Euiwoong Lee^{a,1}, Melanie Schmidt^{a,2}, John Wright^{a,3}

^aComputer Science Department Carnegie Mellon University Pittsburgh, PA 15213

Abstract

The k-means problem consists of finding k centers in \mathbb{R}^d that minimize the sum of the squared distances of all points in an input set P from \mathbb{R}^d to their closest respective center. Awasthi et. al. recently showed that there exists a constant $\varepsilon' > 0$ such that it is NP-hard to approximate the k-means objective within a factor of $1 + \varepsilon'$. We establish that the constant ε' is at least 0.0013.

For a given set of points $P \subset \mathbb{R}^d$, the *k-means problem* consists of finding a partition of P into k clusters (C_1, \ldots, C_k) with corresponding centers (c_1, \ldots, c_k) that minimize the sum of the squared distances of all points in P to their corresponding center, i.e. the quantity

$$\arg \min_{(C_1, \dots, C_k), (c_1, \dots, c_k)} \sum_{i=1}^k \sum_{x \in C_i} ||x - c_i||^2$$

where $||\cdot||$ denotes the Euclidean distance. The k-means problem has been well-known since the fifties, when Lloyd [10] developed the famous local search heuristic also known as the k-means algorithm. Various exact, approximate, and heuristic algorithms have been developed since then. For a constant number of clusters k and a constant dimension d, the problem can be solved by enumerating weighted Voronoi diagrams [7]. If the dimension is arbitrary but the number of centers is constant, many polynomial-time approximation schemes are known. For example, [6] gives an algorithm with running time $\mathcal{O}(nd+2^{\text{poly}(1/\varepsilon,k)})$. In the general case, only constant-factor approximation algorithms are known [8, 9], but no algorithm with an approximation ratio smaller than 9 has yet been found.

Surprisingly, no hardness results for the k-means problem were known even as recently as ten years ago. Today, it is known that the k-means problem is NP-hard, even for constant k and arbitrary dimension d [1, 4] and also for arbitrary k and constant d [12]. Early this year, Awasthi et. al. [2] showed that

 $^{^1\}mathrm{Supported}$ by the Samsung Scholarship and NSF CCF-1115525.

²Supported by the German Academic Exchange Service (DAAD).

³Supported by a Simons Fellowship in Theoretical Computer Science.

there exists a constant $\varepsilon' > 0$ such that it is NP-hard to approximate the k-means objective within a factor of $1 + \varepsilon'$. They use a reduction from the Vertex Cover problem on triangle-free graphs. Here, one is given a graph G = (V, E) that does not contain a triangle, and the goal is to compute a minimal set of vertices S which covers all the edges, meaning that for any $(v_i, v_j) \in E$, it holds that $v_i \in S$ or $v_j \in S$. To decide if k vertices suffice to cover a given G, they construct a k-means instance in the following way. Let $b_i = (0, \ldots, 1, \ldots, 0)$ be the ith vector in the standard basis of $\mathbb{R}^{|V|}$. For an edge $e = (v_i, v_j) \in E$, set $x_e = b_i + b_j$. The instance consists of the parameter k and the point set $\{x_e \mid e \in E\}$. Note that the number of points is |E| and their dimension is |V|.

A relatively simple analysis shows that this reduction is approximation-preserving. A vertex cover $S \subseteq V$ of size k corresponds to a solution for k-means where we have centers at $\{b_i : v_i \in S\}$ and each point $x_{(v_i,v_j)}$ is assigned to a center in $S \cap \{b_i,b_j\}$ (which is nonempty because S is a vertex cover). In addition, it can also be shown that a good solution for k-means reveals a small vertex cover of G when G is triangle-free.

Unfortunately, this reduction transforms $(1 + \varepsilon)$ -hardness for Vertex Cover on triangle-free graphs to $(1 + \varepsilon')$ -hardness for k-means where $\varepsilon' = O(\frac{\varepsilon}{\Delta})$ and Δ is the maximum degree of G. Awasthi et. al. [2] proved hardness of Vertex Cover on triangle-free graphs via a reduction from general Vertex Cover, where the best hardness result of Dinur and Safra [5] has an unspecified large constant Δ . Furthermore, the reduction uses a sophisticated spectral analysis to bound the size of the minimum vertex cover of a suitably chosen graph product.

Our result is based on the observation that hardness results for Vertex Cover on small-degree graphs lead to hardness of Vertex Cover on triangle-free graphs with the same degree in an extremely simple way. Combined with the result of Chlebík and Chlebíková [3] that proves hardness of approximating Vertex Cover on 4-regular graphs within ≈ 1.02 , this observation gives hardness of Vertex Cover on triangle-free, degree-4 graphs without relying on the spectral analysis. The same reduction from Vertex Cover on triangle-free graphs to k-means then proves APX-hardness of k-means, with an improved ratio due to the small degree of G.

1. Main Result

Our main result is the following theorem.

Theorem 1. It is NP-hard to approximate k-means within a factor 1.0013.

We prove hardness of k-means by a reduction from Vertex Cover on 4-regular graphs, for which we have the following hardness result of Chlebík and Chlebíková [3].

Theorem 2 ([3], see also Appendix A). Given a 4-regular graph G = (V(G), E(G)), it is NP-hard to distinguish to distinguish the following cases.

• G has a vertex cover with at most $\alpha_{min}|V(G)|$ vertices.

• Every vertex cover of G has at least $\alpha_{max}|V(G)|$ vertices.

Here, $\alpha_{min} = (2\mu_{4,k} + 8)/(4\mu_{4,k} + 12)$ and $\alpha_{max} = (2\mu_{4,k} + 9)/(4\mu_{4,k} + 12)$ with $\mu_{4,k} \leq 21.7$. In particular, it is NP-hard to approximate Vertex Cover on degree-4 graphs within a factor of $(\alpha_{max}/\alpha_{min}) \geq 1.0192$.

Given a 4-regular graph G = (V(G), E(G)) for Vertex Cover with n := |V(G)| vertices and 2n edges, we first partition E(G) into E_1 and E_2 such that $|E_1| = |E_2| = |E(G)|/2 = n$ and such that the subgraph $(V(G), E_2)$ is bipartite. Such a partition always exists: every graph has a cut containing at least half of the edges (well-known; see, e. g., [13]). Choose n of these cut edges for E_2 and let E_1 be the remaining edges. We define G' = (V(G'), E(G')) by splitting each edge in E_1 into three edges. Formally, G' is given by

$$V(G') = V(G) \cup \left(\bigcup_{e=(u,v) \in E_1} \{v'_{e,u}, v'_{e,v}\} \right),$$

$$E(G') = \left(\bigcup_{e=(u,v) \in E_1} \{(v, v'_{e,v}), (v'_{e,v}, v'_{e,u}), (v'_{e,u}, u)\} \right) \cup E_2.$$

Notice that V has n+2n=3n vertices and 3n+n=4n edges. It is also easy to see that the maximum degree of V is 4, and that V does not have any triangle, since any triangle of G contains at least one edge of E_1 (because $(V(G), E_2)$ is bipartite) and each edge of E_1 is split into three.

Given G' as an instance of Vertex Cover on triangle-free graphs, the reduction to the k-means problem is the same as before. Let $b_i = (0, \ldots, 1, \ldots, 0)$ be the ith vector in the standard basis of \mathbb{R}^{3n} . For an edge $e = (v_i, v_j) \in E(G')$, set $x_e = b_i + b_j$. The instance consists of the parameter $k = (\alpha_{min} + 1)n$ and the point set $\{x_e \mid e \in E\}$. Notice that the number of points is now 4n and their dimension is 3n.

We now analyze the reduction. Note that for k-means, once a cluster is fixed as a set of points, the optimal center and the cost of the cluster are determined⁴. Let $\mathsf{cost}(C)$ be the cost of a cluster C. We abuse notation and use C for the set of edges $\{e: x_e \in C\} \subseteq E(G')$ as well. For an integer l, define an l-star to be a set of l distinct edges incident to a common vertex. The following lemma is proven by Awasthi et. al. and shows that if C is cost-efficient, then two vertices are sufficient to cover many edges in C. Furthermore, an optimal C is either a star or a triangle.

Lemma 3 ([2], Proposition 9 and Lemma 11). Let $C = \{x_{e_1}, \ldots, x_{e_l}\}$ be a cluster. Then $l-1 \leq \cos(C) \leq 2l-1$, and there exist two vertices that cover at least $\lceil 2l-1-\cos(C) \rceil$ edges in C. Furthermore, $\cos(C) = l-1$ if and only if C is either an l-star or a triangle, and otherwise, $\cos(C) \geq l-1/2$.

⁴For k = 1, the optimal solution to the k-means problem is the *centroid* of the point set. This is due to a well-known fact, see, e. g., Lemma 2.1 in [9].

1.1. Completeness

Lemma 4. If G has a vertex cover of size at most $\alpha_{min}n$, the instance of k-means produced by the reduction admits a solution of cost at most $(3 - \alpha_{min})n$.

Proof. Suppose G has a vertex cover S with at most $\alpha_{min}n$ vertices. For each edge $e = (u, v) \in E_1$, let $v'(e) = v'_{e,u}$ if $v \in S$, and $v'(e) = v'_{e,v}$ otherwise. Let $S' := S \cup (\cup_{e \in E_1} \{v'(e)\})$. Since S is a vertex cover of G, for every edge $e \in E_1$, S and v'(e) cover all three edges of E(G') corresponding to e. Therefore, S' is a vertex cover of G', and since $|E_1| = n$, it has at most $(\alpha_{min} + 1)n$ vertices.

For the k-means solution, let each cluster correspond to a vertex in S', and assign each edge $e \in E(G')$ to the cluster corresponding to a vertex incident to e (choose an arbitrary one if there are two). Each edge is assigned to a cluster since S' is a vertex cover, and each cluster is a star by construction. Since there are 4n points and $k = \alpha_{min}n + n$, the total cost of the solution is, by Lemma 3,

$$\sum_{i=1}^{k} \text{cost}(C_i) = \sum_{i=1}^{k} (|C_i| - 1) = \left(\sum_{i=1}^{k} |C_i|\right) - k = (3 - \alpha_{min})n.$$

1.2. Soundness

Lemma 5. If every vertex cover of G has size of at least $\alpha_{max}n$, then any solution of the k-means instance produced by the reduction costs at least $(3 - \alpha_{min} + \frac{1}{3}(\alpha_{max} - \alpha_{min}))n$.

Proof. Suppose every vertex cover of G has at least $\alpha_{max}n$ vertices. We claim that every vertex cover of G' also has to be large.

Claim 6. Every vertex cover of G' has at least $(\alpha_{max} + 1)n$ vertices.

Proof. Let S' be a vertex cover of G'. If S' contains both $v'_{e,u}$ and $v'_{e,v}$ for any $e = (u,v) \in E_1$, then $S' \cup \{u\} \setminus \{v'_{e,u}\}$ is a vertex cover with the same or smaller size. Therefore, we can without loss of generality assume that for each $e = (u,v) \in E_1$, S' contains exactly one vertex in $\{v'_{e,u}, v'_{e,v}\}$. Set $S := S' \cap V(G)$, thus S has cardinality |S'| - n. Each $e \in E_2$ is covered by S by definition. If an $e \in E_1$ is not covered by S, at least one of the three edges of G' corresponding to e is not covered by S'. Thus, every edge $e \in E(G)$ is covered by S, so S is a vertex cover of G. Since $|S| \ge \alpha_{max} n$, $|S'| \ge (\alpha_{max} + 1)n$.

Fix k clusters C_1, \ldots, C_k . Without loss of generality, let C_1, \ldots, C_s be clusters that correspond to a star, and C_{s+1}, \ldots, C_k be clusters that do not correspond to a star for any l. For $i=1,\ldots,s$, let v(i) be the vertex covering all edges in C_i , and for $i=s+1,\ldots,k$, let v(i),v'(i) be two vertices covering at least $\lceil 2|C_i|-1-\cos(C_i)\rceil$ edges in C_i by Lemma 3. Let $E^{\dagger}\subseteq E(G')$ be the set of edges not covered by any v(i) or v'(i). The cardinality of $|E^{\dagger}|$ is at most

$$\sum_{i=s+1}^{k} (|C_i| - (2|C_i| - 1 - \mathsf{cost}(C_i))) = \sum_{i=s+1}^{k} (\mathsf{cost}(C_i) - (|C_i| - 1)).$$

Adding one vertex for each edge of E^{\dagger} to the set $\{v(i)\}_{1 \leq i \leq s} \cup \{v(i), v'(i)\}_{s+1 \leq i \leq k}$ yields a vertex cover of G' of size at most

$$s + 2(k - s) + \sum_{i=s+1}^{k} (cost(C_i) - (|C_i| - 1)).$$

Every vertex cover of G' has size of at least $(\alpha_{max} + 1)n = k + (\alpha_{max} - \alpha_{min})n$, so we have

$$(k-s) + \sum_{i=s+1}^{k} (\text{cost}(C_i) - (|C_i| - 1)) \ge (\alpha_{max} - \alpha_{min})n.$$

Now, either $k-s \geq \frac{2}{3}(\alpha_{max}-\alpha_{min})n$ or $\sum_{i=s+1}^k(\mathsf{cost}(C_i)-(|C_i|-1)) \geq \frac{1}{3}(\alpha_{max}-\alpha_{min})n$. In the former case, since $\mathsf{cost}(C_i) \geq |C_i|-\frac{1}{2}$ for i>s by Lemma 3, the total cost is

$$\sum_{i=1}^k \text{cost}(C_i) \geq \sum_{i=1}^s (|C_i|-1) + \sum_{i=s+1}^k (|C_i|-\frac{1}{2}) \geq \bigg(\sum_i^k |C_i|\bigg) - k + \frac{(\alpha_{max} - \alpha_{min})n}{3}.$$

In the latter case, the total cost can be split to obtain that $\sum_{i=1}^{k} \operatorname{cost}(C_i) \geq k$

$$\sum_{i=1}^{k} (|C_i|-1) + \sum_{i=s+1}^{k} (\operatorname{cost}(C_i) - (|C_i|-1)) \ge \left(\sum_{i=s+1}^{k} |C_i|\right) - k + \frac{1}{3} (\alpha_{max} - \alpha_{min}) n.$$
 Therefore, in any case, the total cost is at least

$$\left(\sum_{i}^{k} |C_{i}|\right) - k + \frac{1}{3}(\alpha_{max} - \alpha_{min})n = \left(3 - \alpha_{min} + \frac{1}{3}(\alpha_{max} - \alpha_{min})\right)n. \quad \Box$$

The above completeness and soundness analyses show that it is NP-hard to distinguish the following cases.

- There exists a solution of cost at most $(3 \alpha_{min})n$.
- Every solution has cost at least $(3 \alpha_{min} + \frac{\alpha_{max} \alpha_{min}}{3})n$.

Therefore, it is NP-hard to approximate k-means within a factor of

$$\frac{(3 - \alpha_{min} + \frac{\alpha_{max} - \alpha_{min}}{3})n}{(3 - \alpha_{min})n} = 1 + \frac{\alpha_{max} - \alpha_{min}}{3(3 - \alpha_{min})} = 1 + \frac{1}{3(10\mu_{4,k} + 28)} \ge 1.0013.$$

- [1] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean sum-of-squares clustering. *Machine Learning*, $75(2):245-248,\,2009$.
- [2] Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The hardness of approximation of euclidean k-means. In SoCG 2015 (accepted), 2015.

- [3] Miroslav Chlebík and Janka Chlebíková. Complexity of approximating bounded variants of optimization problems. *Theoretical Computer Science*, 354(3):320 338, 2006.
- [4] Sanjoy Dasgupta. The hardness of k-means clustering. Technical Report CS2008-0916, University of California, 2008.
- [5] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover. *Annals of Mathematics*, pages 439–485, 2005.
- [6] Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In *Proceedings of the 43th ACM Symposium on the Theory of Computing (STOC)*, pages 569 578, 2011.
- [7] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi diagrams and randomization to variance-based k-clustering (extended abstract). In *Proceedings of the 10th ACM Symposium on Computational Geometry (SoCG*, pages 332–339, 1994.
- [8] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. *Journal of the ACM*, 48(2):274 296, 2001.
- [9] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Computational Geometry, 28(2-3):89 112, 2004.
- [10] Stuart P. Lloyd. Least squares quantization in PCM. Bell Laboratories Technical Memorandum, 1957. later published as [11].
- [11] Stuart P. Lloyd. Least squares quantization in PCM. *IEEE Transactions on Information Theory*, 28(2):129 137, 1982.
- [12] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The Planar k-means Problem is NP-Hard. In *Proceedings of the 3rd Workshop on Algorithms and Computation (WALCOM)*, pages 274 285, 2009.
- [13] Michael Mitzenmacher and Eli Upfal. Probability and Computing Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005. Theorem 6.3 on p. 129 in Chapter 6.

Appendix A. Remark on Theorem 2

To obtain Theorem 2, note that the proof of Theorem 17 in [3] states that it is NP-hard to distinguish whether the vertex cover has at most

$$|V(G)|\frac{2(|V(H)|-M(H))/k+8+2\varepsilon}{2|V(H)|/k+12} \text{ or at least } |V(G)|\frac{2(|V(H)|-M(H))/k+9+2\varepsilon}{2|V(H)|/k+12}$$

vertices. By the assumption in the first sentence of the proof and because |V(H)| = 2M(H), (|V(H)| - M(H))/k and |V(H)|/k can be replaced by $\mu_{4,k}$ as defined in Definition 6 in [3]. By Theorem 16 in [3], $\mu_{4,k} \leq 21.7$.