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Abstract

The k-means problem consists of finding k centers in Rd that minimize the sum
of the squared distances of all points in an input set P from Rd to their closest
respective center. Awasthi et. al. recently showed that there exists a constant
ε′ > 0 such that it is NP-hard to approximate the k-means objective within a
factor of 1 + ε′. We establish that the constant ε′ is at least 0.0013.

For a given set of points P ⊂ Rd, the k-means problem consists of finding a
partition of P into k clusters (C1, . . . , Ck) with corresponding centers (c1, . . . , ck)
that minimize the sum of the squared distances of all points in P to their
corresponding center, i.e. the quantity

arg min
(C1,...,Ck),(c1,...,ck)

k∑
i=1

∑
x∈Ci

||x− ci||2

where || · || denotes the Euclidean distance. The k-means problem has been
well-known since the fifties, when Lloyd [10] developed the famous local search
heuristic also known as the k-means algorithm. Various exact, approximate, and
heuristic algorithms have been developed since then. For a constant number of
clusters k and a constant dimension d, the problem can be solved by enumerating
weighted Voronoi diagrams [7]. If the dimension is arbitrary but the number of
centers is constant, many polynomial-time approximation schemes are known.
For example, [6] gives an algorithm with running timeO(nd+2poly(1/ε,k)). In the
general case, only constant-factor approximation algorithms are known [8, 9],
but no algorithm with an approximation ratio smaller than 9 has yet been found.

Surprisingly, no hardness results for the k-means problem were known even
as recently as ten years ago. Today, it is known that the k-means problem
is NP-hard, even for constant k and arbitrary dimension d [1, 4] and also for
arbitrary k and constant d [12]. Early this year, Awasthi et. al. [2] showed that
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there exists a constant ε′ > 0 such that it is NP-hard to approximate the k-
means objective within a factor of 1 + ε′. They use a reduction from the Vertex
Cover problem on triangle-free graphs. Here, one is given a graph G = (V,E)
that does not contain a triangle, and the goal is to compute a minimal set of
vertices S which covers all the edges, meaning that for any (vi, vj) ∈ E, it holds
that vi ∈ S or vj ∈ S. To decide if k vertices suffice to cover a given G, they
construct a k-means instance in the following way. Let bi = (0, . . . , 1, . . . , 0)
be the ith vector in the standard basis of R|V |. For an edge e = (vi, vj) ∈ E,
set xe = bi + bj . The instance consists of the parameter k and the point set
{xe | e ∈ E}. Note that the number of points is |E| and their dimension is |V |.

A relatively simple analysis shows that this reduction is approximation-
preserving. A vertex cover S ⊆ V of size k corresponds to a solution for k-
means where we have centers at {bi : vi ∈ S} and each point x(vi,vj) is assigned
to a center in S ∩ {bi, bj} (which is nonempty because S is a vertex cover). In
addition, it can also be shown that a good solution for k-means reveals a small
vertex cover of G when G is triangle-free.

Unfortunately, this reduction transforms (1 + ε)-hardness for Vertex Cover
on triangle-free graphs to (1 + ε′)-hardness for k-means where ε′ = O( ε∆ ) and
∆ is the maximum degree of G. Awasthi et. al. [2] proved hardness of Vertex
Cover on triangle-free graphs via a reduction from general Vertex Cover, where
the best hardness result of Dinur and Safra [5] has an unspecified large constant
∆. Furthermore, the reduction uses a sophisticated spectral analysis to bound
the size of the minimum vertex cover of a suitably chosen graph product.

Our result is based on the observation that hardness results for Vertex Cover
on small-degree graphs lead to hardness of Vertex Cover on triangle-free graphs
with the same degree in an extremely simple way. Combined with the result
of Chleb́ık and Chleb́ıková [3] that proves hardness of approximating Vertex
Cover on 4-regular graphs within ≈ 1.02, this observation gives hardness of
Vertex Cover on triangle-free, degree-4 graphs without relying on the spectral
analysis. The same reduction from Vertex Cover on triangle-free graphs to k-
means then proves APX-hardness of k-means, with an improved ratio due to
the small degree of G.

1. Main Result

Our main result is the following theorem.

Theorem 1. It is NP-hard to approximate k-means within a factor 1.0013.

We prove hardness of k-means by a reduction from Vertex Cover on 4-
regular graphs, for which we have the following hardness result of Chleb́ık and
Chleb́ıková [3].

Theorem 2 ([3], see also Appendix A). Given a 4-regular graph G = (V (G), E(G)),
it is NP-hard to distinguish to distinguish the following cases.

• G has a vertex cover with at most αmin|V (G)| vertices.
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• Every vertex cover of G has at least αmax|V (G)| vertices.

Here, αmin = (2µ4,k + 8)/(4µ4,k + 12) and αmax = (2µ4,k + 9)/(4µ4,k + 12)
with µ4,k ≤ 21.7. In particular, it is NP-hard to approximate Vertex Cover on
degree-4 graphs within a factor of (αmax/αmin) ≥ 1.0192.

Given a 4-regular graph G = (V (G), E(G)) for Vertex Cover with n :=
|V (G)| vertices and 2n edges, we first partition E(G) into E1 and E2 such that
|E1| = |E2| = |E(G)|/2 = n and such that the subgraph (V (G), E2) is bipartite.
Such a partition always exists: every graph has a cut containing at least half of
the edges (well-known; see, e. g., [13]). Choose n of these cut edges for E2 and
let E1 be the remaining edges. We define G′ = (V (G′), E(G′)) by splitting each
edge in E1 into three edges. Formally, G′ is given by

V (G′) = V (G) ∪

 ⋃
e=(u,v)∈E1

{v′e,u, v′e,v}

 ,

E(G′) =

 ⋃
e=(u,v)∈E1

{
(v, v′e,v), (v

′
e,v, v

′
e,u), (v′e,u, u)

} ∪ E2 .

Notice that V has n+2n = 3n vertices and 3n+n = 4n edges. It is also easy to
see that the maximum degree of V is 4, and that V does not have any triangle,
since any triangle of G contains at least one edge of E1 (because (V (G), E2) is
bipartite) and each edge of E1 is split into three.

Given G′ as an instance of Vertex Cover on triangle-free graphs, the reduc-
tion to the k-means problem is the same as before. Let bi = (0, . . . , 1, . . . , 0) be
the ith vector in the standard basis of R3n. For an edge e = (vi, vj) ∈ E(G′),
set xe = bi + bj . The instance consists of the parameter k = (αmin + 1)n and
the point set {xe | e ∈ E}. Notice that the number of points is now 4n and
their dimension is 3n.

We now analyze the reduction. Note that for k-means, once a cluster is fixed
as a set of points, the optimal center and the cost of the cluster are determined4.
Let cost(C) be the cost of a cluster C. We abuse notation and use C for the set
of edges {e : xe ∈ C} ⊆ E(G′) as well. For an integer l, define an l-star to be
a set of l distinct edges incident to a common vertex. The following lemma is
proven by Awasthi et. al. and shows that if C is cost-efficient, then two vertices
are sufficient to cover many edges in C. Furthermore, an optimal C is either a
star or a triangle.

Lemma 3 ([2], Proposition 9 and Lemma 11). Let C = {xe1 , . . . , xel} be a
cluster. Then l − 1 ≤ cost(C) ≤ 2l − 1, and there exist two vertices that cover
at least d2l− 1− cost(C)e edges in C. Furthermore, cost(C) = l− 1 if and only
if C is either an l-star or a triangle, and otherwise, cost(C) ≥ l − 1/2.

4For k = 1, the optimal solution to the k-means problem is the centroid of the point set.
This is due to a well-known fact, see, e. g., Lemma 2.1 in [9].
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1.1. Completeness

Lemma 4. If G has a vertex cover of size at most αminn, the instance of k-
means produced by the reduction admits a solution of cost at most (3−αmin)n.

Proof. Suppose G has a vertex cover S with at most αminn vertices. For each
edge e = (u, v) ∈ E1, let v′(e) = v′e,u if v ∈ S, and v′(e) = v′e,v otherwise. Let
S′ := S ∪ (∪e∈E1

{v′(e)}. Since S is a vertex cover of G, for every edge e ∈ E1,
S and v′(e) cover all three edges of E(G′) corresponding to e. Therefore, S′ is
a vertex cover of G′, and since |E1| = n, it has at most (αmin + 1)n vertices.

For the k-means solution, let each cluster correspond to a vertex in S′, and
assign each edge e ∈ E(G′) to the cluster corresponding to a vertex incident to
e (choose an arbitrary one if there are two). Each edge is assigned to a cluster
since S′ is a vertex cover, and each cluster is a star by construction. Since there
are 4n points and k = αminn+n, the total cost of the solution is, by Lemma 3,

k∑
i=1

cost(Ci) =

k∑
i

(|Ci| − 1) =

( k∑
i

|Ci|
)
− k = (3− αmin)n.

1.2. Soundness

Lemma 5. If every vertex cover of G has size of at least αmaxn, then any
solution of the k-means instance produced by the reduction costs at least (3 −
αmin + 1

3 (αmax − αmin))n.

Proof. Suppose every vertex cover of G has at least αmaxn vertices. We claim
that every vertex cover of G′ also has to be large.

Claim 6. Every vertex cover of G′ has at least (αmax + 1)n vertices.

Proof. Let S′ be a vertex cover of G′. If S′ contains both v′e,u and v′e,v for any
e = (u, v) ∈ E1, then S′∪{u}\{v′e,u} is a vertex cover with the same or smaller
size. Therefore, we can without loss of generality assume that for each e =
(u, v) ∈ E1, S′ contains exactly one vertex in {v′e,u, v′e,v}. Set S := S′ ∩ V (G),
thus S has cardinality |S′| −n. Each e ∈ E2 is covered by S by definition. If an
e ∈ E1 is not covered by S, at least one of the three edges of G′ corresponding
to e is not covered by S′. Thus, every edge e ∈ E(G) is covered by S, so S is a
vertex cover of G. Since |S| ≥ αmaxn, |S′| ≥ (αmax + 1)n.

Fix k clusters C1, . . . , Ck. Without loss of generality, let C1, . . . , Cs be clus-
ters that correspond to a star, and Cs+1, . . . , Ck be clusters that do not corre-
spond to a star for any l. For i = 1, . . . , s, let v(i) be the vertex covering all
edges in Ci, and for i = s + 1, . . . , k, let v(i), v′(i) be two vertices covering at
least d2|Ci| − 1 − cost(Ci)e edges in Ci by Lemma 3. Let E† ⊆ E(G′) be the
set of edges not covered by any v(i) or v′(i). The cardinality of |E†| is at most

k∑
i=s+1

(|Ci| − (2|Ci| − 1− cost(Ci))) =

k∑
i=s+1

(cost(Ci)− (|Ci| − 1)).
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Adding one vertex for each edge of E† to the set {v(i)}1≤i≤s∪{v(i), v′(i)}s+1≤i≤k
yields a vertex cover of G′ of size at most

s+ 2(k − s) +

k∑
i=s+1

(cost(Ci)− (|Ci| − 1)).

Every vertex cover of G′ has size of at least (αmax + 1)n = k+ (αmax−αmin)n,
so we have

(k − s) +

k∑
i=s+1

(cost(Ci)− (|Ci| − 1)) ≥ (αmax − αmin)n.

Now, either k − s ≥ 2
3 (αmax − αmin)n or

∑k
i=s+1(cost(Ci) − (|Ci| − 1)) ≥

1
3 (αmax − αmin)n. In the former case, since cost(Ci) ≥ |Ci| − 1

2 for i > s by
Lemma 3, the total cost is

k∑
i=1

cost(Ci) ≥
s∑
i=1

(|Ci|−1)+

k∑
i=s+1

(|Ci|− 1
2 ) ≥

( k∑
i

|Ci|
)
−k+

(αmax − αmin)n

3
.

In the latter case, the total cost can be split to obtain that
k∑
i=1

cost(Ci) ≥
k∑
i=1

(|Ci| − 1) +
k∑

i=s+1

(cost(Ci)− (|Ci| − 1)) ≥
( k∑
i

|Ci|
)
− k + 1

3 (αmax − αmin)n.

Therefore, in any case, the total cost is at least( k∑
i

|Ci|
)
− k +

1

3
(αmax − αmin)n =

(
3− αmin +

1

3
(αmax − αmin)

)
n.

The above completeness and soundness analyses show that it is NP-hard to
distinguish the following cases.

• There exists a solution of cost at most (3− αmin)n.

• Every solution has cost at least (3− αmin + αmax−αmin

3 )n.

Therefore, it is NP-hard to approximate k-means within a factor of

(3− αmin + αmax−αmin

3 )n

(3− αmin)n
= 1 +

αmax − αmin

3(3− αmin)
= 1 +

1

3(10µ4,k + 28)
≥ 1.0013.
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Appendix A. Remark on Theorem 2

To obtain Theorem 2, note that the proof of Theorem 17 in [3] states that
it is NP-hard to distinguish whether the vertex cover has at most

|V (G)|
2(|V (H)| −M(H))/k + 8 + 2ε

2|V (H)|/k + 12
or at least |V (G)|

2(|V (H)| −M(H))/k + 9 + 2ε

2|V (H)|/k + 12

vertices. By the assumption in the first sentence of the proof and because
|V (H)| = 2M(H), (|V (H)| −M(H))/k and |V (H)|/k can be replaced by µ4,k

as defined in Definition 6 in [3]. By Theorem 16 in [3], µ4,k ≤ 21.7.

6


	Main Result
	Completeness
	Soundness

	Remark on Theorem 2

