3 is as a reduction from Label-Cover
to 4NAT using a function test (yielding Theorem 1.5), followed by a 4NAT-to-2NLin(Z3) gadget
(vielding Theorem 1.4), followed by the constraint-variable reduction to 2-to-1 Label Cover. Indeed,
all of the technology needed to carry out this proof was in place for over a decade, but without
the function-in-the-middle framework of [OW12] it seems that pinpointing the 4NAT predicate as
a good starting point would have been unlikely.

Our proof of Theorem 1.1 is similar: we design a function-in-the-middle test for 3-Coloring which
uses the 2NLin(Zs) function test as a subroutine. And though we do not find a gadget reduction
from 3-Coloring to 4NAT, we are able to express the success probability of the test in terms of the
4ANAT test. Thus, there is significant overlap in the proofs of our two main theorems, and we are
able to carry out the proofs simultaneously.

1.2 Organization

We leave to Section 2 most of the definitions, including those of the CSPs we use. The heart of the
paper is in Section 3, where we give the 2NLin(Zs), 3-Coloring, and 4NAT function tests and explain
how they are related. Section 4 contains the Fourier analysis of the tests. The actual hardness proof
for 4NAT is presented in Section 5, and it follows mostly the techniques put in place by Hastad in
[Has01]. Because the hardness proof for 3-Coloring is almost identical, we omit it.

2 Preliminaries

We primarily work with strings x € Zé(for some integer K. We write x; to denote the ith coordinate
of . A d-to-1 map 7 : [dK] — [K] naturally groups strings y € Z3X into K separate “blocks” of
coordinates, the first block being the coordinates in 7=!(1), the second block being the coordinates
in 771(2), etc. Without loss of generality we will be able to assume that 7 is the map where

m(k) =1for 1 <k <d, w(k) =2for d+1 <k < 2d, and so on. In this case, we write y[i] € Z4
for the ith block of y, and (y[i]); € Z3 for the jth coordinate of this block. Thus, if we write y[i]
without having previously specified a map, it is this simple map that we are referring to.

2.1 Definitions of problems

An instance Z of a constraint satisfaction problem (CSP) is a set of variables V', a set of labels D, and
a weighted list of constraints on these variables. We assume that the weights of the constraints are
nonegative and sum to 1. The weights therefore induce a probability distribution on the constraints.
Given an assignment to the variables f : V — D, the value of f is the probability that f satisfies a
constraint drawn from this probability distribution. The optimum of Z is the highest value of any
assignment. We say that an 7 is s-satisfiable if its optimum is at least s. If it is 1-satisfiable we
simply call it satisfiable.

We define a CSP P to be a set of CSP instances. Typically, these instances will have similar
constraints. We will study the problem of (¢, s)-deciding P. This is the problem of determining
whether an instance of P is at least c-satisfiable or less than s-satisfiable. Related is the problem
of (¢, s)-approzimating P, in which one is given a c-satisfiable instance of P and asked to find
an assignment of value at least s. It is easy to see that (c,s)-deciding P is at least as easy as
(¢, s)-approximating P. Thus, as all our hardness results are for (¢, s)-deciding CSPs, we also prove
hardness for (¢, s)-approximating these CSPs.

We now state the four CSPs that are the focus of our paper.

3-coloring: In this CSP the label set is Z3 and the constraints are of the form v; # v;.

2-NLin(Z3): In this CSP the label set is Zg and the constraints are of the form
vi—v; #a (mod3), a€Zs.

The special case when each RHS is 0 is the 3-Coloring problem. We often drop the (Z3) from this
notation and simply write 2NLin. The reader may think of the ‘N’ in 2NLin(Z3) as standing for
‘N’on-linear, although we prefer to think of it as standing for ‘N’early-linear. The reason is that
when generalizing to moduli ¢ > 3, the techniques in this paper generalize to constraints of the
form “v; —v; (mod q) € {a,a + 1}” rather than “v; — v; # a (mod ¢)”. For the ternary version
of this constraint, “v; —vj + v (mod q) € {a,a+ 1}”, it is folklore' that a simple modification of
Hastad’s work [Has01] yields NP-hardness of (1, %)—approximation.

4-Not-All-There: For the 4-Not-All-There problem, denoted 4NAT, we define 4NAT : Z§ —{0,1}
to have output 1 if and only if at least one of the elements of Zs is not present among the four
inputs. The 4NAT CSP has label set D = Z3 and constraints of the form 4NAT (vy + k1, vo + ko, v3 +
ks,vq + kq) = 1, where the k;’s are constants in Zs.

We additionally define the “Two Pairs” predicate TwoPair : Z3 — {0, 1}, which has output 1
if and only if its input contains two distinct elements of Zs, each appearing twice. Note that an
input which satisfies TwoPair also satisfies 4NAT.

Venkatesan Guruswami, Subhash Khot personal communications.

d-to-1 Label Cover: An instance of the d-to-1 Label Cover problem is a bipartite graph G =
(UUV, E), alabel set size K, and a d-to-1 map 7, : [dK] — [K] for each edge e € E. The elements
of U are labeled from the set [K], and the elements of V' are labeled from the set [dK]. A labeling
f:UUV — [dK] satisfies an edge e = (u,v) if w(f(v)) = f(u). Of particular interest is the d = 2
case, i.e., 2-to-1 Label Cover.

Label Cover serves as the starting point for most NP-hardness of approximation results. We
use the following theorem of Moshkovitz and Raz:

Theorem 2.1 ([MR10]). For any € = e(n) > n=°W there exists K,d < 2P°Y(/€) sych that the
problem of deciding a 3Sat instance of size n can be Karp-reduced in poly(n) time to the problem
of (1,€)-deciding d-to-1 Label Cover instance of size n'T°(1) with label set size K.

2.2 Gadgets

A typical way of relating two separate CSPs is by constructing a gadget reduction which translates
from one to the other. A gadget reduction from CSP; to CSPy is one which maps any CSP;
constraint into a weighted set of CSPy constraints. The CSPy constraints are over the same set of
variables as the CSP; constraint, plus some new, auxiliary variables (these auxiliary variables are
not shared between constraints of CSP;). We require that for every assignment which satisfies the
CSP; constraint, there is a way to label the auxiliary variables to fully satisfy the CSPy constraints.
Furthermore, there is some parameter 0 < «v < 1 such that for every assignment which does not
satisfy the CSP; constraint, the optimum labeling to the auxiliary variables will satisfy exactly ~
fraction of the CSPy constraints. Such a gadget reduction we call a y-gadget-reduction from CSPy
to CSPs. The following proposition is well-known:

Proposition 2.2. Suppose it is NP-hard to (c, s)-decide CSPy. If there exists a y-gadget-reduction
from CSPy to CSPs, then it is NP-hard to (¢ + (1 — ¢)y,s + (1 — s)vy)-decide CSP,.

We note that the notation y-gadget-reduction is similar to a piece of notation employed by
[TSSWO00], but the two have different (though related) definitions.

2.3 Fourier analysis on Zg3

Let w = e2™/3 and set Us = {wo, wl,wQ}. For o € Z%, consider the Fourier character x, : Z5 — Us
defined as xqo(z) = w*®. Then it is easy to see that E[xq(x)xs(x)] = 1[a = f], where here and
throughout = has the uniform probability distribution on Z5 unless otherwise specified.. As a
result, the Fourier characters form an orthonormal basis for the set of functions f : Z5 — Us under
the inner product (f, g) = E[f(x)g(x)]; i.e.,

[= Z f(a)XOu

aeZy

n

where the f(a)’s are complex numbers defined as f(a) = E[f(z)xa(z)]. For a € Z%, we use the
notation |«| to denote Y o; and #« to denote the number of nonzero coordinates in . When d is
clear from context and a € Z3¥, define m3(a) € Z& so that (m3(a)); = |afi]] (mod 3) (recall the
notation «[i] from the beginning of this section). We have Parseval’s identity: for every f : Z% — Us
it holds that Zaezg |f(a)]? = 1. Note that this implies that |f(«)| < 1 for all «, as otherwise

|/(«)]? would be greater than 1.

A function f : Z% — 73 is said to be folded if for every x € 7% and ¢ € Zg, it holds that
flz+c) = f(z)+ ¢, where (z + ¢); = x; + ¢. In the case where f’s range is Us, then f is folded if
f(x+c¢)= f(x) w for all x and c.

Proposition 2.3. Let f : 7} — Us be folded. Then f(a) #0 = |a| =1 (mod 3).
Proof. Let a € 7Z% be such that f(a) # 0. Then

A~

f(a) = E[f(ZL' + 1)Xa(93 + 1)} = E[Wf(w)Xa(z)Xa(lv 1,..., 1)} = WXa(la L..., 1)f(04)

This means that wy,(1,1,...,1) must be 1. Expanding this quantity,

wxall1,. 1) = ol (Llenl) — 1-la]

So, |a| =1 (mod 3), as promised. O

2.4 Dictatorship tests

In this paper, we will make use of dictatorship tests, which are a standard tool for proving NP-
hardness of approximation results. Generally speaking, the input of a dictatorship test is two
functions f : Z&X — Zs3 and g : Z3¥ — 73 and a d-to-1 map 7 : [dK] — [K]. As stated before, we
can assume that 7 has a simple form, i.e. 7(k) =1for 1 <k <d, n(k) =2for d+1 <k < 2d, etc.

The goal of a dictatorship test is to distinguish the case when f and g are “matching dictators”
from the case when f and g are “far from matching dictators”. A function f is a dictator if
f(x) = x;, for some i. Furthermore, f and g are matching dictators if f(x) = x;, g(y) = y;, and
7(7) = i. In other words, they are dictators whose dictator coordinates match up according to the
map 7. A property of matching dictators is that both f and g “depend on” certain coordinates,
meaning that these coordinates are important to the output of f and g, and these coordinates
match each other. Thus, f and g are far from matching dictators if there are no coordinates ¢ and
j which f and g depend on, respectively, for which 7(j) = ¢. An example of this is “nonmatching”
dictators, when, say, f(z) = z; and g(y) = yg+1-

To prove hardness for 3-Coloring (i.e., the # constraint), we will construct a dictatorship test
with the following outline: first, the test picks x € Zé(and y € ZgK from some probability
distribution, and checks whether f(x) # g(y). If indeed this is the case, then the test passes, and
otherwise it fails. Generally, if one is interested in showing that (¢, s)-deciding a given problem is
NP-hard, it suffices to construct a test for which matching dictators pass with probability at least
¢ and functions far from matching dictators pass with probability less than s.

We use a variant of this outline proposed in [OW12], in which the test involves a third auxiliary
function h : S — Zs3, where S is some set. We still want to distinguish the cases of f and g¢
being matching dictators and functions far from matching dictators, but now the outline is a little
different: in addition to selecting & and y, we also select from some distribution a string z € S.
Then with some probability we test h(z) # f(x) and with some probability h(z) # g(y). A test
with this outline we refer to as a “function-in-the-middle” test, as h acts as an intermediary between
the functions f and g.

3 3-Coloring and 2NLin tests

In this section, we give our hardness results for 3-Coloring and 2-to-1 Label Cover, following the
proof outlines described at the end of Section 1.1. First, we state a pair of simple gadget reductions:

Lemma 3.1. There is a 3/4-gadget-reduction from 4NAT to 2NLin.
Lemma 3.2. There is a 1/2-gadget-reduction from 2NLin to 2-to-1 Label Cover.

Together with Proposition 2.2, these imply the following corollary:

Corollary 3.3. There is a 7/8-gadget-reduction from 4NAT to 2-to-1 Label Cover. Thus, if it is
NP-hard to (c,s)-decide the 4NAT problem, then it is NP-hard to ((7 + ¢)/8, (7 + s)/8)-decide the
2-to-1 Label Cover problem.

The gadget reduction from 4NAT to 2NLin relies on the simple fact that if a, b, ¢, d € Z3 satisfy the
4ANAT predicate, then there is some element of Zs that none of them are equal to.

Proof of Lemma 3.1. A 4NAT constraint C' on the variables S = (v1, vy, v3,v4) is of the form
ANAT (v1 + k1, v + ka2, v3 + k3, va + ka),

where the k;’s are all constants in Z3. To create the 2NLin instance, introduce the auxiliary variable
yc and add the four 2NLin equations

vi + ki #yc (mod 3), i€ 4] (1)

If f:S — Zs is an assignment which satisfies the 4NAT constraint, then there is some a € Zg
such that f(v;) + k; # a (mod 3) for all i € [4]. Assigning a to yc satisfies all four equations (1).
On the other hand, if f doesn’t satisfy the 4NAT constraint, then {f(vi) + ki}icla) = Zs3, so no
assignment to yo satisfies all four equations. However, it is easy to see that there is an assignment
which satisfies three of the equations. This gives a %—gadget—reduction from 4NAT to 2NLin, which
proves the lemma. O

The reduction from 2NLin to 2-to-1 Label Cover is the well-known constraint-variable reduction,
and uses the fact that in the equation v; — v; # a (mod 3), for any assignment to v; there are two
valid assignments to v;, and vice versa.

Proof of Lemma 3.2. A 2NLin constraint C' on the variables S = (v1, v2) is of the form
v —v2 #a (mod 3),

for some a € Zs3. To create the 2-to-1 Label Cover instance, introduce the variable yo which will
be labeled by one of the six possible functions g : S — Z3 that satisfy C'. Finally, introduce the
2-to-1 constraints yc(v1) = v1 and yo(v2) = va. Here v and vg are treated on the left as inputs to
the function labeling yc and on the right as variables to be labeled with values in Zs.
If f:S — Zs is an assignment which satisfies the 2NLin constraint, then we label yo with f.
In this case,
yC(Ui) :f(Uz‘), i=1,2.

Thus, both equations are satisfied. On the other hand, if f does not satisfy the 2NLin constraint,
then any g which yo is labeled with will disagree with f on at least one of v; or vy. It is easy
to see, though, that a label g can be selected to satisfy one of the two equations. This gives a
%—gadget-reduction from 2NLin to 2-to-1, which proves the lemma. O

3.1 Three tests

Now that we have shown that 2NLin hardness results translate into 2-to-1 Label Cover hardness
results, we present our 2NLin function test. From here, the 3-Coloring function test follows imme-
diately. Finally, we will show how in the course of analyzing the 2NLin test one is lead naturally to
our 4NAT test. This correspondence between the 2NLin test and the 4NAT test parallels the gadget
reduction from Lemma 3.1. The test is:

2NLin Test
; : . K . mdK .
Given folded functions f : Z5 — Zs3, g,h : 25" — Z3:

o Let x € Z? and y € ZgK be independent and uniformly random.

e For each i € [K],j € [d], select (z][i]); independently and uniformly from the elements of

Z3 \ {=i, (y[1]);}-
e With probability 1, test f(x) # h(z); with probability 3, test g(y) # h(z).

z | (0] 2] |~ f

z (21111 (01012 [11010] [2]012] [(L[0[L]|> &

y |(I1210J) (21111 [0[2[1] [01210] [2[1[0]}> ¢

Figure 1: An illustration of the 2NLin test distribution; d =3, K =5

Above is an illustration of the test. We remark that for any given block 4, z[i] determines z;
(with very high probability), because as soon as z[i] contains two distinct elements of Zs, x; must
be the third element of Z3. Notice also that in every column of indices, the input to h always
differs from the inputs to both f and g. Thus, “matching dictator” assignments pass the test with
probability 1. (This is the case in which f(z) = z; and g(y) = (y[i]); for some i € [K], j € [d].) On
the other hand, if f and g are “nonmatching dictators”, then they succeed with only % probability.
This turns out to be essentially optimal among functions f and g without “matching influential
coordinates/blocks”. We will obtain the following theorem:

Theorem 1.4 restated. For all e > 0, it is NP-hard to (1,13 + €)-decide the 2NLin problem.

We would like to use a similar test for our 3-Coloring hardness result, but we can no longer
assume that the functions f, g, and h are folded. This is problematic, as without this guarantee f
and g could both be identically 0 and h could be identically 1, in which case the three functions
would pass the test with probability 1. Since constant functions cannot be decoded to Label Cover
solutions, we would like to prevent this from happening. Thus, we will add “folding tests” to force
f and g to look folded. Having ensured this, we are free to run the 2NLin test without worry. The
test is:

3-Coloring Test

Given functions f : ZE — Zs, g, h : 74K — Z:
o Let x € ZX and y € ZgK be independent and uniformly random.
e With probability %, test f(x) # f(x + 1); with probability 1%, test g(y) # g(y + 1).

e With the remaining % probability, run the “non-folded” version of the 2NLin test on f, g,
and h.

Here, by the “non-folded” version of the 2NLin test, we mean the test which is identical to the
2NLin test, only it does not assume f, g, and h are folded. If f and g are matching dictators, then
they always pass the folding tests, so as before they succeed with probability 1. If on the other hand
f and g are nonmatching dictators, then they also always pass the folding tests, so they succeed
with probability - 1= —|— }% = %—(75. Just as before, this turns out to be basically optimal among
functions without matchlng influential coordinates:

Theorem 1.1 restated. For all € > 0, it is NP-hard to (1, %g + €)-decide the 3-Coloring problem.

Let us further discuss the 2NLin test. Given «, y, and z from the 2NLin test, consider the fol-
lowing method of generating two additional strings ¥/, y" € Z4% which represent h’s “uncertainty”
about y. For j € [d], if #; = (y[i]);, then set both (y[7]); and (y”[]); to the lone element of
Zs3 \ {xi, (z[i]);}. Otherwise, set one of (y[i]); or (y”"[i]); to @;, and the other one to (y[i]);. It
can be checked that TwoPair(x;, (y[i]);, (¥'[i]);, (y"[i]);) = 1, a more stringent requirement than
satisfying 4NAT. In fact, the marginal distribution on these four variables is a uniformly random
assignment that satisfies the TwoPair predicate. Conditioned on x and z, the distribution on 4’ and
y” is identical to the distribution on y. To see this, first note that by construction, neither (y'[i]);
nor (y"[i]); ever equals (z[i]);. Further, because these indices are distributed as uniformly random
satisfying assignments to TwoPair, Pr[(y'[i]); = z;] = Pr[(y"[i]); = z;] = %, which matches the
corresponding probability for y. Thus, as y, ¥/, and y” are distributed identlcally, we may rewrite
the test’s success probability as:

[f, g, and h pass the 2NLin test] = 1 Pr[f(z) # h(z)] + 2 Prlg(y) # h(z)]
Pr(f(x) # h(z)],
o] Prlow) £ 002)]
Prig(y’) # h(z)],
Prlg(y”) # h(z)]
< 3+ TBIANAT((@),9(0). 0 0] ()

This is because if 4NAT fails to hold on the tuple (f(x), g(y),9(y'),9(y")), then h(z) can disagree
with at most 3 of them.

At this point, we have removed h from the test analysis and have uncovered what appears to be
a hidden 4NAT test inside the 2NLin test: simply generate four strings x, ¥, v’, and y” as described
earlier, and test 4NAT(f(x),9(y),9(y’),9(y")). With some renaming of variables, this is exactly
what our 4NAT test does:

ANAT Test
Given folded functions f : ZL — 73, g : 745 — 7Zs:

e Let x € ZX be uniformly random.

e Select y, z,w as follows: for each i € [K|,j € [d], select ((y[i]);, (2[i]);, (w[i]);) uniformly at
random from the elements of Zs satisfying TwoPair(x;, (y[i]);, (2[i]);, (w[i]);).

o Test 4ANAT(f(x),9(y),9(2), g(w)).

z | [0 2] = f

y |[(I1210J) (21111] [0[2[1] [01210] [2[1[0]f> ¢

I\

([[01212] [21210] (011[2] [0[210] [0[I[2]}~> ¢

w [[(11012] (11210 [(21111] (LIL[1] [(0[2[0]}» ¢

Figure 2: An illustration of the 4NAT test distribution; d =3, K =5

Above is an illustration of this test. In this illustration, the strings z and w were derived
from the strings in Figure 1 using the process detailed above for generating y’ and y”. Note that
each column is missing one of the elements of Zs, and that each column satisfies the TwoPair
predicate. Because satisfying TwoPair implies satisfying 4NAT, matching dictators pass this test
with probability 1. On the other hand, it can be seen that nonmatching dictators pass the test with
probability % This is basically optimal among functions with no matching influential coordinates:

Theorem 1.5 restated. For all € > 0, it is NP-hard to (1, % + €)-decide the 4NAT problem.

Unfortunately, it is not clear if there is a similar gadget reducing 3-Coloring to 4NAT, or to
any other simple 4CSP for that matter. However, by using Equation (2), we can still reduce the
analysis of the 3-Coloring test to analyzing the 4NAT test:

1 4
Pr(f, g, and h pass the 3-Coloring test] <— -ps + — - py

R TACANT:
v <2 + iE[4NAT(f(CC),g(y),g(z),g(w))]> 3

Here py and p, are the probabilities that f and g pass the folding test, respectively, and x, y,
z, and w are distributed as in the 4NAT test. This equation will be the focus of our 3-Coloring
soundness proof.

(As one additional remark, our 2NLin test is basically the composition of the 4NAT test with
the gadget from Lemma 3.1. In this test, if we instead performed the f(x) # h(z) test with
probability % and the g(y) # h(z) test with probability %, then the resulting test would basically
be the composition of a 3NLin test with a suitable 3NLin-to-2NLin gadget.)

4 Fourier analysis
Let w = €2™/3 and set Us = {w?, w' w?}. In what follows, we identify f and g with the functions
w! and w9, respectively, whose range is Us rather than Zs. Set L = dK. Define

Dec(fg) = 3 |fms(@)]- g (1/2)#.
oz (a)#0

This quantity corresponds to the “decodable” part of f and g. This section is devoted to proving
the following two lemmas:

Lemma 4.1. Let f : Zé(— Us and g : Zé — Us be folded. Then the probability f and g pass the
4NAT test is at most % + %Dec(f,g).

10

Lemma 4.2. Let f: Zé(—Us and g : Z§ — Us. Then the probability f and g pass the 3-Coloring
test is at most % + %Dec(f, g)-

After some preliminary work, the proofs of these lemmas can be found in Sections 4.1 and 4.2,
respectively. Having proven these, our hardness results follow immediately from a standard appli-
cation of Hastad’s method. See Section 5 for details.

The first step is to “arithmetize” the 4NAT predicate. It is not hard to verify that

5 1 1 1
4NAT (a1, az, a3, a4) = 9 + 9 Zwa’iwaj ~ 9 Z Wiy — 5 Z %% gk
i#] i<j<k i<j<k
5 2 ai—ai] 2 o ap
:§+§Z%[W wJ]—§Zg%[w w w].

1<j 1<j<k

Here, if ¢ is a complex number, we use R[c|] to denote the real part of ¢ (we will frequently omit
the brackets). This expansion can be computed by interpolation. Using the symmetry between y,
z, and w, we deduce that

E[4NAT(f(x), 9(y), 9(2), g(w))]
=5+ SRE[f(2)9(y)] + 3R E[g(y)g(2)] — RE[f(2)9(y)g(2)] — $RE[g(y)g(2)g(w)]. (4)
To analyze this expression, we will need the following lemma:

Lemma 4.3. Let a € Z3, B, € Z4%, and i and j be such that 7(j) =i. Then

N#Bi 2a8; .
E |w%Yit%i | g = a} _) (=3)"w i if By =,
Y,z 0 otherwise.

Proof. Conditioned on x; = a, the distribution on the values for (y;,2;) is uniform on the six
possibilities (a,a + 1), (a,a+2), (a+1,a), (a+1,a+1), (a+2,a), and (a+2,a +2). If 5; = ~;,
then the expectation equals E[w?®it%) | x; = a]. As either y; +2z; = 2a+ 1 (mod 3) or
Y; + 2; = 2a+ 2 (mod 3), each with probability half, this is equal to

i 28; #5;
% (wﬁj@aﬂ) N wﬁj(2a+2)) _ Ww%ﬁj _ <_;> 7 208

On the other hand, if 3; # ~;, then either only one of §; or 7; is zero, or neither is zero, and
v; = —fB; (mod 3). In the first case, the expectation is either E[w®¥% | z; = a] or E[w% | 2; = d
for a nonzero B; or a nonzero v;, respectively. Both of these expectations are zero, as both y; and
z; are uniform on Z3. In the second case,

E[WiYiti%i | g = o] = BlwYi~P%i | 2; =
=EWWi=%) | z; = q),
which is zero, because j; is nonzero and y; — z; is uniformly distributed on Zs. O

Now we use this to find an expression for a general form of the E[f(x)g(y)g(z)] term:

Lemma 4.4. Let f; : Z? — R and g1, 92 : Zé — R. Then

. 1\ #o
BlA@AWeE] = 3 An@n@an0 (-5)

2
aEZé

11

From this, we can derive the following two corollaries:

Corollary 4.5. Let g : Z3% — R. Then

a:lafi]|=0 Vi

Proof (assuming Lemma 4./). Set fi =1, g1 = g, and g2 = g. The only nonzero Fourier coefficient
of f1is f1(0) = 1, and the only elements o € Z% for which 73(a)) = 0 are those where |a[i]| = 0 for
all . Apply Lemma 4.4 to these three functions:

- #o
Elgy)g(z)] = Y d(a)da(a) <—;> .

o:|efd]|=0 Vi

Since g1 () = g(a), it remains to show that gs(a) = g(—«), and this is true because

92(a) = Elg2(¥)xa(¥)] = Elg(¥)xa(¥)] = Elg(¥)x—a(¥)] = Elg(¥)x—a(y)] = §(-a),

where the third equality follows from yg(2) = wf=* = w™ 7% = y_5(2). O

Corollary 4.6. —RE[f(2)g(y)g(2)] < Dec(f,) + | F(0)] Cniraer—o [§()? - (1/2)72

Proof (assuming Lemma 4./). Applying Lemma 4.4 to f, g, and g:

) 1\ #o
CRE[f(@)g@)a(z)] = R Y Flrs(a))i(a)? (—)

2
ané
< D If(ms(@)]-1g(@)? - (1/2)%
an%
—Dec(f.q)+ S 1FO)-13(a) - (1/2)# =

a:m3(a)=0
We now prove Lemma 4.4.

Proof of Lemma /.4. Begin by expanding out E[f1(x)g1(y)g2(2)]:
E[fi(z)g1(y)g2(2)] = Z F1(@)51(8)52(7) Elxa(®)x5(y)x(2)]. (5)

a€Zf prerk

We focus on the products of the Fourier characters:

E[xa(@)xs¥)x+(2)] = [] Elxa: (@) xs9li])xyp (2[i])] (6)
1€[K]

We can attend to each block separately:

E X, ()31 (y i) (2[0])] = B [wor = vl li21]

B |w®e [wﬁjijF’szj ‘ T =a . (7)

()

12

Lemma 4.3 tells us that the expectation (x) is zero if 5; # 7;. Thus, if Equation (6) is to be
nonzero, it must be the case that § = +. If this is the case, then we can rewrite Equation (7) as

I\ #8) 1\ #811 |
G (2> Wi | —E <2> (air2lBlibal

Jim(§)=i
If a; + 2|[é]| is nonzero, then the entire expectation is zero because a, the value of x;, is uniformly
random from Zs. On the other hand, if «; +2|8[i]] is zero, then the expectation is just the constant
(—1/2)#8l]. Note that oy 4 2|B[i]| is zero if and only if a; = |S[i]| (mod 3). This occurs for all
i € [K] exactly when a = m3(/3). Thus, Equation (6) is nonzero only when o = 73() and 5 = 7,

in which case it equals
1\ #58
6)=|(—= .
©=(-3)

. L
0= ¥ hm@n@in (-5) - s

ané

We may therefore conclude with

4.1 4NAT Analysis
In this section we prove Lemma 4.1.

Proof of Lemma 4.1. In the 4NAT test, we may assume that f and g are folded, which immediately
implies that E[f(x)g(y)] = 0. This is because and y are independent, and hence

E[f(z)g(y)] = E[f(z)| Elg(y)] = 0-0

since f and g are folded. Next, folding also implies that E[g(y)g(z)] = 0. To see this, first note
that for any « for which |a[i]| = 0 for all ¢, we have that || = 0. Thus, any such o must satisfy
g(a) = 0, as Proposition 2.3 implies that g(a’) # 0 only when |o/| = 1. This means the sum in
Corollary 4.5 must be zero, which implies that E[g(y)g(z)] = 0 as well.

Equation (4) has now been reduced to

(4) = § — SRE[f(x)9(y)9(2)] — FRE[g(y)g(2)g(w)]. (8)

As g(y)g(z)g(w) is always in Us, RE[g(y)g(z)g(w)] is always at least —%. Therefore,

2 2
(5) < 2 — BRE[f@)ow)o(=)] = - + 2Dec(f.g). 0
using Corollary 4.6 and the fact that f(0) = 0 by folding. This proves Lemma 4.1. O

4.2 3-Coloring Analysis

In this section we prove Lemma 4.2.

Proof of Lemma 4.2. The analysis of the 3-Coloring test is more involved, mainly because we can
no longer assume either of the functions are folded. Instead, we upper-bound these terms with
expressions involving the empty coefficients f (0) and g(0), which, when large, cause the folding
tests to fail with high probability. In addition, the analysis of the 3-Coloring test also involves
analyzing the folding tests on f and g, and it is with these that we start.

For a function fi : Z§ — Us, define EVEN(f1) = }_ . 0j=0 | f1()]2.

13

Lemma 4.7. Pr[f(xz) # f(x +1)] =1 — EVEN(f).
Note that Pr[f(x) # f(x + 1)] is exactly the probability that f passes the folding test.

Proof. 1t is easy to see that Pr[f(z) # f(z +1)] = 2 (1 —RE[f(x)f(x + 1)]) Expanding the
expectation,

E[f(x)f(z+1)] =) f(2) /() Elxa(@)xs(x +1)]

[0}

=" (@) B [xal@)xa@)e]
B

=S

Since E[xa(z)xs(®)] = 1[a = 8], this equals 3, | f(a)[>w~1°l. Taking the real part,
59 o 1 ~
R2_I7Pe *l=EVEN(f) - 5 %Om?
— EVEN(f) — %(1 _EVEN(f)) = gEVEN(f) - %

Thus, the probability of passing the folding test is % (— %EVEN(f) + %) =1— EVEN(f). O

Now we focus on the E[4NAT(---)] term. Let us upper-bound the terms in Equation (4) from
left to right. First,

Proposition 4.8. RE[f(x)g(y)] < 1(I7(0)[2 + [3(0)2).

Proof. By the independence of « and y, E[f(x)g(y)] = E[f(z)] - E[g(y)] = f(0)§(0). Then,

(IF () +1g(0)*),

N

R1(0)5(0) < |£(0)] - 1(0)] <
using the fact that 2ab < a? + b? for all real numbers a and b. O

Next,
Lemma 4.9. RE[g(y)g(z)] < EVEN(g).

Proof. From Corollary 4.5,

_ #Ha #ao
RE[g(y)g(z)] =R > g(a)g(—a)(_;> < ¥ !@(O‘)Hé(—a)!(;) '

a:|efd]|=0 Vi o:|ald]|=0 Vi

By Cauchy-Schwarz, this is at most

JMZ |g<a>|2(2> J 3 |g<—a>|z(2> _ oy |g(a)|2<2> |

[1]|=0 Vi o:lafi]|=0 Vi o:lafi]|=0 Vi

which is clearly at most 3, |g(a)]? = EVEN(g). O

Next,
Lemma 4.10. —RE[f(2)g(y)g(2)] < [f(0)| - (}|6(0)[* + {EVEN(g)) + Dec(f, 9).

14

Proof. By Corollary 4.6,
~RE[f(2)9(y)g9(2)] < Dec(f,9) +|fO)) > [g(a)- (1/2)%.

a:ma(a)=0

Consider the sum .. ,)=o |g(a)|? - (1/2)#. The only time that #a = 0 is when a = 0. In
addition, no o with #a = 1 contributes to the sum, because such an « cannot satisfy m3(a) =0
(one of its coordinates must be 1 or 2). Thus, the sum is upper-bounded by

. 1 . R 1 R
19(0)* + 1 > la@)P <190)] + 1 > Jgla)?
a:m3(a)=0 |ae|=0
. 1 R 3 . 1
= [§(0)* + 3 (EVEN(g) ~ [§(0)%) = {13(0)|* + ;EVEN(g).
This concludes the lemma. O

For the last term, we use the following bound:

Lemma 4.11. —RE[g(y)g(2)g(w)] < 3 — 3RE[g(y)g(2)].

Proof. By the symmetry of y, z, and w,

1 3 —— 1 1 — — —

5~ o REl(Y)g(2)] = 5 - S E | Rg(y)g(2) + Rg(z)g(w) + Rg(w)g(y) | - (10)

We will show that —RE[g(y)g(z)g(w)] is less than or equal to the right-hand side of Equation (10).
In fact, we will show this for every outcome ¢(y), g(z), g(w) € Us. If g(y), g(2), and g(w) are all the
same, then —Rg(y)g(z)g(w) = —1, and the RHS of Equation (10) is —1 as well. If two of g(y), g(2),
and g(w) are the same and one is different, then —Rg(y)g(z)g(w) = 1/2, and the RHS of Equa-
tion (10) is 1/2 as well. Finally, if g(y), g(2), and g(w) are all different, then —Rg(y)g(2)g(w) = —1,
and the RHS of Equation (10) is 5/4. These are the only cases, so the inequality holds. O

By first applying Lemma 4.11, we may upper-bound Equation (4) with
5+ ERE[f(2)9(y)] + sRE[g(y)g(2)] — SRE[f()g(y)g(2)]-

Substituting Proposition 4.8 and Lemmas 4.9 and 4.10 into this equation and performing some
arithmetic yields

2 2 1, 1. 1o 1 |f(0
B[ANAT()] < = + 2Dec(f.) + 5| FOF + 3[9O) + 51F(0)1§(0) + EVEN(9) (3 - ‘6)') .
By plugging this bound into Equation (3), applying Lemma 4.7, and performing more arithmetic,
we can upper bound the probability that f and g pass the 3-Coloring test by

1 3 1fO\ 1 e 1o 3 a2 16
~ —EVEN(f)—EVEN(q) | = - LX) 4 — - = ‘D =

EVEN(f)~EVEN(o) (17 S FOP = 1a(0) P4 FO13(0) P+ o Dec(f,6)+ 12
Note that because 0 < |f(0)] < 1, the coefficient of EVEN(g) is always negative. Thus, we may
bound ~EVEN(f) and —EVEN(g) by —|f(0)|? and —|§(0)|?, respectively, resulting in a total upper
bound of

2 /o4 2 16

= (1F 0130 - [3(0)) + =D =2,

= (1FO)113(0)F = 13(0)[?) + +=Dec(f.9) +
The leftmost term is always at most zero, so this is at most %Dec(fi9)+ i—g, the expression claimed
in Lemma 4.2. O]

15

5 Hardness of 4NAT

In this section, we show the following theorem:

Theorem 1.5 (detailed). For all € > 0, it is NP-hard to (1, % + €)-decide the 4NAT problem. In
fact, in the “yes case”, all 4NAT constraints can be satisfied by TwoPair assignments.

Combining this with Lemma 3.1 yields Theorem 1.4, and combining this with Corollary 3.3
yields Theorem 1.3. It is not clear whether this gives optimal hardness assuming perfect complete-
ness. The 4NAT predicate is satisfied by a uniformly random input with probability g, and by the
method of conditional expectation this gives a deterministic algorithm which (1, 8)—approximates
the 4NAT CSP. This leaves a gap of % in the soundness, and to our knowledge there are no better
known algorithms.

On the hardness side, consider a uniformly random satisfying assignment to the TwoPair predi-
cate. It is easy to see that each of the four variables is assigned a uniformly random value from Zg,
and also that the variables are pairwise independent. As any satisfying assignment to the TwoPair
predicate also satisfies the 4NAT predicate, the work of Austrin and Mossel [AM09] immediately
implies that (1 — e, 8 + €)-approximating the 4NAT problem is NP-hard under the Unique Games
conjecture. Thus, if we are willing to sacrifice a small amount in the completeness, we can improve
the soundness parameter in Theorem 1.5. Whether we can improve upon the soundness without
sacrificing perfect completeness is open.

We now arrive at the proof of Theorem 1.5. The proof is entirely standard, and proceeds by
reduction from d-to-1 Label Cover. A nearly identical proof gives Theorem 1.1, which we omit. The
proof makes use of our analysis of the 4NAT test, which is presented in Section 4. One preparatory
note: most of the proof concerns functions f : Z§< — Zs3 and g : ZgK — Z3. However, we will
also be making use of Fourier analytic notions defined in Section 2.3, and this requires dealing with
functions whose range is Uz rather than Zs. Thus, we associate f and g with the functions w/
and w9, and whenever Fourier analysis is used it will actually be with respect to the latter two
functions.

Proof. Let G = (UUYV, E) be a d-to-1 Label Cover instance with alphabet size K and d-to-1 maps
Te : [dK] — [K] for each edge e € E. We construct a 4NAT instance by replacing each vertex
in G with its Long Code and placing constraints on adjacent Long Codes corresponding to the
tests made in the 4NAT test. Thus, each u € U is replaced by a copy of the hypercube Zé(and
labeled by the function f, : Z? — Zs3. Similarly, each v € V is replaced by a copy of the Boolean
hypercube ZgK and labeled by the function g, : ZgK — Zs. Finally, for each edge {u,v} € E, a
set of 4NAT constraints is placed between f, and g, corresponding to the constraints made in the
4ANAT test, and given a weight equal to the probability the constraint is tested in the 4NAT test
multiplied by the weight of {u,v} in G. This produces a 4NAT instance whose weights sum to 1
which is equivalent to the following test:

e Pick an edge e = (u,v) € E uniformly at random.
e Reorder the indices of g, so that the kth group of d indices corresponds to 7, (k).
e Run the 4NAT test on f, and g,. Accept iff it does.

Finally, we enforce folding in the standard way: for each u € U, for each x € Zf , We group
together the three vertices in the hypercube corresponding to x, x 4+ 1, and = + 2. Choose one
of these arbitrarily (say,). Now, whenever the 4NAT test would query the value of f,(z + ¢),
it instead queries the value of f,(x) and adds ¢ to the answer. This is permissible, as the 4NAT

16

constraint allows for constant shifts in each of its coordinates. The same modification done to the
gy’s will ensure all functions appear folded to the 4NAT test.

Completeness If the original Label Cover instance is fully satisfiable, then there is a function
F :UUV — [dK] for which val(F) = 1. Set each f, to the dictator assignment f,(z) = p(,)
and each g, to the dictator assignment g,(y) = yp(,). Let e = {u,v} € E. Because I satisfies the
constraint me, F'(u) = me(F(v)). Thus, f, and g, correspond to “matching dictator” assignments,
and above we saw that matching dictators pass the 4NAT test with probability 1. As this applies
to every edge in F, the 4NAT instance is fully satisfiable.

Soundness Assume that there are functions { f, }uer and {g, }vey which satisfy at least a % +€
fraction of the 4NAT constraints. Then there is at least an ¢/2 fraction of the edges e = {u,v} € F
for which f, and g, pass the 4NAT test with probability at least % +€/2. This is because otherwise
the fraction of 4NAT constraint satisfied would be at most

2/\372) 2"/ 3T 3 437"
Let E’ be the set of such edges, and consider {u,v} € F’. Set L = dK. By Lemma 4.1,
2 2 A o [\
< Pr|[f, and g, pass the 4NAT test] < 3 + 3 Z ’fu(7r3(oz)) |Gv ()] 5 ,
cums(a)#0

@MQH2<;>#Q- (11)

= 1. The function g, therefore induces a probability

s
3

N

meaning that

fL(W3(a))

3e
TS 2
a:m3(a)#0

Parseval’s equation tells us that Zag% |90 (a)|?

distribution on the elements of Z%. As a result, we can rewrite Equation (11) as

Yem fum(a))\(;)#auw)#m]- (12

[e7

As previously noted, |fu(m3(c))| is less than 1 for all @, so the expression in this expectation is
never greater than 1. We can thus conclude that

] (3) st 201> ‘“’;]

GOOD,,

as otherwise the expectation in Equation (12) would be less than 3e/4. Call the event in the
probability GOOD,. When GOOD,, occurs, the following happens:

o [fulms(@))P = 9¢2 /64
o #a <logy(8/3e).
e m3(a) # 0. As a result, #a > 0.

17

This suggests the following randomized decoding procedure for each u € U: pick an element
B € ZX with probability | fu(B)2 and choose one of its nonzero coordinates uniformly at random.
Similarly, for each v € V, pick an element o € Z% with probability |g,(a)|? and choose one of its
nonzero coordinates uniformly at random. In both cases, nonzero coordinates are guaranteed to
exist because all the f,’s and g,’s are folded.

Now we analyze how well this decoding scheme performs for the edges e = {u,v} € E' (we
may assume the other edges are unsatisfied). Suppose that when the elements of fo and Z% were
randomly chosen, g,’s set @ was in Good,, and f,’s set 5 equals m3(«). Then, as #a < log,y(8/3¢),
and each label in 73(«) has at least one label in @ which maps to it, the probability that matching
labels are drawn is at least 1/logy(8/3¢€). Next, the probability that such an o and 5 are drawn is

A €2 €2 € €3
> @)@l > 5 S @l > o =

aeGOOD acGOOD - 648 512

Combining these, the probability that this edge is satisfied is at least 27¢3/5121og,(8/3¢). Thus,
the decoding scheme satisfies at least

2763 |E| 27¢*

-_ >
5121og,(8/3¢) |E| — 10241og,(8/3¢)

fraction of the Label Cover edges in expectation. By the probabilistic method, an assignment to

the Label Cover instance must therefore exist which satisfies at least this fraction of the edges.
We now apply Theorem 2.1, setting the soundness value in that theorem equal to O(€®), which

concludes the proof.]

Acknowledgments. We would like to thank an anonymous reviewer, whose close reading and
comments led to a simplification of the proof of Lemma 4.11.

References

[ABS10] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for Unique
Games and related problems. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science, pages 563-572, 2010. 1

[AMO9] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise
independence. Computational Complexity, 18(2):249-271, 2009. 5

[AOW12] Per Austrin, Ryan O’Donnell, and John Wright. A new point of NP-hardness for 2-to-1
Label-Cover. In Proceedings of the 15th Annual International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization Problems, pages 1-12, 2012. x

[BRS11] Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite pro-
gramming hierarchies via global correlation. In Proceedings of the 52nd Annual IEEE
Symposium on Foundations of Computer Science, 2011. 1

[DMRO09] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate
coloring. SIAM Journal on Computing, 39(3):843-873, 2009. 1

[FJ97] Alan Frieze and Mark Jerrum. Improved approximation algorithms for MAX k-CUT
and MAX BISECTION. Algorithmica, 18(1):67-81, 1997. 1

18

[GKO™10] Venkatesan Guruswami, Subhash Khot, Ryan O’Donnell, Preyas Popat, Madhur Tul-

[GLSTOS]

[GS09]

[GS11]

[GW04]

[Has01]

[IPO1]

[Kho02]

[MR10]

[OW12]

[Pet94]

[Rag08]

[Stel0]

[TSSW00]

siani, and Yi Wu. SDP gaps for 2-to-1 and other Label-Cover variants. In Proceedings of
the 37th Annual International Colloquium on Automata, Languages and Programming,
pages 617-628, 2010. 1

Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca Trevisan. A tight
characterization of NP with 3 query PCPs. In Proceedings of the 39th Annual IEEE
Symposium on Foundations of Computer Science, pages 817, 1998. 1

Venkatesan Guruswami and Ali Kemal Sinop. Improved inapproximability results for
Maximum k-Colorable Subgraph. In Proceedings of the 12th Annual International Work-
shop on Approzimation Algorithms for Combinatorial Optimization Problems, pages
163-176, 2009. 1, 1, 1, 1, 1.1

Venkatesan Guruswami and Ali Sinop. Lasserre hierarchy, higher eigenvalues, and ap-
proximation schemes for quadratic integer programming with PSD objectives. In Pro-
ceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science,
2011. 1

Michel Goemans and David Williamson. Approximation algorithms for MAX-3-CUT
and other problems via complex semidefinite programming. Journal of Computer &
System Sciences, 68(2):442-470, 2004. 1, 1.1

Johan Hastad. Some optimal inapproximability results. Journal of the ACM, 48(4):798—
859, 2001. 1.2, 2.1

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367-375, 2001. 1

Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
34th Annual ACM Symposium on Theory of Computing, pages 767775, 2002. 1, 1

Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. Journal of
the ACM, 57(5):29, 2010. 1, 2.1

Ryan O’Donnell and John Wright. A new point of NP-hardness for Unique-Games.
In Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pages
289-306, 2012. 1.1, 1.1, 2.4

Erez Petrank. The hardness of approximation: gap location. Computational Complexity,
4:133-157, 1994. 1

Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages
245-254, 2008. 1

David Steurer. Subexponential algorithms for d-to-1 two-prover games and for certifying
almost perfect expansion. Available at the author’s website, 2010. 1

Luca Trevisan, Gregory Sorkin, Madhu Sudan, and David Williamson. Gadgets, ap-
proximation, and linear programming. STAM Journal on Computing, 29(6):2074-2097,
2000. 1.1, 2.2

19

	Introduction
	Our techniques
	Organization

	Preliminaries
	Definitions of problems
	Gadgets
	Fourier analysis on Z3
	Dictatorship tests

	3-Coloring and 2NLin tests
	Three tests

	Fourier analysis
	4NAT Analysis
	3-Coloring Analysis

	Hardness of 4NAT

