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Abstract

The k-means problem consists of finding & centers in R? that minimize the sum
of the squared distances of all points in an input set P from R to their closest
respective center. Awasthi et. al. recently showed that there exists a constant
¢’ > 0 such that it is NP-hard to approximate the k-means objective within a
factor of 1 4 ¢’. We establish that the constant ¢’ is at least 0.0013.

For a given set of points P C R?, the k-means problem consists of finding a
partition of P into k clusters (C, ..., Cy) with corresponding centers (cq, . . ., cx)
that minimize the sum of the squared distances of all points in P to their
corresponding center, i.e. the quantity
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where || - || denotes the Euclidean distance. The k-means problem has been

well-known since the fifties, when Lloyd [10] developed the famous local search
heuristic also known as the k-means algorithm. Various exact, approximate, and
heuristic algorithms have been developed since then. For a constant number of
clusters k and a constant dimension d, the problem can be solved by enumerating
weighted Voronoi diagrams [7]. If the dimension is arbitrary but the number of
centers is constant, many polynomial-time approximation schemes are known.
For example, [6] gives an algorithm with running time O(nd+2P°¥(1/:k)) In the
general case, only constant-factor approximation algorithms are known [8] [9],
but no algorithm with an approximation ratio smaller than 9 has yet been found.

Surprisingly, no hardness results for the k-means problem were known even
as recently as ten years ago. Today, it is known that the k-means problem
is NP-hard, even for constant k and arbitrary dimension d [I, 4] and also for
arbitrary k and constant d [I12]. Early this year, Awasthi et. al. [2] showed that
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there exists a constant ¢’ > 0 such that it is NP-hard to approximate the k-
means objective within a factor of 1+¢’. They use a reduction from the Vertex
Cover problem on triangle-free graphs. Here, one is given a graph G = (V, E)
that does not contain a triangle, and the goal is to compute a minimal set of
vertices S which covers all the edges, meaning that for any (v;,v;) € E, it holds
that v; € S or v; € S. To decide if k vertices suffice to cover a given G, they
construct a k-means instance in the following way. Let b; = (0,...,1,...,0)
be the ith vector in the standard basis of RIVl. For an edge e = (v;,v;) € E,
set . = b; + b;. The instance consists of the parameter £ and the point set
{z, | e € E'}. Note that the number of points is |E| and their dimension is |V].

A relatively simple analysis shows that this reduction is approximation-
preserving. A vertex cover S C V of size k corresponds to a solution for k-
means where we have centers at {b; : v; € S} and each point T(v;,0;) 15 assigned
to a center in S N {b;,b;} (which is nonempty because S is a vertex cover). In
addition, it can also be shown that a good solution for k-means reveals a small
vertex cover of G when G is triangle-free.

Unfortunately, this reduction transforms (1 + ¢)-hardness for Vertex Cover
on triangle-free graphs to (1 4 ¢’)-hardness for k-means where ¢’ = O(%) and
A is the maximum degree of G. Awasthi et. al. [2] proved hardness of Vertex
Cover on triangle-free graphs via a reduction from general Vertex Cover, where
the best hardness result of Dinur and Safra [5] has an unspecified large constant
A. Furthermore, the reduction uses a sophisticated spectral analysis to bound
the size of the minimum vertex cover of a suitably chosen graph product.

Our result is based on the observation that hardness results for Vertex Cover
on small-degree graphs lead to hardness of Vertex Cover on triangle-free graphs
with the same degree in an extremely simple way. Combined with the result
of Chlebik and Chlebikové [3] that proves hardness of approximating Vertex
Cover on 4-regular graphs within =~ 1.02, this observation gives hardness of
Vertex Cover on triangle-free, degree-4 graphs without relying on the spectral
analysis. The same reduction from Vertex Cover on triangle-free graphs to k-
means then proves APX-hardness of k-means, with an improved ratio due to
the small degree of G.

1. Main Result
Our main result is the following theorem.
Theorem 1. It is NP-hard to approzimate k-means within a factor 1.0013.

We prove hardness of k-means by a reduction from Vertex Cover on 4-
regular graphs, for which we have the following hardness result of Chlebik and
Chlebikova [3].

Theorem 2 ([3], see also|Appendix A). Given a 4-regular graph G = (V(Q), E(Q)),
it is NP-hard to distinguish to distinguish the following cases.

o G has a vertex cover with at most amin|V (G)| vertices.



e FEuvery vertex cover of G has at least qma. |V (G)| vertices.

Here, Umin = (2M4,k + 8)/(4:”471@ + 12) and Umazx = (2/~L47k + 9)/(4M4,k¢ + 12)
with par < 21.7. In particular, it is NP-hard to approzimate Vertex Cover on
degree-4 graphs within a factor of (maz/@min) > 1.0192.

Given a 4-regular graph G = (V(G), E(G)) for Vertex Cover with n :=
|V (G)| vertices and 2n edges, we first partition E(G) into E; and Es such that
|E1| = |E2] = |E(G)|/2 = n and such that the subgraph (V(G), E») is bipartite.
Such a partition always exists: every graph has a cut containing at least half of
the edges (well-known; see, e. g., [I3]). Choose n of these cut edges for Ey and
let By be the remaining edges. We define G’ = (V(G'), E(G’)) by splitting each
edge in E; into three edges. Formally, G’ is given by

V(GI) = V(G) U U {'Ué,ua Ué,v} )

e=(u,v)EE,

E(G/) = U {(U’ Ué,v)7 (Ué,w Ué,u)7 (Ué,ua u)} UEs .

e=(u,v)€E;

Notice that V' has n+2n = 3n vertices and 3n+n = 4n edges. It is also easy to
see that the maximum degree of V is 4, and that V' does not have any triangle,
since any triangle of G contains at least one edge of E; (because (V(G), Es) is
bipartite) and each edge of F; is split into three.

Given G’ as an instance of Vertex Cover on triangle-free graphs, the reduc-
tion to the k-means problem is the same as before. Let b; = (0,...,1,...,0) be
the ith vector in the standard basis of R3". For an edge e = (v;,v;) € E(G'),
set . = b; + b;. The instance consists of the parameter k = (@min + 1)n and
the point set {z. | e € E}. Notice that the number of points is now 4n and
their dimension is 3n.

We now analyze the reduction. Note that for k-means, once a cluster is fixed
as a set of points, the optimal center and the cost of the cluster are determinedﬂ
Let cost(C) be the cost of a cluster C. We abuse notation and use C' for the set
of edges {e: z. € C} C E(G’) as well. For an integer [, define an [-star to be
a set of [ distinct edges incident to a common vertex. The following lemma is
proven by Awasthi et. al. and shows that if C' is cost-efficient, then two vertices
are sufficient to cover many edges in C. Furthermore, an optimal C is either a
star or a triangle.

Lemma 3 (2], Proposition 9 and Lemma 11). Let C = {z¢,,...,Z¢ | be a
cluster. Then | —1 < cost(C) < 2] — 1, and there exist two vertices that cover
at least [21 — 1 — cost(C)] edges in C. Furthermore, cost(C) =1—1 if and only
if C is either an l-star or a triangle, and otherwise, cost(C) > 11— 1/2.

4For k = 1, the optimal solution to the k-means problem is the centroid of the point set.
This is due to a well-known fact, see, e. g., Lemma 2.1 in [9].



1.1. Completeness

Lemma 4. If G has a vertex cover of size at most cuninn, the instance of k-
means produced by the reduction admits a solution of cost at most (3 — amin)n.

Proof. Suppose G has a vertex cover S with at most a,,;,n vertices. For each
edge e = (u,v) € Ey, let v'(e) = v, if v € 9, and v'(e) = v, , otherwise. Let
S = 8 U (Ueer, {v'(e)}. Since S is a vertex cover of G, for every edge e € Fjy,
S and v'(e) cover all three edges of E(G’) corresponding to e. Therefore, S’ is
a vertex cover of G’, and since |E1| = n, it has at most (amin + 1)n vertices.
For the k-means solution, let each cluster correspond to a vertex in S’, and
assign each edge e € E(G') to the cluster corresponding to a vertex incident to
e (choose an arbitrary one if there are two). Each edge is assigned to a cluster
since S’ is a vertex cover, and each cluster is a star by construction. Since there
are 4n points and k = ayninn +n, the total cost of the solution is, by Lemma 3]

k
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1.2. Soundness

Lemma 5. If every vertex cover of G has size of at least aupqen, then any
solution of the k-means instance produced by the reduction costs at least (3 —

Qmin + %(amax - amzn))n

Proof. Suppose every vertex cover of G has at least ay,q,n vertices. We claim
that every vertex cover of G’ also has to be large.

Claim 6. Every vertex cover of G' has at least (mar + 1)n vertices.

Proof. Let S” be a vertex cover of G'. If S’ contains both v, and v, , for any
e = (u,v) € Ey, then S"U{u}\ {v,} is a vertex cover with the same or smaller
size. Therefore, we can without loss of generality assume that for each e =
(u,v) € Ey, S’ contains exactly one vertex in {v; ,,v,,}. Set S := 8" NV(G),
thus S has cardinality |S’| — n. Each e € E; is covered by S by definition. If an
e € E1 is not covered by S, at least one of the three edges of G’ corresponding
to e is not covered by S’. Thus, every edge e € E(G) is covered by S, so S is a
vertex cover of G. Since |S| > amazn, |5 > (Qmas + 1)n. O

Fix k clusters C1, ..., Cy. Without loss of generality, let C1,...,Cs be clus-

ters that correspond to a star, and Cs1,...,Ck be clusters that do not corre-
spond to a star for any I. For ¢ = 1,...,s, let v(i) be the vertex covering all
edges in C;, and for i = s+ 1,...,k, let v(i),v'(¢) be two vertices covering at

least [2|C;| — 1 — cost(C;)] edges in C; by Lemma |3} Let Ef C E(G’) be the
set of edges not covered by any v(i) or v/(i). The cardinality of |ET| is at most

k k
S (G = 216 — 1= cost(Ci)) = 3 (cost(Ch) = (IGi] — 1).
i=s+1 i=s+1



Adding one vertex for each edge of ET to the set {v(i) }1<i<sU{v (), v (i) }sr1<i<k

yields a vertex cover of G’ of size at most

k

s+2(k—s)+ Y (cost(Ci) — (|Ci| = 1)).

i=s+1

Every vertex cover of G’ has size of at least (e +1)1n = k + (Qmaz — @min)7,
so we have

(k—s)—i—‘Z(cost( D = (1C:] = 1) > (Qmaz — Cmin )7

Now, either k — 5 > 2(Qmas — Qmin)n OF Ez sp1(cost(Cy) — (|Ci| = 1)) >
#(Qmaz — Qmin)n. In the former case, since cost(C;) > |C;| — § for i > s by
Lemma [3] the total cost is

k s k k
Umax — Omin )T
D cost(Cy) = > (ICi=1)+ Y (ICi]—-%) > (Z |Oz'|) —k+%.
=1 =1 1=s+1 [

k
In the latter case, the total cost can be split to obtain that Y cost(C;) >
i=1

k
E(IC -1+ Z;r (cost(Cy) — (|G = 1)) = (Z |Cil) =k + 5(Amas — Qmin)n.
Therefore, in any case, the total cost is at least

k
1 1
(Z |Oz|) —k+ g(amax - amin)n = (3 — Qmin + g(amax - amzn)) n. [0
i
The above completeness and soundness analyses show that it is NP-hard to
distinguish the following cases.
e There exists a solution of cost at most (3 — qmin)n.
e Every solution has cost at least (3 — i + “mesgmin)n,

Therefore, it is NP-hard to approximate k-means within a factor of
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> 1.0013.
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Appendix A. Remark on Theorem 2

To obtain Theorem 2, note that the proof of Theorem 17 in [3] states that
it is NP-hard to distinguish whether the vertex cover has at most
2(|V(H)| — M(H))/k + 8+ 2¢ 2(|V(H)| - M(H))/k+9+ 2

2|V (H)|/k + 12 2|V(H)|/k + 12

vertices. By the assumption in the first sentence of the proof and because
|V(H)| =2M(H), (|V(H)| - M(H))/k and |V (H)|/k can be replaced by fi4,k
as defined in Definition 6 in [3]. By Theorem 16 in [3], par < 21.7.

[V(G)| or at least |V(G)|
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