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1 Introduction

The field of Fourier analysis of Boolean functions f : {−1, 1}n → {−1, 1} plays an important role
in many areas of mathematics and computer science, including complexity theory, learning theory,
random graphs, social choice, inapproximability, arithmetic combinatorics, coding theory, metric
spaces, etc. For a survey, see e.g. [17]. One of the most longstanding and important open problems
in the field is the Fourier Entropy–Influence (FEI) Conjecture made by Friedgut and Kalai in
1996 [6]:

Fourier Entropy–Influence (FEI) Conjecture. ∃C ∀f , H[f̂2] ≤ C · I[f ]. That is,∑
S⊆[n]

f̂(S)2 log2
1

f̂(S)2
≤ C ·

∑
S⊆[n]

f̂(S)2|S|.

The quantity H[f̂2] =
∑
f̂(S)2 log 1

f̂(S)2
on the left is the spectral entropy or Fourier entropy of

f . It ranges between 0 and n and measures how “spread out” f ’s Fourier spectrum is. The quantity
I[f ] =

∑
f̂(S)2|S| appearing on the right is the total influence or average sensitivity of f . It also

ranges between 0 and n and measures how “high up” f ’s Fourier spectrum is. (For definitions of
the terms used in this introduction, see Section 2.)

The FEI Conjecture is superficially similar to the well-known Logarithmic Sobolev Inequality [9]
for the Boolean cube which states that Ent[f2] ≤ 2 · I[f ] holds for any f : {−1, 1}n → R, where
Ent[g] = E[g ln g] − E[g] ln E[g]. However note that the FEI Conjecture requires f : {−1, 1}n →
{−1, 1} to be Boolean-valued, and it definitely fails for real-valued f .

1.1 Applications of the conjecture

Friedgut and Kalai’s original motivation for the FEI Conjecture came from the theory of random
graphs. Suppose f represents a monotone graph property with Pr[f(G) = 1] = 1/2 when G ∼
G(v, 1/2) (here n =

(
v
2

)
). If we also consider Pr[f(G) = 1] for G ∼ G(v, p), then the total influence

I[f ] equals the reciprocal of the derivative of this quantity at p = 1/2. Hence the property has
“sharp threshold” if and only if I[f ] is large. Friedgut and Kalai sought general conditions on f
which would force I[f ] to be large. They conjectured that having significant symmetry — and
hence, a spread-out Fourier spectrum — was such a property.

The FEI Conjecture also easily implies the famed KKL Theorem [11]. To see this, first note that
H[f̂2] ≥ H∞[f̂2] = minS{log 1

f̂(S)2
}, the min-entropy of f̂2. Thus the FEI Conjecture is strictly

stronger than the following:

Fourier Min-Entropy–Influence Conjecture ∃C ∀f H∞[f̂2] ≤ C · I[f ]. That is, ∃S ⊆ [n] such that
f̂(S)2 ≥ 2−C·I[f ].

In particular, for balanced f (i.e., E[f ] = 0 = f̂(∅)2) the above conjecture implies there is a
nonempty S with f̂(S)2 ≥ 2−C·I[f ]. Since Inf j [f ] ≥ f̂(S)2 for each j ∈ S we conclude max{Inf i[f ]} ≥
2−C·n·max{Inf i[f ]} whence max{Inf i[f ]} ≥ Ω( 1

C ) · lognn , which is KKL’s conclusion. Indeed, by ap-
plying the above deduction just to the nonempty Fourier coefficients it is straightforward to deduce
I[f ] ≥ 1

C Var[f ] log 1
maxi{Inf i[f ]} , a strengthening of the KKL Theorem due to Talagrand [20]. We

also remark that since Inf i[f ] = f̂({i}) for monotone f , the KKL Theorem implies the Fourier
Min-Entropy–Influence Conjecture holds for monotone functions.

Finally, as emphasized by Klivans and coauthors [8, 14], the FEI Conjecture is also important
because it implies a version of Mansour’s Conjecture from 1994.



Mansour’s Conjecture [15]. ∀ε > 0 ∃K such that if f : {−1, 1}n → {−1, 1} is computable by a
DNF formula with m ≥ 2 terms then by taking S to be the mK sets S for which f̂(S)2 is largest,∑

S 6∈S f̂(S)2 ≤ ε.

In fact, Mansour conjectured more strongly that one may take K = O(log 1
ε ). It is well known [3]

that if f is computed by an m-term DNF then I[f ] ≤ O(logm). Thus the Fourier Entropy–Influence
Conjecture would imply H[f̂2] ≤ C · O(logm), from which it easily follows that one may take
K = O(C/ε) in Mansour’s Conjecture. Mansour’s Conjecture is important because if it is true then
the query algorithm of Gopalan, Kalai, and Klivans [7] would agnostically learn DNF formulas under
the uniform distribution to any constant accuracy in polynomial time. Establishing such a result
is a major open problem in computational learning theory [8]. Further, sufficiently strong versions
of Mansour’s Conjecture would yield improved pseudorandom generators for DNF formulas; see,
e.g., [4, 14] for more on this important open problem in pseudorandomness.

1.2 Prior work

As far as we are aware, the result in [14] showing that the FEI Conjecture holds for random
DNFs is the only published progress on the FEI Conjecture since it was posed. In this subsection
we collect some observations related to the conjecture, all of which were presumably known to
Friedgut and Kalai and should be considered folklore. See also [12] for additional recent discussion
of the conjecture.

The FEI Conjecture holds for “the usual examples” that arise in analysis of Boolean functions
— Parities (for which the conjecture is trivial), ANDs and ORs, Majority, Tribes [1], and Inner-
Product-mod-2. This may be established by direct calculation based on the known Fourier coefficient
formulas for these functions (see [21] for Majority and [16] for Tribes). By considering the AND
and OR functions it is easy to show that the constant C must be at least 4. We can show that
C = 4 is necessary and sufficient for the Tribes functions as well; smaller constants suffice for
Inner-Product-mod-2 and Majority. The authors are also aware of an explicit family of functions
which show the necessity of C ≥ 60/13 ≈ 4.615. For a gross upper bound, it is not too hard to show
that H[f̂2] ≤ (1 + log n) · I[f ] + 1; indeed, this will be shown in the course of the present paper.

The FEI Conjecture “tensorizes” in the following sense: For f : {−1, 1}n → {−1, 1} andM ∈ Z+,
define f⊕M → {−1, 1}Mn → {−1, 1} by f(x(1), . . . , x(M)) = f(x(1))f(x(2)) · · · f(x(M)). Then it’s

easy to check that H[f̂⊕M
2
] = M ·H[f̂2] and I[f ] = M · I[f ]. This is of course consistent with the

FEI Conjecture; it also implies that the following weaker-looking conjecture is actually equivalent
to FEI:

for all f : {−1, 1}n → {−1, 1}, H[f̂2] ≤ C · I[f ] + o(n).

To see the equivalence, given f : {−1, 1}n → {−1, 1}, apply the above to f⊕M , divide by M , and
take the limit as M →∞.

1.3 Our results and approach

In this work, we prove the FEI Conjecture for some classes of Boolean functions.

Theorem 1. The FEI Conjecture holds for symmetric functions, with C = 12.04.

Although the class of symmetric functions is fairly small, there was sentiment that it might be a
difficult case for FEI: for symmetric functions, f̂(S) = f̂(S′) whenever |S| = |S′| and hence their
Fourier spectrum is maximally spread out on each level.



Our proof of Theorem 1 uses the same high-level idea as in the well-known KKL Theorem [11]:
namely, prove a certain inequality for the discrete derivatives Dif of f , and then sum over i. In
our case, the key inequality we need for the derivatives is that they are very noise-sensitive:

Theorem. Let g be a discrete derivative of a symmetric function f : {−1, 1}n+1 → {−1, 1}. Then

for all real 1 ≤ c ≤ n it holds that Stab1− c
n

[g] ≤ 2/
√
π√
c

E[g2].

(For the notation used here, see Section 2.) Having established Theorem 1, it is not too hard to
generalize it as follows:

Theorem 2. The FEI Conjecture holds for d-part-symmetric functions, with C = 12.04 + log2 d.

A d-part-symmetric function is essentially a function with symmetry group of the form Sn1 × · · · ×
Snd

. This theorem also generalizes the folklore fact that FEI holds (up to an additive constant)
with C = O(log n), since every function is n-part-symmetric.

Finally, with an unrelated, direct inductive argument we show the following:

Theorem 3. The FEI Conjecture holds for functions computable by read-once decision trees, with
C = 4.88.

Remark: In independent and concurrent work, the FEI Conjecture was verified for monotone sym-
metric functions (a special case of Theorem 1) and decision lists (a special case of Theorem 3) using
different methods of proof [22].

2 Definitions and notation

We use the notation N = {0, 1, 2, . . . }, Z+ = N \ {0}, and [n] = {1, 2, · · · , n}. Throughout we write
log for log2; for the natural logarithm we write ln. The expressions 0 log 0 and 0 log 1

0 are to be
interpreted as 0.

2.1 Basics of Boolean Fourier analysis

This paper is concerned with Boolean functions f : {−1, 1}n → R, especially Boolean-valued func-
tions f : {−1, 1}n → {−1, 1}. Every Boolean function f has a unique multilinear polynomial rep-
resentation over R,

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi.

This is known as the Fourier expansion of f , and the real numbers f̂(S) are the Fourier coef-
ficients of f . We have the formula f̂(S) = E[f(x)

∏
i∈S xi]. (Here and throughout, expectation

E[·] is with respect to the uniform distribution of x on {−1, 1}n, unless otherwise specified.) In
particular, f̂(∅) = E[f ]. An important basic fact about Fourier coefficients is Parseval’s identity :∑

S⊆[n] f̂(S)2 = E[f(x)2]. A consequence of Parseval is that
∑

S⊆[n] f̂(S)2 = 1 for Boolean-valued

f . Thus the numbers f̂(S)2 can be thought of as a probability distribution on the subsets of [n].
Given f : {−1, 1}n → R and i ∈ [n], we define the discrete derivative Dif : {−1, 1}n → R by

Dif(x) = f(x(i=1))−f(x(i=−1))
2 , where x(i=b) denotes (x1, . . . , xi−1, b, xi+1, . . . , xn). It holds that

D̂if(S) =

{
0 if i ∈ S,

f̂(S ∪ {i}) if i 6∈ S;



i.e,. Di acts on the Fourier expansion as formal differentiation. The influence of i on f is

Inf i[f ] = E[(Dif)2] =
∑
S3i

f̂(S)2.

In the particular case that f is Boolean-valued, the derivative Dif is {−1, 0, 1}-valued and we
have the combinatorial interpretation Inf i[f ] = Pr[f(x(i=1)) 6= f(x(i=−1))]. The total influence of
f : {−1, 1}n → R is

I[f ] =

n∑
i=1

Inf i[f ] =
∑
S⊆[n]

f̂(S)2|S|.

For 0 ≤ ρ ≤ 1, we say that x, y ∈ {−1, 1}n are a pair of ρ-correlated random strings if x is
distributed uniformly randomly on {−1, 1}n and y is formed by setting yi = xi with probability
1
2 + 1

2ρ, yi = −xi with probability 1
2 −

1
2ρ, independently for each i ∈ [n]. We may now define the

noise stability of f at ρ and give its Fourier formula:

Stabρ[f ] = E
x,y ρ-correlated

[f(x)f(y)] =
∑
S⊆[n]

f̂(S)2ρ|S|.

We often stratify the Fourier coefficients into levels; the level of S is simply |S|. We define the
weight of f at level k to be Wk[f ] =

∑
|S|=k f̂(S)2. Thus

I[f ] =

n∑
k=0

Wk[f ] · k, Stabρ[f ] =

n∑
k=0

Wk[f ]ρk.

Finally, given a random variable or probability distribution we write H[·] for its (binary) Shannon
entropy. Hence for f : {−1, 1}n → {−1, 1}, H[f̂2] =

∑
S⊆[n] f̂(S)2 log 1

f̂(S)2
, called the Fourier

entropy, or spectral entropy, of f . Thus the Fourier Entropy–Influence Conjecture may be stated
as follows: there is a universal constant C such that H[f̂2] ≤ C · I[f ] holds for all Boolean-valued
functions f .

2.2 Some Boolean function classes

We will call a function f : {−1, 1}n → R symmetric if it is invariant under any permutation of
the coordinates [n]. Equivalently, f is symmetric if the value of f(x) depends only the Hamming
weight of x, defined to be #{i ∈ [n] : xi = −1}. In this case we may identify f with the function
f : {0, 1, . . . , n} → R whose value at s equals f(x) for any x of Hamming weight s.

We generalize the notion to that of d-part-symmetric functions, d ∈ Z+. We say the function
f : {−1, 1}n → R is d-part-symmetric if there is a partition [n] = V1 ·∪V2 ·∪ · · · ·∪Vd such that f
is invariant under any permutation of the coordinates in any part Vi. Equivalently, f is d-part-
symmetric if its symmetry group is isomorphic to Sn1 × · · · × Snd

for numbers n1 + · · · + nd = n.
Note that a symmetric function is 1-part-symmetric, and every function f : {−1, 1}n → R is n-
part-symmetric.

We also generalize the notion of Fourier “levels” for d-part-symmetric functions. Suppose f
is d-part-symmetric with respect to the partition [n] = V1 ·∪ · · · ·∪Vd, where |Vi| = ni. Then f̂(S)
depends only on the numbers |S ∩ V1|, . . . , |S ∩ Vd|. We consider all possible such sequences

k ∈ {0, 1, . . . , n1} × {0, 1, . . . , n2} × · · · × {0, 1, . . . , nd},



and say that S ⊆ [n] is at multi-level k if |S ∩ Vi| = ki for each i ∈ [d]. We also use the notation

|k| = k1 + k2 + · · ·+ kd, Wk[f ] =
∑

S at multi-level k

f̂(S)2,

so I[f ] =
∑

k Wk[f ] · |k|.
Finally, we recall the definition of decision trees. We may define the notion as follows. We say

that f : {−1, 1}n → {−1, 1} is computable as a depth-0 decision tree if it is constantly −1 or 1. We
inductively say that it is computable as a depth-d decision tree if there is a coordinate i ∈ [n] such
that

f(x) =

{
f0(x) if xi = 1,

f1(x) if xi = −1,

where f0 and f1 are computable by depth-(d− 1) decision trees. We further say that the decision-
tree computation is read-once if f0 and f1 depend on disjoint sets of coordinates and are themselves
inductively read-once.

3 Symmetric and d-part-symmetric functions

In this section we prove Theorems 1 and 2, establishing the FEI Conjecture for symmetric and
O(1)-part-symmetric functions. Although Theorem 2 strictly generalizes Theorem 1, we prefer to
prove Theorem 1 separately and then generalize it afterward.

When f : {−1, 1}n → {−1, 1} is symmetric we have f̂(S)2 = Wk[f ]/
(
n
k

)
whenever |S| = k.

Hence

H[f̂2] =
n∑
k=0

Wk[f ] log
(nk)

Wk[f ]
=

n∑
k=0

Wk[f ] log

(
n

k

)
+

n∑
k=0

Wk[f ] log 1
Wk[f ]

. (1)

Thus Theorem 1 is an immediate consequence of the following two theorems:

Theorem 4. Let f : {−1, 1}n → {−1, 1} be a symmetric function. Then
∑n

k=0 Wk[f ] log
(
n
k

)
≤

C1 · I[f ], where C1 = 1
ln 2(1 + 4

√
2e√
π

) ≤ 9.04.

Theorem 5. Let f : {−1, 1}n → {−1, 1} be any function, not necessarily symmetric. Then∑n
k=0 Wk[f ] log 1

Wk[f ]
≤ 3 · I[f ].

We prove these theorems in the subsequent subsections of the paper, following which we give the
extension to d-part-symmetric functions.

3.1 Theorem 4: Derivatives of symmetric functions are noise-sensitive

We begin with an easy lemma.

Lemma 1. Let p1, . . . , pm be a nonnegative unimodal sequence; i.e., there exists k ∈ [m] such that
p1, . . . , pk is a nondecreasing sequence and pk, . . . , pm is a nonincreasing sequence. Let g : [m] →
{−1, 0, 1} have the property that the sets g−1(−1) and g−1(1) are interleaving. Then |

∑m
i=1 pig(i)| ≤

max{pi}.



Proof. It is without loss of generality to assume that g is never 0; for otherwise, we can restrict
attention to the indices i1 ≤ i2 ≤ · · · ≤ i` where g has value ±1, noting that pi1 , . . . , pi` is still a
unimodal sequence. Now if m ≤ 1 the result is trivial. Otherwise, choose k ∈ [m − 1] such that
at least one of pk, pk+1 equals max{pi}. By negating g if necessary we may assume that g(k) = 1,
g(k + 1) = −1. We complete the proof by showing −pk+1 ≤

∑m
i=1 pig(i) ≤ pk. For the upper

bound, unimodality implies pk+1 ≥ pk+2 ≥ pk+3 · · · ; hence
∑m

i=k+1 pig(i) = (−pk+1 + pk+2) +
(−pk+3 +pk+4)+ · · · ≤ 0 (regardless of whether this ends on −pm or +pm). Similarly, we must have∑k−1

i=0 pig(i) ≤ 0. Combining these, we obtain that
∑m

i=1 pig(i) ≤ pk as claimed. The proof of the
lower bound

∑m
i=1 pig(i) ≥ −pk+1 is similar.

We now show the key theorem stated in Section 1.3 on the noise sensitivity of symmetric
derivatives.

Theorem 6. Let g be a discrete derivative of a symmetric function f : {−1, 1}n+1 → {−1, 1}.
Then for all real 1 ≤ c ≤ n it holds that Stab1− c

n
[g] ≤ 2/

√
π√
c

E[g2].

Proof. Let (x, y) be a (1− c
n)-correlated pair of random strings in {−1, 1}n. We will show that∣∣∣E[g(y) | x]

∣∣∣ ≤ 2/
√
π√
c
, independent of x. (2)

Since g is {−1, 0, 1}-valued, it will follow from (2) that

Stab1− c
n

[g] = E[g(x)g(y)] ≤ 2/
√
π√
c

E[|g(x)|] =
2/
√
π√
c

E[g2],

as required. To show (2) we first observe that given x of Hamming weight s, the Hamming weight t
of y is distributed as the sum of two independent binomial random variables, t1 ∼ Bin(s, 1− c

2n) and
t2 ∼ Bin(n− s, c

2n). Being the sum of independent Bernoulli random variables, it is well known [13]
that t has a unimodal probability distribution. Since g is a derivative of a symmetric Boolean-
valued function, it is itself symmetric; hence we may identify it with a function g : {0, 1, . . . , n} →
{−1, 0, 1}. Further, because f is {−1, 1}-valued, g must have the property that g−1(−1) and g−1(1)
are interleaving subsets of {0, 1, . . . , n}. Thus (2) follows from Lemma 1 assuming that maxi{Pr[t =

i]} ≤ 2/
√
π√
c

. To show this, we may assume without loss of generality that s ≥ n/2. Then

max
i
{Pr[t = i]} ≤ max

i
{Pr[t1 = i]} ≤ 1√

2πs(1− c
2n) c

2n

≤ 1√
2π n2

1
2
c
2n

=
2/
√
π√
c

where the second inequality is the basic estimate maxi{Pr[Bin(m, p)] = i} ≤ 1√
2πmp(1−p)

which

uses Stirling’s formula (see [5, Ch. VII.3]).

We can now give the proof of Theorem 4.

Proof. (Theorem 4.) Using
(
n
k

)
≤ ( enk )k for all 1 ≤ k ≤ n we have

n∑
k=0

Wk[f ] log

(
n

k

)
≤

n∑
k=1

Wk[f ]k log(e) +

n∑
k=1

Wk[f ]k log n
k =

1

ln 2

(
I[f ] +

n∑
k=1

Wk[f ]k ln n
k

)
and hence it suffices to show

n∑
k=1

Wk[f ]k ln n
k ≤

4
√

2e√
π
· I[f ]. (3)



Let g be any derivative of f ; say g = Dnf . By symmetry of f , the right side of (3) is 4
√
2e√
π
·nE[g2].

As for the left side, for k ∈ [n] we have

Wk−1[g] =
∑

S⊆[n−1]
|S|=k−1

ĝ(S)2 =
∑
S⊆[n]

|S|=k,S3n

f̂(S)2 =
k

n
Wk[f ].

Hence the left side of (3) is
∑n

k=1 nWk−1[g] ln n
k . Thus after dividing by n we see that (3) is

equivalent to
n−1∑
k=0

Wk[g] ln
n

k + 1
≤ 4
√

2e√
π
·E[g2]. (4)

Using the approximation lnm+ γ + 1
2m −

1
12m2 ≤

∑m
j=1

1
j ≤ lnm+ γ + 1

2m one may obtain

n−1∑
k=0

Wk[g] ln
n

k + 1
≤

n−1∑
k=0

Wk[g]

n∑
j=k+1

1

j
=

n∑
j=1

1

j

j−1∑
k=0

Wk[g] ≤ exp(12)

n∑
j=1

1

j
Stab1− 1

2j
[g],

where in the last step we used that exp(12)(1 − 1
2j )

k ≥ 1 for all k ≤ j − 1. We may now apply
Theorem 6 with c = n

2j to obtain

n∑
k=0

Wk[g] ln
n

k + 1
≤ exp(12)

n∑
j=1

1

j

2
√

2√
π

√
j√
n
·E[g2] ≤ 4

√
2e√
π
·E[g2],

using
∑n

j=1
1√
j
≤ 2
√
n. Thus we have verified (4) and completed the proof.

3.2 Theorem 5: Spectral level entropy versus influence

In this section we establish Theorem 5. We begin with a well-known fact about “maximum entropy”
which we prove for completeness:

Proposition 1. Let K be a random variable supported on Z+. Then H[K] ≤ E[K].

Proof. For k ∈ Z+ write pk = Pr[K = k], and let G be a Geometric(12) random variable. Then by
the nonnegativity of binary relative entropy,

0 ≤ D(K||G) =

n∑
k=1

pk log pk
(1/2)k

= −H[P ] +

n∑
k=1

pk log(2k) = E[K]−H[K].

We will also need a simple corollary of the edge-isoperimetric inequality for {−1, 1}n.

Proposition 2. Let f : {−1, 1}n → {−1, 1} and write W0[f ] = 1− ε. Then I[f ] ≥ 1
2ε log(1/ε) + ε.

Proof. By negating f if necessary we may assume E[f ] ≤ 0. We think of f as the indicator of a
subset A ⊆ {0, 1}n; the density of this set is p = 1

2 + 1
2 E[f ] = 1

2−
1
2

√
1− ε ≤ 1/2. It follows from the

edge-isoperimetric inequality [10, 19, 2] that I[f ], which is 2−n times the size of A’s edge-boundary,
is at least 2p log(1/p). It is then elementary to check that (1−

√
1− ε) log( 2

1−
√
1−ε) ≥

1
2ε log(1/ε)+ε,

as required.

We can now establish Theorem 5.



Proof. (Theorem 5.) Write W0[f ] = 1− ε. We may assume ε > 0 else the result is trivial. Then

n∑
k=0

Wk[f ] log 1
Wk[f ]

≤

∑
k 6=0

Wk[f ] log 1
Wk[f ]

+ 2ε (as (1− ε) log 1
1−ε ≤

1
ln 2ε ≤ 2ε)

= ε

∑
k 6=0

Wk[f ]

ε
log

ε

Wk[f ]

+ ε log (1/ε) + 2ε

≤ ε

∑
k 6=0

Wk[f ]

ε
· k

+ 2 · I[f ] = 3 · I[f ],

where the last inequality used Propositions 1 and 2.

3.3 Theorem 2: extension to d-part-symmetric functions

We show now how to extend the proof of Theorem 1 to obtain Theorem 2, the FEI Conjecture for
d-part-symmetric functions. Suppose then that f is d-part-symmetric with respect to the partition
[n] = V1 ·∪ · · · ·∪Vd, where |Vi| = ni, and recall the multi-level index notation k from Section 2.2.
Since f̂(S)2 = Wk[f ]/

∏d
i=1

(
ni
ki

)
whenever S is at multi-level k, we have

H[f̂2] =
d∑
i=1

∑
k

Wk[f ] log

(
ni
ki

)
+
∑
k

Wk[f ] log 1
Wk[f ]

,

similarly to (1). Since

I[f ] =
∑
k

Wk[f ] · |k| =
d∑
i=1

∑
k

Wk[f ] · ki

we can prove Theorem 2 by establishing the following two generalizations of Theorems 4 and 5:

Theorem 7. Let f : {−1, 1}V1 ·∪··· ·∪Vd → {−1, 1} be invariant under permutations of the coordinates

in Vi. Then
∑

k Wk[f ] log
(
ni
ki

)
≤ C1 ·

∑
k Wk[f ] · ki, where C1 = 1

ln 2(1 + 4
√
2e√
π

) ≤ 9.04.

Theorem 8. Let f : {−1, 1}V1 ·∪··· ·∪Vd → {−1, 1} be any function, not necessarily with any symme-
tries. Then

∑
k Wk[f ] log 1

Wk[f ]
≤ (3 + log d) · I[f ].

We begin by proving Theorem 7.

Proof. (Theorem 7.) We assume i = d without loss of generality and write Vd = V1 ·∪ · · · ·∪Vd−1. For

y ∈ {−1, 1}Vd we define fy : {−1, 1}Vd → {−1, 1} by fy(z) = f(y, z); the function fy is symmetric
for each y by assumption. Applying Theorem 4 to each fy and then taking expectations we obtain

nd∑
k′=0

E
y

[
Wk′ [fy]

]
log

(
nd
k′

)
≤ C1 ·

nd∑
k′=0

E
y

[
Wk′ [fy]

]
· k′. (5)

Now
E
y

[
Wk′ [fy]

]
=
∑
S⊆Vd
|S|=k′

E
y

[
f̂y(S)2

]
=
∑
S⊆Vd
|S|=k′

∑
T⊆Vd

f̂(T ∪ S)2 =
∑

k : kd=k′

Wk[f ]

where the middle equality is an easy exercise using Parseval. Substituting this into (5) yields the
desired inequality.



As for Theorem 8, its proof is essentially identical to that of Theorem 5, using the following
generalization of Proposition 3:

Proposition 3. Let K be a random variable supported on Nd \ {0} and write L = |K|. Then
H[K] ≤ (1 + log d) E[L].

Proof. Using the chain rule for entropy as well as Proposition 1, we have

H[K] = H[L] + H[K | L] ≤ E[L] +

∞∑
`=1

Pr[L = `] ·H[K | L = `]. (6)

Given L = ` there are precisely
(
`+d−1
d−1

)
possibilities for K; hence

H[K | L = `] ≤ log

(
`+ d− 1

d− 1

)
= ` ·

log
(
`+d−1
d−1

)
`

≤ ` ·
log
(
1+d−1
d−1

)
1

= ` · log d. (7)

The second inequality here follows from the technical Lemma 2 below. The proof is completed by
substituting (7) into (6).

Here we give the technical lemma used in the previous proof.

Lemma 2. For each c ∈ N the function 1
` log

(
`+c
c

)
is a decreasing function of ` on Z+.

Proof. We wish to show that for all ` ∈ Z+,

1
` ln

(
`+c
c

)
≥ 1

`+1 ln
(
`+1+c
c

)
⇔ (`+ 1) ln

(
`+c
c

)
≥ ` ln

(
`+1+c
c

)
⇔

(
`+c
c

)`+1 ≥
(
`+1+c
c

)`
⇔

(
`+c
c

)
≥
[(
`+1+c
c

)
/
(
`+c
c

)]`
⇔

(
`+c
c

)
≥ (1 + c

`+1)`.

This last inequality is easily shown by induction on `: if one multiplies both sides by (1 + c
`+1) one

obtains
(
`+1+c
c

)
≥ (1 + c

`+1)`+1 which exceeds (1 + c
`+2)`+1 as required for the induction step.

4 Proving the conjecture for read-once decision trees

In this section we prove Theorem 3, establishing the Fourier Entropy–Influence Conjecture with
constant C ≤ 4.88 for functions computable by read-once decision trees. We begin with a technical
lemma.

Lemma 3. Let µ0, µ1 ∈ [−1, 1]. Define

g(µ0, µ1) =
(µ0+µ1

2

)2
log
(

2
µ0+µ1

)2
+
(µ0−µ1

2

)2
log
(

2
µ0−µ1

)2
+ 2− µ20

2 log 4
µ20
− µ21

2 log 4
µ21
.

Then
g(µ0, µ1) ≤ C(12 −

1
2µ0µ1) (8)

holds for some universal constant C. The constant C = 4.88 suffices.

Proof. Note that g is unchanged when either of its arguments is negated. Since the right side of (8)
only decreases when µ0 and µ1 have the same sign, we may assume both are nonnegative. By
symmetry we may further assume 0 ≤ µ1 ≤ µ0 ≤ 1. Write µ1 = rµ0 where r ∈ [0, 1]. Simple
manipulation shows that

g(µ0, µ1) = g(µ0, rµ0) = 2− h(r)µ20,



where
h(r) = r2 log 1

r −
1
2(1− r)2 log 1

1−r + 1
2(1 + r)2 log(1 + r).

Thus it remains to show that

2− h(r)µ20 ≤ C(12 −
1
2rµ

2
0) ⇔ (12rC − h(r))µ20 ≤ 1

2C − 2 (9)

holds for all µ0, r ∈ [0, 1] for some C. Assuming we take C ≥ 4, the right side of the second
inequality in (9) will be nonnegative; hence, it holds if and only it holds for µ0 = 1. Putting µ0 = 1
into the first inequality in (9), we see that it suffices for C ≥ 4 to be an upper bound on

`(r) =
2− h(r)
1
2 −

1
2r

.

Plainly, ` is a continuous function on (0, 1) with `(0+) = 0. It is also easy to check that `(1−) = 0.
It follows that ` is uniformly bounded on [0, 1]; i.e., there is a universal C such that `(r) ≤ C for
all r ∈ [0, 1]. Numerically, one may check that `(r) ≤ 4.88.

We may now prove Theorem 3 with C equal to the constant from Lemma 3.

Proof. (Theorem 3.) The proof is by induction on the depth d of the decision tree. In the base
case, d = 0, the function f is constant and so H[f̂2] ≤ C · I[f ] holds trivially. For the general case,
assume without loss of generality that the root of the tree queries coordinate n. Let f0 and f1 be
the subfunctions computed by the xn = 1 and xn = −1 subtrees, respectively. Since the decision
tree is read-once, the functions f0 and f1 depend on disjoint sets of the coordinates from [n − 1],
say J0 and J1. In particular, if we write µi = E[fi] = f̂i(∅) for i = 0, 1, then E[f0f1] = µ0µ1. Also,
f0 and f1 are computable by read-once decision trees of depth d− 1; hence we may later apply the
induction hypothesis to them. Our task is now to prove H[f̂2] ≤ C · I[f ] for f .

For any Boolean function f whose subfunctions based on xn are f0 and f1, it holds that

I[f ] = Infn[f ] + 1
2I[f0] + 1

2I[f1].

In our case, Infn[f ] = Pr[f0 6= f1] = 1
2 −

1
2 E[f0f1] = 1

2 −
1
2µ0µ1. Thus

I[f ] = 1
2 −

1
2µ0µ1 + 1

2I[f0] + 1
2I[f1]. (10)

As for H[f̂2], we have

f(x) =
1 + xn

2
f0(x) +

1− xn
2

f1(x) = 1
2(f0(x) + f1(x)) + 1

2xn(f0(x)− f1(x)).

It follows that the Fourier coefficients of f , which are indexed by S ⊆ J0 ∪ J1 ∪ {n}, are given by

f̂(S) =


1
2(µ0 + µ1) if S = ∅,
1
2(µ0 − µ1) if S = {n},
1
2 f̂i(S) if ∅ 6= S ⊆ Ji,
(−1)i 12 f̂i(T ) if S = T ∪ {n}, ∅ 6= T ⊆ Ji.

Note that for each ∅ 6= S ⊆ Ji, we have the quantity f̂i(S)
2

4 occurring twice in the squared Fourier
spectrum of f . We may therefore compute

H[f̂2] =
(µ0+µ1

2

)2
log
(

2
µ0+µ1

)2
+
(µ0−µ1

2

)2
log
(

2
µ0−µ1

)2
+ 2

∑
i=0,1

∑
∅6=S⊆Ji

f̂i(S)
2

4 log 4

f̂i(S)2
. (11)



We simplify the expression on the right in (11):

2
∑
i=0,1

∑
∅6=S⊆Ji

f̂i(S)
2

4 log 4

f̂i(S)2
= 2

∑
i=0,1

−µ2i
4 log 4

µ2i
+
∑
S⊆Ji

f̂i(S)
2

4 log 4

f̂i(S)2


= 2

∑
i=0,1

(
−µ2i

4 log 4
µ2i

+ 1
4H[f̂i

2
] + 1

4 log 4
)

= 2− 2
∑
i=0,1

µ2i
4 log 4

µ2i
+ 1

2

∑
i=0,1

H[f̂i
2
]. (12)

Substituting (12) into (11) yields

H[f̂2] = g(µ0, µ1) + 1
2H[f̂0

2
] + 1

2H[f̂1
2
], (13)

where g(µ0, µ1) is the function from Lemma 3. Using this lemma along with the induction hypothesis
on f0 and f1, we obtain from (13) that

H[f̂2] ≤ C(12 −
1
2µ0µ1) + 1

2C · I[f0] + 1
2C · I[f1] = C · I[f ],

where we used (10). The induction is complete.

Remark: The above proof technique can be extended to handle the more general class of “recursively
read-once functions” (as defined in [18]). It seems that one can show C = 19 suffices for this
class; however, a formal proof would require proving a numerical lemma much more difficult than
Lemma 3. Details will appear elsewhere.

5 Closing remarks

As the general Fourier Entropy–Influence Conjecture seems difficult to resolve, one may try to prove
it for additional interesting classes of Boolean functions. For example, Wan has suggested linear
threshold functions as a possibly tractable case [22]. One may also try tackling the Fourier Min-
Entropy–Influence Conjecture first (or the slightly stronger consequence that ∃S 6= ∅ s.t. f̂(S)2 ≥
2−C·I[f ]/Var[f ]). However this will already likely require stronger tools than the ones used in this
paper. The reason is that as mentioned in Section 1.1, this conjecture implies the KKL Theorem,
and there is no known proof of KKL which avoids the Hypercontractive or Logarithmic Sobolev
Inequalities.

Acknowledgments. The authors would like to thank Rocco Servedio, Li-Yang Tan, and Andrew
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