
Adaptivity helps for testing juntas

Rocco A. Servedio∗

Columbia University
Li-Yang Tan†

Simons Institute, UC Berkeley
John Wright‡

CMU

August 10, 2015

Abstract

We give a new lower bound on the query complexity of any non-adaptive algorithm for testing
whether an unknown Boolean function is a k-junta versus ε-far from every k-junta. Our lower bound is
that any non-adaptive algorithm must make

Ω

(
k log k

εc log(log(k)/εc)

)
queries for this testing problem, where c is any absolute constant < 1. For suitable values of ε this
is asymptotically larger than the O(k log k + k/ε) query complexity of the best known adaptive algo-
rithm [Bla09] for testing juntas, and thus the new lower bound shows that adaptive algorithms are more
powerful than non-adaptive algorithms for the junta testing problem.

∗Supported by NSF grants CCF-1115703 and CCF-1319788. rocco@cs.columbia.edu
†Supported by NSF grants CCF-1115703 and CCF-1319788. Some of this work was done while at MSR-SVC and at Columbia

University. liyang@cs.columbia.edu
‡Supported by NSF grants CCF-1115703, CCF-1319788, CCF-0747250, and CCF-1116594. Also supported by a Si-

mons Fellowship in Theoretical Computer Science. Some of this work was done while visiting Columbia University.
jswright@cs.cmu.edu

1 Introduction

As popular and scientific interest in “big data” continues to build, the field of sublinear-time algorithms
has received increasing research attention in recent years. The study of property testing is an important
area within sublinear algorithms. At a high level, property testing algorithms are “ultra-fast” randomized
algorithms which aim to (approximately) determine whether an unknown “massive object” has a particular
property while inspecting only a tiny (sublinear, or in some cases even constant sized) portion of the ob-
ject. Testing algorithms have by now been studied for many different types of mathematical objects; see
e.g. [Ron08, Ron10, Gol10] for some fairly recent surveys and overviews of contemporary property testing
research.

In this work we shall consider property testing algorithms for Boolean functions, and in particular we
study the question of testing whether an unknown Boolean function is a k-junta. Recall that a function f is
a k-junta if it has at most k relevant variables, i.e. there exist k distinct indices i1, . . . , ik and a k-variable
function g : {0, 1}k → {0, 1} such that f(x) = g(xi1 , . . . , xik) for all x ∈ {0, 1}n. A testing algorithm
for k-juntas is given as input k and ε > 0, and is provided with black-box oracle access to an unknown and
arbitrary f : {0, 1}n → {0, 1}. The algorithm must output “yes” with high probability (say at least 2/3) if
f is a k-junta, and must output “no” with high probability if f disagrees with every k-junta on at least an ε
fraction of all possible inputs. The main goal in property testing is to obtain algorithms which make as few
queries as possible to the unknown black-box function.

We motivate our work by observing that juntas are a very basic type of Boolean function whose study
intersects many different areas within theoretical computer science. In complexity theory and cryptogra-
phy, k = O(1)-juntas are precisely the Boolean functions computed by NC0 circuits. Juntas arise naturally
in settings where a small (unknown) set of features determines the label of a high-dimensional data point,
and hence many researchers in learning theory have studied juntas across a wide range of different learning
models, see e.g. [Blu94, DH94, BL97, GTT99, AR03, MOS04, AS07, AM10, FGKP09, Val12, DSFT+15].
Finally, the problem of testing whether an unknown Boolean function is a k-junta is one of the most thor-
oughly studied questions in Boolean function property testing. We briefly survey relevant previous work on
testing juntas in the following subsection.

1.1 Prior work on testing juntas

Fischer et al. [FKR+04] were the first to explicitly consider the junta testing problem. Their influential paper
gave several algorithms for testing k-juntas, the most efficient of which is a non-adaptive tester that makes
O(k2(log k)2/ε) queries. This was improved by Blais [Bla08] who gave a non-adaptive testing algorithm
that uses only O(k3/2(log k)3/ε) queries; this result is still the most efficient known non-adaptive junta
tester. Soon thereafter Blais [Bla09] gave an adaptive junta testing algorithm that uses onlyO(k log k+k/ε)
queries, which remains the most efficient known junta testing algorithm to date.

We note that ideas and and techniques from these junta testing algorithms have played an important role
in a broad range of algorithmic results for other Boolean function property testing problems. These include
efficient algorithms for testing various classes of functions, such as s-term DNF formulas, small Boolean
circuits, and sparse GF (2) polynomials, that are close to juntas but not actually juntas themselves (see
e.g. [DLM+07, GOS+11, DLM+10, CGSM11]), as well as algorithms for testing linear threshold functions
[MORS10] (which in general are not close to juntas). Junta testing is also closely related to the problem of
Boolean function isomorphism testing, see e.g. [BO10, BWY12, CFGM12, ABC+13].

1

Lower bounds for testing k-juntas have also been intensively studied. The original [FKR+04] paper
gave an Ω(

√
k/ log k) lower bound for nonadaptive algorithms that test whether an unknown function is a

k-junta versus constant-far from every k-junta. Chockler and Gutfreund [CG04] simplified, strengthened
and extended this lower bound by proving that even adaptive testers require Ω(k) queries to distinguish
k-juntas from random functions on k + 1 variables, which are easily seen to be constant-far from k-juntas.
(We describe the construction and sketch the [CG04] argument in Section 1.3 below). Blais [Bla08] was
the first to give a lower bound that involves the distance parameter ε; he showed that for ε ≥ k/2k, any
non-adaptive algorithm for ε-testing k-juntas must make Ω

(
k

ε log(k/ε)

)
queries.

In recent years numerous other works have given junta testing lower bounds. In [BBM11] Blais, Brody
and Matulef established a connection between lower bounds in communication complexity and property
testing lower bounds, and used this connection (together with known lower bounds on the communication
complexity of the size-k set disjointness problem) to give a different proof of an Ω(k) lower bound for
adaptively testing whether a function is a k-junta versus constant-far from every k-junta. More recently,
Blais, Brody and Ghazi [BBG14] gave new bounds on the communication complexity of the Hamming
distance function, and used these bounds to give an alternate proof of the Ω(k) lower bound for adaptive
junta testing algorithms via the [BBM11] connection. Blais and Kane [BK12] studied the problem of testing
whether an n-variable Boolean function is a size-k parity function (as noted in [BK12], lower bounds for this
problem give lower bounds for testing juntas), and via a geometric and Fourier-based analysis gave a k−o(k)
lower bound for adaptive algorithms and a 2k − O(1) lower bound for non-adaptive algorithms, again for
ε constant. Buhrman et al. [BGSMdW13] combined the communication complexity based approach of
[BBM11] with an Ω(k log k) lower bound for the one-way communication complexity of k-disjointness to
obtain an Ω(k log k) lower bound (for constant ε) for testing whether a function f is a size-k parity, and
hence for testing whether f is a k-junta.

1.2 Our main result: Adaptivity helps for testing juntas

While the junta testing problem has been intensively studied, the results described above still leave a gap
between the query complexity of the best adaptive algorithm [Bla09] and the strongest known lower bounds
for non-adaptive junta testing. The lower bounds of Ω

(
k

ε log(k/ε)

)
from [Bla08] and Ω(k log k) (for ε

constant) from [BGSMdW13] are incomparable, but neither of them is strong enough, for any setting of
ε, to exceed the O(k log k + k/ε) upper bound from [Bla09]. In [Bla08] Blais asked as an open question
“Is there a gap between the query complexity of adaptive and non-adaptive algorithms for testing juntas?”
This question was reiterated in a 2010 survey article on testing juntas, in which Blais explicitly asked “Does
adaptivity help when testing k-juntas?”, referring to this as a “basic problem” [Bla10].

Our main contribution in the present work is to give a better lower bound on non-adaptive junta testing
algorithms which implies that the answer to the above questions is “yes.” We prove the folowing:

Theorem 1. LetA be any non-adaptive algorithm which tests whether an unknown black-box f : {0, 1}n →
{0, 1} is a k-junta versus ε-far from every k-junta. Then for all ε satisfying k−ok(1) ≤ ε ≤ ok(1), algorithm
A must make at least

q =
Ck log k

εc log(log(k)/εc)
(1)

queries, where c is any absolute constant < 1 and C > 0 is an absolute constant.

2

For suitable choices of ε, such as ε = 1/(log k), the lower bound of Theorem 1 is asymptotically
larger than the O(k log k + k/ε) upper bound of the [Bla09] adaptive algorithm. Thus, together with the
[Bla09] upper bound, our lower bound gives an affirmative answer to the question posed in [Bla08, Bla10]:
adaptivity helps for testing k-juntas.1

It is interesting that while all of the recent junta testing lower bounds [BBM11, BBG14, BGSMdW13]
employ the connection with communication complexity lower bounds that was established in [BBM11], our
proof of Theorem 1 does not follow this approach. Instead, we give a proof using Yao’s classic minimax
principle; however, our argument is somewhat involved, employing a new Boolean isoperimetric inequality
and a very delicate application of a variant of McDiarmid’s “method of bounded differences” that allows for
a (low-probability) bad event. In the rest of this section we motivate and explain our approach at a high level
before giving the full proof in the subsequent sections.

1.3 The idea underlying our proof

Our approach is inspired by the lower bound of Chockler and Gutfreund [CG04] for adaptive algorithms,
so we begin by briefly recalling their construction and analysis. Chockler and Gutfreund define two distri-
butions Dyes and Dno over (k + 1)-variable functions. A random fyes ∼ Dyes is drawn by first choosing
a random coordinate i ∈ [k + 1] to be the irrelevant variable, and then choosing a random k-junta over the
other k variables from x1, . . . , xk+1. A random fno ∼ Dno is drawn by choosing a random (k + 1)-junta.
Clearly every f in the support of Dyes is a k-junta, and it is easy to show (for k larger than an absolute
constant) that almost every function in the support of Dno is constant-far from every k-junta.

Chockler and Gutfreund argue that any k/6-query adaptive algorithm A must have∣∣∣∣ Pr
fyes∼Dyes

[
A accepts fyes

]
− Pr

fno∼Dno

[
A accepts fno

]∣∣∣∣ ≤ 1

6
,

which gives their Ω(k) lower bound for adaptive algorithms. Their analysis shows that the only way an
algorithm can get statistical evidence that the black-box f is a yes-function rather than a no-function is
by querying a pair of inputs x, y ∈ {0, 1}k+1 that differ in precisely the coordinate i ∈ [k + 1] that was
chosen to be irrelevant in the selection of fyes ∼ Dyes (they refer to such a pair of Hamming neighbors
x, x⊕i in {0, 1}k+1 as an i-twin). While we do not repeat their analysis here, for intution we observe that if
x, y form a j-twin for j 6= i then for both a random yes-function and a random no-function f(x) = f(y)
with probability exactly 1/2, while if x, y form an i-twin then f(x) = f(y) for a random yes-function with
probability 1 while f(x) = f(y) with probability 1/2 for a random no-function. Since a set of t queries
can contain i-twins for at most t − 1 distinct coordinates, the Ω(k) lower bound follows by a “needle in a
haystack” argument.

The starting point of our work is the simple observation that the analysis of the Chockler-Gutfreund
construction is tight for adaptive algorithms: there is an adaptive algorithm that can distinguish a random
fyes ∼ Dyes from a random fno ∼ Dno with O(k) queries. This algorithm works as follows: for each
successive coordinate j = 1, . . . , k + 1, it draws random j-twins until either (a) a j-twin x, x⊕j is drawn

1We note in this context that several other natural Boolean function classes are known to exhibit a gap between the query
complexity of adaptive versus non-adaptive testing algorithms. These include the class of signed majority functions [MORS09,
RS13] and the class of read-once width-two OBDD [RT12]. In all three cases the adaptive tester which beats the best possible
non-adaptive tester may be viewed as performing some sort of binary search.

3

for which f(x) 6= f(x⊕j), or (b) 10 log(k + 1) j-twins have been drawn and all had f(x) = f(x⊕j). If (b)
holds for any j ∈ [k+1] then halt and output “k-junta,” and if (a) holds for every j ∈ [k+1] halt and output
“not a k-junta.” Since the expected number of j-twins drawn for a coordinate j 6= i is 2, a straightforward
analysis establishes that this algorithm wvhp makes O(k) queries and outputs the correct answer.

Intuitively, the above-described algorithm is only able to achieve O(k) query complexity (an amortized
O(1) queries for each of the k + 1 coordinates) because it is adaptive and hence can stop querying a given
coordinate j once it receives a j-twin with f(x) 6= f(x⊕j). Since there are k + 1 coordinates to consider,
it is very likely that for some coordinate j 6= i, a collection of 1

2 log k randomly selected j-twins will all
have f(x) = f(x⊕j) (in fact we expect this to happen for ≈

√
k different coordinates). Since non-adaptive

algorithms cannot “amortize” the coordinates along which they spend their queries, this suggests that (i) any
nonadaptive algorithm will need to query Ω(log k) j-twins for at least Ω(k) many choices of j ∈ [k + 1],
and further raises the possibility that (ii) any non-adaptive algorithm for distinguishing Dyes from Dno may
need Ω(k log k) queries.

In fact, (i) above is correct but (ii) is not. While indeed a non-adaptive algorithm must “rule out” at
least Ω(k) coordinates as not being irrelevant, and indeed Ω(log k) j-twins must be queried to rule out a
given coordinate j with confidence 1 − 1/poly(k), it does not follow that Ω(k log k) queries are required
to rule out all coordinates. This is because a set of q query points can induce ω(q) different twins — or,
to put it in the more combinatorial terms that we use henceforth in the paper, a subset Q of vertices of the
Boolean hypercube can induce ω(|Q|) hypercube edges.2 Indeed, as observed by Frankl [Fra83], there is
a set Q of only Θ(k log k

log log k) points in {0, 1}k+1 that induces at least log(k + 1) edges along each of the
k + 1 coordinates. This set S is as follows: letting ` = log(2 log(k + 1)) (and assuming that ` and k+1

`
are integers), we partition [k + 1] into sets A1, . . . , A(k+1)/` of equal size ` each, and let Q be the union of
the k+1

` subcubes C1, . . . , C(k+1)/` where Ci consists of all 2` strings whose 1-coordinates are all contained
in positions in Ai. It is easy to verify that the corresponding non-adaptive algorithm makes Θ(k log k

log log k)
queries and successfully distinguishes fyes ∼ Dyes from fno ∼ Dno.

It turns out that this is indeed an optimal query lower bound for non-adaptive algorithms that distinguish
Dyes from Dno, up to constant factors; this follows as a special case of our main result, taking ε to be con-
stant. Our main result is proved by analyzing an ε-biased generalization of the Chockler-Gutfreund yes- and
no-distributions; the distributions we consider are the same ones that Blais uses in [Bla08] to establish his
lower bound for non-adaptive algorithms. The analysis of [Bla08] uses the edge-isoperimetric inequality
of Harper [Har64], Bernstein [Ber67], Lindsey [Lin64], and Hart [Har76] and leads to a lower bound of
Ω
(

k
ε log(k/ε)

)
queries for non-adaptive algorithms. In contrast, we use a different edge-isoperimetric in-

equality, which may be viewed as an extension of Frankl’s Theorem 4 in [Fra83] (see Section 2.2). Our
edge-isoperimetric inequality, which we state and prove in Section 2.2, implies that any set of vertices in
{0, 1}k+1 that induces Ω(log k) edges in each of Ω(k) distinct coordinates must be of size Θ(k log k

log log k).
Another significant difference between our approach and that of [Bla08] is that while [Bla08] essentially

applies the Harper–Bernstein–Lindsey–Hart isoperimetric inequality via a union bound in a fairly straight-
forward way to obtain the Ω

(
k

ε log(k/ε)

)
lower bound, our argument yielding a Ω

(
k log k

εc log(log(k)/εc)

)
lower

bound is significantly more involved. (The union bound approach of [Bla08] would cost us at least a log k

2The edge-isoperimetric inequality of Harper [Har64], Bernstein [Ber67], Lindsey [Lin64], and Hart [Har76] gives a tight upper
bound of 1

2
|Q| log |Q| edges. We return to this in Section 2.2 when we state and prove a different edge-isoperimetric inequality

that we need for our proof.

4

factor, which is more than we can afford to separate adaptive versus non-adaptive query complexity.) In-
stead, we use our edge-isoperimetric inequality in the context of a careful probabilistic analysis (to bound
the variation distance between “yes-function” and “no-function” vectors of responses a la Yao’s minimax
method) which crucially relies on a variant of McDiarmid’s “method of bounded differences” in which a
low-probability “bad event” may take place [McD98].

1.4 Preliminaries

All logarithms are base 2 unless otherwise stated. We use boldface (e.g. x,y, and f) to denote random
variables. Given S ⊆ {0, 1}n, we write GS to denote the subgraph of the Hamming graph induced by S.
That is, GS = (S,ES), where (x, y) ∈ ES iff x, y ∈ S and x = y⊕i (this is the string obtained by flipping
y in the i-th coordinate) for some i ∈ [n]; we call such an edge (x, y) an i-edge induced by S.

2 Proof of Theorem 1

2.1 The “yes” and “no” distributions

As discussed in the introduction, we consider the same distributionsDyes andDno that Blais used in [Bla08]
to establish his non-adaptive lower bound, which are biased generalizations of the yes- and no-distributions
considered by Chockler and Gutfreund in [CG04]. A draw from Dno is an “ε-biased random (k+ 1)-junta”
fno : {0, 1}k+1 → {0, 1}, one which independently takes value 1 with probability ε on every string in
{0, 1}k+1. A random fyes from Dyes is drawn by first choosing a random coordinate i ∈ [k+ 1] to be irrel-
evant, and then choosing a random ε-biased random k-junta over the variables from {x1, . . . , xk+1}\{xi}.
Equivalently, Dyes is the uniform mixture of D(1)

yes, . . . ,D(k+1)
yes , where a draw f

(i)
yes from D(i)

yes is the ran-
dom function f

(i)
yes(x) = fno(x

i←1) for all x ∈ {0, 1}n, where fno ∼ Dno and xi←1 denotes the string
x ∈ {0, 1}k+1 with its i-th bit set to 1. We see that Dyes is supported entirely on k-juntas (in particular,
D(i)
yes is supported entirely on functions that do not depend on the i-th coordinate), and a straightforward

calculation shows Dno is supported almost entirely on functions that are Ω(ε)-far from being a k-junta:

Lemma 2.1 (Lemma 4.2 of [Bla08]). When 6k/2k < ε ≤ 1/2 and k ≥ 3, a function fno : {0, 1}k+1 →
{0, 1} drawn from Dno is (ε/6)-far from being a k-junta with probability at least 11/12.

We note that these functions fyes,fno : {0, 1}k+1 → {0, 1} can be embedded in the full n-dimensional
domain {0, 1}n simply by defining Fyes : {0, 1}n → {0, 1} where Fyes(x) = fyes(x[k+1]) for all x ∈
{0, 1}n, where x[k+1] denotes the prefix substring (x1, . . . , xk+1) ∈ {0, 1}k+1 of x. Likewise, we may
extend fno : {0, 1}k+1 → {0, 1} to Fno : {0, 1}n → {0, 1}. In the rest of the paper we confine our
discussion to the fyes and fno functions over {0, 1}k+1.

Fix any constant c < 1. Fix any query set Q∗ = {v(1), . . . , v(q)} ⊆ {0, 1}k+1 of cardinality q as speci-
fied in Equation (1) (we will specify the absolute constant C in Section 2.2 below). For now, we will let the
ordering of the query strings v(1), . . . , v(q) be arbitrary, though we will later impose a carefully chosen par-
ticular ordering (see Proposition 2.7). By a standard application of Yao’s minimax principle, to prove The-
orem 1 it suffices to argue that dTV(fyes(Q

∗),fno(Q
∗)) ≤ 1/3, where fyes(Q

∗) denotes the random “re-
sponse vector” (fyes(v

(1)), . . . ,fyes(v
(q))) ∈ {0, 1}q, likewise fno(Q

∗) = (fno(v
(1)), . . . ,fno(v

(q))) ∈

5

{0, 1}q, and dTV(·, ·) denotes the total variation distance (also known as statistical distance) between its two
arguments.

2.2 A useful Boolean isoperimetric inequality

As discussed in the introduction, a key combinatorial lemma in Blais’ Ω̃(k/ε) sharpening of the Chockler–
Gutfreund Ω(k) lower bound is the classical edge-isoperimetric inequality of Harper, Bernstein, Lindsey,
and Hart, which may be viewed as giving a lower bound on the cardinality of query sets in terms of the
number of edges they induce.

Theorem 2 (Harper–Bernstein–Lindsey–Hart). For all S ⊆ {0, 1}n, we have |ES | ≤ 1
2 |S| log |S|.

We will need a variant of this inequality which takes into account the directions of the induced edges; in
particular, it will be important for us that most directions have “not too few” induced edges in that direction.

Definition 3. Let S ⊆ {0, 1}n. We say that S m-saturates direction i ∈ [n] if S induces at least m many
i-edges.

Motivated by our earlier discussion in Section 1.3, a “good” query set Q ⊆ {0, 1}k+1 for distinguishing
between fyes ∼ Dyes and fno ∼ Dno is one which m-saturates most of the k+ 1 coordinates for a suitable
choice of m (and of course we want Q to achieve this while being as small as possible). What kind of query
setsQ are best suited to meet these two objectives? As an easy first observation, letQ1 be an arbitrary query
set such that GQ1 has q1,i edges in each direction i. It is not difficult to show that there exists a query set
Q2, with |Q2| = |Q1|, such that (i) GQ2 is a connected graph and (ii) GQ2 has q2,i ≥ q1,i edges in each
direction i. (Repeatedly translate connected components of Q1 until they “come together” and only a single
connected component is present; such translations cannot decrease the number of edges in any direction.)

In fact, a stronger statement than the above is true (and is not difficult to show): the “best” query set
Q of a given size is of the form g−1(1) (or g−1(0)) for some monotone Boolean function g. This is made
precise through the following definition and fact:

Definition 4. For each i ∈ [n] the i-th down-shift operator κi acts on Boolean functions g : {0, 1}n → {0, 1}
as follows: (κig)(x) = g(x) if g(x) = g(x⊕i), and (κig)(x) = 1− xi otherwise.

Fact 2.2 (see e.g. [BOL90]). Let S ⊆ {0, 1}n and g : {0, 1}n → {0, 1} be its indicator function. Consider
Sshift := g−1

shift(1) ⊆ {0, 1}n, where gshift := κ1 · · ·κng. Then |Sshift| = |S| and Sshift is downward closed,
meaning that for all v′ � v, if v ∈ Sshift then v′ ∈ Sshift. Furthermore, if GS has qi edges in direction i,
then GSshift

has qshift,i ≥ qi edges in direction i (hence if S m-saturates a direction i then so does Sshift).

The following isoperimetric bound plays a key role in our arguments; it says that we need “many”
vertices to m-saturate a large number of distinct directions.

Proposition 2.3. Let S ⊆ {0, 1}n be a set of points that m-saturates at least ` directions. Then |S| ≥
m`

blogm+1c = Ω
(

m`
logm

)
.

Proof. Let height(S) denote the quantity maxv∈S ‖v‖, where ‖v‖ =
∑n

i=1 vi is the Hamming weight
of v ∈ {0, 1}n. By Fact 2.2, we may restrict our attention to sets S that are downward closed. Let S∗ be
a downward-closed set of minimal size that m-saturates at least ` directions, and which has height(S∗) as

6

small as possible among all such minimal sets; for brevity we write h to denote height(S∗). Note that we
have the relationship

m` ≤ |ES∗ | =
∑
v∈S∗
‖v‖ ≤ h · |S∗|, (2)

and hence to prove a lower bound on the size of S∗, it suffices to show an upper bound on h, the height of
S∗. Let v∗ be a vertex in S with ‖v∗‖ = h, let Dv∗ = {i ∈ [n] : v∗i = 1}, and consider S′ = S∗ \ {v∗}.
Since S∗ is downward closed we have that GS∗ has at least 2h−1 edges in each direction i ∈ Dv∗ . Deleting
v∗ from S∗ removes exactly h induced edges, one from each direction i ∈ Dv∗ , and so by the minimality of
S∗ it follows that 2h−1 − 1 < m, or equivalently, h ≤ blogm+ 1c.This, with (2), completes the proof.

Remark 5. Proposition 2.3 recovers as a special case a classical result of Frankl (Theorem 4 of [Fra83]),
proved using the Kruskal–Katona theorem, giving a lower bound of |S| = Ω

(
mn

logm

)
on the cardinality of any

set S ⊆ {0, 1}n which m-saturates all n directions. We note also that the parameters of Proposition 2.3 are
optimal up to a factor of 2. To see this, suppose t := logm+ 1 ∈ N and t divides `. Let A1, . . . , A`/t be a
partition of [`] into disjoint blocks of cardinality t, and for each i ∈ [`/t], letCi = {v : vj = 0 for all j /∈ Ai}
be the t-dimensional subcube over the coordinates in Ai ⊆ [`]. Then S :=

⋃
Ci is a set of cardinality

|S| = (2m`/(logm+ 1))− 1 which m-saturates the first ` directions.

By Proposition 2.3, we can and shall assume that the query set Q∗ ⊆ {0, 1}k+1 (which is of size at
most q ≤ Ck log k

εc log((log k)/εc) , recall (1)) (log k)/εc-saturates at most 0.1k directions. As noted earlier, by Yao’s
minimax principle, to prove Theorem 1 it remains to argue that dTV(fyes(Q

∗),fno(Q
∗)) ≤ 1/3.

2.3 Conditioning on unsaturated irrelevant coordinates, and bounding total variation by
establishing concentration

In analyzing the random variable fyes(Q
∗), it will be helpful for us to condition on the event that Q∗ only

induces “a few” edges in the direction of the irrelevant coordinate i ∈ [k + 1]. Formally, let U ⊆ [k + 1]
denote the directions that are not ((log k)/εc)-saturated byQ∗, and recall that |U | ≥ 0.9k by our assumption
on the cardinality of Q∗ along with Proposition 2.3. Let D′yes denote the uniform mixture of D(i)

yes for all
i ∈ U (i.e. D′yes is Dyes conditioned on the irrelevant coordinate i being in U), and D′′yes denote the uniform

mixture of D(i)
yes for all i /∈ U . In other words, Dyes is the mixture of D′yes and D′′yes with mixing weights

1 − δ and δ respectively, where δ ≤ 0.1. We write f ′yes and f ′′yes to denote draws from D′yes and D′′yes
respectively.

Lemma 2.4. dTV(fyes(Q
∗),fno(Q

∗)) ≤ dTV(f ′yes(Q
∗),fno(Q

∗)) + δ.

Proof. This holds by noting that dTV(fyes(Q
∗),fno(Q

∗)) can be expressed as

1

2

∑
y∈{0,1}q

∣∣(1− δ)Pr[f ′yes(Q
∗) = y] + δPr[f ′′yes(Q

∗) = y]−Pr[fno(Q
∗) = y]

∣∣
≤ 1

2

∑
y∈{0,1}q

∣∣Pr[f ′yes(Q
∗) = y]−Pr[fno(Q

∗) = y]
∣∣+ δ

(
Pr[f ′yes(Q

∗) = y] + Pr[f ′′yes(Q
∗) = y]

)
= dTV(f ′yes(Q

∗),fno(Q
∗)) + δ.

7

And so indeed, Lemma 2.4 reduces the task of proving dTV(fyes(Q
∗),fno(Q

∗)) ≤ 1/3 to that of
showing

dTV(f ′yes(Q
∗),fno(Q

∗)) ≤ (1/3)− 0.1, (3)

which is what we will do. We begin by observing that the distribution of fno(Q
∗) is fairly easy to under-

stand: for all y ∈ {0, 1}q, we have Pr
[
fno(Q

∗) = y
]

= ε|y|(1 − ε)q−|y| := wtε(y). This motivates us to
define the function A : {0, 1}Q∗ → [0, 1],

A(y) = Pr
[
f ′yes(Q

∗) = y
]
, and express dTV(f ′yes(Q

∗),fno(Q
∗)) =

1

2

∑
y∈{0,1}Q∗

|A(y)− wtε(y)|.

For the remainder of this proof, we will write y = (y1, . . . ,yq) to denote a draw from {0, 1}q(ε), the ε-
biased product distribution over {0, 1}q where each coordinate is independently 1 with probability ε. It will
be convenient to think of y as the values fno ∼ Dno takes on the query points in Q∗ ⊆ {0, 1}k+1; in other
words, y is distributed identically to fno(Q

∗). Writing Ã(y) := A(y)/wtε(y), we have

dTV(f ′yes(Q
∗),fno(Q

∗)) =
1

2

∑
y∈{0,1}Q∗

wtε(y)|Ã(y)− 1| = 1

2
E
[
|Ã(y)− 1|

]
.

Since 1 =
∑

y A(y) =
∑

y wtε(y) · Ã(y) = E[Ã(y)], it suffices for us to argue that the random variable
Ã(y) is concentrated around its expectation E[Ã(y)] = 1:

Proposition 2.5. Pr
[
Ã(y) ∈ [0.9, 1.1]

]
≥ 0.9.

Our claimed bound on total variation distance (3) follows from Proposition 2.5 via the following calcu-
lation, where the penultimate inequality uses Proposition 2.5:

dTV(f ′yes(Q
∗),fno(Q

∗)) =
1

2

∑
y∈{0,1}q

|A(y)− wtε(y)| = 1

2

(
2− 2

∑
y∈{0,1}q

min{A(y),wtε(y)}
)

≤ 1−
∑

y∈{0,1}q

Ã(y)∈[0.9,1.1]

min{A(y),wtε(y)}

≤ 1−
∑

y∈{0,1}q

Ã(y)∈[0.9,1.1]

0.9 · wtε(y) ≤ 1− (0.9)2 < (1/3)− 0.1.

2.4 Proof of Proposition 2.5

We will bound the probability that Ã(y) deviates from its mean using the “method of averaged bounded
differences” in which a rare “bad” event is allowed to take place:

Theorem 6 (special case of Theorem 3.7 of [McD98]). Let Ã be a function of {0, 1}-valued random vari-
ables y1, . . . ,yq such that E[Ã(y)] is bounded. Let B ⊆ {0, 1}q, and suppose that for all b ∈ {0, 1}q \ B,∑

j∈[q]

(
E
[
Ã(b1, . . . , bj−1, bj ,yj+1, . . . ,yq)− Ã(b1, . . . , bj−1, bj ,yj+1, . . . ,yq)

])2 ≤ ∆. (4)

Then for all t ≥ 0, we have Pr
[
|Ã(y)−E[Ã(y)]| > t

]
≤ 2 exp

(
− 2t2/∆

)
+ 2Pr[y ∈ B].

8

We introduce some useful notation. Given a labelling b = (b1, . . . , bq) ∈ {0, 1}q of the query strings
v(1), . . . , v(q) in Q∗, we write (bj ,yj+1) to denote the hybrid string (b1, . . . , bj−1, bj ,yj+1, . . . ,yq) and
likewise (bj ,yj+1) to denote (b1, . . . , bj−1, bj ,yj+1, . . . ,yq). We also write diff(b, j) to denote the differ-
ence |E[Ã(bj ,yj+1) − Ã(bj ,yj+1)]|. This notational convention allows us to express the inequality (4)
more succinctly as ∑

j∈[q]

diff(b, j)2 =
∑
j∈[q]

(
E[Ã(bj ,yj+1)− Ã(bj ,yj+1)]

)2 ≤ ∆. (5)

Furthermore, we write #i11(b) to denote the number of i-edges in GQ∗ whose endpoints are both labeled 1
by b, and likewise #i00(b) to denote the number of i-edges in GQ∗ whose endpoints are both labeled 0 by
b. We write #i1(b) to denote the number of vertices in GQ∗ that are labeled 1 by b and are not incident to an
i-edge in GQ∗ , and likewise #i0(b). Finally, let i-biasε(b) denote the quantity ε−#i11(b) · (1− ε)−#i00(b).

The following terminology will be useful: We say a labeling y ∈ {0, 1}q of the query strings v(1), . . . , v(q) ∈
Q∗ is i-monochromatic (abbreviated as “i-mono”) if every i-edge inGQ∗ either has both endpoints labeled 1
by y, or has both endpoints labeled 0 by y. With this notation and terminology in place we may conveniently
characterize Ã(y) as follows:

Lemma 2.6. Ã(y) =
1

|U |
∑
i∈U

1[y is i-mono] · i-biasε(y).

Proof of Lemma 2.6. Fix a choice for the irrelevant coordinate i ∈ U . Conditioned on this, the probability
that f ′yes(Q

∗) = y is ε#i11(y)+#i1(y) · (1− ε)#i00(y)+#i0(y) if y is i-mono and is 0 otherwise. As wtε(y) =

ε2#i11(y)+#i1(y) · (1− ε)2#i00(y)+#i0(y) if y is i-mono, we have that Ã(y) equals

1

|U |
∑
i∈U

1[y is i-mono] · 1

wtε(y)
·Pr

[
f ′yes(Q

∗) = y | i = i
]

=
1

|U |
∑
i∈U

1[y is i-mono] · ε
#i11(y)+#i1(y) · (1− ε)#i00(y)+#i0(y)

ε2#i11(y)+#i1(y) · (1− ε)2#i00(y)+#i0(y)

=
1

|U |
∑
i∈U

1[y is i-mono] · i-biasε(y).

By Lemma 2.6, we have that diff(b, j) is at most

1

|U |

∣∣∣∣∣∑
i∈U

E
y

[
1[(bj ,yj+1) is i-mono] · i-biasε(bj ,yj+1)− 1[(bj ,yj+1) is i-mono] · i-biasε(bj ,yj+1)

]
︸ ︷︷ ︸

(∗)

∣∣∣∣∣.
(6)

Fix b ∈ {0, 1}Q∗ and j ∈ [q]. We make a couple of observations about the quantity (∗) for a fixed coordinate
i ∈ U which will be useful later.

Observation 7. If v(j) is not incident to an i-edge within GQ∗ , then (∗) = 0 pointwise for every possible
outcome of y.

9

This is because the labeling of v(j) has no effect on either the monochromaticity of the i-th direction
or the number of monochromatic i-edges, and hence 1[(bj , yj+1) is i-mono] = 1[(bj , yj+1) is i-mono] and
i-biasε(bj , yj+1) = i-biasε(bj , yj+1) for every possible outcome y of y.

Observation 8. If v(j) has an i-edge to v(j′) within GQ∗ where j′ > j, then again (∗) = 0.

(In the following equations we use the notation (a1, a2,yj+2) to denote the string (bj ,yj+1) except with
the j-th bit set to a1 and the j′-th bit set to a2.) Observation 8 is true because

±(∗) = E
y

[
1[(1,yj+1) is i-mono] · i-biasε(1,yj+1)− 1[(0,yj+1) is i-mono] · i-biasε(0,yj+1)

]
= E

y

[
ε1[(1, 1,yj+2) is i-mono] · i-biasε(1, 1,yj+2)

− (1− ε)1[(0, 0,yj+2) is i-mono] · i-biasε(0, 0,yj+2)
]
,

and moreover, 1[(1, 1, yj+2) is i-mono] = 1[(0, 0, yj+2) is i-mono] and ε · i-biasε(1, 1, yj+2) = (1 − ε) ·
i-biasε(0, 0, yj+2) for every possible outcome y of y.

2.4.1 Choosing an ordering

Given the preceding observations, we may rewrite (6) so that the sum is only over those directions i ∈ U
such that v(j) has an i-edge within GQ∗ to some v(j′) where j′ < j. A priori, there is no reason to believe
that this rewriting will simplify the sum or significantly reduce the number of summands. However, the next
proposition shows that by enforcing an appropriate ordering on the query set Q∗ = {v(1), . . . , v(q)}, we can
ensure that all but blog(q)c terms will drop out of (6).

Proposition 2.7. For every S = {v(1), . . . , v(q)} ⊆ {0, 1}n, there exists an ordering v(1) ≺ v(2) ≺ · · · ≺ v(q)

such that every v(i) has at most blog qc many Hamming neighbors v(j) that precede it in the ordering.

Proof. We proceed by induction on q, noting that the lemma trivially holds when q = 1. For the inductive
step, we partition S into SL and SR, where

SL = {v ∈ S : degS(v) ≤ blog qc},
SR = {v ∈ S : degS(v) > blog qc},

and degS(v) denotes the degree of v in GS . By the edge-isoperimetric inequality (Theorem 2), we have that∑
v∈S

degS(v) = 2 · |ES | ≤ q log q,

and hence |SL| ≥ 1, or equivalently, |SR| ≤ q − 1. By our induction hypothesis applied to SR, there exists
an ordering of its vertices so that every vertex has at most blogSRc ≤ blog qc Hamming neighbors that
precede it in the ordering. Our ordering of S will be the vertices in SR listed in this order given by the
induction hypothesis, followed by the vertices in SL listed in an arbitrary order. The proof is complete by
recalling that degS(v) ≤ blog qc for every v ∈ SL, and hence every v ∈ SL trivially has at most blog qc
Hamming neighbors that precede it in the ordering.

10

We will now assume that Q∗ = {v(1), . . . , v(q)} is sorted in the order given by Proposition 2.7. Since
|Q∗| = q = o(k1.1) � k2 (recall (1) and the bounds on ε given in the conditions of Theorem 1) we have
that there are fewer than 2 log k such directions i ∈ U . Let i∗ ∈ U be the direction that maximizes (∗) in
(6), and so diff(b, j) is at most (6), which in turn is at most

2 log k

0.9k

∣∣∣∣Ey [1[(bj ,yj+1) is i∗-mono] · i∗-biasε(bj ,yj+1)︸ ︷︷ ︸
(∗∗)

−1[(bj ,yj+1) is i∗-mono] · i∗-biasε(bj ,yj+1)︸ ︷︷ ︸
(∗∗∗)

]∣∣∣∣.
Since v(j) has an i∗-edge within GQ∗ to some v(j′) where j′ < j, it follows that either E[(∗∗)] = 0 or
E[(∗∗∗)] = 0 (the former if bj′ 6= bj , and the latter if bj′ 6= bj). We may assume w.l.o.g. that E[(∗ ∗ ∗)] = 0,
and so

diff(b, j) ≤ 2 log k

0.9k
E
y

[
1[(bj ,yj+1) is i∗-mono] · i∗-biasε(bj ,yj+1)

]
.

Next, we observe that the expectation above may be rewritten as

E
y

[
1[(bj ,yj+1) is i∗-mono] · i∗-biasε(bj ,yj+1)

]
=

∏
i∗-edges e

E
y

[
1[e is mono w.r.t. (bj ,yj+1)] · i∗-biasε((bj ,yj+1)|e)

]
, (7)

where

i∗-biasε((bj ,yj+1)|e) =

{
ε−1 if both endpoints of e are labeled 1 by (bj ,yj+1)

(1− ε)−1 if both endpoints of e are labeled 0 by (bj ,yj+1).

We claim that the expectation on the RHS of (7) is 1 unless e = (v(`), v(r)), where ` < r ≤ j. To see this,
note that if j < ` < r then

E
y

[
1[e is mono w.r.t. (bj ,yj+1)] · i∗-biasε((bj ,yj+1)|e)

]
= ε2 · 1

ε
+ (1− ε)2 · 1

1− ε
= 1,

and if ` ≤ j ≤ r then

E
y

[
1[e is mono w.r.t. (bj ,yj+1)] · i∗-biasε((bj ,yj+1)|e)

]
=

{
ε · ε−1 if b` = 1

(1− ε) · (1− ε)−1 if b` = 0.

Since neither 1[e is mono w.r.t. (bj ,yj+1)] nor i∗-biasε((bj ,yj+1)|e) depend on y when e = (v(`), v(r))
where ` < r ≤ j, it follows that (7) may be simplified to be

(7) =
∏

i∗-edges e
e=(v(`),v(r)), `<r≤j

1[e is mono w.r.t. b] · i∗-biasε(b|e).

Recalling that this expression (7) depends on both b ∈ {0, 1}q and j ∈ [q] (since i∗ depends on j), we write
val(b, j) to denote (7), i.e.

val(b, j) :=
∏

i∗-edges e
e=(v(`),v(r)), `<r≤j

1[e is mono w.r.t. b] · i∗-biasε(b|e) (8)

11

and hence we may write

diff(b, j) ≤ 2 log k

0.9k
· val(b, j).

2.4.2 Bounding val(b, j) by bucketing

Our goal is to define a bad set B ⊆ {0, 1}q of small measure (Pr[y ∈ B] ≤ 0.01 is sufficient, though our B
will satisfy Pr[y ∈ B] = k−Ω(1)) such that for all b /∈ B,∑

j∈[q]

val(b, j)2 = O
(
k(25+c

13
)
)
. (9)

This is sufficient since it implies that we may take ∆ := 0.01 and have that the LHS of (4) is at most

∑
j∈[q]

diff(b, j)2 ≤
(

2 log k

0.9k

)2 ∑
j∈[q]

val(b, j)2 =
1

k2−o(1)
·O
(
k(25+c

13
)
)
≤ ∆ = 0.01

for sufficiently large k. (This uses (5) along with the fact that c < 1.) Applying Theorem 6 with t = 0.1
would then complete the proof of Proposition 2.5, and hence Theorem 1.

To reason about b ∈ {0, 1}q for which (9) does not hold, we group the q many summands on the LHS of
(9) into O(log k) groups according to magnitude. Set M :=

(
23+c

24

)
log k, and partition [0,∞) into M + 2

intervals I0 = [0, 1), Im = [2m−1, 2m) for all m ∈ [M] and IM+1 = [2M ,∞). For each b ∈ {0, 1}q and
m ∈ {0, 1, . . . ,M + 1} we define

bucket(b,m) := {j ∈ [q] : val(b, j) ∈ Im},

C(b,m) :=
∑

j∈bucket(b,m)

val(b, j)2.

With this notation in hand, we may write

∑
j∈[q]

val(b, j)2 =

M+1∑
m=0

C(b,m). (10)

Next, for each m ∈ {0, 1, . . . ,M + 1} we define Bm ⊆ {0, 1}q to be

Bm :=
{
b ∈ {0, 1}q : C(b,m) > k(23+c

12
)
}
,

and finally B :=
⋃
Bm. Certainly if b /∈ B then by (10) we have that

∑
j∈[q]

val(b, j)2 =
M+1∑
m=0

C(b,m) ≤ (M + 2) · k(23+c
12

) = o(k(25+c
13

)),

and so it suffices to prove the following proposition.

12

Proposition 2.8. For all m ∈ {0, 1, . . . ,M + 1}, we have that Prb∼{0,1}q
(ε)

[b ∈ Bm] = k−Ω(1). (Conse-

quently, Pr[b ∈ B] = k−Ω(1) by a union bound.)

Proof. First note that for all m ∈ {0, 1, . . . ,M}, we have that

C(b,m) =
∑

j∈bucket(b,m)

val(b, j)2 < |bucket(b,m)| · 22m. (11)

Since |bucket(b,m)| ≤ q = o(k1.1) for all m, we have that (11) < k1.7 for m ≤ 0.3 log k, and hence
recalling the definition of Bm, we have Pr[b ∈ Bm] = 0 for m ≤ 0.3 log k, so the proposition clearly holds
for all such m. Hence we may assume that m > 0.3 log k; it will be convenient for us to write m = α log k

for some α ∈ (0.3, 1). Next, observe that in order for C(b,m) to be greater than k(23+c
12

) it has to be the
case that |bucket(b,m)| ≥ k(23+c

12
) · 2−2m = k(23+c

12
)−2α; this is trivially true for m = M + 1 (since

k(23+c
12

) · 2−2m = 1
4), and follows from (11) for m ∈ {0, 1, . . . ,M}. We will therefore focus on bounding

the RHS of

Pr
[
|bucket(b,m)| ≥ k(23+c

12
)−2α

]
≤ Pr

[
|{j ∈ [q] : val(b, j) ≥ 2m−1 = 1

2k
α}| ≥ k(23+c

12
)−2α

]
by k−Ω(1). Consider the random variable val(b, j) for a fixed j ∈ [q]. Let E = E(j) denote the number of
i∗-edges (where i∗ depends on j), and note that E ≤ log(k)/εc since i∗ ∈ U is an unsaturated direction.
Recalling (8), we may introduce independent random variables X(j)

1 , . . . ,X
(j)
E where

X
(j)
` =


0 with probability 2ε(1− ε)

(1− ε)−1 with probability (1− ε)2

ε−1 with probability ε2

and note that val(b, j) (where b ∼ {0, 1}q(ε)) is distributed identically to
∏E
`=1 X

(j)
` . Simplifying further, we

introduce additional (mutually independent) random variables Y(j)
1 , . . . ,Y

(j)
E , where each Y

(j)
` is coupled

to X
(j)
` in the following way

Y
(j)
` =

{
X

(j)
` when X

(j)
` = ε−1

1 otherwise.

Under such a coupling, we have that

E∏
`=1

X
(j)
` ≤

(
1

1− ε

)E E∏
`=1

Y
(j)
`

with probability 1, where the factor (1− ε)−E is ≤ kν(k) for some function ν(k) = ok(1), for all ε = ok(1)
since E ≤ log(k)/εc (recall the bounds on ε given in the conditions of Theorem 1).

Claim 2.9. Pr
[∏E

`=1 Y
(j)
` ≥

1
2k

α−ν(k)
]

= O(k−(4−c
3

)α).

13

Proof of Claim 2.9. Set t := (m − ν(k) log(k) − 2)/ log(1/ε) = ((α − ν(k)) log(k) − 2)/ log(1/ε), and
so ε−t = 1

2k
α−ν(k).

Pr

[
E∏
`=1

Y
(j)
` ≥

kα−ν(k)

2

]
< ε2t

(
E

t

)

≤ 4

k2α−ν(k)

(
eE

t

)t
≤ 4

k2α−ν(k)

(
e log(1/ε)

0.3 · εc

)t
≤ 4

k2α−ν(k)
·O
(
ε−(1+c

2
)t
)

<
4

k2α−ν(k)
·O
(
k(1+c

2
)(α−ν(k))

)
= O

(
1

k(4−c
3

)α

)
,

where the third inequality uses the fact that t > 0.3 log(k)/ log(1/ε) (recall our assumption that α > 0.3),
the fourth inequality uses the fact that ε = ok(1), and the last inequality uses the fact that ν(k) = ok(1).

By linearity of expectation, it follows that

E
[
|{j ∈ [q] : val(b, j) ≥ 1

2k
α}|
]

= O
(
q · k−(4−c

3
)α
)

= O
(
k(7−c

6
) · k−(4−c

3
)α
)

= O(k(7−c
6

)−(4−c
3

)α),

where we have used the fact that q = O(k1+η) (recall (1) and the bounds on ε given in the conditions of
Theorem 1) for any fixed η > 0, and so by Markov’s inequality, we conclude that

Pr
[
|{j ∈ [q] : val(b, j) ≥ 1

2k
α}| ≥ k(23+c

12
)−2α

]
= O

(
k(7−c

6
)−(4−c

3
)α−((23+c

12
)−2α)

)
= O(k(c−1

12
))

for sufficiently large k. Because c < 1, this is k−Ω(1), and therefore the proof of Proposition 2.8 is complete.

References

[ABC+13] Noga Alon, Eric Blais, Sourav Chakraborty, David Garcı́a-Soriano, and Arie Matsliah.
Nearly tight bounds for testing function isomorphism. SIAM J. Comput., 42(2):459–493,
2013. 1.1

[AM10] J. Arpe and E. Mossel. Application of a generalization of russo’s formula to learning from
multiple random oracles. Combinatorics, Probability and Computing, 19:183–199, 2010. 1

[AR03] J. Arpe and R. Reischuk. Robust inference of relevant attributes. In Proceedings of the
Fourteenth International Conference on Algorithmic Learning Theory, pages 99–113,
2003. 1

[AS07] A. Atıcı and R. Servedio. Quantum algorithms for testing and learning juntas. Quantum
Information Processing, 6(5):323–348, 2007. 1

14

[BBG14] Eric Blais, Joshua Brody, and Badih Ghazi. The information complexity of hamming
distance. In RANDOM, pages 462–486, 2014. 1.1, 1.2

[BBM11] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via
communication complexity. In CCC, pages 210–220, 2011. 1.1, 1.2

[Ber67] Arthur J. Bernstein. Maximally connected arrays on the n-cube. SIAM J. Appl. Math.,
15(6):1485–1489, 1967. 1.3, 2

[BGSMdW13] Harry Buhrman, David Garcı́a-Soriano, Arie Matsliah, and Ronald de Wolf. The
non-adaptive query complexity of testing k-parities. Chicago Journal of Theoretical
Computer Science, 2013, 2013. 1.1, 1.2, 1.2

[BK12] Eric Blais and Daniel M. Kane. Tight bounds for testing k-linearity. In RANDOM, pages
435–446, 2012. 1.1

[BL97] A. Blum and P. Langley. Selection of relevant features and examples in machine learning.
Artificial Intelligence, 97(1-2):245–271, 1997. 1

[Bla08] Eric Blais. Improved bounds for testing juntas. In Proc. RANDOM, pages 317–330, 2008.
1.1, 1.2, 1.2, 1.3, 2.1, 2.1

[Bla09] Eric Blais. Testing juntas nearly optimally. In Proc. 41st Annual ACM Symposium on
Theory of Computing (STOC), pages 151–158, 2009. (document), 1.1, 1.2, 1.2

[Bla10] E. Blais. Testing juntas: A brief survey. In Property Testing - Current Research and
Surveys, pages 32–40, 2010. 1.2, 1.2

[Blu94] A. Blum. Relevant examples and relevant features: Thoughts from computational learning
theory. in AAAI Fall Symposium on ‘Relevance’, 1994. 1

[BO10] Eric Blais and Ryan O’Donnell. Lower bounds for testing function isomorphism. In IEEE
Conference on Computational Complexity, pages 235–246, 2010. 1.1

[BOL90] M. Ben-Or and N. Linial. Collective coin flipping. In S. Micali, editor, Randomness and
Computation, pages 91–115. Academic Press, 1990. 2.2

[BWY12] Eric Blais, Amit Weinstein, and Yuichi Yoshida. Partially symmetric functions are
efficiently isomorphism-testable. In FOCS, pages 551–560, 2012. 1.1

[CFGM12] Sourav Chakraborty, Eldar Fischer, David Garcı́a-Soriano, and Arie Matsliah.
Junto-symmetric functions, hypergraph isomorphism and crunching. In CCC, pages
148–158, 2012. 1.1

[CG04] H. Chockler and D. Gutfreund. A lower bound for testing juntas. Information Processing
Letters, 90(6):301–305, 2004. 1.1, 1.3, 2.1

[CGSM11] Sourav Chakraborty, David Garcı́a-Soriano, and Arie Matsliah. Efficient sample extractors
for juntas with applications. In ICALP, pages 545–556. Springer, 2011. 1.1

15

[DH94] A. Dhagat and L. Hellerstein. PAC learning with irrelevant attributes. In Proceedings of
the Thirty-Fifth Annual Symposium on Foundations of Computer Science, pages 64–74,
1994. 1

[DLM+07] I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. Servedio, and A. Wan.
Testing for concise representations. In Proc. 48th Ann. Symposium on Computer Science
(FOCS), pages 549–558, 2007. 1.1

[DLM+10] I. Diakonikolas, H.K. Lee, K. Matulef, R. Servedio, and A. Wan. Efficiently testing sparse
GF(2) polynomials. Algorithmica, July 2010. 1.1

[DSFT+15] D. Dachman-Soled, V. Feldman, L.-Y. Tan, A. Wan, and K. Wimmer. Approximate
resilience, monotonicity, and the complexity of agnostic learning. In SODA, page to
appear, 2015. 1

[FGKP09] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On
agnostic learning of parities, monomials, and halfspaces. SIAM J. Comput.,
39(2):606–645, 2009. 1

[FKR+04] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky. Testing juntas. J.
Computer & System Sciences, 68(4):753–787, 2004. 1.1

[Fra83] Peter Frankl. On the trace of finite sets. J. Comb. Theory, Ser. A, 34(1):41–45, 1983. 1.3, 5

[Gol10] O. Goldreich, editor. Property Testing: Current Research and Surveys. Springer, 2010.
LNCS 6390. 1

[GOS+11] P. Gopalan, R. O’Donnell, R. Servedio, A. Shpilka, and K. Wimmer. Testing Fourier
dimensionality and sparsity. SIAM J. on Computing, 40(4):1075–1100, 2011. 1.1

[GTT99] D. Guijarro, J. Tarui, and T. Tsukiji. Finding relevant variables in the PAC model with
membership queries. In Proceedings of the Tenth International Conference on Algorithmic
Learning Theory, pages 313–322, 1999. 1

[Har64] Larry H. Harper. Optimal assignments of numbers to vertices. SIAM J. Appl. Math.,
12(1):131–135, 1964. 1.3, 2

[Har76] Sergiu Hart. A note on the edges of the n-cube. Disc. Math., 14:157–163, 1976. 1.3, 2

[Lin64] J. H. Lindsey. Assignment of numbers to vertices. Amer. Math. Monthly, 71:508–516,
1964. 1.3, 2

[McD98] Colin McDiarmid. Concentration. In Probabilistic Methods for Algorithmic Discrete
Mathematics, pages 195–248, 1998. 1.3, 6

[MORS09] Kevin Matulef, Ryan O’Donnell, Ronitt Rubinfeld, and Rocco A. Servedio. Testing
±1-weight halfspace. In APPROX-RANDOM, pages 646–657, 2009. 1

16

[MORS10] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing halfspaces. SIAM J. on
Comput., 39(5):2004–2047, 2010. 1.1

[MOS04] E. Mossel, R. O’Donnell, and R. Servedio. Learning functions of k relevant variables.
Journal of Computer & System Sciences, 69(3):421–434, 2004. Preliminary version in
Proc. STOC’03. 1

[Ron08] D. Ron. Property Testing: A Learning Theory Perspective. Foundations and Trends in
Machine Learning, 1(3):307–402, 2008. 1

[Ron10] D. Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends
in Theoretical Computer Science, 5:73–205, 2010. 1

[RS13] D. Ron and R. Servedio. Exponentially improved algorithms and lower bounds for testing
signed majorities. In SODA, pages 1319–1336, 2013. 1

[RT12] D. Ron and G. Tsur. Testing computability by width-two OBDDs. Theoretical Computer
Science, 420:64–79, 2012. 1

[Val12] G. Valiant. Finding Correlations in Subquadratic Time, with Applications to Learning
Parities and Juntas. In FOCS, 2012. 1

17

	Introduction
	Prior work on testing juntas
	Our main result: Adaptivity helps for testing juntas
	The idea underlying our proof
	Preliminaries

	Proof of Theorem 1
	The ``yes'' and ``no'' distributions
	A useful Boolean isoperimetric inequality
	Conditioning on unsaturated irrelevant coordinates, and bounding total variation by establishing concentration
	Proof of Proposition 2.5
	Choosing an ordering
	Bounding val(b,j) by bucketing

