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Abstract

We show that the class MIP∗ of languages that can be decided by a classical verifier interacting with
multiple all-powerful quantum provers sharing entanglement is equal to the class RE of recursively enu-
merable languages. Our proof builds upon the quantum low-degree test of (Natarajan and Vidick, FOCS
2018) by integrating recent developments from (Natarajan and Wright, FOCS 2019) and combining them
with the recursive compression framework of (Fitzsimons et al., STOC 2019).

An immediate byproduct of our result is that there is an efficient reduction from the Halting Problem
to the problem of deciding whether a two-player nonlocal game has entangled value 1 or at most 1

2 .
Using a known connection, undecidability of the entangled value implies a negative answer to Tsirelson’s
problem: we show, by providing an explicit example, that the closure Cqa of the set of quantum tensor
product correlations is strictly included in the set Cqc of quantum commuting correlations. Following
work of (Fritz, Rev. Math. Phys. 2012) and (Junge et al., J. Math. Phys. 2011) our results provide a
refutation of Connes’ embedding conjecture from the theory of von Neumann algebras.
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1 Introduction

For integer n, k ≥ 2 define the quantum (spatial) correlation set Cqs(n, k) as the subset of Rn2k2
that

contains all tuples (pabxy) representing families of bipartite distributions that can be locally generated in
non-relativistic quantum mechanics. Formally, (pabxy) ∈ Cqs(n, k) if and only if there exist separable
Hilbert spaces HA and HB, for every x ∈ {1, . . . , n} (resp. y ∈ {1, . . . , n}), a collection of projec-
tions {Ax

a}a∈{1,...,k} on HA (resp. {By
b}b∈{1,...,k} on HB) that sum to identity, and a state (unit vector)

ψ ∈ HA ⊗HB such that

∀x, y ∈ {1, 2, . . . , n} , ∀a, b ∈ {1, 2, . . . , k} , pabxy = ψ∗
(

Ax
a ⊗ By

b

)
ψ . (1)

Note that due to the normalization conditions on ψ and on {Ax
a} and {By

b}, for each x, y, (pabxy) is a
probability distribution on {1, 2, . . . , k}2. By taking direct sums it is easy to see that the set Cqs(n, k) is
convex. Let Cqa(n, k) denote its closure (it is known that Cqs(n, k) 6= Cqa(n, k), see [Slo19a]).

Our main result is that the family of sets {Cqa(n, k)}n,k∈N is extraordinarily complex, in the following
computational sense. For any 0 < ε < 1 define the ε-weak membership problem for Cqa as the problem of
deciding, given n, k ∈ N and a point p = (pabxy) ∈ Rn2k2

, whether p lies in Cqa(n, k) or is ε-far from
it in `1 distance, promised that one is the case. Then we show that for any given 0 < ε < 1 the ε-weak
membership problem for Cqa cannot be solved by a Turing machine that halts with the correct answer on
every input.

We show this by directly reducing the Halting problem to the weak membership problem for Cqa: we
show that for all 0 < ε < 1 and any Turing machineM one can efficiently compute integers n, k ∈ N and
a linear functional `M on Rn2k2

such that, wheneverM halts it holds that

sup
p∈Cqa(n,k)

∣∣`M(p)
∣∣ = 1 , (2)

whereas ifM does not halt then
sup

p∈Cqa(n,k)

∣∣`M(p)
∣∣ ≤ 1− ε . (3)

By standard results in convex optimization, this implies the aforementioned claim on the undecidability of
the ε-weak membership problem for Cqa (for any 0 < ε < 1).

Our result has interesting consequences for long-standing conjectures in quantum information theory and
the theory of von Neumann algebras. Through a connection that follows from the work of Navascues, Piro-
nio, and Acin [NPA08] the undecidability result implies a negative answer to Tsirelson’s problem [Tsi06].
Let Cqc(n, k) denote the set of quantum commuting correlations, which is the set of tuples (pabxy) arising
from operators {Ax

a} and {By
b} acting on a single Hilbert spaceH and a state ψ ∈ H such that

∀x, y ∈ {1, . . . , n} , ∀a, b ∈ {1, . . . , k} , pabxy = ψ∗
(

Ax
a By

b

)
ψ and

[
Ax

a , By
b

]
= 0 . (4)

Then Tsirelson’s problem asks if, for all n, k, the sets Cqa(n, k) and Cqc(n, k) are equal. Using results
from [NPA08] we give integer n, k and an explicit linear function ` on Rn2k2

such that

sup
p∈Cqc(n,k)

∣∣`(p)
∣∣ = 1 , but sup

p∈Cqa(n,k)

∣∣`(p)
∣∣ ≤ 1

2
,

which implies that Cqa(n, k) 6= Cqc(n, k). By an implication of Fritz [Fri12] and Junge et al. [JNP+11]
we further obtain that Connes’ Embedding Conjecture [Con76] is false; in other words, there exist type II1
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von Neumann factors that do not embed in an ultrapower of the hyperfinite II1 factor. We explain these
connections in more detail in Section 1.3 below.

Our approach to constructing such linear functionals on correlation sets goes through the theory of inter-
active proofs from complexity theory. To explain this connection we first review the concept of interactive
proofs. The reader familiar with interactive proofs may skip the next section to arrive directly at a formal
statement of our main complexity-theoretic result in Section 1.2.

1.1 Interactive proof systems

An interactive proof system is an abstraction that generalizes the familiar notion of proof. Intuitively, given
a formal statement z (for example, “this graph admits a proper 3-coloring”), a proof π for z is information
that enables one to check the validity of z more efficiently than without access to the proof (in this example,
π could be an explicit assignment of colors to each vertex of the graph).

Complexity theory formalizes the notion of proof in a way that emphasizes the role played by the veri-
fication procedure. To explain this, first recall that in complexity theory a language L is a subset of {0, 1}∗,
the set of all bit strings of any length, that intuitively represents all problem instances to which the answer
should be “yes”. For example, the language L = 3-COLORING contains all strings z such that z is the
description (according to some pre-specified encoding scheme) of a 3-colorable graph G. We say that a
language L admits efficiently verifiable proofs if there exists an algorithm V (formally, a polynomial-time
Turing machine) that satisfies the following two properties: (i) for any z ∈ L there is a string π such that
V(z, π) returns 1 (we say that V “accepts”), and (ii) for any z /∈ L there is no string π such that V(z, π)
accepts. Property (i) is generally referred to as the completeness property, and (ii) is the soundness. The
set of all languages L with both these completeness and soundness properties is denoted by the complexity
class NP.

Research in complexity and cryptography in the 1980s and 1990s led to a significant generalization
of the notion of “efficiently verifiable proof”. The first modification is to allow randomized verification
procedures by relaxing (i) and (ii) to high probability statements: every z ∈ L should have a proof π that is
accepted with probability at least c (the completeness parameter), and for no z /∈ L should there be a proof
π that is accepted with probability larger than s (the soundness parameter). A common setting is to take
c = 2

3 and s = 1
3 ; standard amplification techniques reveal that the exact values do not significantly affect

the class of languages that admit such proofs, provided that they are chosen within reasonable bounds.
The second modification is to allow interactive verification. Informally, this means that instead of re-

ceiving a proof string π in its entirety and making a decision based on it, the verification algorithm (called
the “verifier”) instead communicates with another algorithm called a “prover”, and based on the communi-
cation decides whether z ∈ L. There are no restrictions on the computational power of the prover, whereas
the verifier is required to run in polynomial time.1

To understand how randomization and interaction can help for proof checking, consider the following
example of an interactive proof for the language GRAPH NON-ISOMORPHISM, which contains all pairs of
graphs (G0, G1) such that G0 and G1 are not isomorphic.2 It is not known if GRAPH NON-ISOMORPHISM ∈
NP, because it is not clear how to give an efficiently verifiable proof string that two graphs G0 and G1 are

1The reader may find the following mental model useful: in an interactive proof, an all-powerful prover is trying to convince
a skeptical, but computationally limited, verifier that a string z (known to both) lies in the set L, even when it may be that in fact
z /∈ L. By interactively interrogating the prover, the verifier can reject false claims, i.e. determine with high statistical confidence
whether z ∈ L or not. Importantly, the verifier is allowed to probabilistically and adaptively choose its messages to the prover.

2Here and in the rest of the section, we implicitly assume that graphs and tuples of graphs have a canonical encoding as binary
strings.
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not isomorphic. (A proof of isomorphism is, of course, trivial: given a bijection from the vertices of G0 to
those of G1 it is straightforward to verify that the bijection induces an isomorphism.) However, consider
the following randomized, interactive verification procedure. Suppose the input to the verifier and prover
is a pair of n-vertex graphs (G0, G1) (if the graphs do not have the same number of vertices, they are
trivially non-isomorphic and the verification procedure can automatically accept). The verifier first selects
a uniformly random b ∈ {0, 1} and a uniformly random permutation σ of {1, . . . , n} and sends the graph
H = σ(Gb) to the prover. The prover is then supposed to respond with a bit b′ ∈ {0, 1}; if b′ = b the
verifier accepts and if b′ 6= b it rejects.

Clearly, if G0 and G1 are not isomorphic then there exists a prover strategy to compute b from H with
probability 1: using its unlimited computational power, the prover can determine whether H is isomorphic
to G0 or to G1. However, if G0 and G1 are isomorphic then the distribution of H is uniform over the
isomorphism class of G0, which is the same as the isomorphism class of G1, and the prover (despite having
unlimited computational power) cannot distinguish between whether the verifier generated H using G0 or
G1. Thus the probability that any prover can correctly guess b′ = b is exactly 1

2 . As a result, we have
shown that the graph non-isomorphism problem has an interactive proof system with completeness c = 1
and soundness s = 1

2 . Note how little “information” is communicated by the prover: a single bit! The
extreme succinctness of the “proof” comes from the fact that whether G0 is isomorphic to G1 determines
whether a prover can reliably compute, given the data available to it (which is G0,G1, and H), the correct
bit b.

We denote by IP the class of languages that admit randomized interactive proof systems such as the one
just described. The class IP is easily seen to contain NP, but it is thought to be a much larger class: one
of the famous results of complexity theory is that IP is exactly the same as PSPACE [LFKN90, Sha90], the
class of languages decidable by Turing machines using polynomial space.3 Thus a polynomial-time verifier,
when augmented with the ability to interrogate an all-powerful prover and use randomization, can solve
computational problems that are (believed to be) vastly more difficult than those that can be checked using
static, deterministic proofs (i.e. NP problems).

Multiprover interactive proofs. We now discuss a generalization of interactive proofs called multiprover
interactive proofs. Here, a polynomial-time verifier can interact with two (or more) provers to decide
whether a given instance z is in a language L or not. In this setting, after the verifier and all the provers
receive the common input z, the provers are not allowed to communicate with each other, and the verifier
“cross-interrogates” the provers in order to decide if z ∈ L. The provers may coordinate a joint strategy
ahead of time, but once the protocol begins the provers can only interact with the verifier. As we will see,
the extra condition that the provers cannot communicate with each other is a powerful constraint that can be
leveraged by the verifier.

Consider the computational problem of deciding membership in a promise language called GAP-MAXCUT.
A promise language L is specified by two disjoint subsets Lyes, Lno ⊆ {0, 1}∗, and the task is to decide
whether a given instance z is in Lyes or Lno, promised that z ∈ Lyes ∪ Lno. In a proof system for a promise
language, the completeness case consists of accepting with probability at least c if z ∈ Lyes, and the sound-
ness case consists of accepting with probability at most s if z ∈ Lno. If z /∈ Lyes ∪ Lno, then there are no
constraints on the behavior of the verifier.

The promise language GAP-MAXCUT is defined as follows: GAP-MAXCUTyes (resp. GAP-MAXCUTno)

3The reason PSPACE is considered a “difficult” class of problems is because many computational problems believed to require
super-polynomial or exponential time (such as 3-COLORING or deciding whether a quantified Boolean formula is true) can be
solved using a polynomial amount of space.
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is the set of all graphs G with a cut (i.e. a bipartition of the vertices) such that at least 90% of edges cross
the cut (resp. at most 60% of edges cross the cut).4 For simplicity, we also assume that all graphs in
GAP-MAXCUTyes ∪ GAP-MAXCUTno are regular, i.e. the degree is a constant across all vertices in the
graph.

The GAP-MAXCUT problem clearly lies in NP, since given a candidate cut it is easy to count the number
of edges that cross it and verify that it is at least 90% of the total number of edges. Observe that the length
of the proof and the time required to verify it are linear in the size of the graph (the number of vertices and
edges). Finding the proof is of course much harder, but we are only concerned with the complexity of the
verification procedure.

Now consider the following simple two-prover interactive proof system for GAP-MAXCUT. Given a
graph G, the verification procedure first samples a uniformly random edge e = {u, v} in G. It then sends a
uniformly random x ∈ {u, v} to the first prover, and a uniformly random y ∈ {u, v} to the second prover.
Each prover sees its respective question only and is expected to respond with a single bit, a, b ∈ {0, 1}
respectively. The verification procedure accepts if and only if a = b if x = y, and a 6= b if x 6= y.

We claim that the verification procedure described in the preceding paragraph is a multiprover interactive
proof system for the language GAP-MAXCUT, with completeness c = 0.95 and soundness s = 0.9, in the
following sense. First, whenever G ∈ GAP-MAXCUTyes then there is a successful strategy for the provers:
specifically, the provers can fix an optimal bipartition and consistently answer “0” when asked about a vertex
from one side of the partition, and “1” when asked about a vertex from the other side; assuming there exists
a cut that is crossed by at least 90% of the edges, this strategy succeeds with probability at least 1

2 +
1
2 0.9,

where the first factor 1
2 arises from the case when both provers are sent the same vertex, in which case they

always succeed.
Conversely, suppose given a strategy for the provers that is accepted with probability p = 1

2 +
1
2 (1− δ)

when the verification procedure is executed on a (regular) n-vertex graph G. We then claim that G has a
cut crossed by at least a 1− 2δ fraction of all edges. To show this, we leverage the non-communication
assumption on the provers. Since either prover’s question is always a single vertex, their strategy can be rep-
resented by a function from the vertices of G to answers in {0, 1}. Any such function specifies a bipartition
of G. While the provers’ bipartitions need not be identical, the fact that they succeed with high probability,
for the case when they are sent the same vertex, implies that they must be consistent with high probability.
Finally, the fact that they also succeed with high probability when sent opposite endpoints of a randomly
chosen edge implies that either prover’s bipartition must be cut by a large number of edges. Taking the
contrapositive establishes the soundness property.

We denote by MIP the class of languages that have multiprover interactive proof systems such as the
one described in the preceding paragraph. Note that, in comparison to the NP verification procedure for
GAP-MAXCUT considered earlier, the interactive, two-prover verification is much more efficient in terms
of the effort required for the verifier. Assuming the graph is provided in a convenient format,5 it is possible
to sample a random edge and verify the provers’ answers in time and space that scales logarithmically with
the size of the graph. This exponential improvement in the efficiency of the verification procedure serves
as the starting point for another celebrated result from complexity theory: MIP is exactly the same as the
class NEXP [BFL91], which are problems that admit exponential-time checkable proofs.6 The class NEXP

4The specific numbers 90% and 60% are not too important; the only thing that really matters is that the first one is strictly less
than 100% and the second strictly larger than 50%, as otherwise the problem becomes much easier.

5For example, the graph can be specified via a circuit that takes as input an edge index — using some arbitrary ordering — and
returns labels for the two endpoints of the edge.

6An example of such a problem is the language SUCCINCT-3-COLORING, which contains descriptions of polynomial-size
circuits C that specify a 3-colorable graph GC on exponentially many vertices.
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contains PSPACE, but is believed to be much larger; this suggests that the ability to interrogate more than
one prover enables a polynomial-time verifier to verify much more complex statements.

Nonlocal games. In this paper we will only be concerned with multiprover interactive proof systems
that consist of a single round of communication with two provers: the verifier first sends its questions to
each of the provers, the provers respond with their answers, and the verifier decides whether to accept or
reject. The class of problems that admit such interactive proofs is denoted MIP(2, 1), and it is known that
MIP = MIP(2, 1) [FL92]. Such proof systems have a convenient reformulation using the language of
nonlocal games, that we now explain.

In a nonlocal game, we say that a verifier interacts with multiple non-communicating players (instead
of provers — there is no formal difference between the two terms). An n-question, k-answer nonlocal
game G is specified by two procedures: a question sampling procedure that samples a pair of questions
(x, y) ∈ {1, . . . , n}2 for the players according to a distribution µ (known to the verifier and the players), and
a decision procedure that takes as input the players’ questions and their respective answers a, b ∈ {1, . . . , k}
and evaluates a predicate D(x, y, a, b) ∈ {0, 1} to determine the verifier’s acceptance or rejection. In
classical complexity theory, the main quantity associated with a nonlocal game G is its classical value,
which is the maximum success probability that two cooperating but non-communicating players have in the
game. Formally, the classical value is defined as

val(G) = sup
p∈Cc(n,k)

∑
x,y

µ(x, y)∑
a,b

D(x, y, a, b)pabxy , (5)

where the set Cc(n, k) is the set of classical correlations, which are tuples (pabxy) such that there exists a
set Λ with probability measure ν and for every λ ∈ Λ functions Aλ, Bλ : {1, 2, . . . , n} → {1, 2, . . . , k}
such that

∀x, y ∈ {1, 2, . . . , n}, ∀a, b ∈ {1, 2, . . . , k}, pabxy = Pr
λ∼ν

(Aλ(x) = a ∧ Bλ(y) = b).

This definition captures the intuitive notion that a classical strategy for the players is specified by (i) a
distribution ν on Λ that represents some probabilistic information shared by the players that is independent
of the verifier’s questions, and (ii) two functions Aλ, Bλ that represent each players’ “local strategy” for
answering given their shared randomness λ and question x or y. 7 Note that due to the shared randomness
λ, the set Cc(n, k) is a (closed) convex subset of [0, 1]n

2k2
.

To make the connection with interactive proof systems, observe that the assertion that L ∈ MIP(2, 1)
precisely amounts to the specification of an efficient mapping8 from problem instances z to games Gz such
that whenever z ∈ L then val(Gz) ≥ 2

3 , whereas if z /∈ L then val(Gz) ≤ 1
3 . Thus the complexity

of the optimization problem (5) captures the complexity of the decision problem L. The aforementioned
characterization of MIP as the class NEXP by [BFL91] shows that in general this optimization problem is
very difficult: it is as hard as deciding any language in NEXP.

7For the functional analyst we briefly note that if we define a tensor

L = ∑
x,y,a,b

µ(x, y)D(x, y, a, b)exa ⊗ eyb ∈ Rnk ⊗Rnk

then val(G) = ‖L‖`n
1 (`∞)k⊗ε`n

1 (`∞)k , with ⊗ε denoting the injective tensor norm of Banach spaces. (For more connections between
interactive proofs, nonlocal games and tensor norms we refer to the survey [PV16].)

8Here by “efficient” we mean that there should be a polynomial-time Turing machine that on input z returns (i) a polynomial-size
randomized circuit that samples from µ, and (ii) a polynomial-size circuit that evaluates the predicate D.
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1.2 Statement of result

We now introduce the main complexity class that is the focus of this paper: MIP∗, the “entangled-prover”
analogue of the class MIP considered earlier. Informally the class MIP∗, first introduced in [CHTW04],
contains all languages that can be decided by a classical polynomial-time verifier interacting with multiple
quantum provers sharing entanglement. We focus on the class MIP∗(2, 1), which corresponds to the setting
of one-round protocols with two provers. Equivalently, a language L is in MIP∗(2, 1) if and only if there is an
efficient mapping from instances z ∈ {0, 1}∗ to nonlocal games Gz such that if z ∈ L, then val∗(Gz) ≥ 2/3
and otherwise val∗(Gz) ≤ 1/3. Here, for an n-question, k-answer game G, we let val∗(G) denote its
entangled value, which is defined as

val∗(G) = sup
p∈Cqs(n,k)

∑
x,y

µ(x, y)∑
a,b

D(x, y, a, b)pabxy , (6)

where the set Cqs(n, k) is the quantum spatial correlation set introduced in (1). In other words, the entangled
value is the supremum of the success probabilities achieved by players that use quantum spatial strategies
(i.e., perform local measurements on a shared entangled state). Note that (6) can be equivalently defined as
taking the supremum over the set Cqa(n, k), the closure of Cqs(n, k).

Since Cc(n, k) ⊆ Cqs(n, k), we have that val(G) ≤ val∗(G); in other words, using quantum spatial
strategies can do at least as well as classical strategies in a nonlocal game.

The consideration of quantum strategies and the set Cqs(n, k) for the definition of MIP∗ is motivated by
a long line of works in the foundations of quantum mechanics around the topic of Bell inequalities, that are
linear functionals which separate the sets Cc(n, k) and Cqs(n, k). The simplest such functional is the CHSH
inequality [CHSH69], that shows Cc(2, 2) ( Cqs(2, 2). The CHSH inequality can be reformulated as a
game G such that val∗(G) > val(G). This game is very simple: it is defined by setting µ(x, y) = 1

4 for
all x, y ∈ {0, 1} and D(x, y, a, b) = 1 if and only if a⊕ b = x ∧ y. It can be shown that val(G) = 3

4 and
val∗(G) = 1

2 +
1

2
√

2
> 3

4 . The study of Bell inequalities is a large area of research not only in foundations,
where they are a tool to study the nonlocal properties of entanglement, but also in quantum cryptography,
where they form the basis for cryptographic protocols for e.g. quantum key distribution [Eke91].

The introduction of entanglement in the setting of interactive proofs has interesting consequences for
complexity theory; indeed it is not a priori clear how the class MIP∗ compares to MIP. Take a language
L ∈ MIP(2, 1), and let z be an instance. Then the associated game Gz is such that val(Gz) ≥ 2

3 if z ∈ L,
and val(Gz) ≤ 1

3 otherwise. The fact that in general val∗(Gz) ≥ val(Gz) (and that as demonstrated by
the CHSH game inequality can be strict) cuts both ways. On the one hand, the soundness property can be
affected, so that instances z /∈ L could have val∗(Gz) = 1, meaning that we would not be able to establish
that L ∈ MIP∗. On the other hand, a language L ∈ MIP∗(2, 1) may not necessarily be in MIP, because for
z ∈ L the fact that val∗(Gz) ≥ 2

3 does not automatically imply val(Gz) >
1
3 (in other words, the game Gz

may require the players to use a quantum strategy in order to win with probability greater than 1/3). Just
as the complexity of the class MIP is characterized by the complexity of approximating the classical value
of nonlocal games (the optimization problem in (5)), the complexity of MIP∗ is intimately related to the
complexity of approximating the entangled value of games (the optimization problem in (6)).

In [IV12] the first non-trivial lower bound on MIP∗ was shown, establishing that MIP = NEXP ⊆ MIP∗.
(Earlier results [KKM+11, IKM09] gave more limited hardness results, for approximating the entangled
value up to inverse polynomial precision.) This was proved by arguing that for the specific games con-
structed by [BFL91] that show NEXP ⊆ MIP, the classical and entangled values are approximately the
same. In other words, the classical soundness and completeness properties of the proof system of [BFL91]
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are maintained in the presence of shared entanglement between the provers. Following [IV12] a sequence of
works [Vid16, Ji16, NV18b, Ji17, NV18a, FJVY19] established progressively stronger lower bounds on the
complexity of approximating the entangled value of nonlocal games, culminating in [NW19] which showed
that approximating the entangled value is at least as hard as NEEXP, the collection of languages decidable
in non-deterministic doubly exponential time. This proves that NEEXP ⊆ MIP∗, and since it is known that
NEXP ( NEEXP it follows that MIP 6= MIP∗.

In contrast to these increasingly strong lower bounds the only upper bound known on MIP∗ is the trivial
inclusion MIP∗ ⊆ RE, the class of recursively enumerable languages, i.e. languages L such that there
exists a Turing machineM such that x ∈ L if and only ifM halts and accepts on input x. This inclusion
follows since the supremum in (6) can be approximated from below by performing an exhaustive search in
increasing dimension and with increasing accuracy. We note that, in addition to containing all decidable
languages, this class also contains undecidable problems such as the Halting problem, which is to decide
whether a given Turing machine eventually halts.

Our main result is a proof of the reverse inclusion: RE ⊆ MIP∗. Combined with the preceding observa-
tion it follows that

MIP∗ = RE ,

which is a full characterization of the power of entangled-prover interactive proofs. In particular for any
0 < ε < 1, it is an undecidable problem to determine whether a given nonlocal game has entangled value 1
or at most 1− ε (promised that one is the case).

Proof summary. The proof of the inclusion RE ⊆ MIP∗ is obtained by designing an entangled-prover
interactive proof for the Halting problem, which is complete for the class RE. Specifically, we design an
efficient transformation that maps any Turing machine M to a nonlocal game GM such that, if M halts
(when run on an empty input tape) then there is a quantum strategy for the provers that succeeds with
probability 1 in GM (i.e. val∗(GM) = 1), whereas if M does not halt then no quantum strategy can
succeed with probability larger than 1

2 in the game (i.e. val∗(GM) ≤ 1
2 ).

A very rough sketch of this construction is as follows (we give a detailed overview in Section 2). Given
an infinite family of games {Gn}n∈N, we say that the family is uniformly generated if there is a polynomial-
time Turing machine that on input n returns a description of the game Gn. Given a game G and p ∈ [0, 1]
let E (G, p) denote the minimum local dimension of an entangled state shared by the players in order for
them to succeed in G with probability at least p.

We proceed in two steps. First, we design a compression procedure for a specific class of nonlocal
games that we call normal form. Given as input a uniformly generated family {Gn}n∈N of normal form
games, the compression procedure returns another uniformly generated family {G′n}n∈N of normal form
games with the following properties: (i) for all n, if val∗(G2n) = 1 then val∗(G′n) = 1, and (ii) for all n, if
val∗(G2n) ≤ 1

2 then val∗(G′n) ≤ 1
2 and moreover

E (G′n,
1
2
) ≥ max

{
E
(
G2n ,

1
2

)
, 22Ω(n)

}
.

The construction of this compression procedure is our main contribution. Informally, it combines the
recursive compression technique developed in [Ji17, FJVY19] with the so-called “introspection” technique
of [NW19] that was used to prove NEEXP ⊆ MIP∗. The introspection technique itself relies heavily on the
quantum low-degree test of [NV18a] to robustly self-test certain distributions that arise from constructions
of classical probabilistically checkable proofs. The quantum low-degree test and the introspection technique
allow us to avoid the shrinking gap limitation of the results from [FJVY19].
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In the second step, we use the compression procedure in an iterated fashion to construct an interactive
proof system for the Halting problem. Fix a Turing machine M and consider the following family of
nonlocal games {G(0)

M,n}n∈N: for all n ∈ N, ifM halts in at most n steps (when run on an empty input

tape), then val∗(G(0)
M,n) = 1, and otherwise val∗(G(0)

M,n) ≤
1
2 .9

Constructing such a family of games is trivial; furthermore, they can be made in the “normal form”
required by the compression procedure. However, consider applying the compression procedure to obtain a
family of normal form games {G(1)

M,n}n∈N. Then for all n ∈N, it holds that ifM halts in at most 2n steps

then val∗(G(1)
M,n) = 1, and otherwise val∗(G(1)

M,n) ≤
1
2 , and furthermore any strategy that achieves a value

of at least 1
2 requires an entangled state of dimension at least 22Ω(n)

.
Intuitively, one would expect that iterating this procedure and “taking the limit” gives a family of games

{G(∞)
M,n}n∈N such that ifM halts then val∗(G(∞)

M,n) = 1 for all n ∈N, whereas ifM does not halt then no

finite-dimensional strategy can succeed with probability larger than 1
2 in G

(∞)
M,n, for all n ∈ N; in particular

val∗(G(∞)
M,n) ≤

1
2 . Formally, we do not take such a limit but instead define directly the family of games

{G(∞)
M,n}n∈N as a fixed point of the Turing machine that implements the compression procedure. The game

GM can then be taken as G(∞)
M,1. We describe this in more detail in Section 2.

1.3 Consequences

Our result is motivated by a connection with Tsirelson’s problem from quantum information theory, itself
related to Connes’ Embedding Conjecture in the theory of von Neumann algebras [Con76]. In a celebrated
sequence of papers, Tsirelson [Tsi93] initiated the systematic study of quantum correlation sets. Recall the
definition of the set of quantum spatial correlations

Cqs(n, k) =
{
(pabxy) | pabxy = 〈ψ|Ax

a ⊗ By
b |ψ〉, |ψ〉 ∈ HA ⊗HB, ∀xy, {Ax

a}a, {By
b}b POVM

}
, (7)

where here |ψ〉 ranges over all unit norm vectors |ψ〉 ∈ HA ⊗HB with HA and HB arbitrary (separable)
Hilbert spaces, and a POVM is defined as a collection of positive semidefinite operators that sum to identity.
(From now on we use the Dirac ket notation |ψ〉 for states.) Recall the closure Cqa(n, k) of Cqs(n, k).

Tsirelson observed that there is a natural alternative definition to the quantum spatial correlation set,
called the quantum commuting correlation set and defined as

Cqc(n, k) =
{
(pabxy) | pabxy = 〈ψ|Ax

a By
b |ψ〉

}
, (8)

where |ψ〉 ∈ H is a quantum state, {Ax
a} and {By

b} are POVMs for all x, y, and [Ax
a , By

b ] = 0 for all
a, b, x, y. Note the key difference with spatial correlations is that in (8) all operators act on the same (separa-
ble) Hilbert space. The requirement that operators associated with different inputs (questions) x, y commute
is arguably a minimal requirement within the context of quantum mechanics for there to not exist any causal
connection between outputs (answers) a, b obtained in response to the respective input.

The set Cqc(n, k) is closed and convex, and it is easy to see that Cqa(n, k) ⊆ Cqc(n, k) for all n, k ≥ 1.
When Tsirelson initially introduced these sets he claimed that equality holds. However, it was later pointed
out that this is not obviously true. The question of equality between Cqc and Cqa (for all n, k) is now known
as Tsirelson’s problem [Tsi06]. Let Cq(n, k) denote the same as Cqs(n, k) except that both HA and HB

9There is nothing special about the choice of 1
2 ; this can be set to any constant that is less than 1.
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in (7) are restricted to finite-dimensional spaces. Then more generally one can consider the following chain
of inclusions

Cq(n, k) ⊆ Cqs(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k) , (9)

for all n, k ∈ N, and ask which (if any) of these inclusions are strict. We let Cq, Cqs, Cqa, Cqc denote the
union of Cq(n, k), Cqs(n, k), Cqa(n, k), Cqc(n, k), respectively, over all integers n, k ∈N. In a breakthrough
work, Slofstra established the first separation between these four correlation sets by proving that Cqs 6=
Cqc [Slo19b]; he later proved the stronger statement that Cqs 6= Cqa [Slo19a]. As a consequence of the
technique used to demonstrate the separation Slofstra also obtains the complexity-theoretic statement that
the problem of determining whether an element p lies in Cqc, even promised that if it does, then it also lies in
Cqa, is undecidable. Interestingly, this is shown by reduction from the complement of the halting problem;
for our result we reduce from the halting problem (see Section 1.4 for further discussion of this point).
Since his work, simpler proofs of Slofstra’s results have been found [DPP19, MR18, Col19]. In [CS18],
Coladangelo and Stark showed that Cq 6= Cqs by exhibiting a 5-input, 3-output correlation that can be
attained using infinite-dimensional spatial strategies (i.e. infinite-dimensional Hilbert spaces, a state and
POVMs satisfying (7)) but cannot be attained via finite-dimensional strategies.

As already noted in [FNT14] (and further elaborated on by [FJVY19]), the undecidability of MIP∗(2, 1)
implies the separation Cqa 6= Cqc.10 This follows from the observation that if Cqa = Cqc, then there exists
an algorithm that can correctly determine if a nonlocal game G satisfies val∗(G) = 1 or val∗(G) ≤ 1

2 and
always halts: this algorithm interleaves a hierarchy of semidefinite programs providing outer approximations
to the set Cqc [NPA08, DLTW08] with a simple exhaustive search procedure providing inner approximations
to Cq. Our result that RE ⊆ MIP∗(2, 1) implies that no such algorithm exists, thus resolving Tsirelson’s
problem in the negative.

We furthermore exhibit an explicit nonlocal game G such that val∗(G) < valco(G) = 1, where
valco(G) is defined as val∗(G) except that the supremum is taken over the set Cqc(n, k) in (8). This in
turn yields an explicit correlation that is in the set Cqc but not in Cqa. This game closely resembles the game
GM described in the sketch of the proof that RE ⊆ MIP∗, whereM is the Turing machine that runs the
hierarchy of semidefinite programs on the game GM and halts if it certifies that valco(GM) < 1. It is in
principle possible to determine an upper bound on the parameters n, k for our separating correlation from the
proof. While we do not provide such a bound, there is no step in the proof that requires it to be astronomical;
e.g. we believe (without proof) that 1020 is a clear upper bound.

Connes’ Embedding Conjecture. Connes’ Embedding Conjecture (CEC) [Con76] is a conjecture in the
theory of von Neumann algebras. Briefly, CEC posits that every type II1 von Neumann factor embeds into an
ultrapower of the hyperfinite II1 factor. We refer to [Oza13] for a precise formulation of the conjecture and
connections to other conjectures in operator algebras, such as Kirchberg’s QWEP conjecture. In independent
work Fritz [Fri12] and Junge et al. [JNP+11] showed that a positive answer to CEC would imply a positive
resolution of Tsirelson’s problem, i.e. that Cqa(n, k) = Cqc(n, k) for all n, k. (This was later promoted to an
equivalence by Ozawa [Oza13].) Since our result disproves this equality for some n, k it also implies that
CEC does not hold. We note that using the constructive aspect of our result it may be possible to give an
explicit description of a factor that does not embed into an ultrapower of the hyperfinite II1 factor, but we
do not give such a construction.

10Technically [FNT14] make the observation for the commuting-prover analogue MIPco(2, 1), discussed further in Section 1.4,
but the reasoning is the same.
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Entanglement tests. As a step towards showing our result for any integer n ≥ 1 we construct a game
Gn, with question and answer length polynomial in the size of the smallest Turing machineMn that halts
(on the empty tape) in exactly n steps (i.e. the Kolmogorov complexity of n), such that val∗(Gn) = 1 yet
any quantum strategy that succeeds in Gn with probability larger than 1

2 must use an entangled state whose
Schmidt rank is at least 2Ω(n). This is by far the most efficient entanglement test that we are aware of.

Prover and round reduction for MIP∗ protocols. Let MIP∗(k, r) denote the collection of languages
decidable by MIP∗ protocols with k ≥ 2 provers and r rounds. Prior to our work it was known how to
perform round reduction for MIP∗ protocols, at the cost of adding provers; it was shown by [Ji17, FJVY19]
that MIP∗(k, r) ⊆ MIP∗(k + 15, 1) for all k, r. However, it was an open question whether the complexity
of the class MIP∗ increases if we add more provers. Our main complexity-theoretic result implies that
MIP∗ = MIP∗(2, 1). This follows from the following chain of inclusions: for all polynomially-bounded
functions k, r,

MIP∗(2, 1) ⊆ MIP∗(k, r) ⊆ RE ⊆ MIP∗(2, 1) .

The first inclusion follows since the verifier in an MIP∗ protocol can always ignore extra provers and rounds;
the second inclusion follows from a simple exhaustive-search procedure that enumerates over strategies for
a given MIP∗(k, r) protocol; the third result is proven in this paper.11

However, this method of reducing provers and rounds in a given MIP∗ protocol is indirect; it involves
first converting a given MIP∗ protocol into a Turing machine that accepts if and only if the MIP∗ protocol
has value larger than 1

2 , and then constructing an MIP∗(2, 1) protocol to decide whether the Turing machine
halts. In particular this transformation does not generally preserve the complexity of the provers and verifier
in the original protocols. We leave it as an open question to find a more direct method for reducing the
number of provers in an MIP∗ protocol.

1.4 Open questions

We mention several questions left open by our work.

Explicit constructions of counter-examples to Connes’ Embedding Conjecture. We provide an ex-
plicit counter-example to Tsirelson’s problem in the form of a game whose entangled value differs from
its commuting-operator value. Through the aforementioned connection with Connes’ embedding conjec-
ture [Fri12, JNP+11, Oza13], the counter-example may lead to the construction of interesting objects in
other areas of mathematics. A first question is whether it can lead to an explicit description of a type II1
factor that does not satisfy the Connes embedding property. Such a construction could be obtained along
the lines of [KPS18], using the fact that our game G such that val∗(G) < valco(G) = 1 has the property
of being synchronous, i.e. perfect strategies in the game are required to return the same answer when both
parties are provided the same question.

Going further, one may ask if the example can eventually lead to a construction of a group that is not
sofic, or even not hyperlinear (see e.g. [CLP15] for the connection). Many other formulations of CEC are
known, and we leave the discussion of additional potential applications of our results to a future version of
the paper.

11In fact, we note that the second term MIP∗(k, r) can be replaced by QMIP∗(k, r), which is the analogous class with a quantum
verifier and quantum messages, since the first inclusion is trivial and the second remains true. As a result, we obtain that QMIP∗ =
MIP∗(2, 1) as well.
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The complexity of variants of MIP∗. Our result characterizes the complexity class MIP∗ as the set of
recursively enumerable languages. One can also consider the complexity class MIPco, which stands for
multiprover interactive proofs in the commuting-operator model. For the sake of the discussion we consider
only two-prover one-round protocols; a language L is in MIPco(2, 1) if there exists an efficient reduction
that maps z ∈ {0, 1}∗ to a nonlocal game Gz such that if z ∈ L then valco(Gz) ≥ 2

3 , and otherwise
valco(Gx) ≤ 1

3 .
The semidefinite programming hierarchy of [NPA08, DLTW08] can be used to show that MIPco(2, 1)

is contained in the complement of RE, denoted as coRE: to certify that z /∈ L it suffices to run the hierarchy
until it obtains a certificate that valco(Gz) < 2

3 . Since it is known that RE 6= coRE,12 this implies that
MIP∗(2, 1) 6= MIPco(2, 1).

It is thus plausible that MIPco = coRE,13 which would provide a very pleasing “dual” complexity
characterization to MIP∗ = RE. One possible route to proving this would be to adapt our gap-preserving
compression framework to the commuting-operator setting by showing that each of the steps (question
reduction, answer reduction, and parallel repetition) remain sound against commuting-operator strategies.
Using the connection established in [FNT14], this would imply that the operator norm over the maximal C∗

algebra C∗(F2 ∗ F2), where F2 is the free group on two elements, is uncomputable.
Another interesting open question concerns the zero gap variants of MIP∗ and MIPco, which we denote

by MIP∗0 and MIPco
0, respectively. These classes capture the complexity of deciding whether a nonlocal

game G has entangled value (or commuting-operator value respectively) exactly equal to 1. In [Slo19a],
Slofstra shows that there is an efficient reduction from Turing machines M to nonlocal games GM such
thatM does not halt if and only if val∗(GM) = valco(GM) = 1. This implies that coRE = MIPco

0(2, 1)
and furthermore coRE ⊆ MIP∗0 . However, since RE ⊆ MIP∗ ⊆ MIP∗0 , this implies that MIP∗0 is strictly
bigger than either RE and coRE. Thus it is plausible that the complexity landscape of nonlocal games looks
like the following: MIPco = MIPco

0 = coRE, but RE = MIP∗ 6= MIP∗0 . Such statements about the
complexity of MIP∗ versus MIPco, in both the gapped and zero-gap cases, may reveal additional insights
into the difference between the tensor product and commuting-operator models of correlations.
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2 Proof Overview

In this section we give an overview of the proof of the inclusion RE ⊆ MIP∗. Since all interactive proof
systems considered in the paper involve a single-round interaction between a classical verifier and two
quantum provers sharing entanglement we generally use the language of nonlocal games to describe such
proof systems, and often refer to the provers as “players”. In a nonlocal game G (or simply “game” for
short), the verifier can be described as the combination of two procedures: a question sampling procedure
that samples a pair of questions (x, y) for the players according to a distribution µ (known to the verifier and
the players), and a decision procedure (also known to all parties) that takes as input the players’ questions
and their respective answers a, b and evaluates a predicate D(x, y, a, b) ∈ {0, 1} to determine the verifier’s
acceptance or rejection. Given a description of a nonlocal game G, recall that val∗(G) denotes the entangled
value of the game, which is defined as the supremum (6) of the players’ success probability in the game over
all finite-dimensional tensor product strategies. (We refer to Section 5 for definitions regarding nonlocal
games.)

Our results establish the existence of transformations on families of nonlocal games {Gn}n∈N hav-
ing certain properties. In order to keep track of efficiency (and ultimately, computability) properties it is
important to have a way to specify such families in a uniform manner. Towards this we introduce the fol-
lowing formalism. A uniformly generated family of games is specified through a pair of Turing machines
V = (S ,D) that satisfy certain conditions, in which case the pair is called a normal form verifier. The Tur-
ing machine S (called a sampler) takes as input an index n ∈ N and returns the description of a procedure
that can be used to sample questions (x, y) in the game (this procedure itself obeys a certain format asso-
ciated with “conditionally linear” distributions, defined below). The Turing machine D (called a decider)
takes as input an index n, questions (x, y), and answers (a, b), and returns a single-bit decision. For the sake
of this proof overview we assume that the sampling and decision procedures run in time polynomial in the
index n; we refer to the running time of these procedures as the complexity of the verifier. Given a normal
form verifier V = (S ,D) we associate to it an infinite family of nonlocal games {Gn = Vn} indexed by
positive integers in the natural way.

The main technical result of this paper is a gap-preserving compression transformation on normal form
verifiers. The following theorem presents an informal summary of the properties of this transformation.
Recall that for a game G and probability 0 ≤ p ≤ 1, E (G, p) denotes the minimum local dimension of an
entangled state shared by the players in order for them to succeed in G with probability at least p.

Theorem 2.1 (Gap-preserving compression of normal form verifiers, informal). There exists a polynomial-
time Turing machine Compress that, when given as input the description of a normal form verifier V =
(S ,D), outputs the description of another normal form verifier V ′ = (S ′,D′) that satisfies the following
properties: for all n ∈N, letting N = 2n,

1. (Completeness) If val∗(VN) = 1 then val∗(V ′n) = 1.

2. (Soundness) If val∗(VN) ≤ 1
2 then val∗(V ′n) ≤ 1

2 .

3. (Entanglement lower bound) E (V ′n, 1
2 ) ≥ max{E (VN , 1

2 ), 22Ω(n)}.

The formal version of this theorem is stated in Section 12 as Theorem 12.2. The terminology compression is
motivated by the fact, implicit in the informal statement of the theorem, that the time complexity of the ver-
ifier’s sampling and decision procedures in the game V ′n, which is polynomial in n, is exponentially smaller
than the time complexity of the verifier in the game VN , which is polynomial in N and thus exponential in
n.
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Before giving an overview of the proof of Theorem 2.1 we sketch how the existence of a Turing machine
Compress with the properties stated in the theorem implies the inclusion RE ⊆ MIP∗. Recall that the
complexity class RE consists of all languages L such that there is a Turing machineM that accepts instances
x in L, and does not accept instances x that are not in L (but is not required to terminate on such instances).
To show RE ⊆ MIP∗ we give an MIP∗ protocol for the Halting Problem, which is a complete problem for
RE. The Halting Problem is the language that consists of all Turing machine descriptionsM such thatM
halts when run on an empty input tape. (For the purposes of this overview, we blur the distinction between a
Turing machine and its description as a string of bits.) We give a procedure that given a Turing machineM
as input returns the description of a normal form verifier VM = (SM,DM) with the following properties.
First, ifM does eventually halt on an empty input tape, then it holds that for all n ∈ N, val∗(VMn ) = 1.
Second, ifM does not halt then for all n ∈N, val∗(VMn ) ≤ 1

2 .
We describe the procedure that achieves this. Informally, the procedure returns the specification of a

verifier VM = (SM,DM) such that DM proceeds as follows: on input (n, x, y, a, b) it first executes the
Turing machineM for n steps. IfM halts, then DM accepts. Otherwise, DM computes the description
of the compressed verifier V ′ = (S ′,D′) that is the output of Compress on input VM, then executes the
decision procedure D′(n, x, y, a, b) and accepts if and only if D′ accepts.14

To show that this procedure achieves the claimed transformation, consider two cases. First, observe that
ifM eventually halts in some number of time steps T, then by definition val∗(VMn ) = 1 for all n ≥ T.
Using Theorem 2.1 along with an inductive argument it then follows that val∗(VMn ) = 1 for all n ≥ 1.
Second, ifM never halts, then observe that for any n ≥ 1 Theorem 2.1 implies two separate lower bounds
on the amount of entanglement required to win the game VMn with probability at least 1

2 : the dimension
is (a) at least 22Ω(n)

, and (b) at least the dimension needed to win the game VM2n with probability at least
1
2 . Applying an inductive argument it follows that an infinite amount of entanglement is needed to win the
game Vn with any probability greater than 1

2 . Thus, a sequence of finite-dimension strategies for Vn cannot
lead to a limiting value larger than 1

2 , and val∗(VMn ) ≤ 1
2 .

We continue with an overview of the ideas behind the proof of Theorem 2.1.

Compression by introspection. To start, it is useful to review the protocol introduced in [NW19] to
show the inclusion NEEXP ⊆ MIP∗. Fix an NEEXP-complete language L. The MIP∗ protocol for NEXP
from [NV18b], when scaled up to decide languages from NEEXP, yields a family of nonlocal games {Gz}
that are indexed by instances z ∈ {0, 1}∗. The family of games decides L in the sense that for all z, the
game Gz has entangled value 1 if z ∈ L, and has entangled value at most 1

2 if z /∈ L. Furthermore, if
n = |z| is the length of z, the verifier of the game Gz has complexity poly(N) = exp(|z|) (recall that we
use this terminology to refer to an upper bound on the running time of the verifier’s sampling and decision
procedure). Thus, this family of games does not by itself yield an MIP∗ protocol for L. To overcome this the
main contribution in [NW19] is the design of an efficient compression procedure CompressNW that applies
specifically to the family of games {Gz}. When given as input the description of Gz, CompressNW returns
the description of a game G′z such that if val∗(Gz) = 1, then val∗(G′z) = 1, and if val∗(Gz) ≤ 1

2 , then
val∗(G′z) ≤ 1

2 . Furthermore, the complexity of the verifier for G′z is poly(n). Thus the family of games
{G′z} decides L and this shows that NEEXP ⊆ MIP∗, which is the best lower bound known on MIP∗ prior
to our work.

Presented in this way, it is natural to suggest iterating the procedure CompressNW to achieve e.g. the
inclusion NEEEXP ⊆ MIP∗. To explain the difficulty in doing so, we give a little more detail on the

14The fact that the decider DM can invoke the Compress procedure on itself follows from a well-known result in computability
theory known as Kleene’s recursion theorem (also called Roger’s fixed point theorem) [Kle54, Rog87].
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compression procedure. It consists of two main steps: starting from Gz, perform (1) question reduction, and
(2) answer reduction. The goal of (1) is to reduce the length of the questions generated by the verifier in
Gz from poly(N) to poly(n). The goal of (2) is to achieve the same with respect to the length of answers
expected from the players. Furthermore, the complexity of the verifier of the resulting game G′z should be
reduced from poly(N) to poly(n).

Part (1) is achieved through a technique referred to as “introspection” where, rather than sampling ques-
tions (x, y) of length poly(N) as in the game Gz, the verifier instead executes a carefully crafted nonlo-
cal game with the players that (a) requires questions of length poly(n), (b) checks that the players share
poly(N) EPR pairs, and (c) checks that the players measure the EPR pairs in such a way as to sample for
themselves a question pair (x, y) such that one player gets x and the other player gets y. In other words, the
players are essentially forced to introspectively ask themselves the questions of Gz.

After question reduction, the players still respond with poly(N)-length answers, which the verifier
has to check satisfies the decision predicate of the original game Gz. The goal of Part (2) is to enable
the decision procedure to implement the verification procedure while not requiring the entire full-length
answers from the players. In the answer reduction scheme of [NW19] this is achieved by having the verifier
run a probabilistically checkable proof (PCP) with the players so that they succinctly prove that first, they
have introspected questions (x, y) from the correct distribution, and second, that they are able to generate
poly(N)-length answers (a, b) that would satisfy the decision predicate of the original game Gz when
executed on (x, y) and (a, b). Since the questions and answers in the PCP are of length poly(n), this
achieves the desired answer length reduction.

Iterating this scheme presents a number of immediate difficulties that have to do with the fact that the
sampling and decision procedures of the verifier in G′z do not have such a nice form as those in Gz. First of
all, the compression procedure of [NW19] can only “introspect” a very specific question distribution, which
is a variant of the plane-point distribution used by the verifier from [NV18b].15 However, the resulting
question distribution of the question-reduced verifier, which is used to check the introspection, has a much
more complex structure. A similar issue arises with the modifications required to perform answer reduction.
In the PCP employed to achieve this the question distribution appears to be much more complex than the
plane-point distribution (this is in large part due to the need for a specially tailored PCP procedure that
encodes separately different chunks of the witness, corresponding to answers from different players). As
a result it is entirely unclear at first whether the question distribution used by the verifier in G′z can be
“introspected” for a second time.

To overcome these difficulties we identify a natural class of question distributions, called conditionally
linear distributions, that generalize the classic plane-point distribution. We show that conditionally linear
distributions can be “introspected” using conditionally linear distributions only, enabling recursive intro-
spection. (In particular, they are a rich enough class to capture the types of question distributions produced
by the compression scheme of [NW19].) We define normal form verifiers by restricting their sampling pro-
cedure to generate conditionally linear question distributions, and this allows us to obtain the compression
procedure on normal form verifiers described in Theorem 2.1.

Conceptually, the identification of a natural class of distributions that is “closed under introspection” is
a key step that enables the introspection technique to be applied recursively. (As we will see later, other
closure properties of conditionally linear distributions, such as taking direct products, play an important role
as well.) Since conditionally linear distributions are central to our construction we describe them next.

15This distribution returns a pair (x, y = p) where p is the description a uniformly random affine plane in Fm, for some given
finite field F and integer m ≥ 2, and x a uniformly random point in p.
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Conditionally linear distributions. Fix a vector space V that is identified with Fm, for a finite field F and
integer m. Informally (see Definition 4.1 for a precise definition), a function L on V is conditionally linear
(CL for short) if it can be evaluated by a procedure that takes the following form: (i) read a substring z(1)

of z; (ii) evaluate a linear function L1 on z(1); (iii) repeat steps (i) and (ii) with the remaining coordinates
z\z(1), such that the next steps are allowed to depend in an arbitrary way on L1(z(1)) but not directly on z(1)

itself. What distinguishes a function of this form from an arbitrary function is that we restrict the number of
iterations of (i)—(ii) to a constant number, typically 2–8. (One may also think of CL functions as “adaptively
linear” functions, where the number of “levels” of adaptivity is the number of iterations of (i)—(ii).)

A distribution µ over pairs (x, y) ∈ V × V is called conditionally linear if it is the image under a
pair of conditionally linear functions LA, LB : V → V of the uniform distribution on V, i.e. (x, y) ∼
(LA(z), LB(z)) for uniformly random z ∈ V. An important example of a CL distribution is the plane-point
distribution. Set V = V1 ⊕ V2 ⊕ V3, where for i ∈ {1, 2, 3}, Vi = Fm. Set LB to be the projection on V1.
Define LA as follows. Let z ∈ V. First, read the components z2 and z3 of z that lie in V2 and V3 respectively
and set LA

1 to be the identity function on V2⊕V3. Second, conditioned on the observed value (z2, z3), let LA
2

be the linear function on V1 that projects orthogonally to Span{z1, z2}, seen as an (at most) 2-dimensional
subspace of V1. Finally, let LA(z) = LA

1 (z) + LA
2 (z1) ∈ V. It is not hard to see (and shown formally in

Section 7.1.2) that the distribution of (LA(z), LB(z)), for z uniform in V, is identical (up to relabeling) to
the distribution (PL, PT) where PL is a uniformly random subspace of Fm of dimension at most 2, and PT a
uniformly random point in PL.

Our main result about CL distributions, presented in Section 8, is that any CL distribution µ, associated
with a pair of CL functions (LA, LB) over a linear space V = Fm, can be “introspected” using a CL
distribution that is “exponentially smaller” than the initial distribution. Slightly more formally, to any CL
distribution µ we associate a two-player game Gµ (called the “introspection game”) in which questions
from the verifier are sampled from a CL distribution µ′ over Fm′ for some m′ = poly log(m) and such
that in any successful strategy for the game Gµ, when the players are queried on a special question labeled
INTRO, they must respond with a pair (x, y) that is approximately distributed according to µ. (The game
allows us to do more: it allows us to conclude how the players obtained (x, y) — by measuring shared EPR
pairs in a specific basis — and this will be important when using the game as part of a larger protocol that
involves other checks.) Crucially for us, the distribution µ′ only depends on a size parameter associated with
(LA, LB) (essentially, the integer m together with the number of “levels” of adaptivity of LA and LB), but
not on any other structural property of (LA, LB). Only the decision predicate for the introspection game Gµ

depends on the entire description of (LA, LB).
We say a few words about the design of µ′ and the associated introspection game, which borrow heavily

from [NW19]. Building on the “quantum low-degree test” introduced in [NV18a] it is already known how a
verifier can force a pair of players to measure m EPR pairs in either the computational or Hadamard basis and
report the (necessarily identical) outcome z obtained, all the while using questions of length polylogarithmic
in m only. The added difficulty in our situation is to ensure that a player obtains, and returns, precisely the
information about z that is contained in LA(z) (resp. LB(z)), and not more. A simple example is the plane-
point distribution described earlier: there, the idea to ensure that e.g. the first player only obtains the first
component, z1, of z, the verifier demands that the player measures their qubits associated with spaces V2
and V3 in the Hadamard, instead of computational, basis; due to the uncertainty principle this has the effect
of “erasing” the outcome in the computational basis. The case of the player receiving a “plane” question is
a little more complex, but it was shown possible in [NW19].

We can now describe how samplers of normal form verifiers are defined: these are Turing machines
S that specify an infinite family of CL distributions {µn} such that, when given index n, the sampler S
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computes the CL functions (LA, n, LB, n) associated with µn and also computes various parameters of the
CL functions. (See Definition 4.12 for a formal definition of samplers.) Thus, the question distributions of
a normal form verifier V = (S ,D) are the CL distributions corresponding to S .

Question reduction. Just like the compression procedure of [NW19], the compression procedure Compress
of Theorem 2.1 begins with performing question reduction on the input game. Given a normal form verifier
V = (S ,D), the procedure Compress first computes a normal form verifier V INTRO = (S INTRO,DINTRO)
where for all n ∈ N, the game V INTRO

n consists of playing the original game VN where N = 2n, except
that instead of sampling the questions according to the CL distribution µN specified by the sampler SN ,
the verifier executes the introspection game GµN described in the previous subsection. Thus, in the game
V INTRO

n , when both players receive the question labeled INTRO they are expected to sample (x, y) respec-
tively according to µN , and respond with the sampled question together with answers a, b respectively. The
decider DINTRO on index n evaluates D(N, x, y, a, b) and accepts if and only if D accepts. As a result the
time complexity of decider DINTRO on index n remains that of D, i.e. poly(N). However, the length of
questions asked in V INTRO

n and the complexity of the sampler S INTRO are exponentially reduced, to poly(n).
For convenience we refer to the questions asked by the verifier in the “question-reduced” game V INTRO

n
as “small questions,” and the questions that are introspected by the players in V INTRO

n (equivalently, the
questions asked in the original game VN) as “big questions.”

Answer reduction. Having reduced the complexity of the question sampling, the next step in the compres-
sion procedure Compress is to reduce the complexity of decider DINTRO from poly(N) to poly(n) (which
necessarily implies reducing the answer length to poly(n)). To achieve this the compression procedure
computes a normal form verifier VAR = (SAR,DAR) from V INTRO such that both the sampler and decider
complexity in VAR are poly(n) (here, AR stands for “answer reduction”).

Similarly to the answer reduction performed in [NW19], at a high level this is achieved by composing
the game V INTRO

n with a probabilistically checkable proof (PCP). In our context a PCP is a proof encoding
that allows a verifier to check whether, given Turing machine A and time bound T provided as input, there
exists some input x thatA accepts in time T. The PCP proof can be computed fromA, T, and the accepting
input (if it exists) and has length polynomial in T and the description length |A| of A. Crucially, the
verifier can check a purported proof while only reading a constant number of symbols of it, each of length
polylog(T, |A|), and executing a verification procedure that runs in time polylog(T, |A|).

We use PCPs for answer reduction as follows. The verifier in the game VAR
n samples questions as V INTRO

n
would and sends them to the players. Instead of receiving the introspected questions and answers (x, y, a, b)
for the original game VN and running the decision procedure D(N, x, y, a, b), the verifier instead asks the
players to compute a PCP Π for the statement that the original decider D accepts the input (N, x, y, a, b) in
time T = poly(N). The verifier then samples additional questions for the players that ask them to return
specific entries of the proof Π. Finally, upon receipt of the players’ answers, the verifier executes the PCP
verification procedure. Because of the efficiency of the PCP, both the sampling of the additional questions
and the decision procedure can be executed in time poly(n).16

This very rough sketch presents some immediate difficulties. A first difficulty is that in general no player
by themselves has access to the entire input (N, x, y, a, b) toD, so no player can compute the entire proof Π.
We discuss this issue in the next paragraph. A second difficulty is that a black-box application of an existing
PCP, as done in [NW19], results in a question distribution for VAR

n (i.e. the sampling of the proof locations

16This idea is inspired by the technique of composition in the PCP literature, in which the complexity of a verification procedure
can be reduced by composing a proof system (often a PCP itself) with another PCP.
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to be queried) that is rather complex — and in particular, it may no longer fall within the framework of
CL distributions for which we can do introspection. To avoid this, we design a bespoke PCP based on the
classical MIP for NEXP (in particular, we borrow and adapt techniques from [BSS05, BSGH+06]). Two
essential properties for us are that (i) the PCP proof is a collection of several low-degree polynomials, two of
which are low-degree encodings of each player’s big answer in the game V INTRO

n , and (ii) verifying the proof
only requires (a) running low-degree tests, (b) querying all polynomials at a uniformly random point, and
(c) performing simple consistency checks. Property (i) allows us to eliminate the extra layer of encoding
in [NW19], who had to consider a PCP of proximity for a circuit applied to the low-degree encodings of
the players’ big answers. Property (ii) allows us to ensure that the question distribution employed by VAR

n
remains conditionally linear.

Oracularization. The preceding paragraph raises a non-trivial difficulty. In order for the players to com-
pute a proof for the claim that D(N, x, y, a, b) = 1 they need to know the entire input (x, y, a, b). However,
in general a player only has access to their own question and answer: one player only knows (x, a) and
the other player knows (y, b). The standard way of circumventing this difficulty is to consider an “orac-
ularized” version of the game, where one player gets both questions (x, y) and is able to determine both
answers (a, b), while the other player only gets one of the questions at random, and is only asked for one of
the answers, that is then checked for consistency with the first player’s answer.

While this technique works well for games with classical players, when the players are allowed to use
quantum strategies using entanglement oracularization does not, in general, preserve the completeness prop-
erty of the game. To ensure that completeness is preserved we need an additional property of a completeness-
achieving strategy for the original game: that there exists a commuting and consistent strategy on all pairs of
questions (x, y) that are asked in the game with positive probability. Here commuting means that the mea-
surement {Ax

a}a performed by the player receiving x commutes with the measurement {By
b}b performed by

the player receiving y.17 Consistent means that if both players perform measurements associated with the
same question they obtain the same answer. If both properties hold then in the oracularized game when one
player receives a pair (x, y) and the other player receives the question x (say), the first player can simultane-
ously measure both {Ax

a}a and {By
b}b on their own space to obtain a pair of answers (a, b), and the second

player can measure {Ax
a}a to obtain a consistent answer a.

For answer reduction to be possible it is thus applied to the oracularized version of the introspection
game V INTRO

n . This in turn requires us to ensure that the introspection game V INTRO
n has a commuting and

consistent strategy achieving value 1 whenever it is the case that val∗(V INTRO
n ) = 1. For this property to

hold we verify that it holds for the initial game that is used to seed the compression procedure (this is true
because we can start with an MIP∗ protocol for NEXP for which there exists a perfect classical strategy)
and we also ensure that each of the transformations of the compression protocol (question reduction, answer
reduction, and parallel repetition described next) maintains it.

Parallel repetition. The combined steps of question reduction (via introspection) and answer reduction
(via PCP composition) result in a game VAR

n such that the complexity of the verifier is poly(n). Further-
more, if the original game VN has value 1, then VAR

n also has value 1. Unfortunately the sequence of
transformations incurs a loss in the soundness parameters: if val∗(VN) ≤ 1

2 , then we can only establish that
val∗(VAR

n ) ≤ 1− C for some positive constant C < 1
2 (we call C the soundness gap). Such a loss would

17We stress that the commuting property only applies to question pairs that occur with positive probability, and does not mean
that all pairs of measurement operators are required to commute; indeed this would imply that the strategy is effectively classical.
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prevent us from recursively applying the compression procedure Compress an arbitrary number of times,
which is needed to obtain the desired complexity results for MIP∗.

To overcome this we need a final transformation to restore the soundness gap of the games after answer
reduction to a constant larger than 1

2 . To achieve this we use the technique of parallel repetition. The parallel
repetition of a game G is another nonlocal game Gk, for some number of repetitions k, which consists of
playing k independent and simultaneous instances of G and accepting if and only if all k instances accept.
Intuitively, parallel repetition is meant to decrease the value of a game G exponentially fast in k, provided
val∗(G) < 1 to begin with. However, it is an open question of whether this is generally true for the
entangled value val∗.

Nevertheless, some variants of parallel repetition are known to achieve exponential amplification. We
use a variant called “anchored parallel repetition” and introduced in [BVY17]. This allows us to devise
a transformation that efficiently amplifies the soundness gap to a constant. The resulting game VREP

n has
the property that if val∗(VAR

n ) = 1, then val∗(VREP
n ) = 1 (and moreover this is achieved using a com-

muting and consistent strategy), whereas if val∗(VAR
n ) ≤ 1− C for some universal constant C > 0 then

val∗(VREP
n ) ≤ 1

2 . Furthermore, we have the additional property, essential for us, that good strategies in
the game VREP

n require as much entanglement as good strategies in the game VAR
n (which in turn require

as much entanglement as good strategies in the game VN). The complexity of the verifier in VREP
n remains

poly(n).
The anchored parallel repetition procedure, when applied to a normal form verifier, also yields a normal

form verifier: this is because the direct product of CL distributions is still conditionally linear.

Putting it all together. This completes the overview of the transformations performed by the compres-
sion procedure Compress of Theorem 2.1. To summarize, given an input normal form verifier V , question
reduction is applied to obtain V INTRO, answer reduction is applied to the oracularized version of V INTRO to
obtain VAR, and anchored parallel repetition is applied to obtain VREP, which is returned by the compression
procedure. Each of these transformations preserves completeness (including the commuting and consistent
properties of a value-1 strategy) as well as the entanglement requirements of each game; moreover, the
overall transformation preserves soundness.
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3 Preliminaries

Notation. We use Σ to denote a finite alphabet. N is the set of positive integers. For w ∈ {0, 1}, w
denotes 1− w. For w ∈ {A, B}, w = B if w = A and w = A otherwise. (For notational convenience we
often implicitly make the identifications 1 ↔ A and 2 ↔ B.) We use F to denote a finite field. We write
Mn(F) to denote the set of n× n matrices over F. We write I to denote the identity operator on a vector
space. We write Tr(·) for the matrix trace. We write H to denote a separable Hilbert space. For a linear
operator T, ‖T‖ denotes the operator norm.

Asymptotics. All logarithms are base 2. We use the notation O(·), poly(·), and polylog(·) in the fol-
lowing way. For f , g : N → R+ we write f (n) = O(g(n)) (omitting the integer n when it is clear from
context) to mean that there exists a constant C > 0 such that for all n ∈ N, f (n) ≤ Cg(n). When we
write f (a1, . . . , ak) = poly(a1, . . . , ak), this indicates that there exists a universal constant C > 0 (which
may vary each time the notation is used in the paper) such that f (a1, . . . , ak) ≤ C(a1 · · · ak)

C for all pos-
itive a1, . . . , ak. Similarly, when we write f (a1, . . . , ak) = polylog(a1, . . . , ak), there exists a universal
constant C such that f (a1, . . . , ak) ≤ C ∏k

i=1 logC(1 + ai) for all positive a1, . . . , ak. Finally, we write
log(a1, . . . , ak) as short hand for ∏k

i=1 log(1 + ai).18

3.1 Turing machines

Turing machines are a model of computation introduced in [Tur37]. Turing machines play a central role in
our modeling of verifiers for nonlocal games. For an in-depth discussion of Turing machines, we refer the
reader to Papadimitriou’s textbook [Pap94]. Here we establish notation used throughout the paper.

All Turing machines considered in the paper are deterministic and use the binary alphabet. The tapes of
a Turing machine are infinite one-dimensional arrays of cells that are indexed by natural numbers. A k-input
Turing machineM has k input tapes, one work tape, and one output tape. Each cell of a tape has symbols
taken either from the set {0, 1} or the blank symbol t. At the start of the execution of a Turing machine,
the work and output tapes are initialized to have all blank symbols. A Turing machine halts when it enters
a designated halt state. The output of a Turing machine, when it halts, is the binary string that occupies the
longest initial stretch of the output tape that does not have a blank symbol. If there are only blank symbols
on the output tape, then by convention we say that the Turing machine’s output is 0.

Every k-input Turing machine M computes a (partial) function f : ({0, 1}∗)k → {0, 1}∗ where the
function is only defined on subset S ⊆ ({0, 1}∗)k of inputs x on whichM halts. We useM(x1, x2, . . . , xk)
to denote the output of a k-input Turing machineM when xi ∈ {0, 1}∗ is written on the i-th input tape for
i ∈ {1, 2, . . . , k}. IfM does not halt on an input x, then we defineM(x) to be ⊥. A Turing machine that
halts on all inputs computes a total function.

We often leave the number of input tapes of a Turing machine implicit. The time complexity of a Turing
machine M on input x = (x1, x2, . . . , xk), denoted by TIMEM, x, is the number of time steps that M
takes on input x before it enters its designated halt state; if M never halts on input x, then we define
TIMEM,x = ∞.

The finite number of states and the transition rules of a Turing machine M can be encoded as a bit
stringM ∈ {0, 1}∗, called the description ofM. For every integer k ∈ N and every string α ∈ {0, 1}∗,
the k-input Turing machine described by α is denoted [α]k. We assume without loss of generality that for

18The additional 1 in the argument of the log(·) is to ensure that this quantity is strictly positive.
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all k ∈ N, every bit string represents some k-input Turing machine and every k-input Turing machine is
represented by infinitely many different bit strings.

Throughout the paper we frequently construct Turing machines that run or simulate other Turing ma-
chines. Implicitly we assume that this simulation can be done efficiently, as given by the following re-
sult [HS66].

Theorem 3.1 (Efficient universal Turing machine). For all k ∈ N, there exists a 2-input Turing machine
Uk such that for every x, α ∈ {0, 1}∗, Uk(α, x) = [α]k(x). Moreover, if [α]k halts on input x in T steps then
Uk(α, x) halts within CT log T steps, where C is a constant depending only on k and the number of states
of [α]k.

Remark 3.2. Although the inputs and outputs of a Turing machine are strictly speaking binary strings, we
oftentimes slightly abuse notation and specify Turing machines that treat their inputs and outputs as objects
with more structure, such as finite field elements, integers, symbols from a larger alphabet, and so on. In this
case we implicitly assume that the Turing machine specification uses a consistent convention to represent
these structured objects as binary strings. Conventions for objects such as integers are straightforward. For
representations of finite field elements, we refer the reader to Section 3.3.2. We also sometimes pass tuples
as inputs to a single tape; here again we assume the binary encoding of inputs chosen such that the Turing
machine can separate the different components of the tuple: specifically, we may precede each element of
the tuple by its length in unary followed by a single “0”.

3.2 Linear spaces

Linear spaces considered in the paper generally take the form V = Fn for a finite field F and integer n ≥ 1.
In particular, when we write “let V be a linear space”, unless explicitly stated otherwise we always mean a
space of the form Fn. Let E = {e1, e2, . . . , en} denote the standard basis of V, where for i ∈ {1, 2, . . . , n},

ei = (0, . . . , 0, 1, 0, . . . , 0)

has a 1 in the i-th coordinate and 0’s elsewhere. We write End(V) to denote the set of linear transformations
from V to itself.

Definition 3.3 (Register subspace). A register subspace S of V is a subspace that is the span of a subset of
the standard basis of V.19 We often represent such a subspace as an indicator vector u ∈ {0, 1}s, where
s = dim(V), such that if {e1, . . . , es} is the standard basis of V then S = span{ei| ui = 1}.

Definition 3.4. Let E = {ei} be the standard basis of V = Fn. For two vectors u = ∑n
i=1 uiei, v =

∑n
i=1 viei in V, define the dot product

u · v =
n

∑
i=1

uivi ∈ F .

Let S be a subspace of V. The subspace orthogonal to S in V is

S⊥ =
{

u ∈ V : u · v = 0 for all v ∈ S
}

.

Although the notation S⊥ does not explicitly refer to V, the ambient space will always be clear from context.

19The use of the term “register” is meant to create an analogy for how the space of multiple qubits is often partitioned into
“registers” containing a few qubits each.
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We note that over finite fields, the notion of orthogonality does not possess all of the same intuitive
properties of orthogonality over fields such as R or C; for example, a non-zero subspace S may be orthogonal
to itself (e.g. span{(1, 1)} over F2). However, the following remains true over all fields.

Lemma 3.5. Suppose S is a subspace of V. Then

(S⊥)⊥ = S .

Furthermore, dim(S) + dim(S⊥) = dim(V).

Proof. The “furthermore” part follows from the fact that vectors in S⊥ are the solution to a feasible linear
system of equations with dim(S) linearly independent rows; this implies that the solution space has dimen-
sion exactly dim(V)− dim(S). Next, we argue that S ⊆ (S⊥)⊥. Let u ∈ S. Since all vectors v ∈ S⊥

are orthogonal to every vector in S, in particular u, this implies that u ∈ (S⊥)⊥. By dimension counting, it
follows that (S⊥)⊥ = S.

Definition 3.6. Given a linear space V, two subspaces S and T of V are said to form a pair of complementary
subspaces of V if

S ∩ T = {0}, S + T = V .

In this case, we write V = S⊕ T. Any x ∈ V can be written as x = xS + xT for xS ∈ S and xT ∈ T in
a unique way. We refer to xS (resp. xT) as the projection of x onto S parallel to T (resp. onto T parallel to
S). We call the unique linear map L : V → V that maps x 7→ xS the projector onto S parallel to T.

A given subspace may have many different complementary subspaces: consider the example of S =
span{(1, 1)} in F2

2. Different complementary subspaces include T = span{(1, 0)} and T′ = span{(0, 1)}.
It is convenient to define the notion of a canonical complement of a subspace S, given a basis for S.

Definition 3.7. Let E be the standard basis of linear space V = Fn. Let F = {v1, v2, . . . , vm} ⊂ V be a set
of m linearly independent vectors in V. The canonical complement F⊥ of F is the set of n−m independent
vectors defined as follows. Write vi = ∑n

j=1 ai,j ej. Using a canonical algorithm for Gaussian elimination
that works over arbitrary fields, transform the m× n matrix (ai,j) to reduced row echelon form (bi,j). Let
J be the set of m column indices of the leading 1 entry in each row of (bi,j). The canonical complement is
defined as F⊥ = {ej : j 6∈ J}.

Remark 3.8. Let E be the standard basis of V. Suppose subspace S is a register subspace of V spanned by
E0 ⊆ E. Then it is not hard to verify that the canonical complement of S is the span of E \ E0 and coincides
with S⊥.

Lemma 3.9. Let S be the span of linearly independent vectors F = {v1, . . . , vm} ⊆ V and let F⊥ be the
canonical complement of F as defined in Definition 3.7. Let T = span(F⊥). Then

S ∩ T = {0} , S + T = V .

Proof. Let A = (ai,j) be the m× n matrix over F associated with the vi as in Definition 3.7. Write A = UB
where U is invertible and B is in reduced row echelon form. Let J be as in Definition 3.7. Then the columns
of A indexed by J are linearly independent and span Fm. This means that for any vector u ∈ V there is
v ∈ S such that uj = vj for all j ∈ J. Then u = v + w for some w ∈ T. This shows S + T = V. Counting
dimensions shows that necessarily S ∩ T = {0}.
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Definition 3.10. Let F ⊆ V be a set of linearly independent vectors. Let F⊥ be the canonical complement
of F. Define the canonical linear map L ∈ End(V) with kernel basis F as the projector onto T parallel to
S, where S = span(F) and T = span(F⊥). When the basis F for S is clear from context, we refer to this
map as the canonical linear map with kernel S.

Definition 3.11. Let L ∈ End(V) be a linear map, and let F be a basis for ker(L)⊥. Define L⊥ : V → V
as the canonical linear map with kernel basis F.

Lemma 3.12. Let L ∈ End(V) be a linear map and F a basis for ker(L)⊥. Let L⊥ ∈ End(V) be the
linear map defined in Definition 3.11. Then ker(L⊥) = ker(L)⊥.

Proof. Let F⊥ be the canonical complement of F. By definition, L⊥ is the projector onto span(F⊥) parallel
to span(F) = ker(L)⊥. By Lemma 3.9, span(F⊥) and span(F) are complementary subspaces, and the
projector onto span(F⊥) parallel to ker(L)⊥ must map all vectors in ker(L)⊥ to 0. Furthermore, if the
projector maps a vector v to 0, it must be that v ∈ ker(L)⊥.

3.3 Finite fields

Let p be a prime and q = pk be a prime power. We denote the finite fields of p and q elements by Fp and
Fq respectively. The prime p is the characteristic of field Fq, and field Fp is the prime subfield of Fq. We
sometimes omit the subscript and simply use F to denote the finite field when the size of the field is implicit
from context. For general background on finite fields, and explicit algorithms for elementary arithmetic
operations, we refer to [MP13].

3.3.1 Subfields and bases

Let q be a prime power and k an integer. The field Fq is a subfield of Fqk and Fqk is a linear space of
dimension k over Fq. Let {ei}k

i=1 be a basis of Fqk as a linear space over Fq. Introduce a bijection κq :
Fqk → Fk

q between Fqk and Fk
q defined with respect to the basis {ei}k

i=1 by

κq : a 7→ (ai)
k
i=1

where a = ∑k
i=1 aiei. This map satisfies several nice properties. First, the map is Fq-linear and, in particular,

addition in Fqk naturally corresponds to vector addition in Fk
q. Namely, for all a, b ∈ Fqk ,

κq(a + b) = κq(a) + κq(b) .

Second, multiplication by a field element in Fqk corresponds to a linear map on Fk
q. For all a ∈ Fqk , there

exists a matrix Ka ∈ Mk(Fq) such that for all b ∈ Fqk ,

κq(ab) = Ka κq(b) .

The matrix Ka is called the multiplication table of a with respect to basis {ei}k
i=1.

We extend the map κq to vectors, matrices and sets over Fqk . For v = (v1, v2, . . . , vn) ∈ Fn
qk , define

κq(v) =
(
κq(vi)

)n
i=1 ∈ Fkn

q .
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Similarly, for matrix M = (Mi,j) ∈ Mm,n(Fqk), define

χq(M) =
(
KMi,j

)
∈ Mmk,nk(Fq) ,

the block matrix whose (i, j)-th block is the multiplication table KMi,j of Mi,j with respect to basis {ei}k
i=1.

For a set S of vectors in Fn
qk , define

κq(S) = {κq(v) : v ∈ S} .

We omit the subscript and write κ and χ for κq and χq respectively when q equals to p, the characteristic of
the field.

The trace of Fqk over Fq is defined as

trqk→q : a 7→ Tr(Ka) (10)

for a ∈ Fqk , where Tr(Ka) is the trace of the multiplication table of a with respect to the basis {ei}. By
definition, the trace is an Fq-linear map from Fqk to Fq. An equivalent definition of the trace is

trqk→q(a) =
k−1

∑
j=0

aqj
.

A dual basis {e′1, e′2, . . . , e′k} of {e1, e2, . . . , ek} is a basis such that trqk→q(eie
′
j) = δi,j for all i, j ∈

{1, 2, . . . , k}. A self-dual basis is one that is equal to its dual. If for some α ∈ Fqk the set {αqj}k−1
j=0 forms a

basis of Fqk over Fq, the basis is called a normal basis.
We record some convenient facts about the maps κ(·) and χ(·) for self-dual bases.

Lemma 3.13. Let q be a prime power, k an integer and {ei} a self-dual basis for Fqk over Fq. The map
κq(·) corresponding to {ei} satisfies the following properties:

1. For all x ∈ Fqk , κq(x) =
(
trqk→q(xe1), . . . , trqk→q(xek)

)
.

2. For all x, y ∈ Fqk , trqk→q(xy) = κq(x) · κq(y).

3. For all M ∈ Mm,n(Fqk) and v ∈ Fn
qk , we have χq(M)κq(v) = κq(Mv).

Proof. The properties follow from the definition of the map κq(·) and the fact that {ei} is a self-dual basis.

For z ∈ Fn and V, W a pair of complementary subspaces, recall from Definition 3.6 the notation zV for
the projection of z onto V and parallel to W.

Lemma 3.14. Let κq(·) denote the map corresponding to a self-dual basis {ei} for Fqk over Fq. Let V be a
subspace of Fn

qk with linearly independent basis {b1, . . . , bt} ⊆ Fn
qk . Then the following hold:

1. κq(V) is a subspace of Fnk
q .

2. {κq(eibj)}i,j is a linearly independent basis of κq(V) over Fq.
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3. Let V, W be complementary subspaces of Fn
qk . Then V ′ = κq(V) and W ′ = κq(W) are comple-

mentary subspaces of Fkn
q , and furthermore for all vectors z ∈ Fn

qk , we have κq(zV) = κq(z)V′ and

κq(zW) = κq(z)W ′ .

Proof. For the first item, we first verify that κq(V) is a subspace. Since V is a subspace, it contains 0 ∈ Fn
qk ,

and therefore κq(0) = 0 is also in κq(V). Let u′, v′ ∈ κq(V). Using that κq is a bijection there exist
u, v ∈ Fn

qk such that u′ = κq(u) and v′ = κq(v). Therefore

u′ + v′ = κq(u) + κq(v) = κq(u + v) ∈ κq(V) ,

where the inclusion follows because V is a subspace and thus contains u + v. Finally, for all x′ ∈ Fq, for all
v ∈ V, we have that x′κq(v) = κq(x′v) ∈ κq(V) where we used that V is closed under scalar multiplication
by Fqk and thus by Fq (since Fq is a subfield of Fqk ). Thus κq(V) is closed under scalar multiplication by
Fq.

For the second item, note that an element v ∈ V can be expressed uniquely as v = ∑t
i=1 vibi for

vi ∈ Fqk . The element vi can further be written as ∑j vi,jej where vi,j ∈ Fq. Thus v is a linear combination
of the vectors {ejbi}, and therefore κq(v) is a linear combination of the vectors {κq(ejbi)}. To establish that
the vectors {κq(ejbi)} are linearly independent, suppose towards contradiction that they are not. Then there
would exist αi,j ∈ Fq such that at least one αi,j is nonzero and

0 = ∑
i,j

αi,jκq(ejbi)

= κq

(
∑

i

(
∑

j
αi,jej

)
bi

)
= κq

(
∑

i
βibi

)
,

where we define βi = ∑j αi,jej. Since at least one αi,j 6= 0 and the {ej} are linearly independent over Fq,
there exists i such that βi 6= 0, which means that there is a non-trivial linear combination of the basis ele-
ments bi that equals 0 under κq(·). Since κq(·) is injective, we get a contradiction with linear independence
of the {bi}.

For the third item, we observe that κq(V) and κq(W) must be complementary because κq(·) is a linear
map as well as a bijection. Let {v1, . . . , vm} and {vm+1, . . . , vn} denote bases for V and W, respectively.
Thus the set {v1, . . . , vn} forms a basis for Fn

qk , and from the previous item, the set {κq(ejvi)}i, j is a basis

for Fkn
q . Furthermore, the sets {κq(ejvi)}j, i=1,...m and {κq(ejvi)}j, i=m+1,...n are bases for κq(V) and κq(W),

respectively.
There is a unique choice of coefficients αi,j ∈ Fq such that κq(z) = ∑i,j αi,jκq(ejvi). But then

κq(z) = κq

(
∑

i

(
∑

j
αi,jej

)
vi

)
= κq

(
∑

i
αivi

)
,
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where we define αi = ∑j αi,jej. Since κq(·) is a bijection, this implies that z = ∑i αivi, and therefore
zV = ∑m

i=1 αivi (and similarly zW = ∑n
i=m+1 αivi). This implies that

κq(z)V′ =
m

∑
i=1

∑
j

αi,jκq(ejvi) = κq(zV) ,

and similarly κq(z)W ′ = κq(zW). This completes the proof of the lemma.

3.3.2 Bit string representations

As mentioned in Remark 3.2, we sometimes treat the inputs and outputs of Turing machines as representing
elements of a finite field, or a vector space over a finite field. We discuss some important details about bit
representations of finite field elements and arithmetic over finite fields.

In the paper we only consider fields F2k where k is odd.

Definition 3.15. A field size q is called an admissible field size if q = 2k for odd k.

Elements of F2 are naturally represented using bits. To represent elements of F2k as binary strings we
require the specification of a basis of F2k over F2. Given a basis {ei}k

i=1 of F2k , every element a ∈ F2k has
a unique expansion a = ∑k

i=1 aiei and can be represented as the k-bit string corresponding to κ(a) ∈ Fk
2.

Note that we omitted the subscript 2 of κ as it maps to the linear space over the prime subfield F2. Thus the
binary representation of a ∈ F2k is defined as the natural binary representation of κ(a) ∈ Fk

2 (which in turn
is the F2-representation of a). Throughout the paper we freely associate between the binary representation
of a field element a ∈ F2k and its F2-representation, although—technically speaking—these are distinct
objects.

Given the representations κ(a), κ(b) of a, b ∈ F2k , to compute the binary representation of a + b it
suffices to compute the addition bit-wise, modulo 2. Computing the multiplication of elements a, b requires
the specification of the multiplication tables {Kei ∈ Mk(F2)}k

i=1 for the basis {ei}. Given representations
κ(a) = (ai)

k
i=1, κ(b) = (bi)

k
i=1 for a, b ∈ F2k respectively, the representation κ(ab) of the product ab is

computed as

κ(ab) =
k

∑
i=1

ai κ
(
eib
)
=

k

∑
i=1

ai
(
Kei κ(b)

)
. (11)

Thus, using our representation for field elements, efficiently performing finite field arithmetic in F2k reduces
to having access to the multiplication table of some basis of F2k over F2.

The following fact provides an efficient deterministic algorithm for computing a self-dual normal basis
for F2k over F2 and the corresponding multiplication tables for any odd k.

Lemma 3.16. There exists a deterministic algorithm that given an odd integer k > 0, outputs a self-dual
normal basis of F2k over F2 and the multiplication tables of the basis in poly(k) time.

Proof. The algorithm of Shoup [Sho90, Theorem 3.2] shows that for prime p, an irreducible polynomial in
Fp[X] of degree k can be computed in time poly(p, k). Then, the algorithm of Lenstra [LJ91, Theorem 1.1]
shows that given such an irreducible polynomial, the multiplication table of a normal basis of Fpk over Fp

can be computed in poly(k, log p) time. Finally, the algorithm of Wang [Wan89] shows that for odd k and
a multiplication table K of a normal basis of F2k over F2, a multiplication table K′ for a self-dual normal
basis of F2k over F2 can be computed in poly(k) time. Putting these three algorithms together yields the
claimed statement.
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Lemma 3.17. Let k be an odd integer and {ei}k
i=1 be a self-dual normal basis of F2k over F2. Then

tr(ei) = 1 for all i, and furthermore the representation κ(1) of the unit 1 ∈ F2k is the all ones vector in Fk
2.

Proof. Since {ei} is a normal basis, ei = α2i
for some element α ∈ F2k . Furthermore, for every element

b ∈ F2k , we have that tr(b2) = tr(b). This is because

tr(b2) =
k−1

∑
i=0

b2i+1
=

k−1

∑
i=0

b2i
= tr(b) ,

where we use that b2k
= b for all b ∈ F2k . Since ei+1 = e2

i , we get that tr(ei) = tr(ej) for all i, j. It cannot
be the case that tr(ei) = 0 for all i. Suppose that this were the case. This would imply that tr(b) = 0 for
all b ∈ F2k . But then for all j ∈ {1, . . . , k} and for some b 6= 0, we would also have that bj = tr(bej) = 0
where b = ∑j bjej with bj ∈ F2. This implies that b is the all zero element of F2k , which is a contradiction.
Thus tr(ei) = 1 for all i = 1, 2, . . . , k.

The “furthermore” part follows from the expansion

1 =
k

∑
i=1

tr(1 · ei) ei =
k

∑
i=1

ei .

Lemma 3.18. For any odd integer k, let {ei}k
i=1 denote the self-dual normal basis of F2k over F2 that is

returned by the algorithm specified in Lemma 3.16 on input k. Then the following can be computed in time
poly(k) on input k:

1. The representation κ(a + b) of the sum a + b given the representations κ(a) and κ(b) of a, b ∈ F2k .

2. The representation κ(ab) of the product ab given the representations κ(a) and κ(b) of a, b ∈ F2k .

3. The multiplication table Ka ∈ Mk(F2) given the representation κ(a) of a ∈ F2k .

4. The representation κ(a−1) of the multiplicative inverse of a ∈ F2k , given the representation κ(a).

5. The trace tr(a) given the multiplication table Ka of a ∈ F2k .

Furthermore, for all integers n, the representations of projections κ(xS) and κ(xT) of x ∈ Fn
2k for com-

plementary subspaces S, T of Fn
2k can be computed in poly(k, n) time, given the representations κ(x),

{κ(v1), κ(v2), . . . , κ(vm)} and {κ(w1), κ(w2), . . . , κ(wn−m)} where {vi} and {wj} are bases for S and
T respectively.

Proof. Given an odd integer k as input, by Lemma 3.16 it is possible to compute the self-dual basis {ei}k
i=1

together with the multiplication tables Kei for i = 1, 2, . . . , k. Addition is performed component-wise, and
multiplication is done using Eq. (11). For the multiplication table Ka it suffices to compute the k products
κ(aei) for i ∈ {1, . . . , k}. To compute inverses, observe that κ(1) = κ(aa−1) = Kaκ(a−1). The matrices Ka
are invertible over F2, so therefore κ(a−1) = K−1

a κ(1); moreover, κ(1) can be computed by Lemma 3.17.
Inverting the matrix can be done in poly(k) time via Gaussian elimination. The trace of an element a ∈ F2k

is by definition the trace of the multiplication table Ka.
For the “Furthermore” part, we observe that since {v1, v2, . . . , vm} ∪ {w1, w2, . . . , wn−m} forms a basis

for Fn
2k , there is a unique way to write x as a F2k linear combination of {vi} and {wj}. Via Gaussian

elimination over F2k , the F2-representation of the coefficients of this linear combination can be computed in
poly(n, k) time. Here we use that addition, multiplication and division over F2k can be performed in time
poly(k) using the previous items of the Lemma.
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Remark 3.19. Throughout this paper, whenever we refer to Turing machines that perform computations
with elements of a field Fq for an admissible field size q = 2k, we mean that that the Turing machines are
representing elements of Fq as vectors in {0, 1}k using the basis specified by the algorithm of Lemma 3.16
and performing arithmetic as described in Lemma 3.18.

3.4 Low-degree encoding

In this section, we introduce a standard error-correcting code in the literature known as the low-degree
code. Given a finite set S and a “message” string a ∈ FS

q , the low-degree code encodes a as a low-degree
multivariate polynomial g : Fm

q → Fq. This polynomial is constructed so that the coordinates of a are
directly embedded into specific coordinates of g, meaning that for each s ∈ S, there is a π(s) ∈ Fm

q such
that g(s) = as. As a result, g can be defined by polynomial interpolation though the points {π(s)}s∈S.
In general, polynomial interpolation can produce polynomials with high degree, and so to ensure that g is
low-degree, we restrict π(·) so that it only ever maps elements s ∈ S to elements of the set Hm, where
H is a subset of Fq generally selected to have size much smaller than q. This is an error-correcting code
because two different strings a, a′ ∈ FS

q will be mapped to two different low-degree polynomials g, g′, and
by the Schwartz-Zippel lemma (Lemma 3.20 below), two non-equal low-degree polynomials will disagree
on most points in their domain. In our application, we will always take S to be either S = {0, . . . , n− 1}
or S = {1, . . . , n}, for some integer n.

Let h, m ≥ 0 be integers, and let q = 2k be a power of 2 such that h ≤ q. Let H be a subset of Fq of
size h. Given a point x ∈ Hm, we define the indicator polynomial indH,m,x : Fm

q → Fq as follows:

indH,m,x(y) =
∏m

i=1 ∏a∈H:a 6=xi
(yi − a)

∏m
i=1 ∏a∈H:a 6=xi

(xi − a)
.

This is a degree-m(h− 1) polynomial and has the property that for any y ∈ Hm, indH,m,x(y) = 1 if y = x
and 0 otherwise.

Let S be a finite set such that hm ≥ |S|, and let π : S → Hm be an injection. We define the function
indH,m,π : Fm

q → FS
q as follows: given y ∈ Fm

q , z = indH,m,π(y) is the element of FS
q such that for each

s ∈ S,
zs = indH,m,π(s)(y) .

Supposing that y ∈ Hm, if y = π(s) for some s ∈ S, then z is equal to es, the standard basis vector
corresponding to s, and otherwise z = 0.

Let a be a point in FS
q . Then the low-degree encoding of a is the polynomial ga,π : Fm

q → Fq defined as

ga,π(x) = a · indH,m,π(x) = ∑
s∈S

as · indH,m,π(s)(x) . (12)

This is a degree-m(h− 1) polynomial and has the property that for any s ∈ S,

ga,π(π(s)) = as .

In addition, we define the low-degree decoding Decπ to be the function which maps functions g : Fm
q → Fq

to strings a ∈ FS
q defined as follows: a = Decπ(g) is the string in FS

q such that for each s ∈ S,

as = g(π(s)) .

By construction, Decπ(ga,π) = a.
The set of low-degree encodings of strings a ∈ FS

q forms an error-correcting code known as the low-
degree code. The following lemma gives a lower bound on the distance of this code.
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Lemma 3.20 (Schwartz-Zippel lemma [Sch80, Zip79]). Let f , g : Fm
q → Fq be two unequal degree-d

polynomials. Then
Pr

x∼Fm
q

[ f (x) = g(x)] ≤ d/q .

3.4.1 A canonical injection

The low-degree code affords us with the ability to pick a variety of parameters. In this section, we will
describe a canonical way to choose the parameters h, H, and π once the parameters m, q = 2k, and S
have been chosen, where S = {0, . . . , n− 1} for some integer n. This is similar to the canonical choice of
parameters in [NW19, Section 3.4].

Let k be an odd integer and basis(k) = {ei}k
i=1 be the self-dual normal basis of F2k over F2 produced

by the algorithm from Lemma 3.16 on input k. In addition, for ` ∈ {0, . . . , k}, we write H(k, `) for the
subspace of F2k spanned by {ei}`i=1 over F2, i.e.

H(k, `) =
{

x1e1 + x2e2 + · · ·+ x`e` | xi ∈ F2
}

.

Definition 3.21 (Binary representation). Given an integer n and another integer c between 0 and 2n − 1, we
write binaryn(c) for the n-digit binary representation of c. In addition, given a string x ∈ {0, 1}n, we write
numbern(x) for the integer between 0 and 2n − 1 encoded by x. As a result, binaryn and numbern are
each others’ inverses.

Definition 3.22 (Canonical injection). Let m be an integer and q = 2k be a power of 2 for odd k. Let n be
an integer such that n ≤ qm. Let

b := b(n) =

{
0 if n = 1,
blog2(n− 1)c+ 1 otherwise,

and let ` = `(n, m) = db(n)/me. The canonical subspace is defined to be the set H = Hcanon,m,k,n :=
H(k, `). It has size hcanon,m,k,n := 2`. Next, define the function coeff : {0, 1}m` → Hm given by

coeff(a1, . . . , am`) = (κ−1(a1, . . . , a`), κ−1(a`+1, . . . , a2`), . . . , κ−1(a(m−1)·`+1, . . . , am·`))

= (a1e1 + · · ·+ a`e`, a`+1e1 + · · ·+ a2`e`, . . . , a(m−1)·`+1e1 + · · ·+ am·`e`) .

Then the canonical injection is the map π = πcanon,m,k,n : {0, 1, . . . , n− 1} → Hm given by

π(c) := coeff(binarym`(c)) .

We note that it is a bijection when n = 2s·m for some integer s ∈ {0, . . . , k}.

Now we observe that the canonical injection can be computed efficiently.

Lemma 3.23 (Runtime of the canonical injection). Let m be an integer and k be an odd integer, and let
q := 2k. Let n be an integer such that n ≤ qm, and set π := πcanon,m,k,n. Then the following can be
computed in time poly(m, k).

1. The representation κ(π(c)) given m, k, and a number c ∈ {0, 1, . . . , n− 1}.

2. The inverse π−1(a) given m, k, and the representation κ(a) of a ∈ Hm
canon,m,k,n.
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Proof. The key step in computing π is computing coeff(a1, . . . , am`). This step involves first rearranging
the ai’s, a poly(m, k)-time task, and then applying the κ−1 map, which is trivial, as elements of Fq are
already represented on a Turing machine via their coefficients in the basis basis(k). The remaining tasks
are computing b(n), `(n, m), and subtracting 1 from c, and these are all poly(m, k)-time tasks. Computing
the inverse follows similarly.

Having defined the canonical injection, we can now define the canonical low-degree encoding of a string.

Definition 3.24 (Canonical low-degree encoding). Let m be an integer and k be an odd integer, and let
q = 2k. Let n be an integer such that n ≤ qm. Let a ∈ FS

q for S = {0, . . . , n− 1}. Then the canonical
low-degree encoding of a is the polynomial gcanon,a,m,k,n : Fm

q → Fq equal to ga,πcanon,m,k,n .

We will need a further, technical property of the canonical injection, which is that its inverse can be
computed by a low-degree polynomial. This is provided by the following definition.

Definition 3.25 (Canonical semi-inverse). Let m be an integer and k be an odd integer, and let q := 2k.
Let n be an integer such that n ≤ qm, and set b := b(n) and ` := `(n, m). Let {ei}k

i=1 = basis(k) and
H = Hcanon,m,k,n. For each i ∈ {1, . . . , `}, define the function ι : Fq → F`

q whose i-th coordinate is given
by

ιi(y) = ∑
x∈H : tr(ei ·x)=1

indH,1,x(y).

Next, define the function γ : Fm
q → Fm`

q given by γ(x1, . . . , xm) = (ι(x1), . . . , ι(xm)). Then the
canonical semi-inverse is the function νcanon,m,k,n : Fm

q → Fb
q given by

νcanon,m,k,n(x) := (γmk−b+1(x), . . . , γmk(x)) .

(Here, we write γi : Fm
q → Fq for the i-th component of γ.)

The canonical injection π = πcanon,m,k,n maps integers from {0, 1, . . . , n− 1} into the set Hm ⊆ Fm
q ,

where H = Hcanon,m,k,n. The purpose of the canonical semi-inverse ν = νcanon,m,k,n is to invert this map:
given x ∈ Fm

q , if x = π(c) for some c ∈ {0, 1, . . . , n − 1}, then ν(x) is the (b = b(n))-digit binary
representation of c, i.e. binaryb(c), as an element of Fb

q. Otherwise, ν(x) is some element of Fb
q, though we

won’t care which one. The crucial property we need is that ν can achieve these properties while still being
a low-degree multivariate polynomial. This is formalized in the following proposition.

Proposition 3.26 (Properties of the canonical semi-inverse). Let m be an integer and k be an odd integer,
and let q := 2k. Let n be an integer such that n ≤ qm, let b = b(n), and let h := hcanon,m,k,n. Then the
following statements are true.

1. Each coordinate of ν := νcanon,m,k,n is computed a degree-(h− 1) polynomial.

2. Writing π := πcanon,m,k,n, we have that for any c ∈ {0, 1, . . . , n− 1}, ν(π(c)) = binaryb(c).

3. For any x ∈ Fm
q , the value ν(x) can be computed in time poly(m, h, k).

Proof. The first item follows from the fact that each coordinate of ν is expressed as a sum of polynomials of
the form indH,x(y), which are degree-(h− 1) by definition. As for the second, let y = b1e1 + · · ·+ b`e` ∈
H. Then for each i ∈ [`],

ιi(y) = ∑
x∈H:tr(ei ·x)=1

indH,1,x(y) = ∑
x∈H:tr(ei ·x)=1

1[x = y] = bi.
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As a result, ι(b) = (b1, . . . , b`). Let c ∈ [n], and write a = binarym`(c). Then

γ(π(c)) = γ(coeff(a)) = γ(κ−1(a1, . . . , a`), . . . , κ−1(a(m−1)·`+1, . . . , am·`))

= (ι(κ−1(a1, . . . , a`)), . . . , ι(κ−1(a(m−1)·`+1, . . . , am·`)))

= (a1, . . . , a`, . . . , a(m−1)·`+1, . . . , am·`) = a = binarym`(c).

The claim follows, because ν simply truncates γ to its last b binary digits, producing binaryb(c).
Computing indH,1,x(y) requires taking O(h) sums and products in Fq, each of which takes time poly(k),

for a total cost of O(h) · poly(k). Computing ιi(y) requires computing O(h) indH,1,x(y)’s and sum-
ming them together, which takes a total of O(h2) · poly(k) time. Computing ι(y) requires computing `
ιi(y)’s, and computing ν(c) requires computing O(m) ι(y)’s, for a total time complexity of O(m · ` · h2 ·
poly(k)) = poly(m, h, k).

3.5 Linear spaces and registers

For a set V, we write CV for the complex vector space of dimension |V|. The space CV is endowed with a
canonical orthonormal basis {|x〉}x∈V . By “a quantum state on V” we mean a unit vector

|ψ〉V ∈ CV .

If V =
⊕k

i=1 Vk is the direct sum of subspaces Vk over F, then CV can be identified with
⊗k

i=1 CVi .
As a special case, if {ei} is a basis of V the decomposition V =

⊕k
i=1(Fei) yields the tensor product

decomposition CV =
⊗k

i=1 C|F|. We sometimes refer to the spaces C|F| as the “qudits” of CV (or of a state
on it).

Definition 3.27. For linear space V over finite field F, define the EPR state on CV ⊗CV by

|EPR〉V =
1√
|V| ∑

x∈V
|x〉 ⊗ |x〉 .

We also write |EPR〉Fq as |EPRq〉 and |EPR2〉 as |EPR〉.

3.6 Measurements and observables

Quantum measurements are modeled as positive operator-valued measures (POVMs). A POVM consists
of a set of positive semidefinite operators {Ma}a∈S indexed by outcomes a ∈ S that satisfy the condition
∑a Ma = I. We sometimes use the same letter M to refer to the collection of operators defining the POVM.
The probability that the measurement returns outcome a on state |ψ〉 is given by

Pr(a) = 〈ψ|Ma|ψ〉 .

A POVM M = {Ma} is said to be projective if each operator Ma is a projector (M2
a = Ma). An observable

is a unitary matrix. A binary observable is an observable O such that O2 = I, i.e. O has eigenvalues in
{−1, 1}.

We follow the convention that subscripts of the measurement index the outcome and superscripts of
the measurement are used to index different measurements. For example, we use {Mx

a, b} to represent a
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measurement indexed by x whose outcome consists of two parts a and b. In this case, by slightly abusing
the notation, we use {Mx

a} and {Mx
b} to denote

Mx
a = ∑

b
Mx

a, b , Mx
b = ∑

a
Mx

a, b .

For any x, {Mx
a} and {Mx

b} are POVMs sometimes referred to as the “marginals” of {Mx
a, b}.

Definition 3.28. Let {Mx
a}a∈A be a family of POVMs indexed by x ∈ X . Let f : A → B be an arbitrary

function. We write
{

Mx
[ f (·)=b]

}
for the POVM derived from {Mx

a} by applying the function f before
returning the outcome. More precisely,

Mx
[ f (·)=b] = ∑

a: f (a)=b
Mx

a .

If b is not in the image of f , then we define Mx
[ f (·)=b] to be 0.

3.7 Generalized Pauli observables

For prime number p, the generalized Pauli operators over Fp are a collection of observables indexed by a
basis setting X or Z and an element a or b of Fp, with eigenvalues that are p-th roots of unity. They are
given by

σX(a) = ∑
j∈Fp

|j + a〉〈j| and σZ(b) = ∑
j∈Fp

ωbj|j〉〈j| , (13)

where ω = e
2πi

p , and addition and multiplication are over Fp. These observables obey the “twisted commu-
tation” relations

∀a, b ∈ Fp , σX(a) σZ(b) = ω−ab σZ(b) σX(a) . (14)

Similarly, over a field Fq we can consider a set of generalized Pauli operators, indexed by a basis setting X
or Z and an element of Fq and with eigenvalues that are p-th roots of unity. For a, b ∈ Fq they are given by

τX(a) = ∑
j∈Fq

|j + a〉〈j| and τZ(b) = ∑
j∈Fq

ωtr(bj)|j〉〈j| ,

where addition and multiplication are over Fq. For all W ∈ {X, Z}, a ∈ Fq, and b ∈ Fp, powers of these
observables obey the relation (

τW(a)
)b

= τW(ab) .

In particular, since pa = 0 for any a ∈ Fq we get that that (τW(a))p = I for any a ∈ Fq. The observables
obey analogous “twisted commutation” relations to (14),

∀a, b ∈ Fq , τX(a) τZ(b) = ω− tr(ab) τZ(b) τX(a) . (15)

It is clear from the definition that all of the τX operators commute with each other, and similarly all the τZ

operators with each other. Thus, it is meaningful to speak of a common eigenbasis for all τX operators, and a
common eigenbasis for all τZ operators. The common eigenbasis for the τZ operators is the computational
basis. To map this basis to the common eigenbasis of the τX operators, one can apply the Fourier transform

F =
1
√

q ∑
a,b∈Fq

ω− tr(ab)|a〉〈b| . (16)
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Explicitly, the eigenbases consist of the vectors |eW〉 labeled by an element e ∈ Fq and W ∈ {X, Z}, given
by

|eX〉 =
1
√

q ∑
j

ω− tr(ej)|j〉 , |eZ〉 = |e〉 .

We denote the POVM whose elements are projectors onto basis vectors of the eigenbasis associated with the
observables τW by {τW

e }e. Then for all W ∈ {W, Z} and a ∈ Fq, the observables τW(a) can be written as

τW(a) = ∑
b∈Fq

ωtr(ab)τW
b . (17)

This relation can be inverted as

E
a∈Fq

ω− tr(ab)τW(a) = ∑
b′∈Fq

E
a∈Fq

ωtr(a(b′−b))τW
b′ = τW

b , (18)

where the second step follows from Lemma 8.3.
For systems with many qudits, we will consider tensor products of the operators τW . Slightly abusing

notation, for W ∈ {X, Z} and a ∈ Fn
q we denote by τW(a) the tensor product τW(a1)⊗ . . .⊗ τW(an).

These obey the twisted commutation relations

∀a, b ∈ Fn
q , τX(a) τZ(b) = ω− tr(a·b) τZ(b) τX(a) ,

where a · b = ∑n
i=1 aibi ∈ Fq. For W ∈ {X, Z} and e ∈ Fn

q define the eigenstates

|eW〉 = |(e1)W〉 ⊗ . . .⊗ |(en)W〉 ,

and associated rank-1 projectors τW
e .

Since we only consider finite fields Fq such that q = 2k the maximally entangled state |EPRq〉 and the
corresponding qudit Pauli observables/projectors are isomorphic to a tensor product of maximally entangled
states |EPR2〉 and qubit Pauli observables/projectors respectively; this is shown in the next lemma. This is
used to argue that the Pauli basis test (described in Section 7.3) gives a self-test for Pauli observables and
maximally entangled states over qubits.

Lemma 3.29. For all admissible field sizes q = 2k and integers Γ, there exists an isomorphism φ :
(Cq)⊗Γ → (C2)⊗Γk such that

φ⊗ φ |EPRq〉⊗Γ = |EPR2〉⊗Γk , (19)

and for all W ∈ {X, Z} and for all u ∈ FΓ
q

τW
u = φ†

( Γ⊗
i=1

k⊗
j=1

σW
uij

)
φ . (20)

Here, the (uij)i,j denotes a vector of F2 values such that ui = ∑j uijej for all i ∈ {1, . . . , Γ} with
{e1, . . . , ek} being the self-dual basis of Fq over F2 specified by Lemma 3.16. For i ∈ {1, . . . , Γ} and
j ∈ {1, . . . , q} the (i, j)-th factor σW

uij
denotes the projector 1

2

(
I + (−1)uij σW(1)

)
acting on the s-th qubit

of |EPR2〉⊗Γk, where s = (i− 1)k + j.

35



Proof. Since q = 2k is an admissible field size, there exists a self-dual basis {e1, . . . , ek} of Fq over F2.
Define the isometry θ : Cq → (C2)⊗k as θ |a〉 = |a1a2 · · · ak〉 where κ(a) = (a1, a2, . . . , ak) ∈ Fk

2 is the
bijection introduced in Section 3.3 corresponding to the basis {e1, . . . , ek}.

Let a ∈ Fq, and let κ(a) = (a1, . . . , ak) ∈ Fk
2. Then from (18), we get

τW
a = E

b∈Fq

(−1)tr(ab) τW(b)

= E
b∈Fq

(−1)tr(∑j ajejb) τW(b)

= E
b∈Fq

(−1)∑j ajbj τW

(
∑

j
bjej

)
,

(21)

where b = ∑j bjej; since the basis {ej} is self-dual, we have that bj = tr(bej). From (21) we get that

τW
a = E

b1, ..., bk∈F2

k

∏
j=1

(−1)ajbj τW(bjej)

=
k

∏
j=1

E
bj∈F2

(−1)ajbj τW(bjej) .

(22)

Next we claim that for all c ∈ F2, we have τW(cej) = θ†σW,j(c)θ where σW,j(c) = I if c = 0, and
otherwise is the Pauli W observable acting on the j-th qubit of (C2)⊗k. This can be verified by comparing
the actions of both operators on the basis states of Cq.

Thus we obtain that the right-hand side of (22) is equal to

k

∏
j=1

E
bj∈F2

(−1)ajbj
[
θ†σW,j(bj)θ

]
= θ†

k⊗
j=1

(
E

bj∈F2

(−1)ajbj σW(bj)
)

θ (23)

= θ†
( k⊗

j=1

σW
bj

)
θ. (24)

Define φ = θ⊗Γ. The projector τW
u can be decomposed as the tensor product

⊗Γ
i=1 τW

ui
where τW

ui
acts on

the i-th factor of (Cq)⊗Γ. Express each ui as ∑j uijej where uij ∈ F2. Then from Equation (24) we get that

τW
u =

Γ⊗
i=1

τW
ui

= φ†

 Γ⊗
i=1

k⊗
j=1

σW
uij

 φ, (25)

which establishes Equation (20). We observe that (19) follows immediately from (20).
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4 Conditionally Linear Functions, Distributions, and Samplers

4.1 Conditionally linear functions and distributions

We first introduce conditionally linear functions, which are used to specify the question distribution for
games considered in the paper in a way that the question distribution can be “introspected”, as described
in Section 8. Intuitively, a conditionally linear function takes as input an element x ∈ V = Fn for some
n ≥ 0, and applies linear maps Lj sequentially on xVj where V1, V2, . . . are a sequence of complementary
register subspaces such that both the linear maps Lj and the subspace Vj may depend on the values taken by
previous linear maps L1(xV1), L2(xV2), etc.

In the remainder of the section we use V to denote the linear space Fn for some integer n ≥ 0. For
ease of notation we extensively use the subscript range notation. For example, if V1, V2, . . . , V` are fixed
subspaces of V and k ∈ {1, 2, . . . , `} we write

V<k =
⊕

j : 1≤j<k

Vj , V>k =
⊕

j : `≥j>k

Vj ,

and it is understood that V≤k and V≥k are identical to V<k+1 and V>k−1, respectively. Moreover, if V ′ is a
register subspace of V, F : V ′ → V ′ a linear map, and x ∈ V, we write xF to denote F(xV′). For example,
in the following definition xL1 is used as shorthand notation for L1(xV1).

Definition 4.1. Let V be Fn for some n ≥ 0. For all integers ` ≥ 0 the collection of `-level conditionally
linear functions (implicitly, on V) is defined inductively as follows.

1. There is a single 0-level conditionally linear function, which is the 0 function on V.

2. Let ` ≥ 1 and suppose the collection of (`− 1)-level conditionally linear functions has been defined.
The collection of `-level conditionally linear functions on V consists of all functions L on V that can
be expressed in the following form. There exist complementary register subspaces V1 and V>1 of V, a
linear function L1 on V1, and for all v ∈ L1(V1), an (`− 1)-level conditionally linear function L>1, v
on V>1, such that for all x ∈ V,

L(x) = xL1 + L>1, xL1 (xV>1) .

Remark 4.2. Note that for any integer ` ≥ 1 the collection of `-level CL functions trivially contains the
collection of (` − 1)-level CL functions: for this it suffices to note that the 0 function, which is a 0-level
CL function, is also a 1-level CL function by setting V1 = V, V>1 = {0}, L1(x) = 0 for all x ∈ V, and
L>1, xL1 is the 0 map for all x ∈ V.

Definition 4.3. Let L, R : V → V be conditionally linear functions. The conditionally linear distribution
µL,R corresponding to (L, R) is defined as the distribution over pairs (L(x), R(x)) ∈ V × V for x drawn
uniformly at random from V.

Throughout the paper we abbreviate “conditionally linear functions” and “conditionally linear distribu-
tions” as CL functions and CL distributions, respectively.

The following lemma elucidates structural properties of `-level CL functions. Recall that using our
shorthand notation, xL<k and xLk in the lemma denote L<k(x) and Lk(xVk, u) where u = L<k(x).

Lemma 4.4. Let ` ≥ 1 and V = Fn for some integer n ≥ 0. A function L : V → V is an `-level CL
function if and only if the following collection of functions and subspaces exists:
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(i) For each k ∈ {1, 2, . . . , `}, a function L≤k : V → V called the k-th marginal of L;

(ii) For each k ∈ {1, 2, . . . , `} and u ∈ L<k(V), a register subspace Vk, u of V called the k-th factor
space with prefix u;

(iii) For each k ∈ {1, 2, . . . , `} and u ∈ L<k(V), a linear map Lk, u : Vk, u → Vk, u called the k-th linear
map of L with prefix u;

such that the following conditions hold for all k ∈ {1, 2, . . . , `}.

1. L≤k is a k-level CL function on V;

2. V =
⊕`

i=1 Vi, xL<i for all x ∈ V;

3. L≤k(x) = ∑k
i=1 xLi for all x ∈ V, where Li is shorthand notation for Li, xL<i ;

4. L = L≤`.

As in Item 3, we sometimes use Vk and Lk to denote Vk, u and Lk, u respectively, leaving the prefix u implicit.

Proof. We first prove the “if” direction: if there exist spaces and functions satisfying the conditions in the
lemma, the fact that L is an `-level CL function follows from Items 1 and 4 of the lemma statement.

We now prove the “only if” direction. Given a CL function L on V, we construct the k-th family of
subspaces and functions for all k ∈ {1, . . . , `} by induction on the level `. First consider the base case
` = 1. Since L<1 = 0, we omit the mentioning of the prefix u ∈ L<1(V). Define L≤1 = L, the factor
space V1 = V, and the linear map L1 = L. It is straightforward to verify that the conditions in the lemma
hold for these choices of linear maps and spaces.

Now, assume that the lemma holds for CL functions of level at most `− 1, and we prove the lemma for
`-level CL functions. By definition, an `-level CL function L can be written as

L(x) = xL1 + L>1, xL1 (xV>1)

for some linear map L1 : V1 → V1 and a family of (`− 1)-level CL functions{
L>1, v : V>1 → V>1

}
v∈L1(V1)

where V1 and V>1 are complementary register subspaces of V. Next, using the inductive hypothesis on the
(`− 1)-level CL function L>1, v we get that for all v ∈ L1(V1) and all k ∈ {1, 2, . . . , `− 1} there exist k-th
marginal functions L′v,≤k : V>1 → V>1, k-th factor spaces V ′v, k, u, and k-th linear maps L′v, k, u of L>1, v with
prefix u ∈ L′v,<k(V>1) such that the conditions of the lemma for L>1, v hold.

Define the marginal functions L≤k : V → V, factor spaces Vk, u and linear maps Lk, u for L as follows.

(i) Define L≤1 = L1 and the first factor space to be V1;

(ii) For all k ∈ {2, 3, . . . , `}, define

L≤k : x 7→ xL1 + L′xL1 ,<k(xV>1) for x ∈ V; (26)

(iii) For all k ∈ {2, 3, . . . , `} and u ∈ L<k(V), define Vk, u = V ′v, k−1, w and Lk, u = L′v, k−1, w where
v = uV1 and w = uV>1 .
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We verify that the conditions of the lemma are satisfied. Since L′v,<k is by assumption a (k− 1)-level CL
function on V>1, we get that L≤k is a k-level CL function on V from Eq. (26), establishing Item 1. By the
induction hypothesis, we have for all v ∈ L1(V1) and y ∈ V>1,

V>1 =
`−1⊕
i=1

V ′v, i, yL′v,<i , (27)

which implies that for all x ∈ V and v = xL1 ,

V = V1 ⊕
( `−1⊕

i=1

V ′v, i, xL′v,<i

)
= V1 ⊕

(⊕̀
i=2

Vi, xL<i

)
=
⊕̀
i=1

Vi, xL<i .

The first equality follows from Eq. (27) while the second and third equalities follow from the definition of
Vk, u. This establishes Item 2.

Next, we have that for all x ∈ V, v = xL1 , and k ∈ {1, 2, . . . , `},

L≤k(x) = v + L′v,<k(xV>1) (28)

= v +
k−1

∑
i=1

xL′v, i =
k

∑
i=1

xLi , (29)

where L′v, i is the i-th linear map of L>1, v with prefix L′v,<i(x) and Li is the i-th linear map of L with prefix
L<i(x). The second line follows from the inductive hypothesis applied to L′v,<k and the third line follows
from the definition of Li. Line (29) implies Item 3 of the lemma.

Finally, Item 4 follows from (28) where we set k = ` and observe that L′xL1 ,≤`−1
is equal to L>1, xL1

by the inductive hypothesis. This shows that L≤k, Vk, u, and Lk, u satisfy the conditions of the lemma and
completes the induction.

We note that the marginal functions, factor spaces, and linear maps of a given CL function L may not be
unique; for example, consider the identity function on a linear space V = Fn. This is clearly a 1-level CL
function, but it can also be viewed as a k-level CL function for k ∈ {2, . . . , n} with an arbitrary partition of
V into factor spaces.

Lemma 4.5. Let `, k ≥ 0 be integers and U = Fn, V = Fm be linear spaces. Suppose L is a k-level CL
function on U and Ru is an `-level CL function on V for each u ∈ L(U). Then the concatenation T of L
and {Ru}u defined as

T(x) = L(xU) + RL(xU)(xV)

is a (k + `)-level conditionally linear function on U ⊕V.

Proof. We prove the claim by induction on k. The case k = 0 follows from the Definition 4.1. Assume
that the lemma holds for L being at most (k− 1)-level. By Definition 4.1, there are complementary register
subspaces U1 and U>1 of U, a linear function L1 on U1, and a family of (k− 1)-level CL functions L>1, v
for v ∈ L1(U1) such that

L(xU) = xL1 + L>1, xL1 (xU>1).

For all xL1 , define function T>1, xL1 on U>1 ⊕V as

T>1, xL1 (xU>1⊕V) = L>1, xL1 (xU>1) + RxL1+xL>1 (xV),
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the concatenation of L>1, xL1 and {RL(xU)}xL>1 where L>1 is the shorthand notation of L>1, xL1 . By the
induction hypothesis, T>1, xL1 is (k + ` − 1)-level conditionally linear. The lemma follows from Defini-
tion 4.1.

Lemma 4.6 (Direct sums of CL functions). Let V(1), V(2), . . . , V(m) be register subspaces of V such that
V =

⊕m
j=1 V(j). Suppose that, for each j ∈ {1, 2, . . . , m}, L(j) is an `j-level conditionally linear function

on V(j). Then the direct sum L =
⊕m

j=1 L(j) is an `-level CL function over V for ` = maxj{`j}, where L is
defined by

L(x) =
m

∑
j=1

L(j)(x(j))

for all x = ∑m
j=1 x(j) ∈ ⊕m

j=1 V(j).

Proof. It is easy to see that an `-level CL function is also k-level conditionally linear for all k ≥ `. Hence,
it suffices to prove the claim where `j = ` for j = 1, 2, . . . , m.

We prove the theorem by an induction on `. For ` = 1, the functions L(j) are linear and the claim
follows by the fact that the direct sum of linear maps is linear.

Assume now the theorem holds for conditionally linear functions of level at most ` − 1 and L(j) are
`-level conditionally linear functions for j = 1, 2, , . . . , m. By definition, L(j) is the concatenation of condi-
tionally linear functions L(j)

1 on V(j)
1 and {L(j)

>1, vj
}vj on V(j)

>1 of levels 1, and `− 1 respectively. Furthermore,

L(x) =
m

∑
j=1

L(j)(x(j)) =
m

∑
j=1

(
vj + L(j)

>1, vj

(
(x(j))V(j)

>1

))
,

where vj = L(j)
1

(
(x(j))V(j)

1

)
. By the induction hypothesis,

L1(xV1) =
m

∑
j=1

L(j)
1

(
(x(j))V(j)

1

)
, L>1, v(xV>1) =

m

∑
j=1

L(j)
>1, vj

(
(x(j))V(j)

>1

)

are 1-level and (`− 1)-level conditionally linear respectively for v = ∑j vj, V1 =
⊕m

j=1 V(j)
1 , and V>1 =⊕m

j=1 V(j)
>1 . This proves that L is `-level conditionally linear.

Lemma 4.7. For each i ∈ {1, . . . , m} let L(i), R(i) : V(i) → V(i) be `i-level conditionally linear functions
and let L, R : V → V be the direct sums L =

⊕
i Li and R =

⊕
i Ri, respectively, as defined in Lemma 4.6.

Then the conditionally linear distribution µL,R is the product distribution ∏m
i=1 µL(i), R(i) over V ×V.

Proof. The distribution µL,R is the distribution over pairs (L(x), R(x)) where x is sampled uniformly from
V×V. By Lemma 4.6, this is equivalent to the distribution over pairs

(
(Li(xVi))m

i=1, (Ri(xVi))m
i=1

)
where x

is chosen uniformly at random from V. This distribution is exactly the product of the distributions µL(i), R(i)

for i = 1, 2, . . . , m.

CL functions used in the paper are frequently defined over a “large” field F2t (e.g., the CL functions
used in the low degree tests of Section 7). However, the introspection protocol in Section 8 handles CL
functions defined over F2. The following definition and lemma show that CL functions over prime power
fields can be viewed as CL functions over the prime field via a “downsizing” operation.
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Definition 4.8 (Downsizing CL functions). Let V = Fn
q be a linear space for a prime power q = pt. Let

L : V → V be a function. Let κ(·) denote the downsize map from Section 3.3 corresponding to the basis
{e1, . . . , et} of Fq over Fp specified by Lemma 3.16. In particular, κ is linear over Fp, and by Lemma 3.14,
the set κ(V) is the linear space Fnt

p . Define the downsized function Lκ : κ(V)→ κ(V) by Lκ = κ ◦ L ◦ κ−1.

Lemma 4.9. Let V = Fn
q for a prime power q = pt. Let L : V → V be an `-level CL function over V for

some integer ` ≥ 0. Let L≤j, Vj, u, and Lj, u denote the j-th marginal functions, factor spaces, and linear
maps corresponding to L as guaranteed by Lemma 4.4. Then Lκ : κ(V) → κ(V) is an `-level CL function
on Vκ = κ(V) = Fnt

p with marginal functions Lκ
≤j, factor spaces Vκ

j, v, and linear maps Lκ
j, v that satisfy the

following for all j ∈ {1, . . . , `}.
1. The j-th marginal function Lκ

≤j of Lκ is equal to κ ◦ L≤j ◦ κ−1.

2. For all u ∈ L<j(V), the j-th factor space Vκ
j, κ(u) and the j-th linear map Lκ

j, κ(u) of Lκ are equal to

κ(Vj, u) and κ ◦ Lj, κ(u) ◦ κ−1 respectively.

Proof. We prove the lemma by induction on `. Let L : V → V be an `-level CL function. For the base case
` = 1, observe that since κ is a linear bijection between Fq and Ft

p as linear spaces over Fp, the function
Lκ is linear, and thus a 1-level CL function over κ(V) = Fnt

p . Furthermore, the first marginal function
Lκ
≤1 = Lκ = κ ◦ L≤1 ◦ κ−1; the factor space Vκ

1 = κ(V1) = κ(V), and Lκ
1 = L = κ ◦ L1 ◦ κ−1.

Assume that the statement of the lemma holds for some ` − 1 ≥ 1. Let L≤j, Vj, u, and Lj, u denote
the marginal functions, factor spaces, and linear maps corresponding to L as guaranteed by Lemma 4.4.
Recursively define the following functions and spaces, for j ∈ {1, . . . , `}.

1. Lκ
≤j = κ ◦ L≤j ◦ κ−1.

2. For all u ∈ L<j(V), set Vκ
j, κ(u) = κ(Vj, u) and set Lκ

j, κ(u) = κ ◦ Lj, κ(u) ◦ κ−1.

We argue that {Lκ
≤j}, {Vκ

j, v}, and {Lκ
j, v} satisfy the conditions of Lemma 4.4 for the function Lκ, which

implies that Lκ is an `-level CL function over κ(V).
We first establish Item 4 of Lemma 4.4. Since L≤` = L, this implies

Lκ = κ ◦ L ◦ κ−1 = κ ◦ L≤` ◦ κ−1 = Lκ
≤`,

as desired. Next, for all j ∈ {1, 2, . . . , `}, for all y ∈ κ(V) with y = κ(x) for some x ∈ V, letting
uj = L<j(x), we have

κ(V) = κ

(⊕̀
j=1

Vj, xL<j

)
=
⊕̀
j=1

κ
(
Vj, xL<j

)
=
⊕̀
j=1

V κ
j, κ(xL<j ) .

The first equality follows from Item 2 of Lemma 4.4, the second equality follows from Lemma 3.14, and
the third equality follows by definition. Since κ(xL<j) = Lκ

<j ◦ κ(x) = Lκ
<j(y), this establishes Item 2 of

Lemma 4.4.
Next, we have for all j ∈ {1, 2, . . . , `} and all y ∈ κ(V) with y = κ(x) for some x ∈ V,

Lκ
≤j(y) =

(
κ ◦ L≤j ◦ κ−1)(y) = (κ ◦ L≤j

)
(x) =

j

∑
i=1

κ
(
xL

i, xL<i
)

=
j

∑
i=1

Lκ
i, vi

(
κ(xV

i, xL<i )
)
=

j

∑
i=1

Lκ
i, vi

(yVκ
i, vi )
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where vi = Lκ
<i(y) = κ(xL<i). The first equality follows from definition of Lκ

≤j, the second equality follows
from y = κ(x), the third equality follows from Item 3 of Lemma 4.4 applied to L≤j, the fourth equality
follows from the definition of the linear map Lκ

i, v, and the fifth equality follows from Lemma 3.14. This
establishes Item 3 of Lemma 4.4 for Lκ

≤j.
Finally, since L≤j is a j-level CL function over V, using the inductive hypothesis we have that Lκ

≤j is a
j-level CL function over κ(V) when j ∈ {1, 2, . . . , `− 1}. It remains to establish that Lκ

≤` is an `-level CL
function. Since L is an `-level CL function, there exists register subspaces V1, V>1 such that V = V1⊕V>1,
a linear map L1 : V1 → V1 and a collection of (`− 1)-level CL functions {L>1, v : V>1 → V>1}v∈L1(V1)

such that L(x) = xL1 + L>1, xL1 (xV>1) for all x ∈ V. Observe that Lκ
1 is a 1-level CL function on Vκ

1 =
κ(V1), and for v′ = κ(v) ∈ Lκ

1(V
κ
1 ), the inductive hypothesis implies the function Lκ

>1, v′ is an (`− 1)-level
CL function on Vκ

>1 = κ(V>1). Furthermore, since Lκ
≤` = Lκ, we have that for all y ∈ κ(V) with y = κ(x)

for some x ∈ V,

Lκ
≤`(y) = Lκ(y) = Lκ

1(y) + Lκ
>1, Lκ

1(y)
(yVκ

>1)

which implies that Lκ
≤` is an `-level CL function over κ(V) = κ(V1)⊕ κ(V>1). This establishes Item 1 of

Lemma 4.4, and completes the induction.

Lemma 4.10. Let V = Fn
q for some integer n and prime power q = pt. Let L, R : V → V be CL functions.

Let Lκ, Rκ : κ(V) → κ(V) be the associated downsized CL functions, as defined in Definition 4.8. Then
the distribution µLκ ,Rκ over κ(V)× κ(V) defined in Definition 4.3 is identical to the distribution of (x, y) ∈
κ(V)× κ(V) obtained by first sampling (x′, y′) according to µL,R and then returning (κ(x′), κ(y′)).

Proof. The fact that Lκ, Rκ are well-defined CL functions follows from Lemma 4.9. The lemma is immedi-
ate from the definition of µLκ ,Rκ and the fact that κ is a bijection.

4.2 Conditionally linear samplers

Samplers are Turing machines that perform computations corresponding to CL functions defined in Sec-
tion 4.1. The inputs and outputs of the sampler are binary strings that are interpreted as representing data
of different types (integers, bits, vectors in Fs

q, etc.). See Section 3.3.2 and in particular Remark 3.19 for an
in-depth discussion of representing structured objects on a Turing machine.

Definition 4.11. A function q : N → N is an admissible field size function if for all n ∈ N, q(n) is an
admissible field size as defined in Definition 3.15.

Definition 4.12 (Conditionally linear samplers). Let q : N → N be an admissible field size function, and
let s : N → N be a function. A 6-input Turing machine S is a `-level conditionally linear sampler with
field size q(n) and dimension s(n) if for all n ∈ N, letting q = q(n) and s = s(n), there exist `-level CL
functions LA, n, LB, n : Fs

q → Fs
q with marginal functions {Lw, n

≤j } and factor spaces {Vw, n
j, u } for w ∈ {A, B}

satisfying the conditions of Lemma 4.4, such that for all w ∈ {A, B}, j ∈ {1, . . . , `}, z ∈ Fs
q:

• On input (n, DIMENSION), the sampler S outputs the dimension s(n).

• On input (n, w, MARGINAL, j, z), the sampler S outputs the binary representation of Lw, n
≤j (z),

• On input (n, w, LINEAR, j, u, y), the sampler S outputs the binary representation of Lw, n
j, u (y), where u

is interpreted as an element of Vw, n
<j ,
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• On input (n, w, FACTOR, j, u), the sampler S outputs the j-th factor space Vw, n
j, u of Lw, n with prefix

u ∈ Lw, n
<j (V), represented as an indicator vector in {0, 1}s.

We call F
s(n)
q(n) the ambient space of S . We call the CL functions Lw, n for w ∈ {A, B} the CL functions of

S on index n. The time complexity of S , denoted as TIMES (n), is the number of steps before S halts for
index n. The randomness complexity of S , denoted by RANDS (n), is defined to be s(n) log q(n).

Remark 4.13. Conditionally linear samplers are defined to have 6-input tapes, but depending on the input,
not all input tapes are read. For example, if the second input tape has the input DIMENSION, then the re-
maining input tapes are ignored. Thus for notational convenience we write samplers with different numbers
of arguments, depending on the type of argument it gets. The number of arguments is always at most 6,
however.

The following definition shows how samplers naturally correspond to conditionally linear distributions.

Definition 4.14 (Distribution of a sampler). Let S be a sampler with field size q(n), dimension s(n). For
each n ∈ N, let LA, n, LB, n denote the CL functions of S on index n. Let µS , n denote the CL distribution
µLA,n, LB,n corresponding to (LA, n, LB, n), as defined in Definition 4.3. We call µS , n the distribution of
sampler S on index n.

The following provides a definition of a “downsized” sampler that can be obtained from any sampler S
over an admissible field Fq.

Definition 4.15 (Downsized sampler). Let q : N → N be an admissible field size function. Let S be an
`-level sampler with field size q(n) and dimension s(n). Define κ(S) as the following Turing machine. For
all n ∈N, w ∈ {A, B}, j ∈ {1, . . . , `}, and z ∈ F

s log q
2 where q = q(n) and s = s(n):

• On input (n, DIMENSION), the sampler returns the output of S(n, DIMENSION) multiplied by log q.

• On input (n, w, MARGINAL, j, z), the sampler κ(S) returns the output of S(n, w, MARGINAL, j, z).

• On input (n, w, LINEAR, j, u′, y), the sampler κ(S) computes u such that u′ = κ(u) and returns the
output of S(n, w, LINEAR, j, u, y).

• On input (n, w, FACTOR, j, u′), the sampler κ(S) computes u such that u′ = κ(u) and the indicator
vector

C = S(n, w, FACTOR, j, u) ∈ {0, 1}s ,

and returns the expanded indicator vector (D1, D2, . . . , Ds) ∈ ({0, 1}log q)s where Di is the all ones
vector in {0, 1}log q if Ci = 1 and Di is the all zeroes vector otherwise.

The next lemma establishes that κ(S) is a well-defined CL sampler, in the sense that it can be derived
from a family of CL functions as in Definition 4.12.

Lemma 4.16. Let ` ≥ 1 be such that S is an `-level CL sampler, and let q(n) and s(n) be as in
Definition 4.15. Then the Turing machine κ(S) is an `-level CL sampler with field size 2, dimension
s′(n) = s(n) log q(n), and randomness and time complexities

RANDκ(S)(n) = RANDS (n) , TIMEκ(S)(n) = O
(
TIMES (n) log q(n)

)
.

Furthermore, for every integer n ∈N the CL functions of κ(S) on index n are (LA, n)κ and (LB, n)κ, where
LA, n, LB, n are the CL functions of S on index n.
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Proof. To show that κ(S) is an `-level CL sampler we first show the “Furthermore” part, i.e. verify that
for any integer n ≥ 1 the CL functions (LA, n)κ and (LB, n)κ are its associated CL functions on index n, as
defined in Definition 4.12.

Observe that for z ∈ V, the binary representation of z as an element of {0, 1}s log q passed as input to
S is, by definition (see Section 3.3.2), identical to the binary representation of κ(z). Using the definition
(Lw, n)κ = κ ◦ Lw, n ◦ κ−1 for w ∈ {A, B} this justifies that κ(S) returns the correct output when executed
on inputs of the form (n, DIMENSION), (n, w, MARGINAL, j, z) and (n, w, LINEAR, j, u′, y).

Next, if T is a register subspace of Fs
q with indicator vector C ∈ {0, 1}s, then κ(T) is a register subspace

of F
s log q
2 with indicator vector D defined from C as in Definition 4.15. Thus the output of κ(S) on input

(n, w, FACTOR, j, u′) is equal to the indicator vector of κ(Vw, n
j, u ), which is the j-th factor space of Lw, n with

prefix u′ = κ(u).
The time and randomness complexities of κ(S) are the same as with the sampler S , except it takes

O(log q(n)) times longer to output the factor space indicator vectors.
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5 Nonlocal Games

We introduce definitions associated with nonlocal games and strategies that will be used throughout.

5.1 Games and strategies

Definition 5.1 (Two-player one-round games). A two-player one-round game G is specified by a tuple
(X ,Y ,A,B, µ, D) where

1. X and Y are finite sets (called the question alphabets),

2. A and B are finite sets (called the answer alphabets),

3. µ is a probability distribution over X ×Y (called the question distribution), and

4. D : X ×Y ×A×B → {0, 1} is a function (called the decision predicate).

Definition 5.2 (Tensor product strategies). A tensor product strategy S for a game G = (X ,Y ,A,B, µ, D)
is a tuple (|ψ〉, A, B) where

• |ψ〉 is a pure quantum state inHA ⊗HB for finite dimensional complex Hilbert spacesHA,HB,

• A is a set {Ax} such that for every x ∈ X , Ax = {Ax
a}a∈A is a POVM overHA, and

• B is a set {By} such that for every y ∈ Y , By = {By
b}b∈B is a POVM overHB.

Definition 5.3 (Tensor product value). The tensor product value of a tensor product strategy S = (|ψ〉, A, B)
with respect to a game G = (X ,Y ,A,B, µ, D) is defined as

val∗(G, S ) = ∑
x, y, a, b

µ(x, y) D(x, y, a, b) 〈ψ|Ax
a ⊗ By

b |ψ〉 .

For v ∈ [0, 1] we say that the strategy S passes (or wins) G with probability v if val∗(G, S ) ≥ v. The
tensor product value of G is defined as

val∗(G) = sup
S

val∗(G, S ) ,

where the supremum is taken over all tensor product strategies S for G.

Remark 5.4. Unless specified otherwise, all strategies considered in this paper are tensor product strate-
gies, and we simply call them strategies. Similarly, we refer to val∗(G) as the value of the game G.

Definition 5.5 (Projective strategies). We say that a strategy S = (|ψ〉, A, B) is projective if all the mea-
surements {Ax

a}a and {By
b}b are projective.

Remark 5.6. A game G = (X ,Y ,A,B, µ, D) is symmetric if the question and answer alphabets are
the same for both players (i.e. X = Y and A = B), the distribution µ is symmetric (i.e. µ(x, y) =
µ(y, x)), and the decision predicate D treats both players symmetrically (i.e. for all x, y, a, b, D(x, y, a, b) =
D(y, x, b, a)). Furthermore, we call a strategy S = (|ψ〉, A, B) symmetric if |ψ〉 is a state in H ⊗H,
for some Hilbert space H, that is invariant under permutation of the two factors, and the measurement
operators of both players are identical. We specify symmetric games G and symmetric strategies S using
a more compact notation: we write G = (X ,A, µ, D) and S = (|ψ〉, M) where M denotes the set of
measurement operators for both players.
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Lemma 5.7. Let G = (X ,Y ,A,B, µ, D) be a symmetric game such that val∗(G) = 1− ε for some ε ≥ 0.
Then there exists a symmetric and projective strategy S = (|ψ〉, M) such that val∗(G, S ) ≥ 1− 2ε.

Proof. By definition there exists a strategy S ′ = (|ψ′〉, A, B) such that val∗(G, S ′) ≥ 1− 2ε. Enlarging
one player’s space if necessary, assume without loss of generality that |ψ′〉 ∈ Cd

A′ ⊗Cd
B′ for some integer d

and that for every x and y, Ax and By is a projective measurement. Let

|ψ〉 = 1√
2

(
|0〉A|1〉B|ψ′〉A′B′ + |1〉A|0〉B|ψ′τ〉A′B′

)
∈ (C2

A ⊗Cd
A′)⊗ (C2

B ⊗Cd
B′) ,

where |ψ′τ〉 is obtained from |ψ〉 by permuting the two players’ registers. Observe that |ψ〉 is invariant under
permutation of AA′ and BB′. Let w ∈ {A, B}. For any question x ∈ X = Y , let Mx be the measurement
obtained by first measuring the qubit in register w and depending on the outcome, applying the measurement
Ax on player w’s d-dimensional register w′ to obtain an outcome a. Using that by assumption the decision
predicate D for G is symmetric, it is not hard to verify that val∗(G, S ) = val∗(G, S ′).

Definition 5.8. Let G = (X ,Y ,A,B, µ, D) be a game, and let S = (|ψ〉, A, B) be a strategy for G such
that the spaces HA ' HB canonically. Let S ⊆ X × Y denote the support of the question distribution µ,
i.e. the set of (x, y) such that µ(x, y) > 0. We say that S is a commuting strategy for G if for all question
pairs (x, y) ∈ S, we have [Ax

a , By
b ] = 0 for all a ∈ A, b ∈ B, where [A, B] = AB − BA denotes the

commutator.

Definition 5.9 (Consistent measurements). Let A be a finite set, let |ψ〉 ∈ H ⊗H a state, and {Ma}a∈A a
projective measurement onH. We say that {Ma}a∈A is consistent on |ψ〉 if and only if

∀a ∈ A , Ma ⊗ IB |ψ〉 = IA ⊗Ma |ψ〉 .

Definition 5.10 (Consistent strategies). Let S = (|ψ〉, A, B) be a projective strategy with state |ψ〉 ∈
H ⊗H, for some Hilbert space H, which is defined on question alphabets X and Y and answer alphabets
A and B, respectively. We say that the strategy S is consistent if for all x ∈ X , the measurement {Ax

a}a∈A
is consistent on |ψ〉 and if for all y ∈ Y , the measurement {By

b}b∈B is consistent on |ψ〉.

Definition 5.11. We say that a game G has a PCC strategy if it has a strategy S that is projective, consistent,
and commuting for G. Additionally, we say that a game G has an SPCC strategy if it has a symmetric PCC
strategy.

Definition 5.12 (Entanglement requirements of a game). For all games G and ν ∈ [0, 1], let E (G, ν) denote
the minimum integer d such that there exists a finite dimensional tensor product strategy S that achieves
success probability at least ν in the game G with a state |ψ〉 whose Schmidt rank is at most d. If there is no
finite dimensional strategy that achieves success probability ν, then define E (G, ν) to be ∞.

5.2 Distance measures

We introduce several distance measures that are used throughout.

Definition 5.13 (Distance between states). Let {|ψn〉}n∈N and {|ψ′n〉}n∈N be two families of states in the
same space H. For some function δ : N → [0, 1] we say that {|ψn〉} and {|ψ′n〉} are δ-close, denoted as
|ψ〉 ≈δ |ψ′〉, if ‖|ψn〉 − |ψ′n〉‖

2 = O(δ(n)). (For convenience we generally leave the dependence of the
states and δ on the indexing parameter n implicit.)
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Definition 5.14 (Consistency between POVMs). Let X be a finite set and µ a distribution on X . Let
|ψ〉 ∈ HA ⊗HB be a quantum state, and for all x ∈ X , {Ax

a} and {Bx
a} POVMs. We write

Ax
a ⊗ IB 'δ IA ⊗ Bx

a

on state |ψ〉 and distribution µ if

E
x∼µ

∑
a 6=b
〈ψ|Ax

a ⊗ Bx
b |ψ〉 ≤ O(δ) .

In this case, we say that {Ax
a} and {Bx

a} are δ-consistent on |ψ〉.

Note that a consistent measurement according to Definition 5.9 is 0-consistent with itself, under the
singleton distribution, according to Definition 5.14 (and vice-versa).

Definition 5.15 (Distance between POVMs). Let X be a finite set and µ a distribution on X . Let |ψ〉 ∈ H
be a quantum state, and for all x ∈ X , {Mx

a} and {Nx
a } two POVM on H. We say that {Mx

a} and {Nx
a }

are δ-close on state |ψ〉 and under distribution µ if

E
x∼µ

∑
a
‖(Mx

a − Nx
a )|ψ〉‖

2 ≤ δ ,

and we write Mx
a ≈δ Nx

a to denote this when the state |ψ〉 and distribution µ are clear from context. This
distance is referred to as the state-dependent distance.

Definition 5.16 (Distance between strategies). Let G = (X ,Y ,A,B, µ, D) be a nonlocal game and let
S = (ψ, A, B), S ′ = (ψ′, A′, B′) be partial strategies for G. For δ ∈ [0, 1] we say that S is δ-close to
S ′ if the following conditions hold.

1. The states |ψ〉, |ψ′〉 are states in the same Hilbert spaceHA ⊗HB and are δ-close.

2. For all x ∈ X , y ∈ Y , we have Ax
a ≈δ (A′)x

a and By
b ≈δ (B′)y

b , with the approximations holding
under the distribution µ, and on either |ψ〉 or |ψ′〉.

We record several useful facts about the consistency measure and the state-dependent distance without
proof. Readers are referred to Sections 4.4 and 4.5 in [NW19] for additional discussion and proofs.

Fact 5.17 (Fact 4.13 and Fact 4.14 in [NW19]). For POVMs {Ax
a} and {Bx

a}, the following hold.

1. If Ax
a ⊗ IB 'δ IA ⊗ Bx

a then Ax
a ⊗ IB ≈δ IA ⊗ Bx

a .

2. If Ax
a ⊗ IB ≈δ IA ⊗ Bx

a and {Ax
a} and {Bx

a} are projective measurements, then Ax
a ⊗ IB 'δ IA ⊗ Bx

a .

3. If Ax
a ⊗ IB ≈δ IA ⊗ Bx

a and either {Ax
a} or {Bx

a} is a projective measurement, then Ax
a ⊗ IB 'δ1/2

IA ⊗ Bx
a .

Fact 5.18 (Fact 4.20 in [NW19]). Let A,B, C be finite sets, and let D be a distribution over question
pairs (x, y). Let {Ax

a,b} and {Bx
a,b} be POVMs whose outcomes range over the product set A× B. Sup-

pose a set of operators {Cy
a,c}, whose outcomes range over the product set A× C, satisfies the condition

∑a,c(C
y
a,c)

†Cy
a,c ≤ I for all y. If Ax

a,b ≈δ Bx
a,b on average over x sampled from the corresponding marginal

of distribution D, then Cy
a,c Ax

a,b ≈δ Cy
a,cBx

a,b on average over (x, y) sampled from D.
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Proof. Fix questions x, y and answers a ∈ A, b ∈ B. We have then that

∑
c

∥∥(Cy
a,c Ax

a,b − Cy
a,cBx

a,b)|ψ〉
∥∥2

= ∑
c
〈ψ|(Ax

a,b − Bx
a,b)

†(Cy
a,c)

†(Cy
a,c)(Ax

a,b − Bx
a,b)|ψ〉 (30)

≤ 〈ψ|(Ax
a,b − Bx

a,b)
†(Ax

a,b − Bx
a,b)|ψ〉 (31)

=
∥∥(Ax

a,b − Bx
a,b)|ψ〉

∥∥2 (32)

where the inequality follows from the fact that ∑c(C
y
a,c)

†Cy
a,c ≤ ∑a,c(C

y
a,c)

†Cy
a,c ≤ I. Thus we obtain the

desired conclusion

E
(x,y)∼D

∑
a,b,c

∥∥(Cy
a,c Ax

a,b − Cy
a,cBx

a,b)|ψ〉
∥∥2 ≤ E

(x,y)∼D
∑
a,b

∥∥(Ax
a,b − Bx

a,b)|ψ〉
∥∥2 ≤ δ. (33)

Fact 5.19 (Triangle inequality, Fact 4.28 in [NW19]). If Ax
a ≈δ Bx

a and Bx
a ≈ε Cx

a , then Ax
a ≈δ+ε Cx

a .

Fact 5.20 (Triangle inequality for “'”, Fact 4.29 in [NW19]). If Ax
a ⊗ IB 'δ IA⊗ Bx

a , Cx
a ⊗ IB 'δ IA⊗ Bx

a ,
and Cx

a ⊗ IB 'δ IA ⊗ Dx
a , then Ax

a ⊗ IB 'δ IA ⊗ Dx
a .

Fact 5.21 (Data processing, Fact 4.26 in [NW19]). Suppose Ax
a ⊗ IB 'δ IA ⊗ Bx

a . Then Ax
[ f (·)=b] ⊗ IB 'δ

IA ⊗ Bx
[ f (·)=b].

The state-dependent distance is the right tool for reasoning about the closeness of measurement operators
in a strategy. The following lemma ensures that, when two families of measurements are close on a state,
changing from one family of measurement to the other only introduces a small error to the value of the
strategy.

Lemma 5.22. Let {Ax
a, b}, {Bx

a, b, c}, {Cx
a, c} be POVMs. Suppose {Bx

a, b, c} is projective, and

Ax
a, b ⊗ IB ≈δ IA ⊗ Bx

a, b ,

Cx
a, c ⊗ IB ≈δ IA ⊗ Bx

a, c .

Then the following approximate commutation relation holds:

[Ax
a, b, Cx

a, c]⊗ IB ≈δ 0 .

Proof. Applying Fact 5.18 to Cx
a, c ⊗ IB ≈δ IA ⊗ Bx

a, c and {Ax
a,b ⊗ IB}, we have

Ax
a, bCx

a, c ⊗ IB ≈δ Ax
a, b ⊗ Bx

a, c . (34)

Similarly, applying Fact 5.18 to Ax
a, b ⊗ IB ≈δ IA ⊗ Bx

a, b and {IA ⊗ Bx
a,c}, and using the fact that {Bx

a,b,c} is
projective, we have

Ax
a, b ⊗ Bx

a, c ≈δ IA ⊗ Bx
a, cBx

a, b

= IA ⊗ Bx
a, b, c .

(35)

Combining Equations (34) and (35), we have

Ax
a, bCx

a, c ⊗ IB ≈δ IA ⊗ Bx
a, b, c . (36)

A similar argument gives
Cx

a, c Ax
a, b ⊗ IB ≈δ IA ⊗ Bx

a, b, c . (37)

The claim follows from Equations (36) and (37).
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The following lemma is a slightly modified version of [NW19, Fact 4.34].

Lemma 5.23. Let k ≥ 0 be a constant and ε > 0. Let X be a finite set and µ a distribution over X .
For each 1 ≤ i ≤ k let Gi be a set of functions gi : Y → Ri and for each x ∈ X let {Gi, x

g }g∈Gi be a
projective measurement. Suppose that for all i ∈ {1, . . . , k}, Gi satisfies the following property: for any two
gi 6= g′i ∈ Gi, the probability that gi(y) = g′i(y) over a uniformly random y ∈ Y is at most ε.

Let
{

Ax
g1, g2, ... , gk

}
be a projective measurement with outcomes (g1, . . . , gk) ∈ G1 × · · · × Gk. For each

1 ≤ i ≤ k, suppose that on average over x ∼ µ and y ∈ Y sampled uniformly at random,

Ax
[evaly(·)i=ai ]

⊗ IB 'δ IA ⊗ Gi, x
[evaly(·)=ai ]

. (38)

Define the POVM family {Cx
g1, g2, ... , gk

}, for x ∈ X , by

Cx
g1, g2, ... , gk

= Gk, x
gk
· · ·G2, x

g2
G1, x

g1
G2, x

g2
· · ·Gk, x

gk
.

Then on average over x ∼ µ and y ∈ Y sampled uniformly at random,

Ax
[evaly(·)=(a1, a2, ..., ak)]

⊗ IB '(δ+ε)1/2 IA ⊗ Cx
[evaly(·)=(a1, a2, ..., ak)]

. (39)

Proof. The proof is identical to the one given in [NW19, Fact 4.34], with the only modification needed to
insert the dependence on x for all measurements considered.

5.3 Self-testing

Definition 5.24 (Partial strategies). A strategy S = (|ψ〉, A, B) is a partial strategy for a game G if A
and B only specify POVM Ax and By for a subset of the questions x, y in G (called the question set of the
strategy S ). A strategy S ′ = (|ψ〉, A′, B′) extends S if (A′)x = Ax and (B′)y = By for every x, y in the
question set of S . A full strategy S for a game G is one whose question set is the entire question alphabet
of G.

Definition 5.25 (Self-testing). Let S = (|ψ〉, A, B) be a partial strategy for a game G = (X ,Y ,A,B, µ, D)
and δ : [0, 1]→ R+. We say that G is a self-test for S with robustness δ(ε) if the following hold:

• (Completeness) There exists a (full) strategy SFULL that extends S such that val∗(G, SFULL) = 1.

• (Soundness) Let Ŝ = (ψ̂, Â, B̂) be a strategy that wins G with probability 1− ε, for some ε ≥ 0.
Then there exists a local isometry φ = φA ⊗ φB and a state |AUX〉 such that

‖φ(|ψ̂〉)− |ψ〉|AUX〉‖2 ≤ δ(ε) .

Furthermore, letting Ãx
a = φA Âx

a φ∗A and B̃y
b = φB B̂y

b φ∗B , we have

Ãx
a ⊗ IB ≈δ(ε) (Ax

a ⊗ IAUX)⊗ IB

on state |ψ〉|AUX〉, where x is drawn from the marginal distribution of µ on one of the players. A
similar relation holds for operators B̃y

b and By
b .
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5.4 Normal form verifiers

We introduce a normal form for verifiers in nonlocal games. The normal form uses Turing machines to
specify the two actions performed by the verifier in a game: the generation of questions and the verification
of answers. For the generation of questions, we use the formalism of samplers introduced in Section 4.2.
The normal form for verifiers gives a uniform method to specify an infinite family of nonlocal games.

Definition 5.26 (Decider). A decider is a 5-input Turing machineD that on all inputs of the form (n, x, y, a, b)
where n is an integer and x, y, a, b ∈ {0, 1}∗, D halts and returns a single bit. Let TIMED(n) denote the
time complexity of D on inputs of the form (n, . . .). When the decider D outputs 0 we say that it rejects,
otherwise we say that it accepts. Furthermore, we call the input n to a decider the index.

Definition 5.27. A normal form verifier is a pair V = (S ,D) where S is a sampler with field size q(n) = 2
and D is a decider. The description length of V is defined to be |V| = |S|+ |D|, the sum of the description
lengths of S and D.

Normal form verifiers specify an infinite family of nonlocal games indexed by natural numbers in the
following way.

Definition 5.28. Let V = (S ,D) be a normal form verifier. For n ∈ N, we define the following nonlocal
game Vn to be the n-th game corresponding to the verifier V . The question setsX and Y are {0, 1}RANDS (n).
The answer sets A and B are {0, 1}TIMED(n). The question distribution is the distribution µS , n specified in
Definition 4.14. The decision predicate is the function computed by D(n, ·, ·, ·, ·), when the last four inputs
are restricted to X ×Y ×A×B. The value of the game is denoted by val∗(Vn).

We note that the game Vn is well-defined since for a normal form verifier the distribution µS , n is sup-
ported on {0, 1}RANDS (n)×{0, 1}RANDS (n) and a normal form decider always halts with a single-bit output.

Definition 5.29 (Verifier with commuting strategy). Let V = (S ,D) be a normal form verifier. For v :
N → [0, 1] say that V has a value-v commuting strategy if for all n ∈ N, the game Vn has a value-v(n)
commuting strategy.
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6 Types

We augment the definition of conditionally linear functions with a construct we call types. A type t is an
element of a type set T , and a T -typed family of conditionally linear functions is a collection {Lt}t∈T
containing a CL function Lt for each type t ∈ T . The utility of this definition is that it allows us to
define another object, namely conditionally linear distributions parameterized by an undirected graph G =
(T , E) on the set of types known as a type graph. Given two T -typed families of conditionally linear
functions {Lu}u∈T , {Rv}v∈T , the (T , G)-typed conditionally linear distribution corresponding to them is
the distribution which samples a pair of types (u, v) uniformly at random from the edges of G (with each
endpoint having equal probability as being chosen for u or v, respectively) and then samples (x, y) from
µLu, Rv . The output is the pair ((u, x), (v, y)).

The normal form verifiers we present in the paper frequently use typed CL distributions to sample
their questions, rather than untyped CL distributions. Types allow us to model the parts of their question
distributions which are unstructured and unsuitable for being sampled from CL distributions. A common
use of types is to allow the verifier to use previously defined games as subroutines. Here, the type helps
indicate which subroutine the verifier selects, and an edge in the type graph between two different types
allows us to introduce a test that cross-checks the results of one subroutine with the results of another.

Finally, we show how to convert any typed CL distribution into an equivalent (in the precise sense
defined below) untyped CL distribution with two additional levels, a technique we call detyping. This
entails showing how to “simulate” the graph distribution of G = (T , E), i.e. the uniform distribution on its
edges, using an untyped CL distribution. The simulation we give is based on rejection sampling and is only
approximate: its quality degrades exponentially with the number of types in T . As a result, we will ensure
throughout the paper that all type sets we consider are of a small, in fact generally constant, size.

This section is organized as follows. In Section 6.1 we define typed variants of CL distributions, sam-
plers, deciders, and verifiers. In Section 6.2 we define a CL distribution which samples from the graph
distribution of a given graph G = (T , E). In Section 6.3 we define a canonical way to detype typed sam-
plers, deciders, and verifiers using the graph sampler from Section 6.2. We then prove the main result of the
section, Lemma 6.18, which relates the value of the detyped normal form verifier to the value of the original
typed verifier.

6.1 Typed samplers, deciders, and verifiers

Definition 6.1 (Typed conditionally linear functions). Let T be a finite set and V be Fn for some integer
n ≥ 0. A T -typed family of `-level conditionally linear functions (implicitly, on V) is a collection {Lt}t∈T
such that, for each t ∈ T , Lt is an `-level conditionally linear function on V.

Definition 6.2 (Graph distribution). Let G = (U, E) be an undirected graph with vertex set U and edge
set E. Edges in E are written as multisets {u, v} of two vertices; the case u = v represents a self-loop.
Suppose there are m edges, k of which are self-loops. Then the graph distribution µG of G is the distribution
over U ×U such that for every (u, v) ∈ U ×U,

µG(u, v) =

{
1/(2m− k) if {u, v} ∈ E,
0 otherwise.

This is identical to the uniform distribution over pairs (u, v) ∈ U ×U such that {u, v} ∈ E.
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Definition 6.3 (Typed conditionally linear distributions). Let T be a type set and L = {Lu}u∈T , R =
{Rv}v∈T be T -typed families of conditionally linear functions on V. Let G = (T , E) be a graph with vertex
set T . The (T , G)-typed conditionally linear distribution µG

L, R corresponding to (L, R) is the distribution
over pairs ((u, x), (v, y)), where (u, v) is drawn from µG and (x, y) is drawn from µLu, Rv .

Definition 6.4 (Typed conditionally linear samplers). Let q : N → N be an admissible field size function
and s : N→N be a function. Let T be a finite type set. A 6-input Turing machine S is a T -typed, `-level
conditionally linear sampler with field size q(n) and dimension s(n) if for all n ∈N, letting q = q(n) and
s = s(n), there exist T -typed families of `-level conditionally linear functions {LA, n

t }t∈T and {LB, n
t }t∈T

on V = Fs
q where t ∈ T , w ∈ {A, B}, the conditionally linear function Lw, n

t has marginal functions
{Lw, n

t,≤j} and factor spaces {Vw, n
t, j, u} satisfying the conditions of Lemma 4.4, and for all t ∈ T , w ∈ {A, B},

j ∈ {1, . . . , `}, and z ∈ V:

• On input (n, DIMENSION), the sampler S returns the dimension s(n).

• On input (n, w, MARGINAL, j, z, t), the sampler S returns the binary representation of Lw, n
t,≤j(z).

• On input (n, w, LINEAR, j, u, y, t), the sampler S outputs the binary representation of Lw, n
t, j, u(y),

• On input (n, w, FACTOR, j, u, t), the sampler S returns the factor space Vw, n
t, j, u of Lw, n

t , represented as
an indicator vector in {0, 1}s.

We call F
s(n)
q(n) the ambient space of S . We call {LA, n

t }, {LB, n
t } the CL functions of S on index n. The time

complexity of S , denoted TIMES (n), is the number of steps before S halts for index n. The randomness
complexity of S , denoted by RANDS (n), is defined as the quantity s(n) log q(n).

We assume that types t ∈ T are represented using binary strings of length at most dlog |T |e; if a type
t is given as input to the sampler S and is not an element of T , then the sampler returns 0. Furthermore,
as described in Remark 4.13 for un-typed samplers, we write typed samplers with different numbers of
arguments depending on the input.

Definition 6.5 (Distribution of a typed sampler). Let S be a T -typed sampler and G = (T , E) be a graph.
Let Lw = {Lw

t }t for w ∈ {A, B} be the CL functions of S on index n. The distribution of sampler S with
graph G on index n, denoted µG

S , n, is the (T , G)-typed conditionally linear distribution corresponding to
(LA, LB).

Definition 6.6 (Downsizing typed CL samplers). Let S be a (T , G)-typed sampler. The downsized (T , G)-
typed sampler κ(S) is defined as in Definition 4.15 with the only difference that the type t is included as
part of the input to the sampler, as in Definition 6.4. (The type set T and type graph G themselves are
unchanged.)

Lemma 6.7. Let S be a (T , G)-typed `-level CL sampler, for some finite set T , type graph G, and integer
` ≥ 0. Let q(n) and s(n) be as in Definition 6.4. Then κ(S) defined in Definition 6.6 is a (T , G)-typed
`-level CL sampler with field size 2, dimension s(n) log q(n), and randomness and time complexities

RANDκ(S)(n) = RANDS (n) , TIMEκ(S)(n) = O(TIMES (n) log q(n)) .

Furthermore, for every integer n ≥ 1, the CL functions of κ(S) on index n are {(Lw,n
t )κ}w∈{A,B},t∈T , as

defined in Definition 4.8.
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Proof. The proof is analogous to the proof of Lemma 4.16, and we omit it.

Definition 6.8 (Typed decider). A typed decider is a 7-input Turing machineD that on all inputs of the form
(n, u, x, v, y, a, b) where n is an integer and u, x, v, y, a, b ∈ {0, 1}∗, D halts and returns a single bit. When
D returns 0 we say that it rejects, otherwise we say that it accepts. We use TIMED(n) to denote the time
complexity of D on inputs of the form (n, . . .).

Definition 6.9. Let T be a finite set and let G = (T , E) be a graph. A (T , G)-typed normal form verifier
is a pair V = (S ,D) where S is a T -typed sampler with field size q(n) = 2 and D is a typed decider.

Definition 6.10. Let V = (S ,D) be a (T , G)-typed normal form verifier. For n ∈ N, we define the
following nonlocal game Vn to be the n-th game corresponding to the verifier V . The question sets X
and Y are T × {0, 1}RANDS (n). The answer sets A and B are {0, 1}TIMED(n). The question distribution
is the distribution µG

S , n specified in Definition 6.5. The decision predicate is the function computed by
D(n, ·, ·, ·, ·), when the last four inputs are restricted to X ×Y ×A×B. The value of the game is denoted
by val∗(Vn).

For w ∈ {A, B} and a question (u, x) to player w we refer to u as the question type and x as the question
content.

6.2 Graph distributions

We describe a construction of conditionally linear distributions which sample from the graph distribution
(see Definition 6.2) of a graph G = (U, E). We begin with a technical definition, followed by the definition
of the conditionally linear distribution.

Definition 6.11 (Neighbor indicator). Given a graph G = (U, E), the neighbor indicator of a vertex u ∈ U
is the vector neighG(u) ∈ FU

2 in which, for all v ∈ U,

neighG(u)v =

{
1 if {u, v} ∈ E,
0 otherwise.

In addition, the F2-encoding of a vertex u ∈ U is the vector encG(u) ∈ FU
2 × FU

2 given by encG(u) =
(eu, neighG(u)), where eu is the standard basis vector with a 1 in the u-th position and 0’s everywhere else.

Definition 6.12 (Graph sampler). Let G = (U, E) be a graph with n vertices. Then the conditionally linear
functions corresponding to G are the pair of functions LA

G, LB
G on linear space VG specified in Fig. 1 where

VG = VVA ⊕VNA ⊕VVB ⊕VNB.

These conditionally linear functions do not simulate the graph distribution in the sense of sampling
directly from it. The following proposition, however, does show a sense in which these functions simulate
the graph distribution, namely via rejection sampling.

Proposition 6.13 (Simulating the graph distribution). Let G = (U, E) be a graph with n vertices and m
edges, k of which are self-loops. Let LA

G, LB
G be the conditionally linear functions corresponding to G (see

Figure 1 for the definition and associated notation). Let (x, y) ∼ µLA
G , LB

G
. Consider the event EG that there

exists u, v ∈ U such that the following two statements are true.

(i) xVVA⊕VNA = encG(u) and yVVB⊕VNB = encG(v),
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Subspaces

VVA VNA VVB VNB

FU
2 FU

2 FU
2 FU

2

Conditionally linear function LA
G

1st factor subspace VVA ⊕VNA
1st linear function Identity function

2nd factor subspace VVB ⊕VNB
2nd linear functions For all x ∈ VVA ⊕ VNA, suppose there exists a u ∈ U such that

x = encG(u). Then for all y ∈ VVB ⊕VNB, LA
G, 2, x zeroes out all

entries of y except for (yVNB)u. Otherwise, LA
G, 2, x = 0.

Conditionally linear function LB
G

1st factor subspace VVB ⊕VNB
1st linear function Identity function

2nd factor subspace VVA ⊕VNA
2nd linear functions Similarly defined as those for LA

G by swapping VVA and VNA with
VVB and VNB respectively.

Figure 1: Specification of the conditionally linear functions corresponding to G.

(ii) (xVNB)u = (yVNA)v = 1.

Then

1. Prx,y(EG) = (2m− k)/16n.

2. Conditioned on EG, (u, v) are distributed as the graph distribution of G (see Definition 6.2).

Note that EG occurs if and only if both xVNB and yVNA are nonzero. In particular, if x and y are sampled
from µLA

G , LB
G

and given to the respective players, then at least one of them knows when the event EG does not
occur.

Proof. Let z be drawn uniformly at random from VVA ⊕ VNA ⊕ VVB ⊕ VNB, and let x = LA
G(z) and

y = LB
G(z). Then with probability n2/16n, there exist u, v ∈ U such that

xVVA⊕VNA = encG(u) and yVVB⊕VNB = encG(v) .

Conditioned on this occurring, u and v are distributed as independent, uniformly random vertices in U. If
we further condition on {u, v} ∈ E, which occurs with probability (2m− k)/n2, then by definition, (u, v)
is distributed as the graph distribution of G. But this event is exactly the event that EG holds on (x, y),
establishing the proposition.

54



6.3 Detyping typed verifiers

We give a canonical method for taking a typed normal form verifier and producing an untyped normal
form verifier which simulates it. Throughout this section, T denotes a finite set, G = (T , E) denotes a
graph, and LA

G, LB
G denote the conditionally linear functions corresponding to G acting on the vector space

VG = VVA ⊕VNA ⊕VVB ⊕VNB of dimension 4 · |T | over F2, as in Definition 6.12.

Definition 6.14 (Detyped CL functions). Let LA = {LA
t }, LB = {LB

t } be T -typed families of `-level
conditionally linear functions on V. We define the detyped CL functions corresponding to (LA, LB) on G to
be the pair of (`+ 2)-level CL functions (RA, RB) = detypeG(LA, LB) on linear space VDETYPE = VG⊕V
as follows. For w ∈ {A, B}, and z ∈ Lw

G(VG), define the family of `-level CL functions {Lw
z } on V as

Lw
z =

{
0 if zVNw = 0,
Lw
t otherwise, for zVVw = et.

We note that when zVNw is nonzero, it is always the case that zVVw = et for some type t, by Definition 6.12.
For w ∈ {A, B}, Rw is the concatenation of Lw

G and {Lw
z }z (cf. Lemma 4.5).

Definition 6.15 (Detyped samplers). Let S be a T -typed sampler. For each n ∈ N, let {LA, n
t }, {LB, n

t } be
the CL functions of S with graph G on index n, and set (RA, n, RB, n) = detypeG(LA, n, LB, n). Then the
detyped sampler detypeG(S) is the (standard) sampler whose CL functions on index n are RA, n, RB, n. Its
dimension function is sDETYPE(n) = 4|T |+ s(n).

Definition 6.16 (Detyped deciders). Let D be a typed decider. We define the detyped decider detypeG(D)
to be the (standard) decider that behaves as follows: on input (n, x, y, a, b), it attempts to parse x = (x′, x′′),
y = (y′, y′′) ∈ VG × {0, 1}∗ (using a canonical scheme for representing pairs of strings). If it cannot, it
accepts. Otherwise, suppose that there exists {u, v} ∈ EG such that, using notation from Definition 6.11,

x′ = (eu, neighG(u), 0, eu) , y′ = (0, ev, ev, neighG(v)) ∈ VVA ⊕VNA ⊕VVB ⊕VNB .

Then it returns the output of D on input (n, u, x′′, v, y′′, a, b). Otherwise, it accepts.

Definition 6.17 (Detyped verifiers). Let V = (S ,D) be a (T , G)-typed normal form verifier. We define the
detyped verifier, denoted by detype(V), to be the (standard) normal form verifier (detypeG(S), detypeG(D)).

Lemma 6.18 (Typed verifiers to detyped verifiers). Let V = (S ,D) be a (T , G)-typed normal form verifier.
The detyped verifier detype(V) = (detypeG(S), detypeG(D)) satisfies the following properties: for all
n ∈N,

1. (Completeness) If Vn has a value-1 PCC strategy, then detype(V)n has a value-1 PCC strategy.

2. (Soundness) If val∗(detype(V)n) ≥ 1− ε, then val∗(Vn) ≥ 1− 16|T | · ε. Furthermore,

E (detype(V)n, 1− ε) ≥ E (Vn, 1− 16|T | · ε).

3. (Sampler parameters) If S is an `-level sampler, then detypeG(S) is an (`+ 2)-level sampler. The
randomness and time complexities of detypeG(S) satisfy the following:

RANDdetypeG(S)(n) = 4 · |T |+ RANDS (n)

TIMEdetypeG(S)(n) = poly(|T |, TIMES (n)).
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4. (Decider complexity) The decider detypeG(D) has time complexity poly(|T |, TIMED(n)).

5. (Efficient computability) The descriptions of detypeG(S) and detypeG(D) are polynomial time
computable from the description of G and the descriptions of S and D, respectively.

Proof. Throughout this proof, we fix an index n. Let s = s(n) be the dimension of S . The ambient space
of S is V = Fs

2 and the ambient space of detypeG(S) is VDETYPE = VG ⊕V. Let u, v ∈ T . For this proof,
we introduce the notation

viewA(u) = (eu, neighG(u), 0, eu), viewB(v) = (0, ev, ev, neighG(v)) ∈ VVA ⊕VNA ⊕VVB ⊕VNB .

Supposing that players A and B receive x and y in VDETYPE, and supposing that (x, y) satisfies event EG
from Proposition 6.13, then xVG = viewA(u) and yVG = viewB(v) for some {u, v} ∈ E.

Completeness. Let S = (|ψ〉, A, B) be a value-1 PCC strategy for Vn. We construct a PCC strategy
S DETYPE for detype(V)n with value 1. This strategy also uses the state |ψ〉. When a player receives a
question, they perform measurements described as follows.

Player A: given x ∈ VDETYPE the player checks if for some u ∈ T , xVG = viewA(u). If so, they perform
the measurement {

A(u, xV)
a

}
to obtain an outcome a, which they use as their answer. If not, they reply with the empty string. (This
entails performing the measurement whose POVM element corresponding to the empty string is the
identity matrix.)

Player B: given y ∈ VDETYPE, the player checks if for some v ∈ T , yVG = viewB(v). If so, they perform
the measurement {

B(v, yV)
b

}
to obtain an outcome b, which they use as their answer. If not, they reply with the empty string.

This strategy is projective and consistent because the only measurements it uses are those in S and “trivial”
measurements containing the identity matrix. Suppose the players receive questions x and y such that both
xVG = viewA(u) and yVG = viewB(v). In this case, the questions (u, xV) and (v, yV) are in the support
of the question distribution of V . As a result, the players succeed with probability 1 on these questions,
and their measurements always commute. For the remaining pairs of questions, the decider detypeG(D)
always accepts, and the measurements always commute by virtue of the fact that at least one is trivial, i.e.
containing the identity matrix as a POVM element.

Soundness. Let S = (|ψ〉, A, B) be a strategy for detype(V)n with value 1− ε. Suppose G has m edges,
k of which are self-loops. For any (x, y) drawn from µdetypeG(S), n, the decider detypeG(D) automatically
accepts unless (xVG , yVG) satisfies event EG from Proposition 6.13, which occurs with probability (2m −
k)/16|T |. When this happens, xVG and yVG are distributed as viewA(u) and viewB(v), where (u, v) are
distributed as the graph distribution on G. As a result, conditioned on EG, the probability that S succeeds
on detype(V)n is equal to the probability that the strategy S ′ = (|ψ〉, A′, B′) succeeds on Vn, where

(A′)u, xV

a = A(viewA(u),xV)
a , (B′)v, yV

b = B(viewB(v),yV)
b .
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This means that

val∗(detype(V)n, S ) =

(
1− 2m− k

16|T |

)
+

2m− k
16|T |

· val∗(Vn, S ′)

≤
(

1− 1
16|T |

)
+

1
16|T |

· val∗(Vn, S ′) .

Thus, S ′ has value at least 1− 16|T | · ε. This proves the first statement in the soundness. As for the second,
S and S ′ use the same state |ψ〉, and therefore both strategies have the same Schmidt rank, which by
definition is at least E (Vn, 1− 16|T | · ε).

Complexity. Definition 6.14 implies that detypeG(S) is an (`+ 2)-level sampler by Lemma 4.5 and that
VDETYPE has dimension 4|T |+ s. From this, we conclude that

RANDdetypeG(S)(n) = 4 · |T |+ RANDS (n) .

The claimed time bounds of detypeG(S) and detypeG(D) follow from the fact that these perform simple,
poly(|T |)-time computations followed by running S and D as subroutines.
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7 Classical and Quantum Low-degree Tests

In this section we introduce the classical and quantum low-degree tests. The classical low-degree test, first
introduced in [BFL91, AS98], has for almost three decades played a central role in the area of probabilis-
tically checkable proofs (PCPs) and hardness of approximation, and is used as a building block in many
MIP and MIP∗ protocols. The quantum low-degree test was introduced more recently in [NV18a], but it
has already led to significant improvements in the power of MIP∗ protocols [NV18a, NW19]. The protocol
in this work combines both of these tests, using the quantum low-degree test for question reduction and the
classical low-degree test for answer reduction. Section 7.1 below introduces the classical low-degree test,
and Section 7.3 does the same for the quantum low-degree test. Prior to doing this, we introduce the Magic
Square game in Section 7.2, a key subroutine in the quantum low-degree test.

7.1 The classical low-degree test

We begin with a generalization of the classical low-degree test known as the “simultaneous plane-point low-
degree test”. We sometimes refer to this as the “classical low-degree test” for short. The low-degree test is
used as a subroutine in the Pauli Basis test (see Section 7.3) as well as the answer-reduction normal form
verifier (see Section 10). We describe the test as a nonlocal game in Section 7.1.1. In Section 7.1.2, we show
how to generate questions for the low-degree test using a CL distribution.

7.1.1 The game

The game GLD is parametrized by a tuple ldparams = (q, m, d, k) where m, d, k ∈ N are integers and
q ∈ N is an admissible field size. The test is intended to check that the players’ responses are consistent
with k functions ( f1, f2, . . . , fk) such that each function fi : Fm

q → Fq is a total degree-d polynomial. We
sometimes write GLD

ldparams to emphasize the dependence of the classical low-degree test on the parameter
tuple ldparams.

Definition 7.1 (Plane encoding). The plane p in the linear space Fm
q specified by the triple v = (v0, v1, v2) ∈

(Fm
q )

3 is the subset {
v0 + λ1v1 + λ2v2 : λ1, λ2 ∈ Fq

}
⊆ Fm

q . (40)

The first entry v0 of the triple is called the intercept of the plane p, and the second and third entries v1, v2 are
called its directions. Note that different triples (v0, v1, v2) can specify the same plane. The plane specified
by the triple v = (v0, v1, v2) is denoted as p(v). The collection of planes in Fm

q is denoted Pl(Fm
q ).

Definition 7.2 (Plane-point distribution). The plane-point distribution on Fm
q is the distribution over (p, x)

where p = p(v0, v1, v2) is the plane associated with a uniformly random triple of points (v0, v1, v2) ∈
(Fm

q )
3 and x is chosen uniformly at random from p.

The game GLD is symmetric, so both players have the same question and answer alphabets. The question
alphabet is

X =
(
{POINT} ×Fm

q

)
∪
(
{PLANE} × (Fm

q )
3
)

.

In other words, the questions in the game GLD are pairs (t, x), where the first component t indicates the type
of the question, and the second component x consists of the content of the question.

The distribution µLD over questions ((tA, xA), (tB, xB)) for game GLD is the following. First, sample a
triple of points v = (v0, v1, v2) ∈ (Fm

q )
3 uniformly at random. Next, pick a uniformly random point u from
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the plane p(v). For each w ∈ {A, B}, with probability 1/2 (tw, xw) is chosen to be (PLANE, v) and with
probability 1/2 it is (POINT, u).

The decision procedure DLD for the game GLD is presented in Figure 2. The table at the top specifies
a parsing scheme for the questions and answers, depending on the type of question. For example, when a
player receives a question with type POINT, the question content x, a bit string of length m log q, should be
interpreted by the decision procedure and the players as an element of the vector space Fm

q , as indicated in
Section 3.3.2. Similarly the answer to a question with type POINT is expected to be a bit string of length
k log q, and is interpreted as an element of Fk

q. For questions with type PLANE, the question content is
a 3m log q-bit string, which can be parsed as a triple v = (v0, v1, v2) ∈ (Fm

q )
3, which in turn can be

interpreted as a specification for a plane p(v) in Fm
q . The answer is interpreted as the description of k

degree-d bivariate polynomials defined on the plane p(v). If the answers returned by the players do not fit
this format the decision procedure rejects.

Type Question Content Answer Format

POINT x ∈ Fm
q Element of Fk

q
PLANE v = (v0, v1, v2) ∈ (Fm

q )
3 Bivariate polynomial f : p(v) → Fk

q of degree
d

Input to DLD: (tA, xA, tB, xB, aA, aB). In all cases where no action is indicated, accept. For
w ∈ {A, B},

1. (Consistency test) If tA = tB, accept iff aA = aB.

2. (Low degree test) If tw = PLANE and tw = POINT, parse aw as a degree-d polynomial
f : p(v)→ Fk

q, and accept iff f (xw) = aw.

Figure 2: The decision procedureDLD for the simultaneous low-degree test, parameterized by the parameter
tuple ldparams = (q, m, d, k).

We define a special class of measurements that are relevant to the soundness properties of the low-degree
test.

Definition 7.3 (Low-degree polynomial measurements). Define PolyMeas(m, d, q) to be the set of POVM
measurements whose outcomes correspond to degree-d polynomials of m variables over Fq. More generally,
for an integer k and tuples m = (m1, m2, . . . , mk), d = (d1, d2, . . . , dk) and q = (q1, q2, . . . , qk), we let
PolyMeas(m, d, q, k) be the set of measurements G = {Gg1, g2, ... , gk} such that for i ∈ {1, 2, . . . , k}, gi is a
degree-di polynomial gi : F

mi
qi → Fqi .

Quantum soundness of the classical low-degree test was established in [NV18a] for the case of k = 1.
It was later extended to the case of general k in [NW19, Theorem 4.43] via a standard reduction. We quote
this result below, adapted to our notation.

Lemma 7.4 (Quantum soundness of the simultaneous classical low-degree test). There exists a function
δLD(ε, q, m, d, k) = a(ε + d(m + k)/qc)b for universal constants a ≥ 1 and 0 < b, c ≤ 1 such that for
every q, m, d, k, δLD is a concave function of ε, and the following holds. For all ε > 0 and parameter tuple
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ldparams = (q, m, d, k), for all projective strategies (ψ, A, B) that succeed with probability at least 1− ε
in the game GLD

ldparams there exists measurements

Gw ∈ PolyMeas(m, d, q, k)

onHw, for w ∈ {A, B}, such that

APOINT, x
b1, b2, ... , bk

⊗ IB 'δLD
IA ⊗ GB

[evalx(·)=(b1, b2, ... , bk)]
,

GA
[evalx(·)=(b1, b2, ... , bk)]

⊗ IB 'δLD
IA ⊗ BPOINT, x

b1, b2, ... , bk
,

GA
g1, g2, ... , gk

⊗ IB 'δLD
IA ⊗ GB

g1, g2, ... , gk
,

where δLD = δLD(ε, q, m, d, k), evalx(g1, g2, . . . , gk) =
(

g1(x), g2(x), . . . , gk(x)
)

and the approximation
holds under the uniform distribution over x ∈ Fm

q .

Remark 7.5. Although the decision procedure expects questions and answers that are binary strings, for
convenience we index measurements using more structured objects such as vectors or polynomials over Fq,
where we implicitly assume a consistent and canonical encoding scheme for these objects as binary strings
(as discussed in Section 3.3.2).

7.1.2 Conditionally linear functions for the plane-point distribution

We introduce CL functions LPL, LPT whose corresponding CL distribution µLPL , LPT implements the plane-
point distribution introduced in Definition 7.2. The functions are parametrized by a field size q, a dimension
m, and three disjoint m-dimensional register subspaces VX, VV1, VV2 of some ambient space. The register
VX is called the point register and VV1, VV2 are called the direction registers, respectively. We let V denote
the direct sum VX ⊕VV1 ⊕VV2. The details of the functions are specified in Figure 3.

We explain how to interpret the figure. The first part of the specification identifies m-dimensional vector
spaces over Fq labeled VX, VV1, and VV2. The next part of Figure 3 defines the CL functions LPT and LPL

by specifying their factor spaces as well as the associated linear maps. For example, the CL function LPT

is a 1-level CL function (i.e. a linear function) that maps every x ∈ V to its projection xVX to subspace
VX. The CL function LPL is a 2-level CL function that is the concatenation of the identity function on
VV1⊕VV2 (a 1-level CL function) with a family of linear maps {LPL

v }v that act on the subspace VX, indexed
by v ∈ VV1 ⊕VV2. We use the convention that the CL functions LPT and LPL are implicitly defined to be 0
on subspaces that are complementary to their factor spaces.

Consider a pair (x, y) ∈ V × V sampled from the CL distribution µLPL , LPT . Parse x as (v0, v1, v2) ∈(
Fm

q
)3 and parse yVX as w ∈ Fm

q . Observe that the joint distribution of (v, w) is different from the marginal
distribution of (xA, xB) sampled from µLD, conditioned on tA = PLANE and tB = POINT. This is because
xA is a uniformly random triple of points (v0, v1, v2) ∈ (Fm

q )
3, and xB is a uniformly random point w ∈

p(v0, v1, v2). On the other hand, by definition, we have that v0 = LPL
v1, v2

(w). Nevertheless, we show in the
following lemma that this syntactic difference does not change the soundness properties of the game.

Let ldparams = (q, m, d, k) denote a parameter tuple. Let G̃LD
ldparams denote the classical low-degree

test where the distribution µ̃LD is the following distribution over tuples (tA, xA, tB, xB): (tA, tB) is sampled
uniformly from {POINT, PLANE} × {POINT, PLANE}. Next, sample a uniformly random vector z ∈ V =
VX ⊕VV1 ⊕VV2. Finally, for w ∈ {A, B}, define

xw =

{
LPL(z) if tw = PLANE,
LPT(z) if tw = POINT.
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Subspaces over Fq

Subspace VX VV1 VV2

Dimension m m m

Conditionally linear function LPT

1st factor subspace V
1st linear function Projector onto VX

Conditionally linear function LPL

1st factor subspace VV1 ⊕VV2
1st linear function Identity function on VV1 ⊕VV2

2nd factor subspace VX
2nd linear function For all v ∈ VV1 ⊕VV2, the linear map LPL

v is the canonical linear
map with kernel basis {v1, v2} (see Definition 3.10), where vi is
the projection of v onto VVi, naturally identified with an element
of VX using that both spaces are canonically isomorphic to Fm

q .

Figure 3: Specification of the CL functions used in the plane-point sampler, parametrized by field size q and
dimension m.

Lemma 7.6. Let ldparams = (q, m, d, k) denote a parameter tuple. Then Lemma 7.4 applies to the game
G̃LD

ldparams.

Proof. For notational clarity, we omit mention of ldparams. Fix ε > 0. Let S = (ψ, A, B) be a PCC
strategy for G̃LD that succeeds with probability 1− ε. We show that there exists a strategy S ′ = (ψ, C, D)
that succeeds with the same probability 1− ε in GLD. Consider the following strategy for GLD: suppose
a player receives a question (PLANE, v) such that v = (v0, v1, v2) ∈ (Fm

q )
3. First, the player computes

u = LPL
v1, v2

(v0). It then performs the same measurement as a player in the game G̃LD would when it
receives question (PLANE, u, v1, v2) and returns the outcome (which is a list of k bivariate polynomials
defined on p(u, v1, v2)). If the player receives (POINT, w) for some w ∈ p(v0, v1, v2), it performs the
same measurement as a player in the game G̃LD would when it receives question (POINT, w), and returns
the outcome (which is a list of k values in Fq).

If both players receive questions of the same type (either PLANE or POINT type) in the game GLD, then
the measurements performed are exactly the same as those performed in the game G̃LD when both players
receive the same type. This is because the marginal distributions of µLD and µ̃LD are identical when the
question type is POINT, and the marginal distribution of PLANE-type questions in µ̃LD is the same as that of
µLD after the CL function LPL is applied to content of the PLANE-type question.

Suppose that in the game GLD one player receives a question with type PLANE, and the other player
receives a question with type POINT. We argue that the distribution on (u, v1, v2, w) obtained by sampling
((PLANE, v), (POINT, w)) from µLD and setting u = LPL

v1, v2
(v0) as above is the same as the CL distribution
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µLPL , LPT .
To see this, observe as we already did earlier that the marginal distribution of (v1, v2, w) is uniform over

(Fm
q )

3. Furthermore, observe that u = LPL
v1, v2

(w): since w ∈ p(v0, v1, v2) (by definition of µLD), we have
that

u = LPL
v1, v2

(v0) = LPL
v1, v2

(w),

where the second equality follows from the fact that by construction ker(LPL
v1, v2

) = span{v1, v2}. Thus the
measurements performed using strategy S ′ in GLD are the same as those using the strategy S in the game
G̃LD when there is a PLANE player and a POINT player.

Thus, the success probability of S ′ in GLD is exactly the same as the success probability of S in
G̃LD.

7.1.3 Complexity of the classical low-degree test.

The CL functions and decision procedure of the low-degree test are incorporated as subroutines in some
of the normal form verifiers constructed in subsequent sections. The next lemma establishes the time com-
plexity of these procedures as a function of the parameter tuple ldparams = (q, m, d, k). The lemma also
establishes the time complexity of computing the description of the decision procedure DLD as a Turing
machine, given the parameter tuple ldparams as input.

The CL functions LPT and LPL are additionally parametrized by three m-dimensional register subspaces
VX, VV1, VV2 of some larger ambient space V. We can treat the CL functions as acting on the linear space
(Fm

q )
3 that decomposes into a direct sum of VX, VV1, followed by VV2.

Lemma 7.7 (Complexity of the classical low-degree test). Let ldparams = (q, m, d, k) denote a parameter
tuple.

1. The time complexity of the decision procedure DLD parametrized by ldparams is poly(m, d, k, log q).

2. The time complexity of evaluating marginals of the CL functions LPT and LPL at a given input point is
poly(m, log q).

3. The Turing machine description of the decision procedure DLD parametrized by ldparams can be
computed from ldparams in polylog(q, m, d, k) time.

Proof. Finite field arithmetic over Fq can be performed in time polylog q, by Lemma 3.18. The most
expensive step in DLD is to evaluate a bivariate polynomial f : p → Fk

q at a point in Fm
q , which takes

time poly(m, d, k, log q). The function LPT is a projection onto VX, which takes time poly(m, log q) to
compute. The function LPL requires computing a canonical linear map, which requires performing Gaussian
elimination and can be done in time poly(m, log q).

The Turing-machine description of the decision procedure DLD can be uniformly computed from the
integers (q, m, d, k) expressed in binary; the complexity of computing the description comes from describing
the parameter tuple ldparams, which takes time that is at most polynomial in the bit length of (q, m, d, k).

7.2 The Magic Square game

We recall the Magic Square game of Mermin and Peres [Mer90, Per90, Ara02]. The Magic Square game
is a simple self-test for EPR pairs (it tests for two of them). In addition, it allows one to test that a pair of
observables anticommutes. Here we use it as a building block to construct the quantum low-degree test.
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There are several formulations of the Magic Square game; here we present it as a binary constraint
satisfaction game [CM14]. In this formulation of the game (denoted by GMS) there are 6 linear equations
defined over 9 variables that take values in F2. The variables correspond to the cells of a 3× 3 grid, as
depicted in Figure 4. Five of the equations correspond to the constraint that the sum of the variables in each
row and the first two columns must be equal to 0, and the last equation requires that the sum of the variables
in the last column must be equal to 1.

x1 x2 x3

x4 x5 x6

x7 x8 x9

Figure 4: The Magic Square game

The question set T MS of the Magic Square game is the following:

T MC = {CONSTRAINTi : i = 1, 2, . . . , 6} ,

T MV = {VARIABLEj : j = 1, 2, . . . , 9} ,

T MS = T MC ∪ T MV .

The questions CONSTRAINTi for i ∈ {1, 2, 3} correspond to the three row constraints, the questions
CONSTRAINT4, CONSTRAINT5 correspond to the first two column constraints, and question CONSTRAINT6
corresponds to the third column constraint.

In the Magic Square game, the verifier first samples a constraint CONSTRAINTi ∈ T MC uniformly
at random, and then samples VARIABLEj, one of the three variables in the row or column correspond-
ing to CONSTRAINTi, uniformly at random. One player is randomly assigned to be the CONSTRAINT

player, and the other is assigned to be the VARIABLE player. The CONSTRAINT player is sent the question
CONSTRAINTi and is expected to respond with three bits (βv1 , βv2 , βv3) ∈ F3

2, where (v1, v2, v3) are the
indices of the three variables corresponding to CONSTRAINTi. The VARIABLE player is given question
VARIABLEj and is expected to respond with a single bit γ ∈ F2. The players win if the CONSTRAINT

player’s answers satisfy the equation associated with CONSTRAINTi, and γ = β j. More precisely, the veri-
fier samples an edge of the type graph (see Section 6) GMS in Fig. 5, sends one endpoint to a random player,
and the other endpoint to the other player.

The following theorem records the self-testing (also known as rigidity) properties of the Magic Square
game. Although we do not explicitly refer to the theorem, its self-testing properties are crucial to the Pauli
basis test. In particular, it is used to enforce anticommutation relations between certain pairs of operators.

Theorem 7.8 (Rigidity of the Magic Square game). Let S = (|ψ〉, M) be the partial strategy where
|ψ〉 = |EPR2〉⊗2 and for all b ∈ {0, 1},

MVARIABLE1
b = σX

b ⊗ I and MVARIABLE5
b = σZ

b ⊗ I ,

where σX
b , σZ

b are the X and Z Pauli projectors over qubits. Then GMS is a self-test for S with robustness
O(
√

ε).

Proof. See [WBMS16].
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CONSTRAINT1

CONSTRAINT2

CONSTRAINT3

CONSTRAINT4

CONSTRAINT5

CONSTRAINT6

VARIABLE1

VARIABLE2

VARIABLE3

VARIABLE4

VARIABLE5

VARIABLE6

VARIABLE7

VARIABLE8

VARIABLE9

Figure 5: Type graph GMS for the Magic Square game.

We will need the following theorem, which shows that any pair of anticommuting observables can be
used to form a value-1 strategy for the Magic Square game.

Theorem 7.9. Let A = {Ab}b∈F2 and B = {Bb}b∈F2 be two-outcome projective measurements acting on
(Cq)⊗n which are consistent on |EPRq〉⊗n, and let OA = A0 − A1 and OB = B0 − B1 be the correspond-
ing observables. Suppose thatOAOB = −OBOA. Then there exists a symmetric strategy S = (ψ, M) for
the Magic Square game with the following properties.

1. S is an SPCC strategy of value 1.

2. The state |ψ〉 has the form |ψ〉 = |EPRq〉⊗n ⊗ |EPR2〉.

3. For b ∈ {0, 1}, we have MVARIABLE1
b = Ab ⊗ I and MVARIABLE5

b = Bb ⊗ I.

Proof. The strategy S is based on the canonical two-qubit strategy for the Magic Square game as described
in, for example, [Ara02]. The state is |ψ〉 = |EPRq〉⊗n ⊗ |EPR2〉. We specify the measurements of S in
Figure 6 as an operator solution for the Magic Square game, meant to be read as follows: each cell con-
tains a two-outcome projective measurement {E0, E1} on (Cq)⊗n⊗C2 written as its±1-valued observable
E0 − E1. When Player A or B receives the question VARIABLEj for j ∈ {1, . . . , 9}, they measure their
share of |ψ〉 using the measurement specified by the cell corresponding to VARIABLEj and receive a single-
bit measurement. When they receive the question CONSTRAINTi for i ∈ {1, 2, . . . , 6}, they simultaneously
perform the three measurements in the corresponding row or column on |ψ〉 to obtain three bits. For exam-
ple, if Player A receives question VARIABLE1, they measure |ψ〉 using the measurement {A0 ⊗ I, A1 ⊗ I}
corresponding to the observable OA ⊗ I (where the first operator acts on |EPRq〉⊗n and the second acts on
|EPR2〉). Similarly, on question VARIABLE5, they use the measurement {B0 ⊗ I, B1 ⊗ I}. This establishes
Item 3 of the theorem.

First, we show that this gives a well-defined strategy. The VARIABLEj measurements are well-defined
because each cell contains a ±1-valued observable. This is obvious for all j 6= 9; when j = 9, the bottom-
right cell contains OAOB ⊗ σZσX. Because OA and OB anti-commute,

OAOB ⊗ σZσX = −OAOB ⊗ σXσZ = OBOA ⊗ σXσZ = (OAOB ⊗ σZσX)†. (41)
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OA ⊗ I I ⊗ σX OA ⊗ σX

I ⊗ σZ OB ⊗ I OB ⊗ σZ

OA ⊗ σZ OB ⊗ σX OAOB ⊗ σZσX

Figure 6: Observables for Magic Square strategy

As a result, this matrix is Hermitian. In addition,

(OAOB ⊗ σZσX)2 = (OAOB ⊗ σZσX) · (OBOA ⊗ σXσZ) = (OAOB · OBOA)⊗ (σZσX · σXσZ) = I,

where the first step uses Equation (41) and the final step uses the fact that OA,OB, σX, σZ are ±1-valued
observables and hence square to the identity. As a result, this matrix is Hermitian and squares to the identity.
Therefore, it is a ±1-valued observable.

As for the CONSTRAINTi measurements, we must show that the three measurements in each row and
column are simultaneously measurable. This is equivalent to the three ±1-valued observables being simul-
taneously diagonalizable, which is equivalent to them being pairwise commuting. This can be easily verified
for the cases of i = 1, 2, 4, 5 (i.e. the first two rows and columns). In the case of i = 3, commutativity of
OA⊗ σZ andOB⊗ σX follows from Equation (41). Since these two matrices commute, they also commute
with their product (OA ⊗ σZ)(OB ⊗ σX) = OAOB ⊗ σZσX. The case of i = 6 is similar.

By construction, S is symmetric, and we have already shown that it is projective. It remains to show
that it is commuting, consistent, and value 1. To show that it is commuting, it suffices to show that the
measurement for each cell is simultaneously measurable with all three measurements in its row or column,
which was already proved above. Now we show consistency. By linearity, because A and B are consistent
on |EPRq〉⊗n, so too are OA and OB. We claim that this implies the observable in each cell of Figure 6 is
consistent on |ψ〉. To see why, consider the j = 9 case:

(OAOB ⊗ σZσX)A ⊗ IB · |EPRq〉⊗n ⊗ |EPR2〉 = (OAOB ⊗ σZ)A ⊗ (I ⊗ σX)B · |EPRq〉⊗n ⊗ |EPR2〉
= (OAOB ⊗ I)A ⊗ (I ⊗ σXσZ)B · |EPRq〉⊗n ⊗ |EPR2〉
= (OA ⊗ I)A ⊗ (OB ⊗ σXσZ)B · |EPRq〉⊗n ⊗ |EPR2〉
= IA ⊗ (OBOA ⊗ σXσZ)B · |EPRq〉⊗n ⊗ |EPR2〉
= IA ⊗ (OAOB ⊗ σZσX)B · |EPRq〉⊗n ⊗ |EPR2〉.

The first two steps use the consistency of σX, σZ on |EPR2〉, the next two use the consistency ofOB,OA on
|EPRq〉⊗n, and the last step is by Equation (41). The remaining cases of j ∈ {1, . . . , 8} are similar, and we
omit them.

Now, we show that the measurements in S are consistent. Let E = {E0, E1} be any of the measure-
ments in the cells of Figure 6. We have shown that OE = E0 − E1 is consistent on |ψ〉. But for each
b ∈ {0, 1}, Eb = (E0 + E1 + (−1)b(E0 − E1))/2 = (I + (−1)bOE)/2, and so each Eb is consistent
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on |ψ〉 by the following calculation

Eb ⊗ IB|ψ〉 = 1
2 (I + (−1)bOE)⊗ IB|ψ〉 = 1

2 |ψ〉+
1
2 (−1)bOE ⊗ IB|ψ〉

= 1
2 |ψ〉+

1
2 (−1)b IA ⊗OE|ψ〉 = 1

2 IA ⊗ (I + (−1)bOE)|ψ〉 = IA ⊗ Eb|ψ〉,

where the third equality is by the consistency of OE. As a result, the VARIABLEj measurements are con-
sistent. As for the CONSTRAINTi measurements, each such measurement {Fa,b,c}a,b,c∈{0,1} is of the form
Fa,b,c = E1

a · E2
b · E3

c , where E1, E2, and E3 are VARIABLE measurements. But then consistency of F follows
from the VARIABLE consistencies:

Fa,b,c ⊗ IB|ψ〉 = (E1
a · E2

b · E3
c )A ⊗ IB|ψ〉 = (E1

a · E2
b)A ⊗ (E3

c )B|ψ〉 = (E1
a)A ⊗ (E3

c · E2
b)B|ψ〉

= IA ⊗ (E3
c · E2

b · E1
a)B|ψ〉 = IA ⊗ (E1

a · E2
b · E2

c )B|ψ〉 = IA ⊗ Fa,b,c|ψ〉,

where the second-to-last step is because the VARIABLEj measurements in the same row or column commute.
Hence, all measurements are consistent.

Since all measurements are consistent, this implies that the answer bit of the player receiving a VARIABLE

question is always consistent with the corresponding answer bit of the player receiving the CONSTRAINT

question. Similarly, the answers of the player receiving the CONSTRAINT question always satisfy the given
constraint; observe that in all rows and the first two columns, the observables multiply to I, whereas the
observables in the last column multiply to −I. This implies that the strategy is value-1, concluding the
proof.

7.3 The Pauli basis test

We introduce the quantum low-degree test of [NV18a] in the form of a slight modification to it by [NW19]
known as the Pauli basis test. Informally, the quantum low-degree test asks the players to measure a large
number of qubits and return a highly compressed version of the measurement outcome. The Pauli basis test
simply asks that the players return their uncompressed measurement outcomes, and it is designed by direct
reduction to the quantum low-degree test. In Section 7.3.1 we describe the Pauli basis test as a nonlocal
game GPAULI, as we did with the classical low-degree test in Section 7.1. In Section 7.3.2, we describe
how to generate questions for the Pauli basis test using CL functions. In Section 7.3.3 we exhibit canonical
parameters for the Pauli basis test and give bounds on the time complexity of executing the test.

7.3.1 The game

We start by discussing parameter settings. The game GPAULI is parametrized by a tuple

qldparams = (q, m, d, h, H, Γ, π) ,

where q, m, d, h, Γ ∈ N are integers, H is a subset of Fq of size h, and π is a map from {1, 2, . . . , Γ} to
Hm. We sometimes write GPAULI

qldparams to emphasize the dependence of the Pauli basis test on the parameters.
Informally, the test is meant to certify that the players share a state of the form |EPRq〉⊗Γ. Its question

set includes questions that are planes and points in Fm
q , which are meant to correspond to questions in a

low-degree test, and questions of the form (PAULI, W), for W ∈ {X, Z}. Upon receipt of a question of
the latter form, the players are expected to perform the POVM {τW

u }u∈FΓ
q

and report the outcome u as their
answer.
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Definition 7.10 (Admissible parameters). We say that the tuple qldparams = (q, m, d, h, H, Γ, π) is admis-
sible if q is an admissible field size, h ≤ q, and Γ ≤ hm.

Similarly to the game GLD, questions in the Pauli basis game come with a “question type” part and a
“question content” part. The question types are taken from the set

T PAULI =
(
{POINT, PLANE, PAULI, PAIR} × {X, Z}

)
∪ T MS ∪ {PAIR} , (42)

where T MS is the question type set of the Magic Square game defined in Section 7.2. The question content
has a format that depends on the type.

CONSTRAINT1

CONSTRAINT2

CONSTRAINT3

CONSTRAINT4

CONSTRAINT5

CONSTRAINT6

VARIABLE1

VARIABLE2

VARIABLE3

VARIABLE4

VARIABLE5

VARIABLE6

VARIABLE7

VARIABLE8

VARIABLE9

(PLANE, X)

(POINT, X)
(PAULI, X)

(PLANE, Z)

(POINT, Z)
(PAULI, Z)

PAIR

(PAIR, X)

(PAIR, Z)

Figure 7: Graph GPAULI for the Pauli basis test. Each vertex also has a self-loop which is not drawn on the
figure for clarity.

The distribution µPAULI over questions ((tA, xA), (tB, xB)) in GPAULI is defined through the following
sampling procedure:

1. Sample a pair of types by sampling an edge (tA, tB) of the graph GPAULI given in Figure 7 uniformly
at random (including the self-loops).

2. Sample the following uniformly at random:

(a) (Points) uX, uZ ∈ Fm
q ,

(b) (Directions) v1, v2 ∈ Fm
q ,

(c) (Qubit basis for (anti-)commutation) rX, rZ ∈ Fq.

3. For w ∈ {A, B} and W ∈ {X, Z},

(a) If tw = (POINT, W), then set xw = uW ,
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(b) If tw = (PLANE, W), then set xw = (u, v1, v2), where u = LPL
v1, v2

(uW),

(c) If tw = CONSTRAINTi for some i ∈ {1, . . . , 6}, then set xw = (uX, uZ, rX, rZ),

(d) If tw = VARIABLEj for some j ∈ {1, . . . , 9}, then set xw = (uX, uZ, rX, rZ),

(e) If tw = PAIR, then set xw = (uX, uZ, rX, rZ),

(f) If tw = (PAIR, W), then set xw = (uX, uZ, rX, rZ),

(g) If tw = (PAULI, W), then set xw = 0.

As with the game GLD, the question content is a bit string that is interpreted as a vector over Fq (as described
in Section 3.3.2).

Decision procedure. The decision procedure for GPAULI is presented in Figure 8. Similarly to Figure 2,
we provide a table that summarizes a parsing scheme for the questions and answers, depending on the
type of question. The answers are bit strings that are interpreted as more structured objects such as ele-
ments over Fq, vectors, or polynomials, depending on the question. In the “low-degree check”, the de-
cision procedure DPAULI calls the classical low-degree decision procedure DLD parametrized by the tuple
ldparams = (q, m, d, 1) (defined in Section 7.1) as a subroutine.

We describe an honest, value-1 PCC strategy for the Pauli basis test.

Definition 7.11. Let qldparams = (q, m, d, h, H, Γ, π) be a parameter tuple. Define the honest Pauli strat-
egy corresponding to qldparams as a partial strategy S PAULI that uses the state |EPRq〉⊗Γ and uses the
POVM {τW

u }u∈FΓ
q

for the question (PAULI, W) for W ∈ {X, Z}.

Lemma 7.12. The Pauli basis test GPAULI
qldparams has a value-1 SPCC strategy.

Proof. We begin by specifying the value-1 strategy S = (|ψ〉, M). The state is

|ψ〉 = |EPRq〉⊗Γ ⊗ |EPR2〉 .

Now we specify the measurements. We start with measurements associated with questions of type POINT,
PLANE, and PAULI. Using notation introduced in Section 3.4, for W ∈ {X, Z},

M(POINT,W), y
a = τW

[g·, π(y)=a] ⊗ I ,

M(PLANE,W), p
f = τW

[(g·, π)|p= f ] ⊗ I ,

M(PAULI,W)
a = τW

a ⊗ I .

We recall Definition 7.1 for the notation p and Definition 3.28 for the bracket notation used to post-
process measurement outcomes. For example, the measurement on question (POINT, W) corresponds to
first performing the measurement {τW

w }w∈FΓ
q
, receiving an outcome w ∈ FΓ

q , and then outputting the value
a = gw,π(y). Next we specify the POVMs associated with questions of type CONSTRAINT, VARIABLE, and
PAIR. Questions with these question types have a question content that is a tuple ω = (uX, uZ, rX, rZ) ∈
(Fm

q )
2 × F2

q. Given such a tuple, consider the two F2-valued POVMs A = {Ab}b∈F2 and B = {Bb}b∈F2

defined as

Ab = τX
[tr(g·, π(uX) rX)=b] ⊗ I , (44)

Bb = τZ
[tr(g·, π(uZ) rZ)=b] ⊗ I . (45)
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Type Question Content Answer Format

(POINT, W) y ∈ Fm
q Element of Fq

(PLANE, W) v = (uW , v1, v2) ∈ (Fm
q )

3 Polynomial f : p(v)→ Fq

PAIR (uX, uZ, rX, rZ) ∈ (Fm
q )

2 ×F2
q (βX, βZ) ∈ F2

2

(PAIR, W) (uX, uZ, rX, rZ) ∈ (Fm
q )

2 ×F2
q Element of F2

CONSTRAINTi (uX, uZ, rX, rZ) ∈ (Fm
q )

2 ×F2
q (αv1 , αv2 , αv3) ∈ F3

2

VARIABLEj (uX, uZ, rX, rZ) ∈ (Fm
q )

2 ×F2
q Element of F2

(PAULI, W) 0 Element of FΓ
q

Table: Question and answer format of the Pauli basis game.

On input (tA, xA, tB, xB, aA, aB), the decision procedure DPAULI performs the following checks
for w ∈ {A, B}:

1. (Consistency check). If tA = tB, accept iff aA = aB.

2. (Low-degree check). If tw = (POINT, W), tw = (PLANE, W), accept if DLD
ldparams

accepts (tw, xw, tw, xw, aw, aw) with ldparams = (q, m, d, 1).

3. (Consistency check). If tw = (POINT, W), tw = (PAULI, W), accept if gaw, π(y) = aw,
where gaw, π is the low-degree encoding of aw ∈ FΓ

q defined in Section 3.4.

In the remaining three cases, the decision procedure first computes the number

γ = tr
(
(indH,m,π(uX)rX) · (indH,m,π(uZ)rZ)

)
, (43)

where we recall the indH,m,π(·) notation from Section 3.4.

4. (Commutation check). If tw = (PAIR, W), tw = PAIR, accept if aw = βW or γ 6= 0.

5. (Consistency check). If tw = (POINT, W), tw = (PAIR, W), accept if tr(awrW) = aw
or γ 6= 0.

6. (Magic square check). If tw = CONSTRAINTi, tw = VARIABLEj, accept if γ = 0, or
aw satisfies constraint CONSTRAINTi and αj = aw.

7. (Consistency check). If tw = (POINT, W), tw = VARIABLEj, accept if γ = 0 or if
j = 1, W = X, and tr(awrX) = aw or if j = 5, W = Z, and tr(awrZ) = aw.

Figure 8: Specification of the decision procedure DPAULI
qldparams.
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We would like to determine when the two observables OA = A0 − A1 and OB = B0 − B1 commute
or anti-commute. Towards this we derive alternative expressions for these observables from which their
commutativity becomes plain from inspection. We begin by inspecting the first matrices on the right-hand
sides of Equations (44) and (45):

τW
[tr(g·, π(uW) rW)=b] = ∑

w:tr(gw, π(uW) rW)=b
τW

w

= ∑
w:tr((w · indH,m,π(uW))·rW)=b

τW
w , (46)

where (46) follows by Definition 12. As a result,

τW
[tr(g·, π(uW) rW)=0] − τW

[tr(g·, π(uW) rW)=1] = ∑
w:tr((w · indH,m,π(uW))·rW)=0

τW
w − ∑

w:tr((w · indH,m,π(uW))·rW)=1
τW

w

= ∑
w
(−1)tr((w · indH,m,π(uW))·rW)τW

w

= τW(indH,m,π(uW)rW) , (47)

where the last step uses (17). As a result, Equation (47) and Equations (44) and (45) imply that

OA = τX(indH,m,π(uX)rX)⊗ I, OB = τZ(indH,m,π(uZ)rZ)⊗ I .

Now, let γ = tr((indH,m,π(uX)rX) · (indH,m,π(uZ)rZ)) ∈ F2, as in Equation (43). Then by Equation (15),

OAOB = (−1)γOBOA .

As a result, γ quantifies whether the observablesOA andOB commute, and therefore whether the measure-
ments A and B commute. If γ = 0, they commute. If γ = 1, they anti-commute. We now specify the
POVMs associated with questions of type CONSTRAINT, VARIABLE, and PAIR, considering separately the
cases when γ = 0 or γ = 1.

1. If γ = 0, for each βX, βZ ∈ F2 define

MPAIR, ω
βX , βZ

= AβX · BβZ , (48)

M(PAIR,X), ω
a = Aa , M(PAIR,Z), ω

a = Ba .

The POVM associated with questions of type CONSTRAINT and VARIABLE are defined to be trivial.
In particular, we define

MCONSTRAINTi , ω
0, 0, 0 = M

VARIABLEj, ω

0 = I ,

and the remaining POVM elements in these measurements are set to be zero.

2. If γ = 1, then OA and OB anti-commute. In this case we define measurements MCONSTRAINTi , ω and
MVARIABLEj, ω, for all i ∈ {1, . . . , 6} and j ∈ {1, . . . , 9} to be those guaranteed by Theorem 7.9.
Measurements associated with inputs of type PAIR are defined to be trivial. In particular, we define

MPAIR, ω
0, 0 = M(PAIR,X), ω

0 = M(PAIR,Z), ω
0 = I ,

and the remaining matrices in these measurements are set to be zero.
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This completes the specification of the strategy.
Now, we show that S is a value-1 SPCC strategy. It is clearly symmetric and projective. To show

that it is consistent, we note that all measurements are Pauli basis measurements, which are consistent,
or measurements produced by Theorem 7.9, which are also consistent. The only exception is the PAIR

measurement in the γ = 0 case, which by Equation (48) is a product of two commuting, consistent mea-
surements, and so it is therefore also consistent. To show that it is commuting, we note that for each
W ∈ {X, Z}, all (POINT, W), (PLANE, W), and (PAULI, W) measurements commute as they are all mea-
surements in the Pauli W basis. Next, if γ = 0 then the CONSTRAINT and VARIABLE measurements
commute trivially, and for W ∈ {X, Z}, the (POINT, W) measurement commutes with the (PAIR, W) mea-
surement, as they are both W basis measurements, and the measurement MPAIR,ω

βX , βZ
= AβX · BβZ commutes

with M(PAIR,W),ω
a because A and B commute. On the other hand, if γ = 0, then the PAIR measurements

commute trivially, and the CONSTRAINT and VARIABLE measurements commute by Theorem 7.9. Finally,
the (POINT, X) measurement commutes with VARIABLE1 because both are X-basis measurements, and
likewise both (POINT, Z) and VARIABLE5 are Z-basis measurements.

It remains to show that S is value-1. Consider first the first three tests executed by the decision proce-
dure in Figure 8. The strategy passes the consistency checks with probability 1 because it is projective and
consistent. It passes the low-degree checks because it answers those consistently with an honest strategy in
the classical low-degree test.

Next, consider the remaining four tests. Fix an ω = (uX, uZ, rX, rZ) and γ as in (43). If γ = 0, then
the strategy passes the commutation check with probability 1 by construction. As for the consistency check
in Item 5, we can write the (POINT, W) measurement as follows:

M(POINT,W), y
[tr( · rW)=aw]

= τW
[tr(g·, π(y)rW)=aw]

⊗ I = M(PAIR,W),ω
aw ⊗ I.

As a result, due to the consistency of the (PAIR, W) measurement, the consistency check is passed with
probability 1. On the other hand, if γ 6= 0, then the strategy passes the Magic Square check by Theorem 7.9.
As for the consistency check in Item 7, we can write the (POINT, X) measurement as follows:

M(POINT,X), y
[tr( · rX)=aw]

= τX
[tr(g·, π(y)rX)=aw]

⊗ I = MVARIABLE1, ω
aw

⊗ I,

where the last step is by Theorem 7.9. As these measurements are consistent, this test is passed with
probability 1.

As described in Definition 7.11, the strategy S PAULI is a strategy that uses qudit Pauli measurements and
maximally entangled states defined over qudits with dimension larger than 2. However, it is more convenient
for our application of the Pauli basis test to have a self-test for qubits. In particular, we use the Pauli basis test
in the “introspection game” of Section 8, where the players are commanded to sample questions according
to a sampler S of a normal form verifier. By definition of normal form verifier, S is a sampler over F2, and
therefore it is natural to use a test for qubit Pauli observables. This motivates the definition of a binary Pauli
strategy:

Definition 7.13. Let qldparams = (q, m, d, h, H, Γ, π) be a parameter tuple. Define the honest binary Pauli
strategy corresponding to qldparams as the partial strategy S BP that uses the state |EPR2〉⊗Γ log q and uses
the POVM {σW

u }u∈F
Γ log q
2

for the question (PAULI, W) for W ∈ {X, Z}. Here, σW
u denotes the tensor

product of qubit Pauli projectors
⊗

i σW
ui

.

Since we use field sizes that are powers of 2, Lemma 3.29 shows that the strategy S PAULI based on
qudits is isomorphic to the strategy S BP based on qubits.
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Soundness of the Pauli basis test. We now state the soundness properties of the Pauli basis test. The
following is an adaptation of the self-testing statement in [NW19, Theorem 6.4].

Theorem 7.14. There exists a function δ(ε, m, d, q) = a(ε + md/qc)b for universal constants a, b, c > 0
such that the following holds. Let qldparams = (q, m, d, h, H, Γ, π) be an admissible parameter tuple and
let S PAULI be the honest Pauli strategy corresponding to qldparams. The game GPAULI

qldparams is a self-test for
the honest binary Pauli strategy S BP corresponding to qldparams with robustness δ(ε, m, d, q).

Proof. This follows from [NW19, Theorem 6.4], which states that the game GPAULI
qldparams is a self-test for the

honest Pauli strategy S PAULI corresponding to qldparams with robustness δ(ε, m, d, q), and Lemma 3.29,
which states that S PAULI is isomorphic to the honest binary Pauli strategy S BP corresponding to qldparams.

7.3.2 Conditional linear functions for the Pauli basis test

We define CL functions that allow us to specify the distribution µPAULI of the Pauli basis test as a (typed) CL
distribution. These CL functions will be used in the sampler for the introspective verifier in Section 8.

Fix a parameter tuple qldparams = (q, m, d, h, H, Γ, π). Let VPAULI denote the linear space Fs
q for

s = 4m + 2. The space VPAULI is decomposed into a direct sum of the following register subspaces:
VX, VZ, VV1, VV2 (which are m-dimensional), and VRX , VRZ (which are 1-dimensional). We define CL func-
tions Lt : VPAULI → VPAULI for every type t ∈ T PAULI:

1. If t = (POINT, W) for some W ∈ {X, Z}, then LPOINT,W is the 1-level CL function LPT (from
Section 7.1.2) parameterized by field size q, dimension m, and point register VW .

2. If t = (PLANE, W) for some W ∈ {X, Z}, then LPOINT,W is the 2-level CL function LPL (from
Section 7.1.2) parameterized by field size q, dimension m, point register VW , and direction registers
VV1, VV2.

3. If t = CONSTRAINTi for i ∈ {1, 2, . . . , 6}, then the 1-level CL function LCONSTRAINTi is the projector
onto VX ⊕VZ ⊕VRX ⊕VRZ .

4. If t = VARIABLEj for j ∈ {1, 2, . . . , 9}, then the 1-level CL function LVARIABLEj is the projection onto
VX ⊕VZ ⊕VRX ⊕VRZ .

5. If t = PAIR, then the 1-level CL function LPAIR is the projection onto VX ⊕VZ ⊕VRX ⊕VRZ .

6. If t = (PAIR, W), then the 1-level CL function LPAIR,W is the projection onto VX ⊕VZ ⊕VRX ⊕VRZ .

7. If t = (PAULI, W) for some W ∈ {X, Z}, then the 0-level CL function LPAULI,W is identically 0.

Let ν denote the typed CL distribution on T PAULI ×VPAULI ×T PAULI ×VPAULI where (tA, xA, tB, xB) is
sampled by first uniformly sampling an edge (tA, tB) from the graph GPAULI defined in Figure 7, sampling
a uniformly random z ∈ VPAULI, and then setting xw = Ltw(z) for w ∈ {A, B}.

Lemma 7.15. The distribution ν is a 2-level typed CL distribution. Furthermore, let (tA, xA, tB, xB) be
sampled from µPAULI described in Section 7.3.1. For w ∈ {A, B} let x̃w be the vector xw, seen as an
element of VPAULI (i.e. the vector is padded with zeroes whenever necessary). Then the distribution of
(tA, x̃A, tB, x̃B) is identical to the distribution ν.
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Proof. That ν is 2-level is immediate from the description. To see that the distributions are identical, the
random vectors uX, uZ, v1, v2, rX, rZ sampled in the description of µPAULI correspond, in the description of
ν, to the projection of the random vector z ∈ VPAULI to the register subspaces VX, VZ, VV1, VV2, VRX , and
VRZ respectively.

7.3.3 Canonical parameters and complexity of the Pauli basis test

We specify a canonical setting of the parameter tuple qldparams as a function of an integer r. We then
give bounds on the complexity of computing the decision procedure and CL functions of the Pauli basis test
corresponding to the parameter tuple qldparams, as a function of r.

Definition 7.16 (Canonical parameters of the Pauli basis test). Let c0 denote the smallest of the universal
constants a, b, c specified in Theorem 7.14, and let c1 = max{c0, 2}. For all integers r ∈ N, define the
tuple introparams(r) = (q, m, d, h, H, Γ, π) where

k = 2dc1 log re+ 1, q = 2k, Γ = dr/ log qe+ 1, m =

⌈
2
c0
· log Γ

log r

⌉
,

and, using notation from Section 3.4.1, define H = Hcanon,m,k,Γ ⊆ Fq, h = hcanon,m,k,Γ = |H|, π :
{1, 2, . . . , Γ} → Hm as

π(i) = πcanon,m,k,Γ(i− 1)

for i ∈ {1, 2, . . . , Γ}, where πcanon,m,k,Γ : {0, 1, . . . , Γ− 1} → Hm, and d = m(h− 1).

Intuitively, this choice of parameter settings is such that the Pauli basis test certifies the presence of an
r-qubit EPR state.

Lemma 7.17. For all integers r ∈ N, the parameter tuple introparams(r) is admissible (see Defini-
tion 7.10), and furthermore there exist universal constants a′, b′ > 0 such that the function δ(ε, m, d, q)
from Theorem 7.14 is at most a′(ε + 1

r )
b′ .

Proof. We verify the admissibility of introparams(r) first. The field size q = 2k is admissible because k is
odd. Fix r ∈N. From the definition of hcanon,m,k,Γ in Section 3.4.1, we get that

h = hcanon,m,k,Γ = 2db(Γ)/me

where b(Γ) = blog(Γ− 1) + 1c. Therefore hm ≥ 2b(Γ) ≥ Γ and

log h ≤ b(Γ)
m
≤ c0

2
· 1 + log(Γ− 1)

log Γ
· log r ≤ c0 log r ≤ log q (49)

where in the last equality we used that c0 ≤ c1. This proves admissibility of introparams(r). Next, we show
that md/qc0 is at most an inverse polynomial function in r. We have

md
qc0
≤ m2h

qc0
≤ m2rc0

qc0
≤ m2rc0

rc0c1
= m2r−(c1−1)c0 ≤ d2/c0e2 · dlog(r + 2)e2 · r−(c1−1)c0 (50)

where the first inequality follows from the definition of d, the second inequality follows from (49), the third
inequality follows from the definition of q, and the fourth inequality follows from the definition of m and
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log q = k ≥ 1. Since c1 ≥ 2 by definition, the right-hand side of (50) is at most a0(1/r)b0 for universal
constants a0, b0.

Thus from the definition of δ(ε, m, d, q) from Theorem 7.14 we get,

δ(ε, m, d, q) ≤ a
(

ε + md/qc0
)b
≤ a

(
ε + a0(1/r)b0

)b
≤ a′

(
ε +

1
r

)b′

for some universal constants a′, b′ > 0. This completes the proof of the lemma.

Lemma 7.18. Given an integer r, let introparams(r) = (q, m, d, h, H, Γ, π). The following can be com-
puted in time polylog r given r, written in binary, as input:

1. The integers q, m, d, h, Γ.

2. Given an additional input x ∈ Fq, deciding if x ∈ H.

3. Given an additional input x ∈ {0, 1, . . . , Γ− 1}, the value π(x).

Proof. The first item follows from the definitions of the parameters in Definition 7.16; the second item
follows from the fact that H is defined to be the span of the first `(Γ, m) elements of the canonical self-dual
basis of Fq over F2 (as specified by Lemma 3.16). The last item follows from Lemma 3.23.

Lemma 7.19. Let r be an integer, and let introparams(r) denote the parameter tuple specified by Defini-
tion 7.16.

1. The time complexity of the decision procedure DPAULI parameterized by introparams(r) is poly(r).

2. The time complexity of computing marginals of the CL functions Lt as well as the associated factor
spaces, for t ∈ T PAULI, is polylog r.

3. The Turing machine description of the decision procedure DPAULI parameterized by introparams can
be computed from the binary presentation of r in polylog(r) time.

Proof. Finite field arithmetic over Fq can be performed in time polylog q, by Lemma 3.18. The parameters
of introparams(r), which the decision procedure DPAULI implicitly computes given r, can be computed in
time polylog(r), by Lemma 7.18. The most expensive step inDPAULI is to evaluate the low-degree encoding
ga, π(y) where a ∈ FΓ

q and y ∈ Fm
q , which takes time poly(m, d, Γ, log q) = poly(r).

The complexity of computing the CL functions Lt for types t ∈ T PAULI is dominated by the com-
plexity of computing the CL functions LPL and LPT from the classical low-degree test, which takes time
poly(m, log q) = polylog(r).

The factor spaces of Lt depend only on the question type t (of which there are only constantly many),
and outputting the length-m indicator vectors of the factor spaces takes O(m) = polylog(r) time.

Finally, the time complexity of computing the description of DPAULI from the binary representation
of r requires polylog r time, because the checks performed in the decision procedure DPAULI depend on
introparams which ultimately depends on r; we assume that the decision procedure computes the parameter
tuple introparams based on r. Thus the time complexity is dominated by the time to write r in binary.
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8 Introspection Games

8.1 Overview

Consider a normal form verifier V = (S ,D) (see Definition 5.28). In this section we design a normal form
verifier V INTRO = (S INTRO,DINTRO) (called the introspective verifier) such that in the n-th game V INTRO

n
(called the introspection game; see Definition 5.28 for the definition of the n-th game associated with a
normal form verifier) the verifier expects the players to sample for themselves questions x and y distributed
as their questions in the game VN for index N = 2n—this is the “introspection” step. Note the exponen-
tial separation of the indices of the introspection game versus the original game! Our construction of the
introspection game generalizes the introspection technique of [NW19].

Recall the execution of the N-th game corresponding to the “original” verifier V (see Definition 5.28).
Let n ≥ 1, N = 2n, and suppose that the CL functions of S on index N are LA, LB acting on an ambient
space V. In the game VN , the verifier first samples z ∈ V uniformly at random and gives each player
w ∈ {A, B} the question xw = Lw(z). In this context, the string z is referred to as the “seed”. The players
respond with answers aA and aB, respectively, and the verifier accepts or rejects according to the output of
D(N, xA, xB, aA, aB).

In the introspection game, with some constant probability independent of n, the verifier V INTRO
n sends

the question pair (INTRO, A) to player w and (INTRO, B) to the other player w, where w ∈ {A, B} and
recall that w = B if w = A and w = A otherwise. The verifier expects player w to measure their share
of the state |EPR〉V using a coarse-grained Z-basis measurement whose outcomes range over LA(V), and
similarly player w measures the state |EPR〉V using a coarse-grained Z-basis measurement with outcomes
that range over LB(V). If the players perform these measurements honestly, then the outcomes (xA, xB) are
distributed exactly according to µS , N , the question distribution of the game VN . Players w and w are then
expected to respond with the question xw and xw that they each sampled, together with strings aw and aw,
respectively, which are intended to be the answers for the question pair (xA, xB) in the game VN . In other
words, the players introspectively sample the question pair (xA, xB) and then respond with the question
itself and an answer for it.

To facilitate comprehension, we call the players that interact with the introspective verifier V INTRO the
“introspecting players”, and the players that interact with the “original” verifier V the “original players”.

To ensure that the introspecting players follow the above procedure honestly, the introspective verifier
V INTRO

n first uses the (binary) Pauli basis test described in Section 7.3 to force the introspecting players to
share the state |EPR〉V . The Pauli basis test also ensures that the players measure σW and report the outcome
honestly when they receive questions (PAULI, W) for W ∈ {X, Z}. For v ∈ {A, B} the verifier cross-
checks the question pairs (INTRO, v) and (PAULI, Z) to enforce that the honest measurement is performed
for question (INTRO, v).

The main difficulty in the soundness analysis is to ensure that the answer of player w who received
question (INTRO, v) depends only on Lv(z) and not on any other information about the string z. First
assume for simplicity that Lv is a linear function. As shown below (based on Lemma 8.4), Lv(z) can be
obtained by measuring a specific collection of σZ observables; namely, the set

{σZ(u) | u ∈ ker(Lv)⊥}. (51)

To prevent the player from obtaining any additional information the verifier needs to enforce that the player
does not additionally measure any σZ(u) for u /∈ ker(Lv)⊥. (We refer to any such σZ as a “prohibited”
σZ.)
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The introspective verifier achieves this by sometimes sending “hiding questions” (READ, v) and (HIDEk, v)
to the players. When receiving the READ questions, the players are required to also measure observables
from the set

{σX(r) | r ∈ ker(Lv)}, (52)

which (as shown in Lemma 8.5 below) commute with every Z-basis measurement in (51). On the other
hand, any prohibited σZ(u) must anticommute with at least one of the σX(r), as otherwise u would be in
ker(Lv)⊥. As a result, honestly measuring the σX observables of (52) has the effect of preventing the player
from measuring any of the prohibited σZ observables, so that the answer a can effectively only depend
on the question Lv(z). (In the protocol, the verifier asks the player to measure the function (Lv)⊥(z) in
the X basis, rather than all of the σX observables. By Lemma 8.4 the two are equivalent.) Similarly to
how questions (PAULI, Z) and (INTRO, v) are cross-checked, the questions (PAULI, X), (HIDEk, v) and
(READ, v) are cross-checked in order to ensure that the honest X-basis measurements are performed for the
hiding questions.

When the CL functions Lv are `-level for ` > 1, the introspective verifier sends one of O(`) different
hiding questions to the players, chosen at random; together these hiding checks ensure that each of the con-
stituent linear maps of Lv are honestly measured. Intuitively, these hiding questions “interpolate” between
questions (PAULI, Z), (INTRO, v) and (PAULI, X) in a way that, for all pairs of questions asked by the
verifier, the honest measurements commute. (See Figure 11 for an overview of the honest measurements.)

A key property of the introspection game is that the distribution of questions (which include the Pauli
basis test questions as well as the introspection questions and the hiding questions) is also condition-
ally linear. This means that the introspection game can be ultimately specified by a normal form verifier
V INTRO = (S INTRO,DINTRO), which is crucial for recursive compression of games. Moreover, while the time
complexity of the introspective verifier’s decider DINTRO remains polynomially related to that of D on index
N, the time complexity of the sampler S INTRO is polylog(N) (exponentially smaller), due to the efficiency
of the Pauli basis test. Finally, S INTRO only depends on V through the number of levels ` of S and an upper
bound on its randomness complexity, as well as upper bounds on the time complexities of S and D.

8.2 The introspective verifier

Let λ, ` ∈ N. Let V = (S ,D) be a normal form verifier, where S is an `-level sampler. We call V ,S and
D the “original” verifier, sampler, and decider, respectively. We assume that for all N ∈ N, the original
sampler and decider satisfy

max
{

RANDS (N), TIMES (N), TIMED(N)
}
≤ (λN)λ . (53)

The introspective verifier corresponding to V and parameters (λ, `) is a typed normal form verifier
V INTRO = (S INTRO,DINTRO), sketched in Section 8.1 and specified in detail in the present section (see
Section 6 for the definition of typed normal form verifiers). In the following descriptions of the sampler
S INTRO and deciderDINTRO, all parameters are functions of the index n, the number of levels ` of the sampler
S , and the parameter λ; we often leave this dependence implicit. We use N = 2n to denote the index of the
verifier V that is simulated by the introspective verifier V INTRO on index n.

Let r = (λN)λ, and let introparams(r) = (q, m, d, h, H, Γ, π) denote the parameter tuple specified
in Section 7.3.3. Note that introparams is implicitly a function of n (since r is a function of n). By (53),
the integer r is an upper bound on the randomness complexity RANDS (N) of the sampler S on index N.
The associated parameter tuple introparams is intended to parametrize a Pauli basis test that certifies an
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r-qubit EPR state; intuitively, the r-qubit EPR state is meant to serve as the source of randomness for the
CL functions of the original sampler S .

Recall that the players in the introspection game are referred to as “introspecting players” and the players
in the original game are referred to as “original players”. We use the following notation in order to distin-
guish between questions and answers meant for the introspecting players versus the original players. The
questions and answers of the introspecting players are denoted by hatted variables (e.g., x̂ and â). Similarly,
the associated question types are denoted using hatted variables t̂. The questions and answers of the original
players in the original game VN are denoted using non-hatted variables (e.g. x, a, and so on).

Types and type graph. The type set T INTRO for the introspective verifier V INTRO is

T INTRO = T PAULI ∪
(({

INTRO, SAMPLE, READ
}
∪
( ⋃̀

k=1

{
HIDEk

} ))
× {A, B}

)
,

where T PAULI is the type set of the Pauli basis test, defined in Section 7.3. The type graph GINTRO is specified
in Figure 9.

CONSTRAINT1

CONSTRAINT2

CONSTRAINT3

CONSTRAINT4

CONSTRAINT5

CONSTRAINT6

VARIABLE1

VARIABLE2

VARIABLE3

VARIABLE4

VARIABLE5

VARIABLE6

VARIABLE7

VARIABLE8

VARIABLE9

(PLANE, X)

(POINT, X)
(PAULI, X)

(PLANE, Z)

(POINT, Z)
(PAULI, Z)

PAIR

(PAIR, X)

(PAIR, Z)

(HIDE1, A) (HIDE2, A)

· · ·
(HIDE`, A)

(HIDE1, B) (HIDE2, B)
· · ·

(HIDE`, B)

(SAMPLE, A) (INTRO, A) (READ, A)

(SAMPLE, B) (INTRO, B) (READ, B)

Figure 9: Type graph GINTRO for the introspection game. Each vertex also has a self-loop which is not drawn
in the figure for clarity.

Sampler. We first define a 2-level (T INTRO, GINTRO)-typed sampler S̃ INTRO, which has field size q(n) and
dimension 4m(n) + 2, where q(n) and m(n) are specified by introparams(r). Note that the dimension is
the same as that of the ambient space of the CL functions of the Pauli basis test for r qubits, specified in
Section 7.3.2.

Fix n ∈ N. We specify the CL functions of S̃ INTRO on index n. Since the functions LA, n
t̂

and LB, n
t̂

are
identical for all n and t̂, we omit the superscripts A and B. For types t̂ ∈ T PAULI, the CL functions Ln

t̂ are
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given by those specified in Section 7.3.2, parameterized by introparams(r). For types t̂ ∈ T INTRO \ T PAULI,
the associated CL functions are defined to be 0-level CL functions (i.e., they are the 0 map). This means that
for question types such as t̂ = (INTRO, v) or t̂ = (SAMPLE, v) for v ∈ {A, B} the associated question is
solely comprised of the question type label.

Finally, we define the typed sampler S INTRO to be κ(S̃ INTRO), the downsized sampler (Definition 6.6)
corresponding to S̃ INTRO. By Lemma 7.15 the typed CL functions associated with the Pauli basis test are
2-level; using Remark 4.2 and Lemma 4.9 it follows that S INTRO is a 2-level typed sampler.

The following lemma establishes the complexity of the sampler S INTRO as well as the complexity of
computing a description of it from the parameters (λ, `).

Lemma 8.1. There exists a 2-input Turing machine ComputeIntroSampler that on input (λ, `) outputs a
description of the sampler S INTRO in time polylog(λ, `). Furthermore,

1. TIMES INTRO(n) = polylog((λ2n)λ, `),

2. RANDS INTRO(n) = polylog((λ2n)λ), and

3. S INTRO is a 2-level typed sampler.

Proof. Define the following 9-input Turing machine Ŝ INTRO, that does not depend on any parameters (so
that its description length is constant). On input (λ, `, n, x1, . . . , x6), Ŝ INTRO computes the output of the
typed sampler S INTRO (parameterized by (λ, `)) with input tapes set to (n, x1, . . . , x6). In more detail, the
Turing machine Ŝ INTRO first computes introparams(r) for r = (λN)λ and N = 2n. Using Lemma 7.18, this
computation takes time poly log(r). Next, depending on the contents of the last 7 input tapes of Ŝ INTRO, the
Turing machine evaluates the dimension of S INTRO (which can easily be computed from introparams(r)), or
one of the CL functions, or returns a representation of a factor space of S INTRO. If the type passed as input
is t̂ ∈ T PAULI then by Lemma 7.19 this takes time polylog(r). If t̂ ∈ T INTRO\T PAULI then this can be done
in O(log `) time (to read the input type). Overall, Ŝ INTRO runs in time poly log(r, `).

We now define the Turing machine ComputeIntroSampler: on input (λ, `), it outputs the description
of Ŝ INTRO with the first two input tapes hardwired to λ and `, respectively, yielding the sampler S INTRO

corresponding to parameters (λ, `). Computing this description takes O(log λ + log `) time.
The time complexity of S INTRO follows from the time complexity of Ŝ INTRO, the randomness complexity

follows from the dimension of the ambient space 4m(n) + 2 = polylog(r), and the number of levels is by
construction.

Decider. The typed decider DINTRO is specified in Figure 10. We explain how to interpret the figure,
including the notation. (It may also be helpful to review the description of the intended strategy for the
players in the game, described in Section 8.3.2.)

Question and answer format. The decider takes as input a tuple (n, t̂A, x̂A, t̂B, x̂B, âA, âB) where (t̂w, x̂w)
denotes the question for introspecting player w ∈ {A, B}, and âw denotes their answer. As in the specifi-
cation of the Pauli basis test, in Figure 10 we include an “answer key” indicating how the players’ answers
are parsed, depending on the question type. When the question type is from T PAULI, the question and an-
swer format are as described in Figure 8. When the question type is in T INTRO \ T PAULI, the answer format
is described in the table at the top of Figure 10.20 For each such question, there is an associated variable

20There is no question format specification for the question types in T INTRO \ T PAULI, because the question is solely comprised
of the question type label.
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Type Answer format

(INTRO, v) (y, a) ∈ V × {0, 1}∗
(SAMPLE, v) (z, a) ∈ V × {0, 1}∗
(READ, v) (y, y⊥, a) ∈ V ×V × {0, 1}∗
(HIDEk, v) (y, y⊥, x) ∈ V ×V ×V

In the following, whenever S or D is called, DINTRO aborts and rejects if the computation takes
more than (λN)λ time steps. On input (n, t̂A, x̂A, t̂B, x̂B, âA, âB), the decider DINTRO first com-
putes the dimension s(N) of V by calling the original sampler S on input (N, DIMENSION). If
s(N) > (λN)λ the decider rejects. The decider then performs an answer length check: if

max{|âA|, |âB|} ≥ 6s(N) + 2(λN)λ + 3 , (54)

then the decider rejects. Otherwise, it performs the following tests for all w, v ∈ {A, B}. (If no
test applies, the decider accepts.)

1. (Pauli test). If t̂A, t̂B ∈ T PAULI, accept if DPAULI
introparams accepts the input

(t̂A, x̂A, t̂B, x̂B, âA, âB).

2. (Sampling tests).

(a) If t̂w = (PAULI, Z) and t̂w = (SAMPLE, v), accept if âV
w = zw.

(b) If t̂w = (INTRO, v), t̂w = (SAMPLE, v), accept if yw = Lv(zw) and aw = aw.

3. (Hiding tests).

(a) If t̂w = (INTRO, v), t̂w = (READ, v), accept if yw = yw and aw = aw.

(b) If t̂w = (HIDE`, v), t̂w = (READ, v), accept if yw,<` = yw,<`, and y⊥w = y⊥w .

(c) If t̂w = (HIDEk, v), t̂w = (HIDEk+1, v) for some k ∈ {1, 2, . . . , `− 1}, accept if

yw,<k = yw,<k , y⊥w,≤k = y⊥w,≤k , xw,>k+1 = xw,>k+1 ,

and y⊥w, k+1 =
(

Lv
k+1, u

)⊥
(xw, k+1) where u = yw,≤k.

(d) If t̂w = (PAULI, X), t̂w = (HIDE1, v), accept if y⊥w, 1 =
(

Lv
1

)⊥
(âV1

w ) and âV>1
w =

xw,>1.

4. (Game test). If t̂w = (INTRO, A) and t̂w = (INTRO, B), accept if D accepts
(N, yw, yw, aw, aw) for N = 2n.

5. (Consistency test). If t̂A = t̂B, accept if and only if âA = âB.

Figure 10: The typed decider DINTRO for the introspective verifier, parameterized by integers λ, `, on index
n. N denotes 2n, V is the ambient space for S , and {Lv}v∈{A,B} the associated CL functions on index N.
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v ∈ {A, B} that indicates to the introspecting player which original player it is supposed to impersonate in
the introspection game.

In the figure, V denotes the ambient space of the original sampler S on index N = 2n. Since V
is isomorphic to F

s(N)
2 , where s(N) is the dimension of S , the space V is identified in a canonical way

as the register subspace of Fr
2 spanned by e1, . . . , es(N) where ei is the i-th elementary basis vector. For

example, if t̂w = (READ, v), then syntactically the player’s answer is a triple (y, y⊥, a) in Fr
2 × Fr

2 ×
{0, 1}∗. We assume that the decider D computes the dimension s(N) of the subspace V by calling S on
input (N, DIMENSION), and if y, y⊥ are not presented as vectors in the subspace V, then the decider rejects.
Thus in the analysis we directly consider y, y⊥ as vectors in V. In Figure 10, the components of the players’
answers are subscripted by the player index. For example, if player w receives question (HIDEk, v), then
their answers are denoted by (yw, y⊥w , xw).

The notation used in the “answer key” is meant to give an indication of the intended meaning of the
players’ answers. We use y to denote a vector that is supposed to be the result of measuring a CL function
Lv; y⊥ is supposed to be the result of measuring “dual” linear maps L⊥ (as used in Step 3 in Figure 10); x is
supposed to be the result of σX measurements, and z is supposed to be the result of σZ measurements. We
use a to denote the introspected answers meant for the original decider D.

CL functions and factor spaces. For v ∈ {A, B}, let Lv = Lv, N denote the CL function for original
player v specified by S on index N = 2n. For z ∈ V, the decider D computes Lv(z) by calling S on input
(N, v, MARGINAL, `, z).

For y ∈ V and k ∈ {1, . . . , `} we define register subspaces Vv
k (y) by induction on k. For k = 1, Vv

1 (y)
is the first factor space21 of Lv and is independent of y. Suppose Vv

j (y) has been defined for all j < k. Then

we define the marginal space Vv
<k(y) =

⊕k−1
j=1 Vv

k (y), and define Vv
k (y) as the k-th factor space Vv

k, u of Lv

with prefix u = yVv
<k(y), the projection of y to Vv

<k(y). We also define Vv
≤k(y) = Vv

<k+1(y), and Vv
>k(y) to

be the complementary register subspace to Vv
≤k(y) within V.

The decider DINTRO computes factor spaces Vv
j (y) from y ∈ V in the following sequential manner:

first, the indicator vector for the factor space Vv
1 is computed by calling the original sampler S on input

(N, v, FACTOR, 1, 0). Let y1 denote the projection of y to Vv
1 . Then, for j ∈ {2, . . . , `}, the factor space

Vv
j (y) is computed by calling S on input (N, v, FACTOR, j, y≤j−1), where y≤j−1 is the projection of y to

Vv
≤j−1(y).

We give more details on the implementation of decider DINTRO specified in Figure 10.

1. The decider DINTRO first checks that the answers are not too long; the maximum length answer should
be either a tuple (y, y⊥, a) where y, y⊥ ∈ V and a is an answer intended for the original decider D
on index N (which we assume runs in time at most (λN)λ), or a tuple (y, y⊥, x) ∈ V ×V ×V. This
check is necessary in order to ensure that the decider DINTRO halts in time poly(N). The bound (54)
is explained by the encoding for tuples specified in Remark 3.2.

2. If the question types for the players are both in T PAULI,DINTRO executes the decision procedureDPAULI

for the Pauli basis test parametrized by introparams (see Section 7.3.1 for the definition of DPAULI).
The Pauli basis test is intended to ensure that the players share an r-qubit EPR state, where r =
(λN)λ. Since the EPR state is measured to introspectively sample questions according to the original
sampler S , it is necessary that r is at least as large as the randomness complexity of S , which is equal

21See Lemma 4.4 for the definitions of factor spaces of a CL function.
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to the dimension of S (since for a normal form verifier the field size is taken to be q(n) = 2). This is
satisfied under the assumption stated in (53).

3. In Step 2a ofDINTRO, player w ∈ {A, B} receives question (PAULI, Z) and player w receives question
(SAMPLE, v), for some v ∈ {A, B}. According to the answer key, player w is expected to return an
answer âw ∈ Fr

2 and player w is expected to respond with a pair (yw, aw) ∈ V × {0, 1}∗. Thus,
the dimension of answer âw may be larger than that of yw; this is the reason that Step 2a checks
consistency between yw and the projection of âw to V.

4. In Step 2b ofDINTRO, player w ∈ {A, B} receives question (INTRO, v) and player w receives question
(SAMPLE, v). As specified by the “answer key”, player w responds with (yw, aw) ∈ V× {0, 1}∗ and
player w responds with (zw, aw) ∈ V × {0, 1}∗. The decider DINTRO checks that aw = aw and
yw = Lv(zw) where Lv denotes the CL function for player v specified by S for index N = 2n. The
CL function is computed by calling S on input (N, v, MARGINAL, `, z).

5. In Step 3b, DINTRO checks that the answer of player w who received (HIDE`, v) is consistent with the
answer of player w who received (READ, v). One of the checks is that yw,<` = yw,<` ; these are,
respectively, the projections of yw to Vv

<`(yw) and yw to Vv
<`(yw).

6. In Steps 3c, the vectors xw,>k+1 and xw,>k+1 denote the projections of xw and xw to Vv
>k+1(yw)

and Vv
>k+1(yw), respectively. Similarly, y⊥w, k+1 denotes the projection of y⊥w to Vv

k+1(yw) and xw, k+1
denotes the projection of xw to Vv

k+1(yw). Note that the factor spaces depend on yw and yw.

The decider also has to compute (Lv
k+1, yw,≤k

)⊥(xw, k+1). According to Definition 3.11, this requires

specifying a basis for ker(Lv
k+1, yw,≤k

)⊥. To compute the value, the decider performs the following
steps:

(a) Call S on input (N, v, FACTOR, k + 1, yw,≤k) to obtain a subset H = {h1, . . . , hm} of the
canonical basis for F

s(N)
2 that is a basis of the register subspace Vv

k+1(yw).
(b) For i ∈ {1, 2, . . . , m} compute ci = S(N, v, LINEAR, k + 1, yw,≤k, hi). Compute a matrix

representation M for Lv
k+1, yw,≤k

in the basis H, whose columns are the vectors c1, . . . , cm as
elements of Vv

k+1(yw).
(c) Using a canonical algorithm for Gaussian elimination, compute a basis F for ker(M).
(d) Compute the canonical complement S of F, as in Definition 3.7. S is a basis for ker(Lv

k+1, yw,≤k
)⊥.

(e) To compute (Lv
k+1, yw,≤k

)⊥ on input xw, k+1, compute the canonical linear map with kernel basis
S (see Definition 3.10) on input xw, k+1.

7. In Step 3d, the player w that receives (PAULI, X) is expected to return an answer âw in Fr
2. Part of

this step checks that the projection of âw to V>1 is equal to xw,>1 (which is the projection to V>1 of
the third component of the answer triple of player w that receives question (HIDE1, v)).

The following lemma establishes the complexity of the decider DINTRO as well as the complexity of
computing a description of it from the parameters (λ, `) and the description of the original verifier V =
(S ,D).

Lemma 8.2. There exists a 4-input Turing machine ComputeIntroDecider that on input (V , λ, `) outputs
a description of the decider DINTRO in time poly(|V| , log λ, log `). Furthermore, the decider DINTRO has
time complexity TIMEDINTRO(n) = poly((λ2n)λ, `).
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Proof. Define the following 10-input Turing machine D̂INTRO. The Turing machine does not depend on any
parameters, so its size is constant. On input

(V , λ, `, n, x1, x2, . . . , x6),

D̂INTRO computes the output of the decider DINTRO with input tapes set to (n, x1, . . . , x6). In more detail, the
Turing machine D̂INTRO first computes introparams(r) for r = (λN)λ and N = 2n. Using Lemma 7.18, this
computation takes time polylog(r). It then executes the tests described in Figure 10. Write V = (S ,D).
The complexity of performing the entire procedure is subsumed by the complexity of the following steps:

1. Running the decider DPAULI, which takes time poly(r) by Lemma 7.19;

2. Running the original decider D (on index N = 2n) for at most (λN)λ steps;

3. Running the original sampler S (on index N) in order to compute the dimension s(N) and the
marginal and factor spaces, and the CL functions as described in Section 8.2. S is called at most
poly(s(N), `) times; due to the timeout, each call takes time at most (λN)λ.

4. Computing (Lv
k, u)

⊥(xw, k) in Step 3c. This only requires to perform Gaussian elimination and other
simple finite field manipulations that can be implemented in poly(s(N), log |F|) time.

All other tests are elementary. Thus the time complexity of D̂INTRO is poly(r, `). Note that the bound is
independent of V : due to the abort condition in the definition of DINTRO, the Turing machine D̂INTRO aborts
if the runtime of S or D is larger than (λN)λ.

We now define the Turing machine ComputeIntroDecider: on input (V , λ, `), it outputs the descrip-
tion of D̂INTRO with the first three input tapes hardwired to V , λ, and `, respectively, yielding the de-
cider DINTRO corresponding to original verifier V and parameters (λ, `). Computing this description takes
poly(|V| , log λ, log `) time. The time complexity of DINTRO follows from the time complexity of D̂INTRO.

8.3 Completeness and complexity of the introspective verifier

In this section we determine the complexity of the introspective verifier and establish the completeness
property of the introspection game: if for N = 2n, VN has a PCC strategy (see Definition 5.11) with value
1, then so does V INTRO

n . For this we describe the actions that are expected of the players in the introspection
game (i.e. the “honest strategy”). We first prove several preliminary lemmas that will be used in both the
completeness and soundness analysis.

8.3.1 Preliminary lemmas

The lemmas in this section are stated for general fields F and generalized Pauli observables and projectors,
although in the application to introspection games we use F = F2, ω = −1, and qubit Pauli observables
and projectors. Furthermore, the Pauli observables τW(v) and projectors τW

u act on CFk
for some integer k

(in our application, we set k = r).

Lemma 8.3 (Fact 3.2 of [NW19]). Let V be a subspace of Fk. For all v 6∈ V⊥,

E
u∼V

ωtr(u·v) = 0 ,

where the expectation is over a uniformly random vector u from V.
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The next lemma generalizes Eq. (18).

Lemma 8.4. Let L : Fk → Fk be a linear map, and let W ∈ {X, Z}. For each a in the range of L, let
ua ∈ Fk be such that L(ua) = a.

1. For each v ∈ ker(L)⊥,
τW(v) = ∑

a∈Fk

ωtr(ua·v)τW
[L(·)=a] .

2. For all a in the range of L,

τW
[L(·)=a] = E

v∼ker(L)⊥
ω− tr(v·ua)τW(v) .

Proof. Let V denote the image of Fk under L. Let a ∈ V, v ∈ ker(L)⊥. For all u, u′ ∈ L−1(a), we have
that u− u′ ∈ ker(L) and thus tr(u · v) = tr(u′ · v). As a result, using (17), for any v ∈ ker(L)⊥ it holds
that

τW(v) = ∑
u∈Fk

ωtr(u·v)τW
u = ∑

a∈V
∑

u∈L−1(a)

ωtr(u·v)τW
u = ∑

a∈V
ωtr(ua·v)τW

[L(·)=a] = ∑
a∈Fk

ωtr(ua·v)τW
[L(·)=a] ,

where in the last equality we used that for a /∈ V, the projector τW
[L(·)=a] vanishes. This shows the first item.

For the second item,

τW
[L(·)=a] = ∑

u∈L−1(a)

τW
u

= ∑
u∈L−1(a)

E
v∼Fk

(
ω− tr(u·v)τW(v)

)
= ∑

u∈ker(L)
E

v∼Fk

(
ω− tr((ua+u)·v)τW(v)

)
=
| ker(L)|
|Fk| ∑

v∈Fk

((
E

u∼ker(L)
ω− tr(u·v)

)
ω− tr(ua·v)τW(v)

)
= E

v∈ker(L)⊥
ω− tr(v·ua)τW(v) ,

where the second equality follows from (18) and the last uses the fact that |Fk| = | ker(L)|| ker(L)⊥|, as
shown in Lemma 3.5, and Lemma 8.3 applied to the expectation over u.

Lemma 8.5 (Commuting X and Z measurements). For all linear maps L, R : Fk → Fk such that

ker(R)⊥ ⊆ ker(L) ,

the measurements
{

τZ
[L(·)=b]

}
b∈Fk and

{
τX
[R(·)=d]

}
d∈Fk commute.

Proof. Let b, d ∈ Fk. If either b is not in the range of L, or d is not in the range of R, then at least one of
τZ
[L(·)=b] or τX

[R(·)=d] is 0, and thus the operators trivially commute. Otherwise, both b and d are in the range

of L and R, respectively. Let a0 ∈ L−1(b), c0 ∈ R−1(d). By Lemma 8.4,

τZ
[L(·)=b] = E

u∈ker(L)⊥
ωtr(u·a0)τZ(u) ,
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τX
[R(·)=d] = E

v∈ker(R)⊥
ωtr(v·c0)τX(v) .

For any v ∈ ker(R)⊥, by assumption v ∈ ker(L), so for u ∈ ker(L)⊥ it holds that u · v = 0. Thus τZ(u)
and τX(v) commute, and it follows that τZ

[L(·)=b] and τX
[R(·)=d] commute as well.

8.3.2 Complexity and completeness of the introspective verifier

The following theorem formulates the complexity and completeness properties of the introspective verifier.
Since V INTRO is a typed verifier, we use the detyping procedure described in Section 6.3 to obtain an untyped
normal form verifier.

Theorem 8.6 (Complexity and completeness of the introspective verifier). Let λ, ` ∈ N. Let V =
(S ,D) be a normal form verifier such that S is an `-level sampler. Let V INTRO = (S INTRO,DINTRO)
be the typed introspective verifier corresponding to V and parameters (λ, `). Let detype(V INTRO) =
(detype(S INTRO), detype(DINTRO)) denote the detyped verifier.

1. (Completeness) Suppose that V satisfies the assumption stated in (53). Then for all n ∈ N and
N = 2n, if VN has a projective, consistent, and commuting (PCC) strategy with value 1 then
detype(V INTRO)n also has a PCC strategy with value 1.

2. (Sampler complexity) The sampler S INTRO is a (T INTRO, GINTRO)-type, 2-level sampler. Moreover, the
time and randomness complexities of detype(S INTRO) satisfy that for all n ∈N,

TIMEdetype(S INTRO)(n) = poly
(
λ log(λN), `

)
,

RANDdetype(S INTRO)(n) = poly
(
λ log(λN), `

)
,

where N = 2n.

3. (Decider complexity) The time complexity of the decider DINTRO satisfies that for all n ∈N,

TIMEdetype(DINTRO)(n) = poly
(
(λN)λ, `

)
,

where N = 2n.

4. (Efficient computability) There is a Turing machine ComputeIntroVerifier which takes as input
a tuple (V , λ, `) with λ, ` ∈ N and returns the description of the detyped introspective verifier
detype(V INTRO) = (detype(S INTRO), detype(DINTRO)) corresponding to V and parameters (λ, `)
in time poly(|V| , log λ, log `).

Proof. We analyze the completeness and complexity properties of the typed verifier V INTRO; the correspond-
ing properties of the detyped verifier detype(V INTRO) follow from Lemma 6.18, and the fact that the type
set T INTRO has size O(`).

Completeness. We first show completeness. Let n ≥ 1 be an index for V INTRO and N = 2n be the
corresponding index for V . The assumption on the time complexity of V ensures that DINTRO never aborts
due to a timeout. Let Lv = Lv, N denote the CL function of the original sampler S on index N corresponding
to player v ∈ {A, B}. Let r = (λN)λ, and let introparams(r) = (q, m, d, h, H, Γ, π), as in Section 8.2.
Set Q = Γ log q ; this represents the number of qubits that are certified by the Pauli basis test parameterized
by introparams(r). Let S = (|AUX〉, A, B) be a PCC strategy for VN with value 1. We first construct a
PCC strategy S INTRO

n for the typed verifier V INTRO
n with value 1. We then conclude using Lemma 6.18.
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Vv
1 Vv

2 Vv
3 AUX

(INTRO, v) σZ
L1

σZ
L2

σZ
L3

Ax/Bx

(SAMPLE, v) σZ σZ σZ Ax/Bx

(READ, v) σZ
L1

σX
L⊥1

σZ
L2

σX
L⊥2

σZ
L3

σX
L⊥3

Ax/Bx

(HIDE3, v) σZ
L1

σX
L⊥1

σZ
L2

σX
L⊥2

σX
L⊥3

I

(HIDE2, v) σZ
L1

σX
L⊥1

σX
L⊥2

σX I

(HIDE1, v) σX
L⊥1

σX σX I

The left-most column denotes the introspection/hiding questions that a player may receive. The
top row denotes the registers corresponding to the factor spaces of a CL function Lv (we note that
the partition of the registers depends on the prefixes), as well as the register corresponding to the
state |AUX〉 coming from the original PCC strategy S . We use σZ

Lj
as shorthand for σZ

[Lv
j, x<j

(·)=xj]

and similarly σX
L⊥j

for σX
[(Lv

j, x<j
)⊥(·)=x⊥j ]

. A symbol I means that the register is left unmeasured.

Figure 11: Summary of the honest strategy S INTRO
n for V INTRO

n for a 3-level sampler.

Remark 8.7. Note that by definition in V INTRO
n the players receive questions (x, y) that are sampled ac-

cording to the distribution µGINTRO

S INTRO , n associated with the downsized typed sampler κ(S̃ INTRO). Using the
definition of the downsized typed sampler, Definition 6.6, and Lemma 4.10 the distribution is identical to the
distribution µGINTRO

S̃ INTRO , n, up to the bijective mapping κ. This mapping can be computed by the players them-

selves. Therefore, we construct a strategy for players that receive questions from µGINTRO

S̃ INTRO , n, and a strategy

for questions from µGINTRO

S INTRO , n follows immediately.

The strategy S INTRO
n uses the state |EPR2〉⊗(Q+1) ⊗ |AUX〉, where recall that |EPR2〉 = 1√

2
(|00〉 +

|11〉). For all register subspaces R ⊆ F
Q
2 (see Definition 4.1 for the definition of register subspace), when-

ever we refer to “register R”, we mean the qubits of |EPR2〉⊗Q corresponding to R (see Section 3.5). The
most frequent register subspace we consider is V, spanned by e1, . . . , es(N). We write V for the complement
of V, i.e. the register subspace spanned by es(N)+1, . . . , eQ. (Note that s(N) ≤ r ≤ Q by assumption (53)
and the definition of Q.) Then |EPR2〉⊗Q = |EPR〉V ⊗ |EPR〉V .

Let S BP
n be the honest binary Pauli strategy with respect to introparams defined in the proof of Lemma 7.12.

For a question of type in T PAULI the player measures the shared state |EPR2〉⊗(Q+1) using the measure-
ments specified by S BP

n , and reports the measurement outcomes. When a player receives questions of type
t̂ ∈ T INTRO \ T PAULI, they perform measurements described as follows. (Below, whenever we write a Pauli
operator σW

a the register on which the operator acts should always be clear from context, and is implicit
from the space in which the outcome a ranges.) The reader may find it helpful to consult Figure 11 to see a
summary of the honest strategy S INTRO

n for the special case when ` = 3.
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(INTRO, v): The player performs the measurement{
σZ
[Lv(·)=y]

}
(55)

to obtain an y ∈ V. Intuitively, the player has now introspectively sampled the question y for original
player v in game VN . The player then measures |AUX〉 using player A’s measurement {Ay

a} from S
if v = A and using player B’s measurement {By

a} if v = B to obtain an answer a. The player replies
with (y, a).

(SAMPLE, v): The player measures their share of |EPR〉V in the Z basis to obtain z ∈ V. Using this, they
compute the question y = Lv(z). The player then uses player v’s strategy and question y to measure
|AUX〉 and obtain outcome a. The player replies with (z, a).

(READ, v): The player first performs all measurements as in the (INTRO, v) question for player v and
records the outcomes as y ∈ L(V) and a ∈ {0, 1}∗. For j ∈ {1, 2, . . . , `}, the player measures the
register Vv

j (y) with the measurement {
σX
[L⊥j (·)=y⊥j ]

}
y⊥j

(56)

to obtain y⊥ = y⊥1 + · · ·+ y⊥` . Here L⊥j is shorthand for the function (Lv
j, y<j

)⊥ defined in Item 6 of
the decider description in Section 8.2. (That this is simultaneously measurable with the measurement
in (55) follows from Lemma 8.5 and the fact that ker(L⊥j )

⊥ = ker(Lj) by Lemma 3.5 and the
definition of L⊥j in Section 8.2.) The player measures |AUX〉 with player v’s measurement strategy in
S for question y to obtain a and replies with (y, y⊥, a).

(HIDEk, v): The player performs the following sequence of measurements: first measure {σZ
[Lv

1(·)=y1]
} on

register Vv
1 to obtain y1. Then, use y1 to specify the second linear function Lv

2, y1
(·) and measure

register Vv
2, y1

using {σZ
[Lv

2, y1
(·)=y2]

} to obtain y2. This process continues until the (k − 1)-th linear

map Lv
k−1, y<k−1

(·) has been measured to obtain yk−1 in factor space Vv
k−1, y<k−1

. Let y = y1 + y2 +

· · ·+ yk−1. Next, for j ∈ {1, 2, . . . , k} the player measures{
σX
[L⊥j (·)=y⊥j ]

}
y⊥j

,

where L⊥j denotes the linear map (Lv
j, y<j

)⊥ as in the case (READ, v). Let y⊥ = y⊥1 + y⊥2 + · · ·+ y⊥k ,

where each y⊥j is a vector in the factor space Vv
j, y<j

. Finally, the player measures register Vv
>k(y)

using {σX
x>k
} to obtain outcome x>k. Let x = x>k. The player replies with (y, y⊥, x).

By definition, when player w performs the honest measurement for question (INTRO, A) and player w
performs the honest measurement for question (INTRO, B), the joint outcome (y, y′) has distribution µS , N .
In this case, the players play according to strategy S and succeed with probability 1. In all other cases,
it is straightforward to verify that the players succeed in all tests performed by DINTRO (Figure 10) with
probability 1. As a result, the value of this strategy is 1.

The strategy S INTRO is projective by construction. It is also consistent because of the assumed con-
sistency of the strategy S as well as consistency of the honest Pauli strategy S BP. Furthermore, note that
S INTRO only calls S for both players on question pairs such that both types are in {INTRO, SAMPLE, READ}.
In all these cases, S is called on a pair of questions (y, y′) distributed as (Lv(z), Lv′(z)) for v, v′ ∈ {A, B}
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and z uniform in V. When v 6= v′, any such pair by definition has positive probability under µS , n, and so
by assumption the associated measurements from S commute. On the other hand, when v = v′, then the
players apply the same measurements from S , and because S only uses projective measurements, their
measurements commute as well. Examining all other cases, it follows by direct inspection that the strategy
commutes on all question pairs whose corresponding types appear as an edge in the graph GINTRO. Thus the
strategy commutes with respect to the support of the distribution µS INTRO , n.

Complexity. The complexity parameters of the typed sampler S INTRO and typed decider DINTRO follow
from Lemmas 8.1 and 8.2. The complexity parameters of the detyped sampler and decider detype(S INTRO)
and detype(DINTRO) then follow from Lemma 6.18.

Efficient computability. The Turing machine ComputeIntroVerifier does the following on input (V , `):
it first computes

S INTRO = ComputeIntroSampler(λ, `) ,

DINTRO = ComputeIntroDecider(V , λ, `) ,

using Lemmas 8.1 and 8.2, runs the detyping procedure from Definition 6.17, and then outputs the resulting
detyped verifier. This takes time poly(|V| , log λ, log `).

Remark 8.8. For future reference, we note that on any input (V , λ, `), the Turing machine ComputeIntroVerifier
always returns a normal form verifier V INTRO = (S INTRO,DINTRO). This is because for any two integer λ, `,
by construction ComputeIntroSampler(λ, `) returns a sampler with field size 2, and for any V , λ and ` the
decider DINTRO specified in Figure 10 takes 7 inputs and always halts with a single-bit output, even if S or
D themselves do not halt.

8.4 Soundness of the introspective verifier

The main result of this section is the following theorem which establishes the soundness property of the
introspective verifier.

Theorem 8.9 (Soundness of the introspective verifier). Let λ, ` ∈ N. Let V = (S ,D) be a normal form
verifier such that S is an `-level sampler. Let V INTRO = (S INTRO,DINTRO) be the introspective verifier corre-
sponding to V and parameters (λ, `), as defined in Section 8.2. Let detype(V INTRO) denote the associated
detyped verifier. There exists a function δ(ε, n) = poly(ε + 1/(λ2n)λ) (where the implicit polynomial may
depend arbitrarily on `) such that for all n ≥ 1, N = 2n, and ε ≥ 0 the following hold.

1. If val∗(detype(V INTRO)n) > 1− ε, then val∗(VN) ≥ 1− δ(ε, n).

2. Let E (·) be as defined in Definition 5.12. Then

E (detype(V INTRO)n, 1− ε) ≥ max
{

E (VN , 1− δ(ε, n)), (1− δ(ε, n)) 2(λN)λ
}

.

8.4.1 The Pauli twirl

A key tool in the proof of Theorem 8.9 is the Pauli twirl. In this section we introduce the Pauli twirl and
establish several of its properties. The section closely follows Sections 8 and 10 of [NW19].

To begin, we define the twirl with respect to an arbitrary distribution over unitaries.
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Definition 8.10 (Twirl). Let µ be a probability distribution over a finite set of unitary matrices. Then for
any matrix A, the twirl of A with respect to µ, denoted Tµ(A), is defined as

Tµ(A) = E
U∼µ

(
UAU†) .

In the next two lemmas we consider the Pauli twirl, in which the distribution µ is over subsets of Pauli
observables. First, we show how the Pauli twirl acts on Pauli matrices. Then, using this, we derive an
expression for the Pauli twirl applied to general matrices.

Lemma 8.11 (Pauli twirl of Pauli matrices). Let V be a subspace of Fk, let W ∈ {X, Z}, and let µ be the
uniform distribution over {τW(w) : w ∈ V}. Let W ′ 6= W and u ∈ Fk. Then

Tµ(τ
W ′(u)) =

{
τW ′(u) if u ∈ V⊥ ,
0 if u /∈ V⊥ .

Proof. Let u ∈ Fk. Let c = 1 if W = Z and let c = −1 if W = X. Then

Tµ(τ
W ′(u)) = E

z∼V
(τW(z)τW ′(u)τW(z)†)

= E
z∼V

(ωc·tr(u·z)τW ′(u)τW(z)τW(z)†)

=
(

E
z∼V

ωc·tr(u·z)
)

τW ′(u) .

The lemma now follows from Lemma 8.3 and the fact that c · u ∈ V⊥ if and only if u ∈ V⊥.

Lemma 8.12 (Pauli twirl of general matrices). Let V = Fk, and let L : V → V be a linear map. Let ζ be
the uniform distribution over {τZ(z) | z ∈ V} and χ the uniform distribution over {τX(x) | x ∈ ker(L)}.
Let M be a matrix acting on CV ⊗HA, where HA is a finite dimensional Hilbert space. Then there exist
matrices {My}y∈L(V) acting onHA such that the twirl of M with respect to ζ and χ is given by

(Tχ ◦Tζ ⊗ IA)(M) = ∑
y∈V

τZ
[L(·)=y] ⊗My . (57)

Moreover, if we apply (57) to each element of a POVM measurement {Ma}, then for each y ∈ V, the set
{My

a} also forms a POVM measurement.

Proof. The collection {τX(x)τZ(z)}x,z∈V forms a basis for the complex linear space of matrices acting on
CV . As a result, we can write

M = ∑
x,z∈V

τX(x)τZ(z)⊗Mx,z ,

for matrices Mx,z on HA. We now use Lemma 8.11 to compute the twirl first with respect to ζ and then
with respect to ζ and χ:

(Tζ ⊗ IA)(M) = ∑
x,z∈V

Tζ(τ
X(x))τZ(z)⊗Mx,z = ∑

z∈V
τZ(z)⊗M0,z ,

(Tχ ◦Tζ ⊗ IA)(M) = ∑
z∈V

Tχ(τ
Z(z))⊗M0,z = ∑

z∈ker(L)⊥
τZ(z)⊗M0,z .
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For all y ∈ V, let uy denote an arbitrary element of L−1(y) if y is in the image of L; otherwise, set uy = 0.
Expanding τZ(z) using the first part of Lemma 8.4,

∑
z∈ker(L)⊥

τZ(z)⊗M0,z = ∑
z∈ker(L)⊥

∑
y

ωtr(uy·z)τZ
[L(·)=y] ⊗M0,z

= ∑
y

τZ
[L(·)=y] ⊗

(
∑

z∈ker(L)⊥
ωtr(uy·z)M0,z

)
. (58)

Equation (57) follows by setting My = ∑z∈ker(L)⊥ ωtr(uy·z)M0,z.
For the “moreover” part, note first that whenever M ≥ 0 it holds that any twirl satisfies 0 ≤ Tµ(M). As

a result, each matrix My must be positive semi-definite due to Equation (58) and the fact that the {τZ
[L(·)=y]}y

matrices are orthogonal projections. Next, suppose {Ma} is a POVM measurement, and write N = ∑a Ma
for the identity matrix. Then by linearity, for each y ∈ V, ∑a My

a = Ny. In addition, N0,0 = I, and
Nx,z = 0 otherwise. As a result, Ny = N0,0 = I, and so {My

a} also forms a POVM.

In the next few lemmas we derive a sufficient condition for a measurement to be close to its own Pauli
twirl, namely that it satisfies certain commutation relations with the Pauli basis measurements.

Lemma 8.13 (Commuting with Pauli basis implies commuting with Pauli observables). Let X ,A be finite
sets and D be a distribution over X . For each x ∈ X , let Vx be a register subspace of V = Fk, and let
Lx : Vx → Vx be a linear map.

Consider a state |ψ〉 = |EPR〉V ⊗ |AUX〉, where |EPR〉V ∈ HA ⊗HB, for HA,HB ∼= CV , is defined
in Definition 3.27 and |AUX〉 ∈ HA′ ⊗HB′ is arbitrary. For each x ∈ X , let {Mx

a}a∈A be a measurement
onHA ⊗HA′ . Let W ∈ {X, Z}. Then the following are equivalent on state |ψ〉:

• On average over x ∼ D, [
Mx

a ,
(
τW
[Lx(·)=y] ⊗ IVx

⊗ IA′
)]
⊗ IB ≈ε 0 .

• On average over x ∼ D and v drawn uniformly from ker(Lx)⊥,[
Mx

a ,
(
τW(v)⊗ IVx

⊗ IA′
)]
⊗ IB ≈ε 0 .

Proof. For x ∈ X , a ∈ A, y in the range of Lx, and v ∈ Fk define

∆x
a,y =

[
Mx

a ,
(
τW
[Lx(·)=y] ⊗ IVx

⊗ IA′
)]
⊗ IB ,

∆x
a(v) =

[
Mx

a ,
(
τW(v)⊗ IVx

⊗ IA′
)]
⊗ IB .

By the second item of Lemma 8.4, for each v ∈ ker(Lx)⊥,

∆x
a(v) = ∑

y∈Vx

ωtr(uy·v)∆x
a,y ,

where for every y in the range of Lx, uy is a fixed element in L−1
x (y). The expression for the closeness of

∆x
a to 0 on average over x ∼ D and v ∼ ker(Lx)⊥ (i.e. the second quantity of the Lemma statement), is

equal to
E

x∼D
E

v∼ker(Lx)⊥
∑

a

∥∥∆x
a(v)|ψ〉

∥∥2,
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and can be expanded as

E
x∼D

E
v∼ker(Lx)⊥

∑
a
〈ψ|∑

y,y′
ωtr((u′y−uy)·v)(∆x

a,y
)†∆x

a,y′ |ψ〉 . (59)

If y 6= y′, then by definition Lx(uy) 6= Lx(uy′), and so u′y − uy is not in ker(Lx). Lemma 8.3 (with
V = ker(Lx)⊥) thus implies that (59) equals

E
x∼D

∑
a
〈ψ|∑

y

((
∆x

a,y
)†∆x

a,y
)
|ψ〉 = E

x∼D
∑
a,y

∥∥∆x
a,y|ψ〉

∥∥2

which is the closeness of ∆x
a,y to 0 on average over x ∼ D. Thus, ∆x

a(v) ≈ε 0 on average over x and v if
and only if ∆x

a,y ≈ε 0 on average over x.

Lemma 8.14 (Commuting implies twirl). Let X be a finite set and D a distribution on X . For each x ∈ X ,
let {Mx

a} be a POVM on HA, and let µx be a distribution over unitary matrices acting on HA. Suppose
that on average over x ∼ D and U ∼ µx it holds that[

Mx
a , U†]⊗ IB ≈ε 0 ,

where the commutator is evaluated on a state |ψ〉 ∈ HA ⊗HB. Then on average over x ∼ D,

Mx
a ⊗ IB ≈ε Tµx(Mx

a )⊗ IB .

Proof. Observe that

E
x∼D

∑
a

∥∥(Tµx(Mx
a )−Mx

a
)
⊗ IB|ψ〉

∥∥2
= E

x∼D
∑

a

∥∥ E
U∼µx

(
U
[
Mx

a , U†])⊗ IB|ψ〉
∥∥2. (60)

Applying Jensen’s inequality, the right-hand side of (60) is at most

E
x∼D

E
U∼µx

∑
a

∥∥(U[Mx
a , U†])⊗ IB|ψ〉

∥∥2
= E

x∼D
E

U∼µx
∑

a

∥∥[Mx
a , U†]⊗ IB|ψ〉

∥∥2,

using the unitary invariance of the Euclidean norm. This last quantity is O(ε), by assumption.

Lemma 8.15 (Commuting with each implies commuting with both). Let X be a finite set and D a distri-
bution on X . For each x ∈ X , let {Mx

a} be a POVM on HA and let µx,1, µx,2 be two distributions over
unitary matrices acting onHA. Suppose that for each i ∈ {1, 2}, on average over x ∼ D and Ui ∼ µx,i,[

Mx
a , U†

i
]
⊗ IB ≈ε 0, (61)

where the expression is evaluated on some state |ψ〉 ∈ HA ⊗HB, where HB ∼= HA. Suppose further that
on average over x ∼ D and U2 ∼ µx,2,

U†
2 ⊗ IB ≈ε IA ⊗U2 . (62)

(The corresponding statement for i = 1 is not needed.) Then on average over x ∼ D, U1 ∼ µx,1, and
U2 ∼ µx,2, [

Mx
a , U†

1 U†
2
]
⊗ IB ≈ε 0 .
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Proof. The claim follows from the following sequence of approximations:

Mx
a U†

1 U†
2 ⊗ IB ≈ε Mx

a U†
1 ⊗U2 (by (62))

≈ε U†
1 Mx

a ⊗U2 (by (61) for i = 1)

≈ε U†
1 Mx

a U†
2 ⊗ IB (by (62))

≈ε U†
1 U†

2 Mx
a ⊗ IB , (by (61) for i = 2)

where each step also uses Fact 5.18. This is equivalent to
[
Mx

a , U†
1 U†

2
]
⊗ IB ≈ε 0, completing the proof.

The following is a slight generalization of [NW19, Fact 4.25], and we give a similar proof.

Lemma 8.16 (Close to sub-measurement implies close to measurement). Let X ,A be finite sets and D be
a distribution on X . Suppose that for each x ∈ X , {Ax

a}a∈A is a projective measurement and {Bx
a}a∈A is

a set of matrices such that each Bx
a is positive semidefinite and ∑a Bx

a ≤ I. Suppose {Cx
a}a∈A is a POVM

such that Cx
a ≥ Bx

a for all x and a. Then if, on average over x ∼ D, Ax
a ≈ε Bx

a , then, on average over
x ∼ D, Ax

a ≈ε1/2 Cx
a .

Proof. By the triangle inequality,

E
x

∑
a
‖(Ax

a − Cx
a )|ψ〉‖2 ≤ 2 E

x
∑

a
‖(Ax

a − Bx
a )|ψ〉‖2 + 2 E

x
∑

a
‖(Cx

a − Bx
a )|ψ〉‖2.

The first term on the right-hand side is O(ε) by assumption. For the second,

E
x

∑
a
‖(Cx

a − Bx
a )|ψ〉‖2 = E

x
∑

a
〈ψ|(Cx

a − Bx
a )

2|ψ〉 ≤ E
x

∑
a
〈ψ|(Cx

a − Bx
a )|ψ〉

= 1−E
x

∑
a
〈ψ|Bx

a |ψ〉 ≤ 1−E
x

∑
a
〈ψ|(Bx

a )
2|ψ〉 ,

where the middle inequality uses 0 ≤ Cx
a − Bx

a ≤ I for all x, a. Write 1 = Ex ∑a〈ψ|(Ax
a)

2|ψ〉, which holds
because A is a projective measurement. Then

E
x

∑
a
〈ψ|((Ax

a)
2 − (Bx

a )
2)|ψ〉 = <

(
E
x

∑
a
〈ψ|(Ax

a + Bx
a )(Ax

a − Bx
a )|ψ〉

)
≤ E

x

√
∑

a
‖(Ax

a + Bx
a )|ψ〉‖2 ·

√
∑

a
‖(Ax

a − Bx
a )|ψ〉‖2

where the first equality follows from the fact that Ax
a and Bx

a are Hermitian. For each x ∈ X the first square
root is O(1). This allows us to move the expectation into the second square root by Jensen’s inequality. The
result is O(ε1/2) by assumption.

Now we put everything together to show the main result of this section.

Lemma 8.17. Let X ,A be a finite sets and D be a distribution over X . For each x ∈ X , let Vx be a register
subspace of V = Fk, let Ux be a register subspace of Vx, and let Lx : Ux → Ux be a linear map.

Consider a state |ψ〉 = |EPR〉V ⊗ |AUX〉, where |EPR〉V ∈ HA ⊗HB, for HA,HB ∼= CV , is defined
in Definition 3.27 and |AUX〉 ∈ HA′ ⊗ HB′ is arbitrary. For each x ∈ X , let {Mx

y,a}y∈Ux , a∈A be a
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projective measurement on HVx ⊗ HA′ . Suppose that on average over x ∼ D the following conditions
hold.

(Consistency):
(

Mx
y ⊗ IVx

− τZ
[Lx(·)=y] ⊗ IUx

⊗ IA′
)
⊗ IB ≈ε 0 ,

(Commutation):
[
Mx

y, a ⊗ IVx
, τZ

z ⊗ IUx
⊗ IA′

]
⊗ IB ≈ε 0 ,[

Mx
y, a ⊗ IVx

, τX
[L⊥x (·)=y⊥] ⊗ IUx

⊗ IA′
]
⊗ IB ≈ε 0 .

Here, the projector τZ
[Lx(·)=y] acts on the register subspace HUx , and Ux and Vx denote the complementary

register subspace of Ux and Vx, respectively, within V. Then for each x ∈ X and y ∈ Ux, there exists a
POVM measurement

{
Mx, y

a
}

a∈A onHVx\Ux ⊗HA′ such that on average over x ∼ D,

(Mx
y, a ⊗ IVx

)⊗ IB ≈ε1/2

(
τZ
[Lx(·)=y] ⊗Mx, y

a ⊗ IVx

)
⊗ IB .

Proof. For each x ∈ X, let ζx be the uniform distribution over Ux and χx be the uniform distribution
over ker(Lx). We apply Lemma 8.13 to each of the two commutation assumptions and use the fact that
ker(L⊥x )⊥ = ker(Lx) from Lemma 3.12. Lemma 8.13 implies that on average over x ∼ X and v ∼ ζx if
W = Z or v ∼ χx if W = X,[

Mx
y, a ⊗ IVx

, τW(v)⊗ IUx
⊗ IA′

]
⊗ IB ≈ε 0 .

By Lemma 8.15, this implies that on average over x ∼ D, u ∼ ζx, and v ∼ χx,[
Mx

y, a ⊗ IVx
, τZ(u)τX(v)⊗ IUx

⊗ IA′
]
⊗ IB ≈ε 0 .

By Lemma 8.14 and Lemma 8.12, this implies that on average over x ∼ D,

Mx
y, a ⊗ IVx

⊗ IB ≈ε

(
Tχx ◦Tζx(Mx

y, a)
)
⊗ IVx

⊗ IB

=
(

∑
y′∈Vx

τZ
[Lx(·)=y′] ⊗Mx, y′

y, a

)
⊗ IVx

⊗ IB , (63)

for some POVM measurement {Mx, y′
y, a } onHVx\Ux ⊗HA′ .

In the following sequence of equations, whenever an operator does not act on a subsystem it should be
assumed that it is appropriately tensored with the identity. For clarity, we explicitly indicate using a subscript
A or B whether a Pauli operator acts onHA orHB. Then on average over x ∼ D we have

Mx
y, a = Mx

y, a ·Mx
y (Mx is projective)

≈ε Mx
y, a ·

(
τZ
[Lx(·)=y]

)
A (Consistency assumption)

≈0 Mx
y, a ⊗

(
τZ
[Lx(·)=y]

)
B (Paulis are self-consistent)

≈ε

(
∑
y′

(
τZ
[Lx(·)=y′]

)
A ⊗Mx, y′

y, a

)
⊗
(
τZ
[Lx(·)=y]

)
B (Equation (63))

≈0 ∑
y′

(
τZ
[Lx(·)=y′]τ

Z
[Lx(·)=y]

)
A ⊗Mx, y′

y, a (Paulis are self-consistent)

=
(
τZ
[Lx(·)=y]

)
A ⊗Mx, y

y, a ,
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where ≈0 indicates equality with respect to the state |EPR〉V ⊗ |AUX〉, and we have repeatedly used
Fact 5.18. This is essentially the statement promised by the lemma, except that {Mx, y

y, a}a does not nec-
essarily sum to identity (since we only sum over a). To remedy this, define Mx, y

a = ∑y′ Mx, y
y′, a and note that

Mx, y
a ≥ Mx, y

y, a , so by Lemma 8.16 and the fact that Mx is projective,

(Mx
y, a ⊗ IVx

)⊗ IB ≈ε1/2

(
τZ
[Lx(·)=y] ⊗Mx, y

a ⊗ IVx

)
⊗ IB . (64)

{Mx y
a } is the POVM measurement guaranteed in the lemma statement, which concludes the proof.

8.4.2 Preliminary lemmas

We show a few simple lemmas that allow us to argue about measurements that have a decomposition across
a tensor product of two Hilbert spaces, within the space of a single player.

Lemma 8.18. Let A,B be finite sets. Let |ψ〉 ∈ HA ⊗HB be a state. Consider the following: for all
a ∈ A,

1. LetHA, a,HB, a,HA′, a, andHB′, a be Hilbert spaces such that

HA = HA, a ⊗HA′, a and HB = HB, a ⊗HB′, a ,

and let |ψQUE, a〉 ∈ HA, a⊗HB, a be a “question state” and |ψANS, a〉 ∈ HA′, a⊗HB′, a be an “answer
state” such that |ψ〉 = |ψQUE, a〉 ⊗ |ψANS, a〉.

2. Let Qa be projectors on HA, a such that {Qa ⊗ IHA′ , a
} forms a projective measurement on HA and

let {Aa
b}b∈B and {Ba

b}b∈B be matrices acting onHA′, a.

3. Let D be the distribution on A obtained by measuring |ψ〉 using {Qa ⊗ IHA′ , a
}a∈A.

Then the following are equivalent:

• On average over a ∼ D and with respect to state |ψ〉,

(IHA, a ⊗ Aa
b)⊗ IB ≈ε (IHB, a ⊗ Ba

b)⊗ IB .

•
(
Qa ⊗ Aa

b

)
⊗ IB ≈ε

(
Qa ⊗ Ba

b

)
⊗ IB on state |ψ〉.

Proof. Expand

∑
a,b
‖(Qa ⊗ Aa

b −Qa ⊗ Ba
b)⊗ IB · |ψQUE, a〉 ⊗ |ψANS, a〉‖2

=∑
a,b
‖Qa ⊗ (Aa

b − Ba
b)⊗ IB · |ψQUE, a〉 ⊗ |ψANS, a〉‖2

=∑
a,b

∥∥Qa ⊗ IHB, a |ψQUE, a〉
∥∥2 ·

∥∥∥(Aa
b − Ba

b)⊗ IHB′ , a
|ψANS, a〉

∥∥∥2

=∑
a,b
‖Qa ⊗ IB|ψ〉‖2 ·

∥∥∥(Aa
b − Ba

b)⊗ IHB′ , a
|ψANS, a〉

∥∥∥2

= E
a∼D

∑
b

∥∥∥(Aa
b − Ba

b)⊗ IHB′ , a
|ψANS, a〉

∥∥∥2

= E
a∼D

∑
b

∥∥IHA, a ⊗ (Aa
b − Ba

b)⊗ IB · |ψQUE, a〉 ⊗ |ψANS, a〉
∥∥2 .
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In going from the third to the fourth line we used the fact that∥∥Qa ⊗ IHB, a |ψQUE, a〉
∥∥2

=
∥∥∥Qa ⊗ IHA′ , a

⊗ IB|ψQUE, a〉 ⊗ |ψANS, a〉
∥∥∥2

=
∥∥∥Qa ⊗ IHA′ , a

⊗ IB|ψ〉
∥∥∥2

.

Hence, the first line is O(ε) if and only if the last one is.

Lemma 8.19. Let A,B, C be finite sets. Let |ψ〉 ∈ HA ⊗ HB be a state, and let {Aa, b}a∈A,b∈B and
{Ba, c}a∈A,c∈C be POVMs acting onHA. Suppose further that:

1. The measurements approximately commute, i.e.[
Aa, b, Ba, c

]
⊗ IB ≈δ 0 ,

where the approximation holds with respect to the state |ψ〉.

2. For all a ∈ A, there exist Hilbert spaces HA, a, HA′, a, HB, a, HB′, a, and states |ψQUE, a〉 ∈ HA, a ⊗
HB, a, |ψANS, a〉 ∈ HA′, a ⊗HB′, a such that

HA = HA, a ⊗HA′, a ,
HB = HB, a ⊗HB′, a ,
|ψ〉 = |ψANS, a〉 ⊗ |ψQUE, a〉 .

3. For all a ∈ A, there exist projectors Qa on HA′, a and matrices {Aa
b}b∈B , {Ba

c}c∈C acting on HA′, a
such that {Qa ⊗ IHA′ , a

} is a projective measurement onHA and

Aa, b = Qa ⊗ Aa
b , Ba, c = Qa ⊗ Ba

c .

Then [
IHA, a ⊗ Aa

b , IHA, a ⊗ Ba
c
]
⊗ IB ≈δ 0 ,

on average over a ∼ D where D is the distribution on A obtained by measuring |ψ〉 using {Qa ⊗
IHA′ , a

}a∈A.

Proof. The assumptions of the lemma imply that

(Qa ⊗ Aa
bBa

c )⊗ IB = (Qa ⊗ Aa
b ·Qa ⊗ Ba

c )⊗ IB (Qa is a projector)

= (Aa,b · Ba,c)⊗ IB (Item 3)

≈δ (Ba,c · Aa,b)⊗ IB (Item 1)

= (Qa ⊗ Ba
c ·Qa ⊗ Aa

b)⊗ IB (Item 3)

= (Qa ⊗ Ba
c Aa

b)⊗ IB . (Qa is a projector)

We apply Lemma 8.18 as follows. The set “A” in Lemma 8.18 is the same as A here, and the set “B” is
the product set B × C here. The matrices “{Aa

b}” are {Aa
bBa

c} here and “{Ba
b}” are {Ba

c Aa
b} here. We then

obtain, on average over a ∼ D,

(IHA,a ⊗ Aa
bBa

c )⊗ IB ≈δ (IHA,a ⊗ Ba
c Aa

b)⊗ IB .

This implies the conclusion of the lemma.
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Lemma 8.20. Let Y be a finite set and for all y ∈ Y let {Ay
x, z} be a POVM on HA. Let {Bx, y, z} be a

projective measurement onHB. Suppose that

∑
x, y, z
〈ψ|Ay

x, z ⊗ Bx, y, z|ψ〉 ≥ 1− δ . (65)

Then with respect to state |ψ〉,
IA ⊗ Bx, y, z ≈δ Ay

x, z ⊗ Bx, y .

Proof. Using the fact that {Bx, y, z} is projective, we have Bx, y, z = Bx, yBz for all x, y, z, so that (65) implies

∑
x, y, z
〈ψ|Ay

x, z ⊗ Bx, yBz|ψ〉 ≥ 1− δ .

Define Âz = ∑x, y Ay
x, z ⊗ Bx, y and B̂z = IA ⊗ Bz. The above equation simplifies to

∑
y, z
〈ψ|ÂzB̂z|ψ〉 ≥ 1− δ .

This implies that Âz ≈δ B̂z as

∑
z

∥∥(Âz − B̂z)|ψ〉
∥∥2

= ∑
z
〈ψ|Â2

z + B̂2
z |ψ〉 − 2〈ψ|ÂzB̂z|ψ〉 ≤ 2δ ,

where the equality uses the fact that Âz and B̂z commute. To conclude the proof, we have

IA ⊗ Bx, y, z = IA ⊗ Bx, yBz ≈δ (IA ⊗ Bx, y) ∑
x′, y′

Ay′

x′, z ⊗ Bx′, y′ = Ay
x, z ⊗ Bx, y,

where the approximation follows from Âz ≈δ B̂z and Fact 5.18.

8.4.3 Proof of Theorem 8.9

We analyze the soundness of the introspective verifier.

Proof of Theorem 8.9. Let V = (S ,D) be a normal form verifier such that S is an `-level sampler. Recall
the definition of the introspective verifier V INTRO = (S INTRO,DINTRO) corresponding to V from Section 8.2.
Fix an index n ≥ 1 and let N = 2n. Let r = (λN)λ and introparams(r) = (q, m, d, h, H, Γ, π), as in
Section 8.2.

As in the proof of Theorem 8.6, we make the following simplifications. First, we analyze the soundness
of the typed introspective verifier V INTRO; the soundness of the detyped verifier detype(V INTRO) follows
from Lemma 6.18 and the fact that the type set T INTRO has size O(`). Second, analogously to Remark 8.7
without loss of generality for notational simplicity we consider strategies for questions sampled from S̃ INTRO

rather than the downsized sampler S INTRO.
Suppose that val∗(V INTRO

n ) > 1− ε for some 0 < ε < 1, and let S = (ψ, Â, B̂) be a strategy for
V INTRO

n with value at least 1− ε. Since S has success probability that is strictly positive, the deciderDINTRO

does not automatically reject, which means that

s(N) ≤ (λN)λ . (66)

We analyze each of the tests performed by DINTRO (see Figure 10) in sequence, and state consequences of
each test. We start with Item 1, the Pauli test.

95



Lemma 8.21. There is a δ1 = poly(ε + 1/r) such that the following holds. Let Q = Γ log q. There
is a projective strategy S ′ = (|ψ〉, A, B) for V INTRO

n that succeeds with probability at least 1 − δ1 and
furthermore

|ψ〉AB = |EPR2〉⊗Q
A′B′ ⊗ |AUX〉A′′B′′ (67)

for some bipartite state |AUX〉, and for all W ∈ {X, Z},

APAULI,W
x = σW

x , BPAULI,W
x = σW

x , (68)

where σW
x acts on the first s(N) qubits of player A’s share (resp. B’s share) of |EPR2〉⊗Q.

Proof. Given the definition of the type graph GINTRO, for ((t̂A, x̂A), (t̂B, x̂B)) sampled according to µS INTRO ,n
it holds that (t̂A, t̂B) ∈ T PAULI × T PAULI with constant probability. Therefore, conditioned on the Pauli test,
Item 1, being executed, S must succeed in the test with probability 1−O(ε).

Observe that conditioned on the test being executed, the distribution of ((t̂A, x̂A), (t̂B, x̂B)) is, by defi-
nition, exactly the distribution of questions in the Pauli basis game with parameters qldparams, as described
in Section 7.3.1. By Theorem 7.14 it follows that there exists a local isometry φ = φA ⊗ φB and a state
|AUX〉 ∈ HA′′ ⊗HB′′ such that

‖φ(|ψ〉)− |EPR2〉⊗Q ⊗ |AUX〉‖2 ≤ δ′(ε, `, r) , (69)

where δ′(ε, `, r) is an upper bound on δ(O(ε), q, m, d) that only depends on ε and r, as stated in Lemma 7.17.
In addition, defining Ax̂

â = φA(Âx̂
â) for all questions x̂ and answers â, for W ∈ {X, Z} it holds that

APAULI,W
x ⊗ IB ≈δ′(ε,`,r) σW

x ⊗ IB , (70)

and a similar set of equations hold for operators associated with the second player. Using Naimark’s the-
orem as formulated in [NW19, Theorem 4.2], at the cost of extending the state |AUX〉 we may assume
that the measurements are projective without loss of generality. Define the strategy S ′ which uses the state
|EPR2〉⊗Q⊗ |AUX〉 and measurement operators {Ax̂

â} and {Bx̂
â} for all questions x̂, except for (PAULI, W)-

type questions where instead the Pauli measurements σW
â are used. Using (69) and (70) the strategy S ′

succeeds in V INTRO
n with probability at least 1− δ′(ε, `, r).

The claimed bound on δ1 follows from the bound given in Lemma 7.17.

In the remainder of the proof we analyze the strategy S ′ from Lemma 8.21. We use the following
notation conventions:

1. We use indices A and B to label each player’s Hilbert space after application of the isometry φ from
Lemma 8.21.

2. We write V for the register subspace of F
Q
2 spanned by e1, . . . , es(N) and V for its complement.

(Note that by definition of introparams in Section 7.3.3 it holds that s(N) ≤ r ≤ Q, where the first
inequality follows from (66).)

3. Whenever we write a Pauli operator σW
a the register on which the operator acts should always be clear

from context, and is implicit from the space in which the outcome a ranges.

96



4. For measurement operators in the introspection game, the variables for the measurement outcomes
follow the specification of the “answer key” in Figure 8 (for T PAULI-type questions) and Figure 10
(for all other question types). For example, the measurement operators {APAULI,W

x } corresponding to
question type (PAULI, W) are indexed by vectors x ∈ F

Q
q where Q = Γ log q. The measurement

operators corresponding to question type (INTRO, v) for v ∈ {A, B} are indexed by pairs (y, a) ∈
V × {0, 1}≤9r.22 We often refer to marginalized measurement operators, e.g., the operator AINTRO,v

y

denotes marginalizing AINTRO,v
y, a over all a. In these cases, the part of the answer that is marginalized

over will be clear from context.

5. We use the notation δ to denote a function which is polynomial in δ1, although the exact expression
may differ from occurrence to occurrence. The polynomial itself may depend on `, but we leave this
dependence implicit; due to the use of inductive steps that involve taking the square root of the error
` times in sequence (e.g. Lemma 8.26) the exponent generally depends on `.

The next two lemma derive conditions implied by Items 2 and 3 of the checks performed by the decider
DINTRO described in Figure 10. As these two parts are performed independently for the two possible values
of v ∈ {A, B}, we only discuss the case where v = A. For notational simplicity, whenever possible we omit
v when referring to the measurement operators. For example L, AINTRO

y, a and BSAMPLE
z, a are used as shorthand

notation for LA, AINTRO, A
y, a , and BSAMPLE, A

z, a respectively.

Lemma 8.22 (Sampling test, Item 2 of Figure 10). For each k ∈ {1, 2, . . . , `},

IA ⊗ BSAMPLE
z 'δ σZ

z ⊗ IB , (71)

AINTRO
y≤k , a ⊗ IB 'δ IA ⊗ BSAMPLE

[L≤k(·)=y≤k ], a , (72)

where z ranges over V and y≤k ranges over L≤k(V). Moreover, analogous equations hold with operators
acting on the other side of the tensor product.

Proof. When ((t̂A, x̂A), (t̂B, x̂B)) is sampled according to µS INTRO ,n, each check in Item 2 of Figure 10 is
executed with probability Ω(1/`) (this is due to the number of types in T INTRO and the structure of the type
graph GINTRO). Therefore, in each of the checks specified by Items 2a and 2b, the strategy S ′ succeeds
with probability at least 1−O(`δ), conditioned on the test being executed. Item 2a for w = A combined
with (68) implies (71). Item 2b for w = A, combined with Fact 5.21, implies (72). The lemma follows from
repeating the same argument with the tensor factors interchanged.

Lemma 8.23 (Hiding test, Item 3 of Figure 10). For each k ∈ {1, . . . , `+ 1},

AINTRO
y<k , a ⊗ IB 'δ IA ⊗ BREAD

y<k , a , (73)

and if k ≤ `,
IA ⊗ BHIDEk

y<k ≈δ σZ
[L<k(·)=y<k ]

⊗ IB . (74)

Furthermore, for all j, k ∈ {1, . . . , `− 1} such that j ≤ k, we have

AHIDEk
y<j, y⊥≤j

⊗ IB ≈δ AHIDEk+1

y<j, y⊥≤j
⊗ IB . (75)

Analogous equations to (73), (74), and (75) hold with operators acting on the other side of the tensor
product.

22Technically the answer a may be a binary string of any length; however, if a is too long the decider rejects due to the answer
length check. Thus we assume without loss of generality that the answer a is a binary string of length at most 6s(N) + 2r + 3 ≤ 9r.
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Proof. When ((t̂A, x̂A), (t̂B, x̂B)) is sampled according to µS INTRO ,n, each check in Item 3 of Figure 10 is
executed with probability Ω(1/`). Therefore, in each of the checks specified by Items 3a, 3b, and 3c
(conditioned on the right types) the strategy S ′ succeeds with probability at least 1−O(`δ).

Item 3a for w = A combined with Fact 5.21 implies (73). Combining Eqs. (71) and (72) with (73)
yields

IA ⊗ BREAD
y<k

≈δ σZ
[L<k(·)=y<k ]

⊗ IB . (76)

The fact that S ′ is projective and succeeds in Items 3b and 3c of Figure 10 with probability 1−O(`δ),
along with Item 1 of Fact 5.17, imply (74).

We now establish the “Furthermore” part of the lemma statement. Let 1 ≤ j ≤ k ≤ `− 1. Item 3c,
Item 1 of Fact 5.17, and Fact 5.21 imply that

AHIDEk
y<j, y⊥≤j

⊗ IB ≈δ IA ⊗ BHIDEk+1

y<j, y⊥≤j
. (77)

Item 5 and Fact 5.21 imply
AHIDEk+1

y<j, y⊥≤j
⊗ IB 'δ IA ⊗ BHIDEk+1

y<j, y⊥≤j
. (78)

This proves (75).
The lemma follows from repeating the same arguments with the tensor factors interchanged.

We exploit the tests performed in Item 3 further to show the following lemma.

Lemma 8.24. For all k ∈ {1, 2, . . . , `},

IA ⊗ BHIDEk
y<k , y⊥k , x>k

≈δ

(
σZ
[L<k(·)=y<k ]

⊗ σX
[L⊥k, y<k

(·)=y⊥k ]
⊗ σX

x>k

)
⊗ IB ,

and an analogous equation holds with operators acting on the other side of the tensor product.

Proof. The proof is by induction on k. We first show the case k = 1. Under the distribution µS INTRO ,n, the
check in Item 3d of Fig. 10 is executed with probablity Ω(1/`). That part of the check for w = A together
with Eq. (68) implies that

IA ⊗ BHIDE1
y⊥1 , x>1

≈δ

(
σX
[L⊥1, y<1

(·)=y⊥1 ]
⊗ σX

x>1

)
⊗ IB . (79)

This proves the case for k = 1. Next we perform the induction step. Assume that the lemma holds for some
k ∈ {1, 2, . . . , `− 1}. The check of Item 3c is executed with probablity Ω(1/`); using that S ′ succeeds in
Item 3c (conditioned on the right types having been sampled) with probablity at least 1−O(`δ), we have

∑
y≤k , y⊥k+1, x>k+1

〈ψ|AHIDEk
y<k , [L⊥k+1, y≤k

(·)=y⊥k+1], x>k+1
⊗ BHIDEk+1

y≤k , y⊥k+1, x>k+1
|ψ〉 ≥ 1−O(`δ) .

We now apply Lemma 8.20, choosing the measurements A, B and outcomes x, y, z in the lemma as
follows:

“A” : AHIDEk
y<k , [L⊥k+1, y≤k

(·)=y⊥k+1], x>k+1
, “B” : BHIDEk+1

y≤k , y⊥k+1, x>k+1
,

“x” : y<k , “y” : yk , “z” : (y⊥k+1, x>k+1) .
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Note that here A does not depend on y, so we use the same A for all values of y. Lemma 8.20 with the
above choices of parameters implies that

IA ⊗ BHIDEk+1

y≤k , y⊥k+1, x>k+1
≈δ AHIDEk

y<k , [L⊥k+1, y≤k
(·)=y⊥k+1], x>k+1

⊗ BHIDEk+1
y≤k

≈δ

(
σZ
[L<k(·)=y<k ]

⊗ σX
[L⊥k+1, y<k+1

(·)=y⊥k+1]
⊗ σX

x>k+1

)
⊗ BHIDEk+1

y≤k

≈δ

(
σZ
[L<k(·)=y<k ]

σZ
[L≤k(·)=y≤k ]

⊗ σX
[L⊥k+1, y<k+1

(·)=y⊥k+1]
⊗ σX

x>k+1

)
⊗ IB,

≈0
(
σZ
[L<k+1(·)=y<k+1]

⊗ σX
[L⊥k+1, y<k+1

(·)=y⊥k+1]
⊗ σX

x>k+1

)
⊗ IB,

where the input to L⊥k+1, y<k+1
(·) is xk+1. The second approximation uses the induction hypothesis, Fact 5.21,

Fact 5.17, and Fact 5.18. The third approximation follows from Eq. (74) and Fact 5.18. The fourth approxi-
mation follows from the definition of CL functions. This completes the induction.

Lemma 8.25. For all k ∈ {1, . . . , `},

IA ⊗ BREAD
y<k , y⊥k

≈δ

(
σZ
[L<k(·)=y<k ]

⊗ σX
[L⊥k, y<k

(·)=y⊥k ]

)
⊗ IB . (80)

Moreover, analogous equations hold with operators acting on the other side of the tensor product.

Proof. Lemma 8.24 and Fact 5.21 imply that

AHIDEk
y<k , y⊥k

⊗ IB ≈δ

(
σZ
[L<k(·)=y<k ]

⊗ σX
[L⊥k, y<k

(·)=y⊥k ]

)
⊗ IB . (81)

Since the strategy S ′ succeeds in Item 3b with probability at least 1−O(`δ) it follows from Fact 5.21 that

AHIDE`
y<`, y⊥≤`

⊗ IB ≈δ IA ⊗ BREAD
y<`, y⊥≤`

. (82)

An inductive argument applied to (75) of Lemma 8.23, combined with Fact 5.21, implies that for all 1 ≤
k ≤ ` we have

AHIDEk
y<k , y⊥k

⊗ IB ≈δ AHIDE`
y<k , y⊥k

⊗ IB. (83)

Equations (81), (82), and (83), combined with Fact 5.21, then establishes the lemma statement.

Lemma 8.26. For each k ∈ {1, 2, . . . , `+ 1}, there exists a product state |ANCk〉 = |ANCk,A〉⊗ |ANCk,B〉 ∈
HA′k
⊗HB′k

and, for each y<k ∈ L<k(V), a projective measurement
{

AINTRO, y<k
y≥k , a

}
that acts onHA ⊗HA′k

such that the following holds. First, for all y ∈ V, the operator AINTRO, y<k
y≥k , a acts as identity on the register

subspace spanned by basis vectors for the subspace V<k(y<k), and as a consequence the operator

AINTRO, Z<k
y, a = σZ

[L<k(·)=y<k ]
⊗ AINTRO, y<k

y≥k , a (84)

is well-defined. Second, let S ′′
k be the strategy defined as follows. The state is |EPR2〉⊗Q ⊗ |AUX〉 ⊗

|ANCk〉. The measurements are identical to those in S ′ defined in Lemma 8.21, except that
{

AINTRO
y, a

}
is

replaced with
{

AINTRO, Z<k
y, a

}
. Then S ′′

k succeeds with probability at least 1− δ in the game V INTRO
n .

Proof. The proof is by induction on k from 1 to `+ 1. The case k = 1 is trivial by setting AINTRO, y<1
y≥1, a =

AINTRO
y, a for all y, a. Assume that for some k ∈ {1, 2, . . . , `} there exists projective measurements

{
AINTRO, y<k

y≥k , a
}

for every y<k and a strategy S ′′
k satisfying the conditions of the lemma statement. We show the statement

of the lemma for k + 1.
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Commutation with Z-basis measurements. We first prove that on average over y<k, the measurement
operator AINTRO, y<k

y≥k , a , which comes from the inductive assumption, commutes with the projective measure-
ment {σZ

zk
} where the outcomes zk range over the factor space Vk(y<k).

To do so, we first apply Lemma 5.22 where we we choose the measurements “A”, “B”, and “C” and
outcomes “a”, “b”, and “c” in the lemma as follows:

“A” : {AINTRO, Z<k
y, a } , “B” : {BSAMPLE

z, a } , “C” : {σZ
z } ,

“a” : y<k , “b” : (y≥k, a) , “c” : z .

To make sense of how the “B” POVM is indexed by “a”, “b”, and “c” as described above, we use the
following relabelling: for all (z, a), identify BSAMPLE

z, a with BSAMPLE
y, a, z where y = L(z). Similarly, for the “C”

POVM, we identify σZ
z with the operator σZ

y<k , z where y<k = L<k(z). By applying Lemma 8.22 to S ′′
k (the

strategy given by the inductive hypothesis) with “k” in Lemma 8.22 set to `, we have that

AINTRO, Z<k
y, a ⊗ IB ≈δ IA ⊗ BSAMPLE

y, a (85)

where BSAMPLE
y, a = ∑z:L(z)=y BSAMPLE

z, a . Equations (71) and (85) imply that the conditions of Lemma 5.22 are
satisfied, and thus we obtain [

AINTRO, Z<k
y, a , σZ

z
]
⊗ IB ≈δ 0 (86)

where in the answer summation, y is a deterministic function of z. We now apply Lemma 8.19, choosing
the measurements “A”, “B”, “Q” and outcomes “a”, “b”, “c” in the lemma as follows:

“A” : {AINTRO, Z<k
y, a } , “B” : {σZ

[L<k(·)=y<k ]
⊗ σZ

zk
} , “Q” : {σZ

[L<k(·)=y<k ]
} ,

“a” : y<k , “b” : (y≥k, a) , “c” : zk .

We choose the Hilbert spaces “HA,a” and “HB,a” as the register subspace V<k(y<k), and “HA′,a” and
“HB′,a” as the register subspace V≥k(y<k) tensored withHA′′ ⊗HB′′ , the Hilbert space of the state |AUX〉.
Thus for every y<k, the state |EPR〉⊗Q⊗ |AUX〉 of the strategy S ′′

k can be decomposed into a tensor product
of a “question state” and an “answer state” as follows:(

|EPR2〉V<k(y<k)

)
HA,aHB,a

⊗
(
|EPR2〉V≥k(y<k) ⊗ |AUX〉

)
HA′ ,aHB′ ,a

.

Let µL<k denote the distribution over outcomes y<k generated by performing the “Q” measurement on
the state |EPR〉⊗Q, which is equivalent to the distribution generated by the following procedure: (1) sample
a uniformly random z ∈ V; (2) compute y = L(z); (3) return y<k. Then, since Equation (86) and the
inductive hypothesis about the structure of AINTRO ,Z<k

y≤k , a satisfy the conditions of Lemma 8.19, we obtain on
average over y<k ∼ µL<k [

AINTRO, y<k
y≥k , a , σZ

zk

]
⊗ IB ≈δ 0 . (87)

Here, the measurement outcomes zk range over Vk(y<k).

Commutation with X-basis measurements. Next, we first prove that on average over y<k, the measure-
ment operator AINTRO, y<k

y≥k , a commutes with the projective measurement
{

σX
[L⊥k, y<k

(·)=y⊥k ]

}
where the outcomes

y⊥k are elements of the factor space Vk(y<k).
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We again apply Lemma 5.22, choosing the measurements and outcomes in the lemma as follows:

“A” : {AINTRO, Z<k
y, a } , “B” : {BREAD

y, y⊥k , a} , “C” : {σZ
[L<k(·)=y<k ]

⊗ σX
[L⊥k, y<k

(·)=y⊥k ]
} ,

“a” : y<k , “b” : (y≥k, a) , “c” : y⊥k .

Equations (73) (with “k” in Lemma 8.23 chosen to be `+ 1) and (80) imply the conditions of Lemma 5.22,
so we obtain [

AINTRO, Z<k
y, a , σZ

[L<k(·)=y<k ]
⊗ σX

[L⊥k, y<k
(·)=y⊥k ]

]
⊗ IB ≈δ 0 . (88)

We then apply Lemma 8.19 with the following choice of measurements and outcomes:

“A” : {AINTRO, Z<k
y, a } , “B” : {σZ

[L<k(·)=y<k ]
⊗ σX

[L⊥k, y<k
(·)=y⊥k ]

} , “Q” : {σZ
[L<k(·)=y<k ]

} ,

“a” : y<k , “b” : (y≥k, a) , “c” : y⊥k .

The Hilbert space and state decomposition are the same as in the previous invocation of Lemma 8.19.
Equation (88) and the inductive hypothesis satisfy the conditions of Lemma 8.19, and we similarly obtain
that on average over y<k ∼ µL<k ,[

AINTRO, y<k
y≥k , a , σX

[L⊥k, y<k
(·)=y⊥k ]

]
⊗ IB ≈δ 0 , (89)

Applying the Pauli twirl. The last step is to apply the Pauli twirl to decompose the family of measure-
ments {AINTRO, y<k

y≥k , a } into a tensor product measurement, with the first part of the tensor product measuring
the k-th linear map of L.

Again applying Lemma 8.22 to S ′′
k , and using Facts 5.21 and 5.17, we obtain that

AINTRO, Z<k
y≤k ⊗ IB ≈δ σZ

[L≤k(·)=y≤k ]
⊗ IB

which is equivalent to, by the inductive hypothesis,

σZ
[L<k(·)=y<k ]

⊗ AINTRO, y<k
yk ⊗ IB ≈δ σZ

[L<k(·)=y<k ]
⊗ σZ

[Lk, y<k
(·)=yk ]

⊗ IB . (90)

Applying Lemma 8.18 to Equation (90), we conclude that

AINTRO, y<k
yk ⊗ IB ≈δ σZ

[L<k(·)=y<k ]
⊗ IB , (91)

on average over y<k ∼ µL<k .
Now we apply Lemma 8.17 with the following identification:

“x” : y<k , “y” : yk , “a” : (y>k, a) , “Lx” : Lk, y<k ,

“Ux” : Vk(y<k) , “Mx
y, a” : AINTRO, y<k

y≥k , a , “Mx, y
a ” : AINTRO, y≤k

y>k , a .

The “Consistency” condition is implied by Equation (91) and the “Commutation” conditions are implied by
Equations (87) and (89). We obtain that for all y≤k there exists POVM measurements

{
AINTRO, y≤k

y>k , a
}

that
act as identity on the register subspace spanned by basis vectors for the subspace V<k(y<k) and, on average
over y<k ∼ µL<k , we have

AINTRO, y<k
y≥k , a ⊗ IB ≈δ

(
σZ
[Lk, y<k

(·)=yk ]
⊗ AINTRO, y≤k

y>k , a

)
⊗ IB . (92)
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Using the inductive assumption on the structure of AINTRO, Z<k
y, a from (84), we get

AINTRO, Z<k
y, a ⊗ IB =

(
σZ
[L<k(·)=y<k ]

⊗ AINTRO, y<k
y≥k , a

)
⊗ IB (93)

≈δ

(
σZ
[L≤k(·)=y≤k ]

⊗ AINTRO, y≤k
y>k , a

)
⊗ IB . (94)

where the second line follows from (92) and Lemma 8.18. By (94), replacing the projective measurement{
AINTRO, Z<k

y, a
}

with the POVM {
σZ
[L≤k(·)=y≤k ]

⊗ AINTRO, y≤k
y>k , a

}
in the strategy S ′′

k results in a strategy that succeeds with probability at least 1− δ. To show that {AINTRO, y≤k
y>k , a }

can furthermore be turned into a projective measurement we use Naimark’s theorem as formulated in [NW19,
Theorem 4.2]. By inspecting the proof of Naimark’s theorem, one can see that the state |ANC′〉 it pro-
duces is a product state with no entanglement. This yields a strategy S ′′

k+1 with ancilla state |ANCk+1〉 =
|ANCk〉|ANC′〉, which establishes the induction hypothesis for k+ 1. This completes the proof of Lemma 8.26.

Taking k = `+ 1 in Lemma 8.26 we obtain a strategy S ′′ = S ′′
`+1 with value 1− δ in which, given

question (INTRO, A), player A performs the measurement{
σZ
[LA(·)=y] ⊗ AINTRO, y

a
}

, (95)

for a family of measurements
{

AINTRO, y
a

}
acting on the state |EPR〉V ⊗ |AUX〉 ⊗ |ANC〉 where |ANC〉 =

|ANC`+1〉 is unentangled. An analogous argument for Player B’s measurements shows that we may addi-
tionally assume Player B responds to the question (INTRO, B) using the measurement{

σZ
[LB(·)=y] ⊗ BINTRO, y

a
}

, (96)

for a family of measurements
{

BINTRO, y
a

}
acting on the state |EPR〉V ⊗ |AUX〉 ⊗ |ANC′〉, where |ANC′〉 is

unentangled. Summarizing, the strategy S ′′ uses the state

|θ〉 = |EPR〉⊗Q ⊗ |AUX〉 ⊗ |ANC〉 ⊗ |ANC′〉 ,

and the measurements given by Equations (95) and (96).
To conclude the proof of the soundness part of the theorem we analyze Item 4 in Figure 10. The test

in Item 4 is executed with probability Ω(1/`), so the strategy S ′′ succeeds with probability at least 1− δ
in that test, conditioned on the right types (here we absorb factors of O(`) into δ). Using (95) and (96),
conditioned on the test being executed the distribution of the part (yA, yB) of the players’ answers in the
test is exactly the distribution µS ,N associated with game VN . As a result, the strategy which uses the state
|EPR〉V ⊗ |AUX〉 ⊗ |ANC〉 ⊗ |ANC′〉 and measurements {AINTRO, y

a }, {BINTRO, y
a } succeeds with probability

at least 1− δ in the game VN . Thus, val∗(VN) ≥ 1− δ, establishing the first item in the theorem.
To show the second item, we observe that local isometries do not change the Schmidt rank of a state.

Define |ψ′〉 = φ(|ψ〉)⊗ |ANC〉 ⊗ |ANC′〉. Since the strategy (|ψ′〉, {AINTRO, y
a }, {BINTRO,y

a }) is δ-close to
(|θ〉, {AINTRO, y

a }, {BINTRO, y
a }) which has value 1− δ, the strategy (|ψ′〉, {AINTRO, x

a }, {BINTRO, y
a }) has value

at least 1 − 2δ in the game VN , and therefore the Schmidt rank of φ(|ψ〉) (and thus of |ψ〉) must be at
least E (VN , 1− 2δ). Here, we use the fact that ancilla states are product states and therefore have Schmidt
rank 1.
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Moreover, recall that φ(|ψ〉) is δ-close to |EPR2〉⊗Q ⊗ |AUX〉 whose Schmidt coefficients are all at
most 2−Q/2. For any bipartite state |a〉 with Schmidt rank at most r and |b〉 whose Schmidt coefficients are
all at most β, it follows from the Cauchy-Schwarz inequality that |〈a|b〉|2 ≤ rβ2. Therefore the Schmidt
rank of φ(|ψ〉) (and thus of |ψ〉) is at least

(1− δ)2 · 2Q ≥ (1− δ)2 · 2(λN)λ
,

where we used that Q = Γ log q ≥ r (using the canonical parameter settings of Definition 7.16) and
δ ≥ ‖φ(|ψ〉)− |θ〉‖2 = 2− 2<〈θ|φ(|ψ〉). Combining the two lower bounds on the Schmidt rank of |ψ〉
shows the desired lower bound on E (V INTRO

n , 1− ε).
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9 Oracularization

9.1 Overview

In this section we introduce the oracularization transformation. At a high level, the oracularization GORAC

of a nonlocal game G is intended to implement the following: one player (called the oracle player) is
supposed to receive questions (x, y) meant for both players in the original game G, and the other player
(called the isolated player) only receives either x or y (but not both), along with a label indicating which
player in the original game the question is associated with (we refer to such players as the original players,
e.g. “original A player” and “original B player”). The oracle player is supposed to respond with an answer
pair (a, b), and the other player is supposed to respond with an answer c. The oracle and isolated player win
the oracularized game if (x, y, a, b) satisfies the predicate of the original game G and the isolated player’s
answer is consistent with the oracle player’s answer.

The oracularization step is needed in preparation to the next section, in which we perform answer re-
duction on the introspection game. To implement answer reduction we need at least one player to be able
to compute a proof, in the form of a PCP, that the decider of the original game would have accepted the
questions (x, y) and answers (a, b). This requires the player to have access to both questions, and be able to
compute both answers.

9.2 Oracularizing normal form verifiers

Let V = (S ,D) be a normal form verifier such that S is an `-level sampler for some ` ≥ 0. We first specify
the typed oracularized verifier VORAC = (SORAC,DORAC) associated with V as follows.

Sampler. Define the type set T ORAC = {ORACLE, A, B}. (In the remainder of this section we refer to
the types in T ORAC as roles.) Define the type graph GORAC that is the complete graph on vertex set T ORAC

(including self-loops on all vertices). Define the T ORAC-type sampler SORAC as follows. For a fixed index
n ∈ N, let V be the ambient space of S and Lw for w ∈ {A, B} be the pair of CL functions of S on index
n.

Define two T ORAC-typed families of CL functions {Lw
t : V → V}, for w ∈ {A, B} and t ∈ T ORAC, as

follows:

Lw
t =

{
Lt if t ∈ {A, B} ,
Id if t = ORACLE .

In other words, if a player gets the type t ∈ {A, B}, then they get the question that original player t would
have received in the game played by Vn. If they get type t = ORACLE, then they get the entire seed z that is
used by the sampler S , from which they can compute both LA(z) and LB(z), the pair of questions sampled
for the players in game Vn.

By definition, the sampler distribution µSORAC , n has the following properties.

1. Conditioned on both players receiving the ORACLE role, both players receive z for a uniformly ran-
dom z ∈ V.

2. Conditioned on both players receiving the isolated player role, the player(s) with role A (respec-
tively, B) receives LA(z) (respectively, LB(z)) for a uniformly random z ∈ V.

3. Conditioned on player w ∈ {A, B} receiving the ORACLE role and player w receiving the isolated
player role, their question tuple is distributed according to

(
(ORACLE, z), (v, Lv(z))

)
if w = A and
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(
(v, Lv(z)), (ORACLE, z)

)
if w = B, where z ∈ V is uniformly random and v indicates the role of

player w.

Decider. The typed decider DORAC is specified in Figure 12.

Input to decider DORAC: (n, tA, xA, tB, xB, aA, aB). For w ∈ {A, B}, if tw = ORACLE, then
parse aw as a pair (aw,A, aw,B). Perform the following steps sequentially.

1. (Game check). For all w ∈ {A, B}, if tw = ORACLE, then compute xw,v = Lv(xw) for
v ∈ {A, B}. If D rejects (n, xw,A, xw,B, aw,A, aw,B), then reject.

2. (Consistency checks).

(a) If tA = tB and aA 6= aB, then reject.
(b) If for some w ∈ {A, B}, tw = ORACLE, tw ∈ {A, B}, and aw, tw 6= aw, then reject.

3. Accept if none of the preceding steps rejects.

Figure 12: Specification of the typed decider DORAC.

9.3 Completeness and complexity of the oracularized verifier

We determine the complexity of the oracularized verifier and establish the completeness property.

Theorem 9.1 (Completeness and complexity of the oracularized verifier). Let V = (S ,D) be a normal
form verifier. Let VORAC = (SORAC,DORAC) be the corresponding typed oracularized verifier. Then the
following hold.

• (Completeness) For all n ∈ N, if Vn has a PCC strategy of value 1, then VORAC
n has a symmetric

PCC strategy of value 1.

• (Sampler complexity) The sampler SORAC depends only on S (and not onD). Moreover, the time and
randomness complexities of SORAC satisfy

TIMESORAC(n) = O (TIMES (n)) ,
RANDSORAC(n) = O (RANDS (n)) .

Furthermore, if S is an `-level sampler, then SORAC is a max{`, 1}-level typed sampler.

• (Decider complexity) The time complexity of DORAC satisfies

TIMEDORAC(n) = poly (TIMED(n), RANDS (n)) .

• (Efficient computability) There is a Turing machine ComputeOracleVerifier which takes as input
V = (S ,D) and returns VORAC = (SORAC,DORAC) in time poly(|V|).

Proof. We analyze the completeness and complexity properties of the typed verifier VORAC.
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Completeness. For n ∈ N, let S = (|ψ〉, A, B) be a PCC strategy for Vn with value 1. Consider the
following symmetric strategy S ORAC = (|ψ〉, M) for VORAC

n . Depending on the role received, each player
performs the following:

1. Suppose the player receives role v ∈ {A, B} and question x. Then the player performs the measure-
ment that player v would on question x according to strategy S to obtain outcome a (either {Ax

a} or
{Bx

a}, depending on v). The player replies with a.

2. Suppose the player receives role v = ORACLE and question x. The player first computes yw = Lw(x)
for w ∈ {A, B} where for w ∈ {A, B}, Lw is the CL functions of S corresponding to player w. Then,
the player measures using the POVM {MORACLE, x

aA , aB } where

MORACLE, x
aA , aB

= ByB
aB AyA

aA . (97)

The projectors AyA
aA and ByB

aB commute because (yA, yB) is distributed according to µS , n (over the
choice of x) and S is a commuting strategy for Vn. Thus MORACLE, x

aA , aB is a projector. The player replies
with (aA, aB).

The strategy S ORAC is symmetric and projective by construction, and consistency follows from the
consistency of S . We now argue that the strategy is commuting and has value 1 in the game VORAC

n . We
consider all possible pairs of roles.

1. (Oracle, isolated) Suppose without loss of generality that player w = A gets the ORACLE role and
player w = B gets the isolated player B role. Then player w gets question x and player w gets
question LB(x), where x is uniformly sampled from V. The oracle player computes yv = Lv(x)
for all v ∈ {A, B}. Notice that (yA, yB) is distributed according to µS , n. The two players return(
(aA, aB), a′B

)
with probability

〈ψ|MORACLE, x
aA , aB

⊗ ByB
a′B
|ψ〉 = 〈ψ|ByB

aB AyA
aA ⊗ ByB

a′B
|ψ〉

= 〈ψ|AyA
aA ⊗ ByB

aB ByB
a′B
|ψ〉

= δaB , a′B 〈ψ|A
yA
aA ⊗ ByB

aB |ψ〉 ,

where the first equality uses the definition of MORACLE, x
aA , aB from Eq. (97), the second equality uses the

consistency of S , and the third equality uses the projectivity of S . Notice that when aB = a′B, this
is exactly the probability of obtaining answers (aA, aB) when player A and player B get question
pair (yA, yB) in the game Vn. Since S is value-1, the answers satisfy the decision procedure of Vn
with probability 1. Thus the oracle’s answers pass the “Game check” of the oracularized decider with
certainty, and furthermore the oracle’s answers are consistent with the isolated player’s answers and
thus pass the “Consistency check” with certainty as well.

Commutativity of MORACLE, x
aA , aB and ByB

aB follows from the commutativity of S for the game Vn.

2. (Both oracle) If both players get the ORACLE role, then both players receive the same question x ∈ V.
Using a similar analysis as for the previous item, the players return the same answer pair (thus passing
the “Consistency check”) and pass the “Game check”. Both players’ measurements commute because
they are identical.
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3. (Both isolated) Suppose that both players receive the same isolated player role (e.g., they both receive
the isolated player role A). They then perform the same measurements, which produce the same
outcomes due to the consistency of the strategy S , and thus they pass the “Consistency check”.
Otherwise, suppose that one player receives the A role and the other player receives the B role. Then
the decider DORAC automatically accepts. Furthermore, their measurements commute because their
questions are distributed according to µS , n, and S is a commuting strategy with respect to µS , n.

Complexity. It is clear from the definition that SORAC depends only on S . The time and randomness
complexities of the sampler SORAC are dominated by those of the sampler S . The complexity of DORAC is
dominated by the complexity of D and performing consistency checks. The sampler SORAC is a max{`, 1}-
level sampler because S is an `-level sampler and the new CL functions for t = ORACLE are 1-level.

Efficient computability. The description of SORAC can be computed, in polynomial time, from the de-
scription of S alone. The description of DORAC can be computed in polynomial time from the descriptions
of S and D. Moreover, in each case the computation amounts to copying the description of S and D
respectively, and adding constant-sized additional instructions.

9.4 Soundness of the oracularized verifier

Theorem 9.2 (Soundness of the oracularized verifier). Let V = (S ,D) be a normal form verifier and
VORAC = (SORAC,DORAC) be the corresponding typed oracularized verifier. Then there exists a function
δ(ε) = poly(ε) such that for all n ∈N the following hold.

1. If val∗(VORAC
n ) > 1− ε, then val∗(Vn) ≥ 1− δ(ε).

2. For all ε > 0, we have that

E
(
VORAC

n , 1− ε
)
≥ E (Vn, 1− δ(ε))

where E (·) is as in Definition 5.12.

Proof. Fix n ∈N. Let S ORAC =
(
|ψ〉, A, B

)
be a projective strategy for VORAC

n with value 1− ε for some
0 < ε ≤ 1. Let (t, x) ∈ T ORAC ×V be a question to player w = A. In the event that t = ORACLE (which
occurs with probability 1/3), let yv = Lv(x) for each v ∈ {A, B}. From the consistency check performed
by DORAC and item 1 of Fact 5.17, we have that for all v ∈ {A, B} and on average over x sampled by
SORAC,

AORACLE, x
av

⊗ IB ≈ε IA ⊗ Bv, yv
av . (98)

Here, we used that with probability 1/9 player w = A gets the ORACLE role and player w = B gets the
isolated player v role; conditioned on this, player B gets question yv.

Using the fact that the POVM elements {AORACLE, x
aA , aB } are projective and Fact 5.18, we get

AORACLE, x
aA , aB

⊗ IB ≈ε AORACLE, x
aA , aB

⊗ BB, yB
aB

≈ε AORACLE, x
aA

⊗ BB, yB
aB

≈ε IA ⊗ BB, yB
aB BA, yA

aA

≈ε IA ⊗ BA, yA
aA BB, yB

aB .

(99)
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Using Item 2a of the consistency check, we have that on average over a random y = LA(x) ∈ V,

AA, y
a ⊗ IB ≈ε IA ⊗ BA, y

a . (100)

Define, for all x ∈ LA(V), measurement operators {Cx
a}a where Cx

a = AA, x
a . Similarly, define Dx

a = BB, x
a .

This defines a strategy S = (|ψ〉, C, D) for the game Vn that we now argue succeeds with high probability.
Let x ∈ V be uniformly random. Let yA = LA(x) and yB = LB(x).

AORACLE, x
aA , aB

⊗ IB ≈ε IA ⊗ BB, yB
aB BA, yA

aA

≈ε AA, yA
aA ⊗ BB, yB

aB

= CyA
aA ⊗ DyB

aB .

The first approximation follows from Equation (99). The second approximation follows from Equation (100)
and Fact 5.18 (where we let Cy

b in Fact 5.18 represent BB, yB
aB ). The last equality follows from definition of

CyA
aA and DyB

aB . The pair of questions (yA, yB) ∈ V ×V is distributed according to µS , n.
The game check part of DORAC succeeds with probability 1−O(ε), which implies that the answer pair

(aA, aB) that arises from the measurement AORACLE, x
aA , aB ⊗ IB is accepted by the decider D on question pair

(yA, yB) with probability 1−O(ε). This in turn implies that the strategy S = (|ψ〉, C, D) succeeds with
probability 1−O(

√
ε) in the game Vn. As an additional consequence, the Schmidt rank of |ψ〉 must be at

least E (Vn, 1−O(
√

ε)).
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10 Answer Reduction

In this section we show how to transform a normal form verifier V = (S ,D) into an “answer reduced”
normal form verifier VAR = (SAR,DAR) such that the values of the associated nonlocal games are directly
related, yet the answer-reduced verifier’s decision runtime is only polylogarithmic in the answer length of
the original verifier (the answer-reduced verifier’s sampling runtime remains polynomially related to the
sampling runtime of S). The polylogarithmic dependence is achieved by composing a probabilistically
checkable proof (PCP) with the oracularized verifier given in Section 9. This step generalizes the answer
reduction technique of [NW19, Part V].

Given index n ∈ N, the answer reduced verifier VAR simulates the oracularization VORAC of V on
index n. To do so, it first samples questions x and y using the oracularized sampler SORAC and distributes
them to the players, who compute answers a and b. Let us suppose that the first player is assigned the
ORACLE role, and parse their question and answer as pairs x = (xA, xB) and a = (aA, aB), while the
second player is an “isolated” player receiving the question xA and responding with answer b. Instead of
executing the decider DORAC on the answers (a, b), the verifier VAR asks the first player to compute a PCP
Π of D(n, xA, xB, aA, aB) = 1, and the second player to compute an encoding gb of answer b. VAR then
requests randomly chosen locations of the proof Π and the encoding gb, and executes the PCP verifier on
the players’ answers. By the soundness of the PCP, VAR accepts with high probability only if the player’s
answers satisfy D(n, xA, xB, aA, aB) = 1 and b = aA.

There are several challenges that arise when implementing answer reduction. One challenge, already
encountered in [NW19], is that we need to ensure the PCP Π computed by the first player can be cross-tested
against the encoding gb computed by the second player (who doesn’t know the entire structure of the PCP
Π). This was handled in [NW19] by using a special type of PCP called a probabilistically checkable proof
of proximity (PCPP), which allows one to efficiently check that a specific string x is a satisfying assignment
to a Boolean formula ϕ, as opposed to simply checking that ϕ is satisfiable. In a PCPP, an encoding of
the specific string x is provided separately from the proof of satisfiability. The answer reduction scheme
of [NW19] was able to use an “off-the-shelf” PCPP in a relatively black-box fashion to handle this.

In our answer reduction scheme, however, there is a further requirement: we need the question distri-
bution of the answer reduced verifier to be conditionally linear. This is necessary to maintain the invariant
that the verifier after each step of the compression procedure (introspection, answer reduction, parallel repe-
tition) is a normal form verifier. Unfortunately, simulating the question distributions of off-the-shelf PCPPs
with conditionally linear distributions can be quite cumbersome. Instead, we design a bespoke PCP verifier
for the protocol whose question distribution is more easily seen to be conditionally linear.

This section is organized as follows. We start with some preliminaries on formulas and encodings
in Section 10.1. In Section 10.2 we show how to use the Cook-Levin reduction to reduce the Bounded
Halting problem for deciders to a succinct satisfiability problem called Succinct-3SAT. Following this, in
Section 10.3, we reduce the Succinct-3SAT instance to an instance of a related problem called Succinct
Decoupled 5SAT, which is easier to use in our answer reduction step. Then in Section 10.4 we introduce
a PCP for Succinct Decoupled 5SAT. The verifier for the PCP expects a proof consisting of the evaluation
tables of low-degree polynomials, including the low-degree encodings of the players’ answers a and b.
In Section 10.5 we provide the definition of a normal-form verifier VAR that executes the composition of
VORAC with the PCP verifier from Section 10.4. In Section 10.6 we show completeness of the construction
and analyze its complexity. In Section 10.7 we prove soundness.
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10.1 Circuit preliminaries

Recall the definitions pertaining to Turing machines from Section 3.1.

Remark 10.1 (Plugging integers into circuits). Let C be a circuit with a single input of length n. Inputs to C
are strings x ∈ {0, 1}n. In this section, we will also allow C to receive inputs a ∈ {0, 1, . . . , 2n − 1}. In
doing so, we use the convention that a number a between 0 and 2n − 1 is interpreted as its n-digit binary
encoding binaryn(a) (recall Definition 3.21) when provided as input to a set of n single-bit wires. In other
words, C(a) = C(x), where x = binaryn(a).

More generally, if the circuit C has k different inputs of length n1, . . . , nk, then we can evaluate it on
inputs a1 ∈ {0, 1, . . . , 2n1 − 1}, . . . , ak ∈ {0, 1, . . . , 2nk − 1} as follows:

C(a1, . . . , ak) = C(x1, . . . , xk) ,

where x1 = binaryn1
(a1), . . . , xk = binarynk

(ak).

A 3SAT formula is a Boolean formula in conjunctive normal form in which at most three literals appear
in each clause. More precisely, ϕ is a 3SAT formula on N variables x1, x2, . . . , xN if it has the form

∧m
j=1 Cj

and each clause Cj is the disjunction of at most three literals, where a literal is either a variable xi or its
negation ¬xi. We use xo

i to denote the literal xi if o = 1 and ¬xi if o = 0.

Definition 10.2 (Succinct description of 3SAT formulas). Let N = 2n, and let ϕ be a 3SAT formula on N
variables named x0, . . . , xN−1. Let C be a Boolean circuit with 3 inputs of length n and three single-bit
inputs. Then C is a succinct description of ϕ if for each i1, i2, i3 ∈ {0, 1, . . . , N− 1} and o1, o2, o3 ∈ {0, 1},

C(i1, i2, i3, o1, o2, o3) = 1 (101)

if and only if xo1
i1
∨ xo2

i2
∨ xo3

i3
is a clause in ϕ. In Equation (101), we use the notation from Remark 10.1.

Definition 10.3 (Succinct-3SAT problem). The Succinct-3SAT problem is the language containing encod-
ings of circuits C in which C is a succinct description of a satisfiable 3SAT formula ϕ.

10.2 A Cook-Levin theorem for bounded deciders

Definition 10.4 (Bounded Halting problem). The k-input Bounded Halting problem is the language BHk
containing the set of tuples (α, T, z1, . . . , zk) where α is the description of a k-input Turing machine, T ∈N,
z1, . . . , zk ∈ {0, 1}∗, andMα accepts input (z1, . . . , zk) in at most T time steps.

We begin by defining natural encodings of a decider’s tape alphabet and set of states.

Definition 10.5 (Decider encodings). Let D be a decider with tape alphabet Γ = {0, 1,t} and set of
states K. We will write encΓ : Γ ∪ {�} → {0, 1}2 for the function which encodes the elements of Γ, and a
special “�” symbol described below, as length-two binary strings in the following manner:

encΓ(0) = 00 , encΓ(1) = 01 ,
encΓ(t) = 10 , encΓ(�) = 11 .

In addition, we write encK : K → {0, 1}κ for some arbitrary fixed κ-bit encoding of the elements of K,
where κ = dlog(|K|)e.
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Now, we give the main result of this section. It states that any deciderD can be converted into a circuit C
which succinctly represents a 3SAT formula ϕ3SAT that carries out the time T computation ofD. In addition,
C is extremely small—size poly log(T) rather than poly(T).

Proposition 10.6 (Succinct representation of deciders). There is an algorithm with the following properties.
Let D be a decider, let n, T, Q, and λ be integers with Q ≤ T and |D| ≤ λ, and let x and y be strings of
length at most Q. Then on input (D, n, T, Q, λ, x, y), the algorithm outputs a circuit C on 3m + 3 inputs
which succinctly describes a 3SAT formula ϕ3SAT on M = 2m variables. Furthermore, ϕ3SAT has the
following property:

• For all a, b ∈ {0, 1}2T, there exists a c ∈ {0, 1}M−4T such that w = (a, b, c) satisfies ϕ3SAT if and
only if there exist aprefix, bprefix ∈ {0, 1}∗ of lengths `a, `b ≤ T, respectively, such that

a = encΓ(aprefix,tT−`a) and b = encΓ(bprefix,tT−`b)

and D accepts (n, x, y, aprefix, bprefix) in time T.

Finally, the following statements hold:

1. The parameter m controlling the number of inputs to the circuit depends only on T and λ, and
m(T, λ) = O(log(T) + log(λ)),

2. C has at most s(n, T, Q, λ) = poly(log(n), log(T), Q, λ) gates,

3. The algorithm runs in time poly(log(n), log(T), Q, λ),

4. Furthermore, explicit values for m(T, λ) and s(n, T, Q, λ) can be computed in time polynomial in
n, log(T), Q, λ.

Proposition 10.6 is essentially the standard fact that Succinct-3SAT is an NEXP-complete language,
i.e. that every nondeterministic computation which takes time 2n can be represented as a Succinct-3SAT
instance of size only poly(n). However, it has several peculiarities which requires us to prove it from
scratch rather than simply appealing to the NEXP-completeness of Succinct-3SAT. First, we require that the
coordinates of a and b embed into w not randomly but as its lexicographically first coordinates (for reasons
that are explained below in Section 10.3). Second, we need explicit bounds on how quantities such as the
size of C relate to quantities such as λ, an upper bound on the description length of D in bits.

To prove Proposition 10.6, we follow the standard proof that Succinct-3SAT is NEXP-complete as pre-
sented in [Pap94]. This proof observes that the Cook-Levin reduction, which is used to show that 3SAT
is NP-complete, produces a 3SAT instance whose clauses follow such a simple pattern that they can be
described succinctly using an exponentially-smaller circuit. One key difference in our proof is that we will
apply the Cook-Levin reduction directly to the 5-input Turing machineD, which by Section 3.1 has 7 tapes;
traditional proofs such as the one in [Pap94] would first convert D to a single-tape Turing machine Dsingle,
and then apply the Cook-Levin reduction for single-tape Turing machines to Dsingle. Though this adds no-
tational overhead to our proof, it allows us to more easily track of which variables in ϕ3SAT correspond to
the strings a and b (see Proposition 10.6 to see what these refer to).

Proof of Proposition 10.6. The Cook-Levin reduction considers the execution tableau of D when run for
time T. The execution tableau contains, for each time t ∈ {1, . . . , T}, variables describing the state of D
and the contents of each of its tape cells at time t. More formally, it consists of the following three sets of
variables.
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1. For each time t ∈ {1, . . . , T}, tape i ∈ {1, . . . , 7}, and tape position j ∈ {0, 1, . . . , T + 1}, the
tableau contains two Boolean-valued variables

ct,i,j = (ct,i,j,1, ct,i,j,2) ∈ {0, 1}2

which are supposed to correspond to the contents of the j-th tape cell on tape i at time t according
to encΓ(·). The variables with j ∈ {0, T + 1} do not correspond to any cell on the tape; rather, the
j = 0 variables correspond to the left-boundary of the tape, and the j = T + 1 variables correspond
to the right-boundary of the first T cells on the tape. These are expected to always contain the special
boundary symbol “�”, i.e. ct,i,j should be equal to encΓ(�) whenever j ∈ {0, T + 1}. As we will
see below, it is convenient to define these so that for each t ∈ {1, . . . , T}, i ∈ {1, . . . , 7}, and
j ∈ {1, . . . , T}, the variable ct,i,j also has a variable to its left ct,i,j−1 and to its right ct,i,j+1.

2. For each time t ∈ {1, . . . , T}, tape i ∈ {1, . . . , 7}, and tape position j ∈ {0, 1, . . . , T + 1}, the
tableau contains Boolean-valued variables ht,i,j ∈ {0, 1} which are supposed to indicate whether the
i-th tape head is in cell j at time t. For the boundary cells j ∈ {0, T + 1}, we expect that ht,i,j = 0 for
all t ∈ {1, . . . , T} and i ∈ {1, . . . , 7}.

3. For each time t ∈ {1, . . . , T}, the tableau contains κ Boolean-valued variables

st = (st,1, . . . , st,κ) ∈ {0, 1}κ

which are supposed to correspond to the state of D at time t according to encK(·).

Finally, we let V denote the set of all of these variables. In other words,

V = {ct,i,j,k}t,i,j,k ∪ {ht,i,j}t,i,j ∪ {st,k}t,k.

In total, the number of variables in the execution tableau is given by

|V| = O
(
T2 + T · log(|K|)

)
= O

(
T2 + T · log(|D|)

)
. (102)

The first term in Equation (102) corresponds to the tape cell encodings ct,i,j and ht,i,j, and the second term
corresponds to the Turing machine state encodings st. The second equality uses the fact that |K| ≤ |D|.

As stated above, we expect the variables in V to correspond to some time-T execution of the decider D.
However, in general these are just arbitrary {0, 1}-valued variables. We now describe a set of constraints
placed on these variables which, if satisfied, ensure they do indeed correspond to some time-T execution
of D. These constraints will be split into two categories: (i) the constraints corresponding to the boundary,
which ensure that the t = 1 variables are initialized to a valid starting configuration and the j ∈ {0, T + 1}
variables are set according to Items 1 and 2, and (ii) the constraints corresponding to the execution of D,
which ensure that the variables at each time (t + 1) follow from the variables at time t according to the
computation of D. We start with the boundary constraints, which are simple enough to be described with a
3SAT formula.

Definition 10.7. The boundary formula ϕBoundary is the 3SAT formula on the variables V described as
follows. Let o = encK(start) ∈ {0, 1}κ, where start ∈ K is the start state of D. For the t = 1 boundary,
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ϕBoundary contains the following set of clauses.

Indices Clauses

i ∈ {1, . . . , 7} h1,i,1 (103)

i ∈ {1, . . . , 7}, j 6= 1 ¬h1,i,j (104)

k ∈ {1, . . . , κ} sok
1,k (105)

i ∈ {1, . . . , 7}, j ∈ {1, . . . , T} ¬c1,i,j,1 ∨ ¬c1,i,j,2 (106)

i ∈ {1, . . . , 5}, j < j′ ∈ {1, . . . , T} ¬c1,i,j,1 ∨ c1,i,j′,1 (107)

i ∈ {6, 7}, j ∈ {1, . . . , T} c1,i,j,1 and ¬c1,i,j,2 (108)

This is meant to be read as follows: for each row, the “Indices” column specifies the range of the indices
that the clauses in the “Clauses” column are quantified over. For example, row (103) specifies that for all
i ∈ {1, . . . , 7}, ϕBoundary contains the clause h1,i,1. For the j ∈ {0, T + 1} boundary, ϕBoundary contains
the following set of clauses.

Indices Clauses

t ∈ {1, . . . , T}, i ∈ {1, . . . , 7}, j ∈ {0, T + 1}, k ∈ {1, 2} ct,i,j,k (109)

Rows (103) and (104) ensure that at time t = 1, each tape has exactly one tape head, and it is located
on cell j = 1. Row (105) ensures that at time t = 1, the state is given by the start state start. (Recall the
notation xo

i to denote the literal xi if o = 1 and ¬xi if o = 0.) For the remaining rows, we recall that under
the encoding of the tape alphabet, encΓ(t) = 10 and encΓ(�) = 11. As a result, (i) row (109) ensures
that for all times and tapes, the cells j ∈ {0, T + 1} contain the � symbol, (ii) row (106) ensures that for
time t = 1, no cell j /∈ {0, T + 1} contains the � symbol, and (iii) row (108) ensures that for time t = 1
and tapes 6 and 7, all cells j ∈ {1, . . . , T} contain the t symbol. Finally, row (107) says that for tapes
i ∈ {1, . . . , 5}, if cell j contains t, then every cell j′ > j must contain t as well. This means that the five
strings encoded by c1,1, . . . , c1,5 each consist of a string of 0’s and 1s followed by a string of t’s. In short,
suppose we write n, x, y, a, and b for the prefixes of these strings with no t’s. If ϕBoundary is satisfied, then
the execution tableau correctly encodes that the tapes of D contain inputs n, x, y, a, and b at time t = 1.

Next, we describe the execution constraints. These are more complicated than the boundary constraints,
and so we will begin by describing them in terms of a general Boolean circuit known as the local check
circuit. For any time t ∈ {1, . . . , T − 1} and tape positions j1, . . . , j7 ∈ {1, . . . , T}, the local check circuit
can check that the execution tableau properly encodes these tape positions at time t+ 1 by looking only at the
encodings of these tape positions and their neighbors (i.e. the tape positions ji ± 1 for each i ∈ {1, . . . , 7})
at time t.

Definition 10.8. In this definition, we will define the local check circuit CCheck. It has the following inputs.

• For each i ∈ {1, . . . , 7}, it has the eight inputs

cCheck,0,i,−1 cCheck,0,i,0 cCheck,0,i,1 hCheck,0,i,−1 hCheck,0,i,0 hCheck,0,i,1
cCheck,1,i,0 hCheck,1,i,0

(110)

where the c-inputs are in {0, 1}2 and the h-inputs are in {0, 1}.

• It has two inputs sCheck,0, sCheck,1 ∈ {0, 1}κ.
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In addition, for each time t ∈ {1, . . . , T − 1} and tape positions j1, . . . , j7 ∈ {1, . . . , T}, we will define a
circuit CCheck,t,j1,...,j7 by associating the inputs of CCheck with certain variables in V . We do this by associating
the following eight inputs from V with the corresponding variables in Equation (110):

ct,i,ji−1 ct,i,ji ct,i,ji+1 ht,i,ji−1 ht,i,ji ht,i,ji+1
ct+1,i,ji ht+1,i,ji

as well as by associating st and st+1 from V with sCheck,0 and sCheck,1, respectively.
To define the behavior of CCheck, it will be more convenient to define the behavior of the circuits

CCheck,t,j1,...,j7 for all values of t, j1, . . . , j7. However, it will be clear that each of these is in fact the same
circuit applied to different inputs, and hence this will define CCheck as well. Now, the circuit CCheck,t,j1,...,j7
acts as follows.

• Suppose for each i ∈ {1, . . . , 7}, exactly one of the tape positions ji − 1, ji, and ji + 1 at time t
contains a tape head. First, CCheck,t,j1,...,j7 computes the transition function of the Turing machine
applied to the contents of these 7 tape positions and the state of D at time t, which produces the state
of D and contents of these tape positions at time t + 1, as well as directions to move the 7 tape heads
in. Then CCheck,t,j1,...,j7 checks that the variables for the tape positions j1, . . . , j7 and the state of D at
time t + 1 match what they should be. In addition, if a tape head is marked as moving into a tape cell
containing a � symbol, that tape head remains in place instead.

• Suppose for each i ∈ {1, . . . , 7}, none of the tape positions ji − 1, ji, or ji + 1 contain a tape head
at time t. Then CCheck,t,j1,...,j7 checks that the variables for the tape positions j1, . . . , j7 at time t + 1
match the variables at time t.

• Otherwise, CCheck,t,j1,...,j7 accepts.

This defines CCheck,t,j1,...,j7 , and therefore CCheck.

Definition 10.8 shows the utility of introducing the boundary variables ct,i,0 and ct,i,T+1. The circuit
CCheck checks the contents of a cell ct,i,j at time t + 1 by looking at the cell and its neighbors ct,i,j−1, ct,i,j+1
at time t. However, those cells with j ∈ {1, T} only have either a left neighbor or a right neighbor, and so
without the boundary variables we’d have to introduce two other local check circuits designed just for these
boundary cases. The boundary variables then allow us to use the same local check circuit for all cells.

Proposition 10.9. The circuit CCheck has size at most poly(|D|) and can be computed in time poly(|D|).

Proof. The circuit has 7 · 12 + 2 · κ = 84 + 2κ total Boolean inputs, giving a total of 284 · 4κ = O(|K|2)
possible input strings. For each possible fixed input string, CCheck will check if the actual input is equal to
the fixed input, which takes O(κ) gates, and then it will accept if the fixed input should be accepting. This
takes O(|K|2 · κ) gates. Computing CCheck requires looping over all possible input strings and checking
which ones are accepting or rejecting. This requires computing the transition function of D, a task which
takes time poly(|D|). The proposition follows by noting that |K| ≤ |D|.

Proposition 10.10. Suppose that the execution tableau satisfies ϕBoundary and the circuit CCheck,t,j1,...,j7 , for
each t ∈ {1, . . . , T − 1} and j1, . . . , j7 ∈ {1, . . . , T}. Then the execution tableau correctly encodes the
execution of D on input (n, x, y, a, b) when run for time T.

114



Proof. To show this, we will show for each time t ∈ {1, . . . T} that the variables in the execution tableau
corresponding to time t correctly encode the state of D and the contents of the seven tapes at time t. The
proof is by induction on t. The base case of t = 1 follows from the tableau satisfying ϕBoundary.

Next we perform the induction step. Assuming the statement holds for time t ∈ {1, . . . , T − 1}, we
will show it holds for time t + 1 as well. Let i∗ ∈ {1, . . . , 7} be a tape, and consider a tape position
ji∗ ∈ {1, . . . , T}. We will show that the variables correctly encode the contents of this tape position at time
t + 1. Suppose one of the tape positions ji∗ − 1, ji∗ , or ji∗ + 1 at time t has a tape head. For each of the other
tapes i 6= i∗, we select a tape position ji such that either ji − 1, ji, or ji + 1 has a tape head at time t. (These
positions are guaranteed to exist since each tape has exactly one tape head.)

By the induction hypothesis, for each tape i ∈ {1, . . . , 7} the variables corresponding to tape cells ji− 1,
ji, and ji + 1 correctly encode the contents of these cells at time t. By assumption, CCheck,t,j1,...,j7 evaluates
to 1. In this case, it calculates the transition function of D to compute the contents of the tape cells j1, . . . , j7
at time t+ 1 and checks that the corresponding variables encode these contents. As a result, the tape position
ji∗ on tape i∗ is correctly encoded. In addition, it computes the state of D at time t + 1 and checks that the
corresponding variables encode this state. This completes the induction step. The case when none of the
tape positions ji∗ − 1, ji∗ , and ji∗ + 1 at time t contain a tape head follows similarly. Finally, the variables
for all tape positions j ∈ {0, T + 1} are correctly encoded due to ϕBoundary being satisfied.

Proposition 10.10 gives a set of constraints that ensure the execution tableau properly encodes the ex-
ecution of D. Our next step will be to convert these constraints into a single 3SAT formula. This entails
transforming each circuit CCheck,t,i1,...,i7 into a 3SAT formula. We do so using the following reduction.

Proposition 10.11 (Circuit-to-3SAT). There is an algorithm which, on input a size-r circuit C on variables
x ∈ {0, 1}n, runs in time poly(r) and outputs a 3SAT formula ϕ on variables x ∈ {0, 1}n and y ∈ {0, 1}r

with O(r) clauses such that for all x, C(x) = 1 if and only if there exists a y such that x and y satisfy ϕ.

Proof. This is the textbook circuit-to-3SAT reduction. For each gate i ∈ {1, . . . , r}, the algorithm intro-
duces a variable yi ∈ {0, 1}, so that the total collection of variables is Vtotal = {xi}i∈{1,...,n} ∪ {yi}i∈{1,...,r}.
Consider gate i ∈ {1, . . . , r}, and let z1, z2 ∈ Vtotal be the pair of variables feeding into it. If gate i is an
AND gate, then ϕ includes the constraints

(¬z1 ∨ ¬z2 ∨ yi) , (z1 ∨ z2 ∨ ¬yi) , (z1 ∨ ¬z2 ∨ ¬yi) , (¬z1 ∨ z2 ∨ ¬yi) . (111)

These constraints are satisfied if and only if yi = z1 ∧ z2. The case of gate i being an OR gate follows
similarly. Finally, ϕ includes the constraint (yi∗), where i∗ ∈ {1, . . . , r} is the output gate. It follows that
x, y satisfy ϕ if and only if C(x) = 1 and for each i ∈ {1, . . . , r}, yi is the value computed by gate i in
circuit C on input x. In total, ϕ has 4r + 1 clauses and is computable in time poly(r).

We now apply the algorithm from Proposition 10.11 to CCheck, which by Proposition 10.9 has size r ≤
poly(|D|). This produces a 3SAT formula ϕCheck on the variables in CCheck plus auxiliary variables ak for
k ∈ {1, . . . , r} added by the reduction. Now, for each t ∈ {1, . . . , T − 1} and j1, . . . , j7 ∈ {1, . . . , T}, we
define a 3SAT formula ϕCheck,t,j1,...,j7 analogously to CCheck,t,j1,...,j7 . We begin by associating those variables
in ϕCheck which come from CCheck’s inputs with the variables in V as in Definition 10.8. Next, for each
k ∈ {1, . . . , r}, we introduce a new variable at,j1,...,j7,k ∈ {0, 1} and associate it with the variable ak. This
defines ϕCheck,t,j1,...,j7 . In summary, the final 3SAT instance produced by the Cook-Levin reduction is

ϕ := ϕBoundary ∧
( ∧

t,j1,...,j7

ϕCheck,t,j1,...,j7
)

. (112)
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By Proposition 10.11, the execution tableau properly encodes the execution of D if and only if there exists
a setting to the auxiliary variables satisfying the 3SAT formula ϕ. In total, ϕ contains

|V|+ O(T8) · r ≤ O
(
T2 + T · log(|D|) + T8 · poly(|D|)

)
= poly(T, |D|) (113)

variables. The second term on the left-hand side of Equation (113) corresponds to the auxiliary variables
in each of the O(T8) copies of ϕCheck. The inequality follows by Equation (102) and the fact that r ≤
poly(|D|).

Our next is to represent the 3SAT formula ϕ succinctly. To do this, we will provide a circuit C which
succinctly describes a 3SAT formula ϕ3SAT which, while not literally equal to ϕ, will be isomorphic to it.
This means that, for example, ϕ3SAT may not even have the same number of variables as ϕ, but any variable
in ϕ will correspond in a clear and direct manner to a variable in ϕ3SAT, and any remaining variables in ϕ3SAT
do not appear in any clauses. This circuit is constructed as follows.

Definition 10.12. In this definition we construct the circuit C. It has three inputs z1, z2, z3 of length m,
which we specify below in Equation (114), and three inputs o1, o2, o3 ∈ {0, 1}. For each ν ∈ {1, 2, 3}, each
zν is supposed to specify a variable in ϕ according to a format we will now specify. If zν is not properly
formatted, then it does not correspond to a variable in ϕ; if any of z1, z2, z3 is not properly formatted, then C
automatically outputs 0. Below, we will often write substrings of the zν’s as though they are integers from
some specified range, i.e. a ∈ {b, . . . , c}. This means that a is represented as a binary string of length
dlog(c + 1)e, which is to be interpreted as the binary encoding of an integer between b and c.

The input zν is formatted as a string (ω, α, β1, β2, β3, β4). The first substring ω has length m− (|α|+
|β1|+ · · ·+ |β4|) bits and is formatted to be the all-zeroes string. Its purpose is to pad the inputs to have
the length m we specify below. Next, α is formatted as an integer α ∈ {1, 2, 3, 4}. The variable encoded
by zν is specified by βα, and the other three β’s should be the all-zeros string. We now specify the encoding
of βα, conditioned on the value of α.

1. β1 is formatted as (t, i, j, k), where

t ∈ {1, . . . , T}, i ∈ {1, . . . , 7}, j ∈ {0, 1, . . . , T + 1}, k ∈ {1, 2}.

This corresponds to the variable ct,i,j,k.

2. β2 is formatted as (t, i, j), where

t ∈ {1, . . . , T}, i ∈ {1, . . . , 7}, j ∈ {0, 1, . . . , T + 1}.

This corresponds to the variable ht,i,j.

3. β3 is formatted as (t, k), where

t ∈ {1, . . . , T}, k ∈ {1, . . . , κ}.

This corresponds to the variable st,k.

4. β4 is formatted as (t, j1, . . . , j7, k), where

t ∈ {1, . . . , T − 1}, j1, . . . , j7 ∈ {1, 2, . . . , T}, k ∈ {1, . . . , r}.

This corresponds to the variable at,j1,...,j7,k.
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In total, the length of these substrings is

|α|+ |β1|+ · · ·+ |β4| = O(log(T) + log(κ) + log(r)) = O(log(T) + log(|D|)) .

As a result, because |D| ≤ λ, the length of the “padding” ω can be chosen so that each zi has length

m = O(log(T) + log(λ)) . (114)

Checking that each zν is properly formatted can be done by checking that certain substrings of z1, z2, and
z3 encode integers which fall within specified ranges. This can be done using O(m) gates.

Having specified the inputs, we can now specify the execution of the circuit, and we may assume that
z1, z2, z3 are properly formatted. Implementing the clauses from ϕBoundary is simple; we specify how to
implement the clause from Equation (103).

• Suppose for input z1, α = 2. Then β2 can be parsed as (t, i, j). The circuit accepts if j = 1 and
o1 = 1, regardless of z1 and z2. This ensures that ϕ3SAT includes xz1 ∨ xo2

z2 ∨ xo3
z3 for any z2, z3, o2, o3,

which is equivalent to including the arity-one clause xz1 .

This can be implemented with O(m) gates. Similar arguments can be used to implement the clauses from
Equations (104)-(109) using O(m) gates apiece.

Implementing the clauses from the formulas ϕCheck,t,j1,...,j7 is more challenging. From Equation (111),
we can see that any constraint in this formula always involves a variable of the form at,j1,...,j7,k for some
k ∈ {1, . . . , r}.

1. First check if one of its inputs z1, z2, z3 corresponds to such a variable. This can be done with O(1)
gates simply by checking if for any of the zi’s, a = 4. If so, this specifies the values of t, j1, . . . , j7.

2. Each variable in ϕCheck,t,j1,...,j7 is associated with a variable in ϕCheck. The circuit checks if all the zi’s
are contained in ϕCheck,t,j1,...,j7 and then it computes which variable in ϕCheck they are associated with.
We include below the example of checking whether z1 is associated with the variable cCheck,1,1,0,0.

• The circuit C first computes t + 1, which takes O(m) gates. It then looks at z1 and checks
if α = 1. If so, then β1 = (t′, i′, j′, k′), and so it tests the equalities t′ = t + 1, i′ = 1, j′ = j1,
and k′ = 0, each of which takes O(m) gates to test. If so, then z1 is associated with cCheck,1,1,0,0.

There are poly(|D|) variables in ϕCheck and, for each variable zi, it takes O(m) gates to determine
whether zi is associated with this variable. As a result, because |D| ≤ λ, this takes poly(λ, log(T))
gates to compute.

3. Whether z1, z2, and z3 share a clause in ϕCheck,t,j1,...,j7 depends only on which variables in ϕCheck they
are associated with. As a result, after having computed these variables, the algorithm can hard-code
whether the circuit C should accept.

This completes the description of C. In total, it contains poly(λ, log(T)) gates. Computing C first requires
computing ϕCheck, which takes time poly(|D|) ≤ poly(λ) by Propositions 10.9 and 10.11. After that, the
steps outlined above for construction C take time poly(λ, log(T)).

The circuit C succinctly describes ϕ in the loose sense described above. Recall that ϕ accepts if and
only if it encodes the execution of D up to time T. We now modify C to (i) hard code n, x, and y onto D’s
input tapes, and (ii) ensure that D accepts. We demonstrate how to do so by hard coding n as an example.
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• The input n is described by some string ν of length ` = O(log(n)). We would like to hard-code the
string (ν,tT−`) into the first tape of D. To do this, we first check if z1 corresponds to the variable
ct,i,j,k for some values of t, i, j, k. Then, we check if t = 1, the time where the inputs appear on the
tapes, and i = 1, corresponding to the first tape. If so, we branch on whether j ≤ `. If it is, then if
k = 1 the circuit accepts if o1 = 0, and if k = 2 the circuit accepts if o1 = νj. Otherwise, if j > `,
then if k = 1 the circuit accepts if o1 = 1, and if k = 2 the circuit accepts if o1 = 0. This can be done
with poly(log(n), log(T)) gates.

This modifies ϕ so that it only accepts if n is written on its first tape at input. We can similarly hard-code x
and y onto the second and third input tapes and hard-code the accepting state as the final state of D. In
total, this takes poly(log(n), |x|, |y|, log(T), λ), which is poly(log(n), Q, log(T), λ) because x and y
have length at most Q.

It remains to ensure that the variables corresponding to the 4th and 5th at time t = 1 are the lexicographically-
first named variables in ϕ. However, this is simple and can be done using poly(log(n), Q, log(T), λ) gates.
This concludes the construction.

10.3 A succinct 5SAT description for deciders

Proposition 10.6 allows us to convert any decider D and inputs n, x, y into a 3SAT formula ϕ3SAT, suc-
cinctly described by a circuit C, which represents it. However, there are two undesirable properties of this
construction, which we describe below.

1. First, evaluating any clause (w
oi1
i1
∨ w

oi2
i2
∨ w

oi3
i3
) of ϕ3SAT requires evaluating the same assignment w

at three separate points. While this is fine when the assignment w is provided in full to the verifier,
it can be a problem when the verifier is only able to query the points in w by interacting with a
prover. In this case, the verifier might send the prover the values i1, i2, i3, who responds with three
bits b1, b2, b3 ∈ {0, 1}, purported to be the values wi1 , wi2 , wi3 for some assignment w ∈ {0, 1}M.
As it will turn out, in the answer reduced protocol below, the verifier will actually be able to force
the prover to reply using three different assignments. In other words, the prover will have three
assignments w1, w2, w3 ∈ {0, 1}M such that, for any i1, i2, i3 provided to it by the verifier, it will
respond with b1 = w1,i1 , b2 = w2,i2 , b3 = w3,i3 . However, even given this there is no guarantee that
the three assignments are the same assignments (i.e. that w1 = w2 = w3). In the work of [NW19],
this was accomplished by an additional subroutine called the intersecting lines test, which would
enforce consistency between w1, w2, and w3. In this work, on the hand, we would like to relax the
assumption that w1, w2, and w3 must be the same. This will allow us to not use the intersecting
lines test, simplifying the answer reduction protocol. (In fact, the answer reduced verifier will not be
querying the assignments directly, but rather low-degree encodings of these assignments; see Section 9
for details.)

2. Second, we are guaranteed that w = (a, b, c) satisfies ϕ3SAT if and only if D accepts (n, x, y, a, b).
However, it is inconvenient that a and b are contained as substrings of w. To see why, recall from
Section 9 that the oracularized verifier sometimes gives one prover a pair of questions (x, y) and
another prover just one of the questions—say, x. The answer reduced verifier will sample its questions
similarly; as for its answers, it might expect the first prover to respond with a string w = (a, b, c) that
satisfies ϕ3SAT and the second prover to respond with a string a′ such that a = a′. Verifying that
a = a′ requires the verifier to sample a uniformly random point from w, restricted to the coordinates
in a. As it turns out, generating a uniform point from a substring is extremely cumbersome, though
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not impossible, to do when the verifier’s questions are expected to be sampled from conditional linear
functions. To remove this complication, though, we would instead prefer if the provers’ answers were
formatted in a way that gave the verifier direct access to the strings a and b.

In the remainder of this section, we will show how to modify the Succinct-3SAT circuits produced by
Proposition 10.6 in order to ameliorate these two difficulties. Doing so entails modifying the ϕ3SAT formula
from Proposition 10.6 to produce a 5SAT formula ϕ5SAT. The clauses of ϕ5SAT will be of the form

ao1
i1
∨ bo2

i2
∨ wo3

1,i3
∨ wo4

2,i4
∨ wo5

3,i5
,

where a, b, w1, w2, and w3 are five separate assignments which are not assumed to be equal. The guarantee is
that (a, b, w1, w2, w3) satisfies ϕ5SAT if and only ifD accepts (n, x, y, a, b). This addresses the two concerns
from above: each clause is totally decoupled, meaning it samples 5 variables from 5 different assignments,
and so no consistency check must be performed between the assignments. In addition, the first two strings
exactly correspond to a and b, addressing the second item.

We now formally define decoupled 5SAT instances and how they succinctly represent bounded deciders.
Following that, we show how the succinct 3SAT instance ϕ3SAT produced by Proposition 10.6 can be modi-
fied to produce a succinct 5SAT instance ϕ5SAT which represents D.

Definition 10.13 (Decoupled 5SAT and its succinct descriptions). A block of variables xi is a tuple xi =
(xi,0, . . . , xi,Ni−1). A formula ϕ on 5 blocks x1, x2, . . . , x5 of variables is called a decoupled 5SAT formula
if every clause is of the form

xo1
1, i1
∨ xo2

2, i2
∨ xo3

3, i3
∨ xo4

4, i4
∨ xo5

5, i5
, (115)

for ij ∈ {0, 1, . . . , Nj − 1} and o1, . . . , o5 ∈ {0, 1}. (Recall from Definition 10.2 that the notation xo means
x if o = 1 and ¬x if o = 0.)

For each i ∈ {1, 2, . . . , 5}, suppose each Ni is a power of two, and write it as Ni = 2ni . Let C be
a circuit with five inputs of length n1, n2, . . . , n5 and five single-bit inputs. Then C succinctly describes
decoupled ϕ if, for all ij ∈ {0, 1, . . . , Nj − 1} and o1, o2, . . . , o5 ∈ {0, 1},

C(i1, i2, . . . , i5, o1, o2, . . . , o5) = 1 (116)

if and only if the clause in (115) is included in ϕ. As in Definition 10.2, we slightly abuse notation and
use the convention that a number a between 0 and 2ni − 1 is interpreted as its binary encoding binaryni

(a)
when provided as input to a set of ni single-bit wires.

Definition 10.14 (Succinct descriptions for bounded deciders). Let D be a decider. Fix an index n ∈ N

and a time T ∈ N. Let L = 2` be the smallest power of two at least as large as 2T. Let x and y be strings,
r ∈N and R = 2r.

Consider a circuit C with two inputs of length `, three inputs of length r, and 5 single-bit inputs. Let ϕC
be the decoupled 5SAT instance with two blocks of variables of size L and three blocks of size M which C
succinctly describes. Then we say that C succinctly describes D (on inputs n, x, and y and time T) if, for
all a, b ∈ {0, 1}L, there exists w1, w2, w3 ∈ {0, 1}R such that a, b, w1, w2, w3 satisfy ϕC if and only if there
exist aprefix, bprefix ∈ {0, 1}∗ of lengths `a, `b ≤ T, respectively, such that

a = encΓ(aprefix , tL/2−`a) and b = encΓ(bprefix , tL/2−`b)

and D accepts (n, x, y, aprefix, bprefix) in time T.
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In this definition of succinct descriptions, the answers a and b are isolated, in that the first input of C of
length ` indexes into a and the second input of length ` indexes into b. The next proposition shows how to
construct such descriptions.

Proposition 10.15 (Explicit succinct descriptions). There is a Turing machine SuccinctDecider with the
following properties. Let D be a decider, let n, T, Q, and λ be integers with Q ≤ T and |D| ≤ λ, and
let x and y be strings of length at most Q. Then on input (D, n, T, Q, λ, x, y), SuccinctDecider outputs a
circuit C with two inputs of length `0(T), three of length r0(T, λ), and five single-bit inputs which succinctly
describes D on inputs n, x, and y and time T. Moreover, the following hold.

1. `0(T) = dlog(2T)e.

2. r0(T, λ) = O(log(T) + log(λ)),

3. C has at most s0(n, T, Q, λ) = poly(log(T), log(n), Q, λ) gates,

4. SuccinctDecider runs in time poly(log(T), log(n), Q, λ), and the parameters `0, r0, s0 can be com-
puted from n, T, Q, λ in time poly(log(T), log(n), log(Q), λ).

Proof. The Turing machine SuccinctDecider begins by running the algorithm in Proposition 10.6 on input
(D, n, T, Q, λ, x, y) to produce a circuit C3SAT on 3r0 + 3 inputs, where r0 = O(log(T) + log(λ)) is the
parameter m from the proposition. Set `0 = dlog(2T)e, L = 2`0 and R = 2r0 . Given this, SuccinctDecider
returns the circuit C with inputs i1, i2 ∈ {0, 1, . . . , L − 1}, i3, i4, i5 ∈ {0, 1, . . . , R − 1}, o1, o2, . . . , o5 ∈
{0, 1}, and

C(i1, i2, . . . , i5, o1, o2, . . . , o5) = 1,

if one of the following conditions hold.

C3SAT(i3, i4, i5, o3, o4, o5) = 1 ,
(i1 < 2T) ∧ (i1 = i3) ∧ (o1 6= o3) ,
(i2 < 2T) ∧ (i2 = i3 − 2T) ∧ (o2 6= o3) ,
(i1 ≥ 2T) ∧ (i1 is odd) ∧ (o1 = 1) ,
(i1 ≥ 2T) ∧ (i1 is even) ∧ (o1 = 0) ,
(i2 ≥ 2T) ∧ (i2 is odd) ∧ (o2 = 1) ,
(i2 ≥ 2T) ∧ (i2 is even) ∧ (o2 = 0) ,
(i3 = i4) ∧ (o3 6= o4) ,
(i4 = i5) ∧ (o4 6= o5) .

It is not hard to verify that testing “(i1 < 2T)” can be done with O(`0) AND and OR gates, and testing
(i2 = i3 − 2T) can be done with O(m) AND and OR gates. Using similar estimates for the remaining
sub-circuits, we compute

size(C) = size(C3SAT) + O(r0 + `0) = size(C3SAT) + O(r0)

≤ poly(log(T), log(n), Q, λ) + O(log(T) + log(λ)) .

In addition, due to the simplicity of these modifications, we conclude that the runtime of SuccinctDecider
is dominated by the runtime of the algorithm from Proposition 10.6, which is poly(log(T), log(n), Q, λ).
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Now we show that C succinctly describes D on inputs n, x, and y and time T. To begin, we describe
the decoupled 5SAT formula ϕC . Let us first consider the constraints in ϕC which are implied by the final
constraint, i.e. those of the form

ao1
i1
∨ bo2

i2
∨ (w1)

o3
i3
∨ (w2)

o4
i4
∨ (w3)

o5
i5

whenever i4 = i5 and o4 6= o5. For any fixed i1, i2, i3, the negations o1, o2, o3 can take any values, and
as a result, the first three bits in the constraint vary over all assignments in {0, 1}3. This means that these
constraints are satisfied if and only if (w2)

o4
i4
∨ (w3)

o5
i5

is satisfied whenever i4 = i5 and o4 6= o5. This, in
turn, is equivalent to the constraint w3 = w4. Carrying out similar arguments for the entire circuit, we can
express the formula ϕC as follows.

ϕC(a, b, w1, w2, w3) = ϕ3SAT(w1, w2, w3) ∧ (w1,1 = a1) ∧ (w1,2 = b1)

∧ (a2 = (10)L/2−T) ∧ (b2 = (10)L/2−T) ∧ (w1 = w2) ∧ (w2 = w3).

Here, we write ϕ3SAT(w1, w2, w3) for the formula in which, for each constraint in ϕ3SAT, the first variable
is taken from w1, the second from w2, and the third from w3. In addition, we write a = (a1, a2), where
a1 is the first 2T bits in a and a2 is the remaining L − 2T bits, and similarly for b = (b1, b2). We also
write w1 = (w1,1, w1,2, w1,3), where w1,1 contains the first 2T bits in w1, w1,2 contains the second 2T
bits, and w1,3 contains the remaining R− 4T bits. As a result, ϕC is satisfied only if w1 = w2 = w3 =
(a1, b1, c) for some string c ∈ {0, 1}R−4T. In this case, calling w = (a1, b1, c), ϕC is satisfied only if
ϕ3SAT(w) is. By Proposition 10.6, this implies that there exists string aprefix of length `a ≤ T such that
a1 = encΓ(aprefix, tT−`a). This, in turn, implies that

a = (a1, a2) = (encΓ(aprefix, tT−`a), (10)L−2T) = encΓ(aprefix, tL/2−`a) ,

using the fact that encΓ(t) = 10, and similarly for b. Finally, Proposition 10.6 implies that D accepts
(n, x, y, aprefix, bprefix) in time T. This completes the proof.

As stated above, moving from 3SAT to 5SAT allows us to devote the first two inputs to a and b. In
addition, we have added extra constraints into ϕC which enforce that w1 = w2 = w3, which means that we
can relax this assumption on these assignments.

We now show a simple transformation that takes in a succinct circuit C and outputs another succinct
circuit C ′ whose 5 inputs are “padded” to contain more input bits. This will be helpful in the PCP proof
below, where we sometimes expect the input lengths ` and r to be divisible by another integer m.

Proposition 10.16 (Padding). Let C be a circuit of size s with two inputs of length `, three inputs of length r,
and 5 single-bit inputs. Suppose C succinctly describesD on inputs n, x, and y and time T. Then there is an
algorithm which takes as input (C, `, r, `′, r′), with `′ ≥ ` and r′ ≥ r, and in time poly(s, `′, r′) outputs a
circuit C ′ with the following properties. First, C ′ has two inputs of length `′, three inputs of length r′, and 5
single-bit inputs, and its size is s + poly(`′, r′). Second, it succinctly describes D on inputs n, x, and y and
time T.

Proof. Write L = 2`, R = 2r and L′ = 2`
′
, R′ = 2r′ . The algorithm constructs the circuit C ′ which on

inputs i1, i2 ∈ {0, . . . , L′ − 1}, i3, i4, i5 ∈ {0, . . . , R′ − 1}, and o1, . . . , o5 ∈ {0, 1}, outputs 1 if and only if
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one of the following conditions hold:

(i1, i2 < L) ∧ (i3, i4, i5 < R) ∧ C(i1, i2, i3, i4, i5, o1, o2, o3, o4, o5) = 1 ,
(i1 ≥ L) ∧ (i1 is odd) ∧ (o1 = 1) ,
(i1 ≥ L) ∧ (i1 is even) ∧ (o1 = 0) ,
(i2 ≥ L) ∧ (i2 is odd) ∧ (o2 = 1) ,
(i2 ≥ L) ∧ (i2 is even) ∧ (o2 = 0) .

Now we show that C ′ succinctly describes D on inputs n, x, and y and time T. To begin, we describe the
decoupled 5SAT formula ϕC ′ . The second and third constraints imply that for each i1 ≥ L, ϕC ′ contains the
constraint (ai1) if i1 is odd and (¬ai1) if i1 is even. Likewise, the fourth and fifth constraints imply that for
each i2 ≥ L, ϕC ′ contains the constraint (bi2) if i2 is odd and (¬ai2) if i2 is even. Thus, we can express the
formula ϕC ′ as follows.

ϕC ′(a, b, w1, w2, w3) = ϕC(a1, b1, w1,1, w2,1, w3,1) ∧ (a2 = (10)(L′−L)/2) ∧ (b2 = (10)(L′−L)/2). (117)

Here, we write a = (a1, a2) and b = (b1, b2), where a1, b1 have length L and a2, b2 have length L′ − L, and
for each i ∈ {1, 2, 3}, we write wi = (wi,1, wi,2), where wi,1 has length R and wi,2 has length R′ − R.

Now, suppose there exist w1, w2, w3 such that a, b, w1, w2, w3 satisfy ϕC ′ . Then because C succinctly
represents D, there exists aprefix, bprefix of lengths `a, `b ≤ T such that D accepts (n, x, y, aprefix, bprefix). In
addition,

a1 = encΓ(aprefix,tL/2−`a),

and likewise for b1. Equation (117) then implies that

a = (a1, a2) = (encΓ(aprefix,tL/2−`a), (10)(L′−L)/2)

= (encΓ(aprefix,tL/2−`a), encΓ(t)(L′−L)/2)

= encΓ(aprefix,tL′/2−`a),

where the third step used the fact that encΓ(t) = 10. As a similar statement holds for b, this establishes
that C ′ succinctly describes D on inputs n, x, and y and time T.

10.4 A PCP for normal form deciders

We give a probabilistically checkable proof (PCP) for the Bounded Halting problem specialized to the case
of normal form deciders. Our PCP will use standard techniques from the algebraic, low-degree-code-based
PCP literature. In particular, we slightly modify the PCP for Succinct-3SAT described in [NW19, Section
11] (which itself is based on the proof of the PCP theorem in [Har04]) to apply it to the decoupled Succinct-
5SAT instances described in Section 10.3. We follow their treatment closely. As the PCPs constructed in
this section are only an intermediate object towards the normal form verifier introduced in the next section
we do not include standard definitions on PCPs, and refer to these references (in particular [Har04]) for
background. We begin with some preliminaries.

10.4.1 Preliminaries

A key part of the PCP will be to design a function f : Fn → F which is zero on a subcube Hsubcube =
H1× · · · ×Hn, where each Hi is some subset of F. Our next proposition shows that given such a function f ,
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there is a way of writing it so that the fact that it is zero on Hsubcube is self-evidently true. Doing so involves
showing that f can be written in a simple basis of polynomials which are constructed to be zero on the
subcube. This fact is standard in the literature (see, for example, [Har04, Proposition 5.3.5]), and we include
its proof for completeness.

Proposition 10.17 (Polynomial basis of zero functions). Let F be a field. For each i ∈ {1, . . . , n}, let Hi
be a subset of F of size hi, and let zeroi : F → F be the function defined as zeroi(x) = ∏y∈Hi

(x − y).
Define Hsubcube = H1 × · · · × Hn. Suppose f : Fn → F is a degree-d polynomial such that f (x) = 0 for
all x ∈ Hsubcube. Then there exist polynomials c1, . . . , cn : Fn → F such that for all x ∈ Fn,

f (x) =
n

∑
i=1

ci(x) · zeroi(xi) .

In addition, for each i ∈ {1, . . . , n}, ci is degree-(d− hi) if d ≥ hi, and otherwise it is equal to the zero
polynomial.

Proof. To prove this, we first prove the following statement for each k ∈ {0, 1, . . . , n}: there exists a
degree-d polynomial rk : Fn → F and polynomials c1, . . . , ck : Fn → F such that

f (x) =
k

∑
i=1

ci(x) · zeroi(xi) + rk(x) . (118)

In addition, for each i ∈ {1, . . . , k}, ci is degree-(d− hi) if d ≥ hi, and otherwise it is equal to the zero
polynomial. Furthermore, for each i ∈ {1, . . . , k}, rk is degree at most hi − 1 in xi.

The proof is by induction on k, the base case of k = 0 being trivial. Now, we perform the induction
step. Assuming that Equation (118) holds for k, we will show that it holds for k + 1 as well. Let rk be the
polynomial guaranteed by the inductive hypothesis. We now divide rk by zerok+1(xk+1) using polynomial
division. This guarantees a polynomial ck+1 and a degree-d polynomial rk+1(x) such that

rk(x) = ck+1(x) · zerok+1(xk+1) + rk+1(x)

In addition, ck+1 is degree-(d− hk+1) if d ≥ hk+1, and otherwise it is equal to the zero polynomial. Fur-
thermore, for each i ∈ {1, . . . , k + 1}, rk+1 is degree at most hi− 1 in xi. Plugging this into Equation (118),
we see that

f (x) =
k+1

∑
i=1

ci(x) · zeroi(xi) + rk+1(x) . (119)

This completes the induction.
Applying the k = n case of Equation (118), we see that

f (x) =
n

∑
i=1

ci(x) · zeroi(xi) + r(x) , (120)

where, for each i ∈ {1, . . . , n}, r is degree-(hi − 1) in xi. For each x ∈ Hsubcube, because f (x) and
the summation on the left-hand side of Equation (120) are zero on x, this implies that r(x) = 0 as well.
We claim that r must therefore be the zero polynomial. We prove this by showing the following statement
for every integer k ∈ {1, . . . , n}: let s(x1, . . . , xk) be a polynomial which is zero on H1 × · · · × Hk.
Furthermore, suppose that for each i ∈ {1, . . . , k}, s is degree-(hi − 1) in xi. Then s is the zero polynomial.
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The proof is by induction on k. Consider the base case k = 1. Then s is a univariate polynomial of
degree at most h1 − 1, but is zero on h1 points. Thus s must be the zero polynomial. Now we perform the
induction step. Assuming the proposition holds for some k ≥ 1, we will show that it holds for k + 1 as
well. Assume for contradiction that s is not the zero polynomial. Let d be the minimum integer such that s
is degree d in variable xk+1. By assumption, d ≤ hk+1 − 1. Write

s(x1, . . . , xk+1) =
d

∑
j=0

xj
k+1 · gj(x1, . . . , xk),

where for each j ∈ {0, . . . , d}, the polynomial gj has degree at most hi − 1 in the variable xi for i ∈
{1, . . . , k}. Because s is nonzero and d was selected to be minimal, gd cannot be the zero polynomial. In
this case, our induction hypothesis states that gd(y) 6= 0 for some y ∈ H1 × · · · × Hk. Then s(y, xk+1) is
a degree-d nonzero univariate polynomial in xk+1. Furthermore, for each xk+1 ∈ Hk+1, s(y, xk+1) = 0, by
assumption. But this is a contradiction, as any univariate polynomial of degree at most hk+1 − 1 which is
zero on every point in Hi+1 must be the zero polynomial. As a result, s must be zero on H1 × · · · × Hk+1.

Thus, r is the zero polynomial. Applying this fact to Equation (120), we arrive at the statement in the
proposition.

10.4.2 The PCP

The problem. The input to the PCP verifier is a tuple (D, n, T, Q, λ, x, y). Here, D is a decider, n, T, Q,
and λ are integers with Q ≤ T and |D| ≤ λ, and x and y are a pair of strings of length at most Q each. The
goal of the verifier is to check whether there exists two strings aprefix and bprefix of length at most T such
that D halts on input (n, x, y, aprefix, bprefix) in time at most T. To do that the verifier makes random queries
to a specially encoded PCP proof Π, and decides whether to accept or reject based on the parts of Π that it
reads. We first set the parameters used in the PCP construction.

Definition 10.18 (Parameters for the PCP). For all integers n, T, Q, λ ∈ N such that Q ≤ T and |D| ≤ λ
define the tuple pcpparams(n, T, Q, λ) = (`, r, s, m, d, m′, q) as follows. Let r0 = r0(T, λ), `0 = `0(T)
and s0 = s0(n, t, Q, λ) be as in Proposition 10.15.

1. Let m = dr0/ log(r0)e.

2. Let r, ` be the smallest integers such that r ≥ r0 and ` ≥ `0 and such that r, ` are multiples of m.
Note that r < r0 + m and ` < `0 + m.

3. Let s = s0.

4. Let d = 8s · (2r/m − 1) = 8s · poly(r).

5. Let m′ = 5m + 5 + s.

6. Let q be the smallest field size such that: q = 2k for some odd integer k; qm ≥ 2r; and d(m +
m′)/qc ≤ 1

n , where c is the smallest of the two universal constants in Lemma 7.4 and Theorem 7.14.

Given n, T, Q, λ, pcpparams(n, T, Q, λ) can be computed in time poly(log(n), log(T), log(Q), λ).

Next, we define the format of a valid PCP proof, which for our construction consists of evaluation tables
of low-degree polynomials.
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Definition 10.19. Given n, T, Q, λ ∈ N and (`, r, s, m, d, m′, q) = pcpparams(n, T, Q, λ), a low-degree
PCP proof is a tuple Π of evaluation tables of polynomials g1, . . . , g5 : Fm

q → Fq and c0, . . . , cm′ : Fm′
q →

Fq with all polynomials having degree at most d. We divide the m′ input variables of c0, . . . , cm′ into blocks
as follows:

Fm′
q 3 z = ( x1︸︷︷︸

Fm
q

, . . . , x5︸︷︷︸
Fm

q

, o︸︷︷︸
F5

q

, w︸︷︷︸
Fs

q

) .

Definition 10.20. Given a low-degree PCP proof Π and a point z = (x1, . . . , x5, o, w) ∈ Fm′
q , where

x1, . . . , x5 ∈ Fm
q , o ∈ F5

q, and w ∈ Fs
q, the evaluation of Π at z is given by

evalz(Π) = (α1, . . . , α5, β0, . . . , βm′) ∈ F6+m′
q ,

where αi = gi(xi) and β j = cj(z).

Theorem 10.21. There exists a Turing machineMAR with the following properties.

1. (Input format) The input toMAR consists of two parts: a “decider specification” and a “PCP view.”

(a) (Decider specification) LetD be a decider, n, T, Q, and λ be integers with Q ≤ T and |D| ≤ λ,
and let x and y be strings of length at most Q. Let (`, r, s, m, d, m′, q) = pcpparams(n, T, Q, λ)
be as in Definition 10.18. Then the decider specification is the tuple (D, n, T, Q, λ, q, x, y).

(b) (PCP view) Let z ∈ Fm′
q and let Ξ ∈ F6+m′

q . Then the PCP view is the pair (z, Ξ).

The Turing machineMAR returns either 1 (accept) or 0 (reject).

For the remaining items, assume a decider specification has been fixed, so we think ofMAR as a function
of the PCP view input only.

2. (Completeness): Suppose aprefix, bprefix ∈ {0, 1}∗ are two strings of length `a, `b, respectively, such
that D halts in time T on input (n, x, y, aprefix, bprefix). Setting L = 2`, write

a = encΓ(aprefix , tL/2−`a) and b = encΓ(bprefix , tL/2−`b) .

Then there exists a low-degree PCP proof (Definition 10.19) Π = (g1, . . . , g5, c0, . . . , cm′) with g1 =
ga and g2 = gb, the canonical low-degree encodings of a and b with parameters m, q respectively
(see Definition 3.24), which causes MAR to accept with probability 1 over the choice of a point z
uniformly at random:

Pr
z∈Fm′

q

(
MAR(z, evalz(Π)) = 1

)
= 1 .

3. (Soundness): Let Π = (g1, . . . , g5, c0, . . . , cm′) be a low-degree PCP proof such that MAR at a
uniformly random z accepts with probability larger than psound = 0.9:

Pr
z∈Fm′

q

(
MAR(z, evalz(Π)) = 1

)
> psound .

Then there exist degree-d polynomials f1, f2 : Fm
q → Fq and strings a, b ∈ {0, 1}L with the following

properties.
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(a) There exist strings aprefix, bprefix ∈ {0, 1}∗ of length `a, `b, respectively, such that

a = encΓ(aprefix , tL/2−`a) and b = encΓ(bprefix , tL/2−`b) .

(b) D halts in time T on input (n, x, y, aprefix, bprefix).

(c) For every i ∈ {1, . . . , 2`}, f1(πL(i)) = ai and f2(πL(i)) = bi, where πL is the canonical
injection map given in Definition 3.22, where n = 2` and k, m are as here.

(d) On a random x ∈ Fm
q , the probability that f1(x) 6= g1(x) is at most 0.2, and likewise for f2

and g2.

4. (Efficiency): MAR runs in time poly(s, m′, 2r/m, log(q), |D|). Recalling the setting of parameters
in Definition 10.18, this means thatMAR runs in time at most poly(log(T), log(n), Q, log(q), |D|).

Proof of Theorem 10.21. We first give the construction ofMAR and then show that it satisfies the properties
claimed in the theorem. The Turing machineMAR begins by computing

C0 = SuccinctDecider(D, n, T, Q, λ, x, y),

(see Proposition 10.15) which succinctly describes the decoupled 5SAT formula ϕC0 . The circuit C0 has
two `0-bit inputs, three r0 = O(log(T) + log(λ))-bit inputs, and five single-bit inputs, and contains at
most s0 = poly(log(T), log(n), Q, λ) AND and OR gates. (We note that C0 also has NOT gates. However,
it will not be necessary for us to keep track of the number of these gates.)

Let C be the circuit obtained from Proposition 10.16 by padding the input wires of C0 so that the variable-
length inputs of C are two inputs of length ` and three of length r. Henceforth we work with this padded
circuit. The circuit C is a succinct description of D; we recall what this means here. Write L := 2` and
R := 2r. Then for all a, b ∈ {0, 1}L, there exist u1, u2, u3 ∈ {0, 1}R such that a, b, u1, u2, u3 satisfy ϕC if
and only if there exist aprefix, bprefiix ∈ {0, 1}∗ of lengths `a, `b ≤ T, respectively, such that

a = encΓ(aprefix,tT−`a) and b = encΓ(bprefix,tT−`b)

and D accepts (n, x, y, aprefix, bprefix) in time T. We refer to the five strings a, b, u1, u2, u3 as the witness
strings. By Propositions 10.15 and 10.16, computing C from (D, n, T, Q, λ, x, y) can be done in time
poly(log(T), log(n), log(Q), λ).

Encoding the proof. Recall from Definition 3.22 the canonical subspaces HL = Hcanon,m,k,L and HR =
Hcanon,m,k,R (where we see HL as a subset of HR in a natural way), their sizes hL := hcanon,m,k,L = 2`/m

and hR := hcanon,m,k,R = 2r/m, and the following two canonical injections:

πL = πcanon,m,k,L : {0, 1, . . . , L− 1} → Hm
L ,

πR = πcanon,m,k,R : {0, 1, . . . , R− 1} → Hm
R .

By Definition 3.22 and the setting of parameters in Definition 10.18, these are both bijections, and hL and
hR are both at most 2r/m = poly(r).

The PCP proof contains five functions g1, . . . , g5 : Fm
q → Fq.MAR expects these to be the low-degree

encodings ga,πL , gb,πL , gu1,πR , gu2,πR , gu3,πR of five witness strings, the first two with respect to πL and the
last three with respect to πR (see Equation (12) on page 30 for the definition of low-degree encodings). In

126



this case, the first two have degree m(hL − 1) = poly(r), and the last three degree m(hR − 1) = poly(r).
In addition, for all i1, i2 ∈ {0, 1, . . . , L− 1}

g1(πL(i1)) = ai1 , g2(πL(i2)) = bi2 ,

and for all j ∈ {3, 4, 5} and ij ∈ {0, 1, . . . , R− 1} ,

gj(πR(ij)) = uj−2, ij . (121)

We also recall the following maps from Definition 3.25:

νL = νcanon,m,k,L : Fm
q → F`

q ,

νR = νcanon,m,k,R : Fm
q → Fr

q .

By Proposition 3.26, these are degree hL − 1 and hR − 1, respectively, can be computed in poly(m, hR, k)
time, and have the property that for each i ∈ {0, 1, . . . , L− 1},

νL(πL(i)) = binary`(i) , (122)

and likewise for νR.

Encoding the formula. Next, MAR modifies C to make it compatible with low-degree encodings. To
begin, it applies the Tseitin transformation (see [NW19, Section 3.8]) to C. This produces a Boolean for-
mula F with s′ ≤ 8s AND and OR gates (where we recall that s is an upper bound on the number of AND
and OR gates in C) such that for all i1, i2 ∈ {0, 1, . . . , L− 1}, i3, i4, i5 ∈ {0, 1, . . . , R− 1}, and o ∈ {0, 1}5,

C(i1, i2, . . . , i5, o) = 1

if and only if there exists a w ∈ {0, 1}s such that

F (i1, i2, . . . , i5, o, w) = 1 .

Next,MAR arithmetizes the formula as in [NW19, Definition 3.28] by setting Farith := arithq(F ). This is
a function Farith : F2`+3r+5+s

q → Fq such that

∀x ∈ {0, 1}2`+3r+5+s , Farith(x) = F (x) . (123)

By [NW19, Proposition 3.29], Farith is a degree-s′ polynomial. Computing Farith involves performing
O(s′) = O(s) field operations (addition, subtraction, and multiplication), a time poly(s, log q) task. Let
m′ = 5m + 5 + s, and define the function gϕ : Fm′

q → Fq by

gϕ(x1, x2, . . . , x5, o, w) = Farith(νL(x1), νL(x2), νR(x3), νR(x4), νR(x5), o, w) . (124)

By (122) and (123), for all i1, i2 ∈ {0, 1, . . . , L − 1}, i3, i4, i5 ∈ {0, 1, . . . , R − 1}, o ∈ {0, 1}5, and
w ∈ {0, 1}s,

gϕ(πL(i1), πL(i2), πR(i3), πR(i4), πR(i5), o, w) = F (i1, i2, . . . , i5, o, w) . (125)

By construction, gϕ has degree at most s′ · hR and can be computed in time poly(s, m, hR, log(q)).
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Zero on subcube. Define the function c0 : Fm′
q → Fq as

c0(x, o, w) = gϕ(x, o, w) · (g1(x1)− o1) · · · (g5(x5)− o5) .

If the gi are low-degree encodings of witness strings, then c0 is a degree d := s′ · hR + 2mhL + 3mhR =
O(s · poly(r)) polynomial. Next, define the subcube

Hsubcube := Hsubcube, 1 × · · · × Hsubcube, 5m+5+s = H2m
L × H3m

R × {0, 1}5+s .

Here, the first 2m Hsubcube, i are HL, the next 3m are HR, and the remaining are {0, 1}. We would like
to evaluate c0 on the subcube Hsubcube in the case that the gi are low-degree encodings of the witness
strings. Let (x, o, w) ∈ Hsubcube. Then because πL, πR are bijections, there exist i1, i2 ∈ {0, 1, . . . , L− 1}
and i3, i4, i5 ∈ {0, 1, . . . , R− 1} such that x = (πL(i1), πL(i2), πR(i3), πR(i4), πR(i5)). As a result, by
Eqs. (121) and (125),

c0(x, o, w) = F (i1, i2, . . . , i5, o, w) · (ai1 − o1)(bi2 − o2)(u1, i3 − o3)(u2, i4 − o4)(u3, i5 − o5) . (126)

Suppose F (i1, i2, . . . , i5, o, w) 6= 0. Then C(i1, i2, . . . , i5, o) = 1, and so ao1
i1
∨ bo2

i2
∨ uo3

1,i3
∨ uo4

2,i4
∨ uo5

3,i5
is a

clause in ϕC . But a, b, u1, u2, u3 satisfy ϕC , and so one of the terms in Equation (126) must evaluate to 0. In
conclusion, c0 is zero on the subcube Hsubcube.

For each i, let zeroi : Fq → Fq be the function defined as zeroi(x) = ∏y∈Hsubcube, i
(x − y). If c0

evaluates to zero on the subcube Hsubcube, then by Proposition 10.17 there exist degree-d polynomials
c1, . . . , cm′ : Fm′

q → Fq such that for all z = (x, o, w) ∈ Fm′
q ,

c0(z) =
m′

∑
i=1

ci(z) · zeroi(zi) .

The PCP proof will include these ci’s to certify that c0 is zero on the subcube. From the preceding discussion,
this, in turn, certifies that a, b, u1, u2, u3 are witness strings that satisfy ϕC .

The honest PCP proof. The PCP for (D, n, T, Q, λ, q, x, y) is given by a tuple Π consisting of truth tables
of functions g1, . . . , g5 : Fm

q → Fq and c0, . . . , cm′ : Fm′
q → Fq, together with associated planes tables. In

the “honest” PCP proof, the functions are expected to satisfy the following:

• g1, . . . , g5 are the low-degree encodings of a, b ∈ {0, 1}L and u1, u2, u3 ∈ {0, 1}R;

• For every (x, o, w) ∈ Fm′
q ,

c0(x, o, w) = gϕ(x, o, w)(g1(x1)− o1)(g2(x2)− o2) · · · (g5(x5)− o5) ; (127)

• c0, . . . , cm′ are such that

∀z = (x, o, w) ∈ Fm′
q ,

m′

∑
i=1

ci(z)zeroi(zi) = c0(z) . (128)
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The PCP view. We describe how MAR decides whether to accept or reject given a view (z, Ξ) of a
purported PCP proof. Recall that the input Ξ ∈ F6+m′

q is intended to be equal to the evaluation evalz(Π)

of a low-degree PCP proof Π = (g1, . . . , g5, c0, . . . , cm′) at the point z = (x, o, w) ∈ Fm′
q . We denote

the elements of Ξ by Ξ = (α1, . . . , α5, β0, . . . , βm′). Given a decider specification and a PCP view (z, Ξ),
MAR decides to accept or reject by performing the following steps sequentially.

1. (Zero test) Verify that Eq. (128) holds at z = (x, o, w), i.e. reject if ∑m′
i=1 βi zeroi(zi) 6= β0.

2. (Formula test) Verify Eq. (127) at z = (x, o, w) ∈ Fm′
q : compute the value gϕ(z) of the polynomial

gϕ obtained from (D, n, T, x, y). As noted below Eq. (125), this value can be computed in time
poly(s, m, hR, log(q)). Reject if

β0 6= gϕ(z)(α′1 − o1) · · · (α′5 − o5) .

3. Otherwise, accept.

This completes the description of the Turing machineMAR. It remains to show the properties claimed in
the theorem. Completeness follows by inspection ofMAR and the form of the honest PCP proof. Soundness
follows from [NW19, Proposition 11.8]. We now evaluate the running time ofMAR. The zero test involves
computing m′ different zeroi(zi) values, each of which is a product of at most hR different terms. This takes
time poly(m′, hR, log(q)). The formula test involves computing gϕ(z). As discussed below Eq. (125),
given the decider specification (D, n, T, Q, q, x, y) and the point z ∈ Fm′

q , gϕ(z) can be computed in time
poly(s, m, hR, log(q)). Taken together, these bounds imply the claimed runtime.

10.5 A normal form verifier for the PCP

In this section we show how to convert the PCP from Section 10.4 into a normal form verifier. This results
in an “answer reduction” scheme: a way to map a verifier V into a new verifier VAR with a smaller answer
size.

Let V = (S ,D) be a normal form verifier and (λ, µ, σ) a tuple of integers. In the rest of this section
we define the answer-reduced verifier VAR = (SAR,DAR) associated with V and (λ, µ, σ). Completeness,
complexity and soundness of the construction are shown in the following sections.

10.5.1 Parameters and notation

First, we recall the parameters set by the PCP construction from Section 10.4. Let n be an index for V . Let

T = (µ2n)µ and Q = (σn)σ . (129)

Even though these are fixed as functions of n and (µ, σ), for clarity we generally keep T and Q as free
parameters in the analysis. The answer reduction procedure, when applied to a normal form verifier V =
(S ,D) and parameters (µ, σ), assumes the following bounds on the complexities of the verifier V :

|D| ≤ λ , ∀ n ≥ 1 , TIMED(n) ≤ T(n) and TIMES (n) , RANDS (n) ≤ Q(n) . (130)

Let (`, r, s, m, d, m′, q) = pcpparams(n, T, Q, λ) be as in Definition 10.18. We note that with the choice of
T and Q in (129), each of these parameters is poly(log T, Q, λ).

Let (D, n, T, Q, λ, q, x, y) be a decider specification to be input to the PCP verifierMAR specified in
Theorem 10.21. Recall from Definition 10.19 that a low-degree PCP proof consists of 6 + m′ polynomials
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g1, . . . , g5 : Fm
q → Fq and c0, . . . , cm′ : Fm′

q → Fq, where the variables of c0, . . . , cm′ are divided into
blocks z = (x1, . . . , x5, o, w). We frequently view the polynomial gi not as a function with domain Fm

q

but rather as a function with domain Fm′
q that only depends on the i-th block of m variables, xi (recall that

m′ = 5m + 5 + s). This allows us to consider all the polynomials as functions over the same domain Fm′
q .

In the “honest” case, the polynomials g1, g2 are expected to be low-degree encodings with parameters m, q
(see Definition 3.24) of answers a, b ∈ FL

2 respectively, where L = 2`.
Next, we recall the parameters of the typed sampler SORAC introduced in Section 9.2. The sampler uses

ambient space VORAC over F2 with dimension ŝ(n) that is identical to the dimension of S . Recall from
Definition 4.14 the notation µS denoting the distribution over pairs of questions (xA, xB) generated by S .
We use µS ,A to indicate the marginal distribution of µS on the first question xA, and SUPP(µS ) to indicate
the set of question pairs that have nonzero probability under µS .

Remark 10.22. In this section, for convenience we often identify the label A with 1 and B with 2.

10.5.2 The answer-reduced verifier

Let V = (S ,D) be a normal form verifier and (λ, µ, σ) integers. All other required parameters and notation
are introduced in Section 10.5.1.

Sampler. The sampler is SAR = SORAC × SPCP, where SORAC is the typed sampler obtained by oracu-
larizing S , as defined in Section 9.2, and the sampler SPCP is an additional typed sampler associated with
the PCP that is defined below. As a typed sampler, SAR uses type set T ORAC × T PCP and type graph
GAR = GORAC × GPCP with edge set

EAR =
{
{(u, v), (u′, v′)} : {u, u′} ∈ EORAC ∧ {v, v′} ∈ EPCP} .

We first define the sampler ŜPCP with field size function q(n). The sampler SPCP is taken to be κ(ŜPCP)
(see Definition 4.15 for the definition of downsized samplers). The typed sampler ŜPCP is a 2-level T PCP-
typed sampler, where

T PCP = {POINT1, . . . , POINT6} ∪ {PLANE1, . . . , PLANE6} ,

and the type graph GPCP = (T PCP, EPCP) uses EPCP = T PCP × T PCP. The ambient vector space for the
sampler is

VPCP =
( 5⊕

i=1

Vi,X ⊕Vi,V1 ⊕Vi,V2

)
⊕VAUX,X ⊕VAUX,V1 ⊕VAUX,V2 , (131)

where each space Vi,X, Vi,V1, Vi,V2 is isomorphic to Fm
q , and VAUX,X, VAUX,V1, VAUX,V2 are isomorphic to

F5+s
q . In addition, define the following direct sums:

V6,X =
( 5⊕

i=1

Vi,X

)
⊕VAUX,X ,

V6,V1 =
( 5⊕

i=1

Vi,V1

)
⊕VAUX,V1 ,

V6,V2 =
( 5⊕

i=1

Vi,V2

)
⊕VAUX,V2 .

130



The conditionally linear function associated to type t ∈ T PCP is a CL function on VPCP defined as follows.

• For the types t = POINTi for i ∈ {1, . . . , 6}, the 1-level CL function LPTi is identical to the CL
function LPT defined in Figure 3, with the 1st factor subspace replaced with Vi,X here.

• For the types t = PLANEi for i ∈ {1, . . . , 6}, the 2-level CL function LPLi is identical to the CL
function LPL defined in Figure 3, with the 1st factor subspace replaced by Vi,V1 ⊕ Vi,V2 and the 2nd
factor subspace by Vi,X.

Decider. The decider DAR is described in Fig. 13.

10.6 Completeness and complexity of the answer-reduced verifier

The following theorem formulates the complexity and completeness properties of the answer-reduced ver-
ifier. Since VAR is defined as a typed verifier, we use the detyping procedure described in Section 6.3 to
obtain an untyped normal form verifier.

Theorem 10.23. Let λ, µ, σ ∈N. Let V = (S ,D) be a normal form verifier such that S is an `-level sam-
pler. Let VAR = (SAR,DAR) be the answer-reduced verifier corresponding to V and parameters (λ, µ, σ).
Let detype(VAR) = (detype(SAR), detype(DAR)) denote the detyped verifier. Then detype(VAR) is a
normal form verifier such that the following hold. Let T(n) and Q(n) satisfy (129).

1. (Completeness) Assume that V satisfies assumption (130). Then for all n ∈N, if Vn has a projective,
consistent, and commuting (PCC) strategy of value 1, then detype(VAR)n has a symmetric PCC
strategy with value 1.

2. (Sampler complexity) detype(SAR) is a max{`+ 4, 5}-level sampler that depends on (µ, σ) and S
only (not on D). Moreover, the time and randomness complexities of detype(SAR) satisfy

TIMEdetype(SAR)(n) = O(TIMESORAC(n)) + poly log(T(n)) = poly(µn, (σn)σ) ,

RANDdetype(SAR) = RANDSORAC(n) + poly log(T(n)) = poly(µn, (σn)σ) .

3. (Decider complexity) The time complexity of the decider DAR satisfies

TIMEdetype(DAR)(n) = poly(log(T(n)), Q(n), |D|) = poly(µn, (σn)σ, |D|) .

4. (Efficient computability) There is a Turing machine ComputeARVerifier which takes as input a tuple
(V , λ, µ, σ), with λ, µ, σ ∈N, and returns descriptions of detype(SAR), detype(DAR) correspond-
ing to V = (S ,D). Moreover ComputeARVerifier given such an input runs in time

poly(|V| , log(λ), log(µ), log(σ)).

Proof. We show each of the claimed properties in turn.
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Type Question Format Answer Format

POINTi for i = 1, . . . , 5 yi ∈ Fm
q αi ∈ Fq

PLANEi for i = 1, . . . , 5 vi ∈ (Fm
q )

3 hi : p(vi)→ Fq

POINT6 z = (y, o, w) ∈ Fm′
q (α′1, . . . , α′5, β0, . . . , βm′) ∈ Fm′+6

q

PLANE6 v ∈ (Fm′
q )3 (h′1, . . . , h′5, f0, . . . , fm′) : p(v)→ Fm′+6

q

Table 1: Question and answer formats for types in T PCP.

On input (n, tA, xA, tB, xB, aA, aB), the decider DAR parses tA, tB as (tQ,A, tΠ,A), and
(tQ,B, tΠ,B) respectively in T ORAC × T PCP, parses xA and xB as (xQ,A, xΠ,A) and (xQ,B, xΠ,B)
respectively. The decider performs the following steps sequentially, for all w ∈ {A, B}:

1. (Global consistency check): If tA = tB, reject if aA 6= aB.

2. (Input consistency check): If tQ,w = ORACLE and tQ,w = v ∈ {A, B}, and if
(tΠ,w, tΠ,w) = (POINT6, POINTv), reject if αv 6= α′v (where A ↔ 1 and B ↔ 2, as
per Remark 10.22).

3. (Input low degree test) If tQ,w = tQ,w = v ∈ {A, B}, and if (tΠ,w, tΠ,w) =
(POINTv, PLANEv), execute DLD

ldparams on input (POINT, xΠ,w, PLANE, xΠ,w, aw, aw),
where ldparams = (q, m, d, 1). Reject if DLD

ldparams rejects.

4. (Proof encoding checks): If tQ,w = tQ,w = ORACLE,

(a) (Consistency test) If (tΠ,w, tΠ,w) = (POINTi, POINT6) for some i ∈ {3, . . . , 5},
reject if αi 6= α′i.

(b) (Individual low degree test) If (tΠ,w, tΠ,w) = (POINTi, PLANEi) for some i ∈
{3, . . . , 5}, execute DLD

ldparams on input (POINT, xΠ,w, PLANE, xΠ,w, aw, aw). Reject
if DLD

ldparams rejects.

(c) (Simultaneous low degree test) If (tΠ,w, tΠ,w) = (POINT6, PLANE6), exe-
cute DLD

ldparams′
on input (POINT, xΠ,w, PLANE, xΠ,w, aw, aw), where ldparams′ =

(q, m′, d, m′ + 6). Reject if DLD
ldparams′

rejects.

5. (Game check): If tQ,w = ORACLE, then for v ∈ {A, B}, compute xw,v = Lv(xQ,w).
If tΠ,w = POINT6, reject ifMAR((D, n, T, Q, q, xw,A, xw,B), (z, aw)) rejects. Otherwise,
accept.

Figure 13: The decision procedure DAR. Parameters T, Q, q, m, m′, d are defined in Section 10.5.1.

Completeness. We first show completeness. Let n ≥ 1 be an index for VAR. Let S be a PCC strategy for
Vn with value 1. By Theorem 9.1 it follows that there exists a symmetric PCC strategy S ′ = (|ψ〉, M) with
value 1 for VORAC

n . We define a strategy S ′′ for the typed verifier VAR
n as follows. The shared state is |ψ〉.

132



Given the index n and (λ, µ, σ), each player can compute (`, r, s, m, d, m′, q) = pcpparams(n, T, Q, λ)
(see Definition 10.18), where T = T(n) and Q = Q(n) are as in (129).

1. On receipt of a question ((tQ, tΠ), (xQ, xΠ)) a player first measures their share of |ψ〉 using the
projective measurement for S ORAC for the typed question (tQ, xQ) to obtain an outcome aQ. The
player then computes an answer, depending on tQ, aQ and tΠ, xΠ, as follows:

(a) Suppose tQ = v ∈ {A, B} and tΠ ∈ {POINTv, PLANEv}. Let a′Q = aQ if aQ has length at
most T, and let a′Q be the truncation of aQ to its first T symbols otherwise. Let `a ≤ T be the
length of a′Q, and set

a′′Q = encΓ(a′Q,tL/2−`a).

Next, the player computes the canonical low-degree encoding ga′′Q
of a′′Q using the canonical

low-degree encoding from Definition 3.22, in the same way as described in Section 10.4.2. The
player then returns the restriction of ga′′Q

to the subspace specified by xΠ.

(b) If tQ = ORACLE, for v ∈ {A, B} the player computes questions xv = Lv(xQ), as in Item 1 of
DORAC. The player parses aQ as a pair (aA, aB). Let a′A = aA if aA has length at most T, and
let a′A be the truncation of aA to its first T symbols otherwise. Let `A ≤ T be the length of a′A,
and set

a′′A = encΓ(a′A,tL/2−`A).

Define a′′B similarly. The player computes a PCP proof Π = (g1, . . . , g5, c0, . . . , cm′) as de-
scribed in the completeness case of Theorem 10.21 for the tuple (D, n, T, xA, xB), where the
polynomials g1, g2 are low-degree encodings of a′′A and a′′B, respectively.

i. If tΠ ∈ {POINTi, PLANEi} for i ∈ {1, . . . , 5}, the player returns the restriction of gi to the
subspace of Fm

q specified by xΠ.
ii. If tΠ ∈ {POINT6, PLANE6}, the player returns the restriction of all the polynomials g1, . . . , g5,

c0, . . . , cm′ to the subspace of Fm′
q specified by xΠ.

(c) In all other cases the player returns 0.

The strategy S ′′ is projective and consistent because S ′ is. To show that it has value 1, we first observe that
by definition it satisfies all consistency checks. Moreover, the strategy passes all low-degree tests with cer-
tainty because it always returns restrictions of consistent polynomials. Finally, it also passes the game check
with probability 1. This follows from the completeness statement of the PCP made in Theorem 10.21 and the
fact that, if D accepts the input (n, xA, xB, aA, aB) in time at most T then it also accepts (n, xA, xB, a′A, a′B)
in time at most T, where a′A and a′B are obtained from aA and aB by truncating them to strings of length T
if their lengths exceed T.

To show that S ′′ is commuting, note that using the product structure of SAR every typed question pair
with positive probability consists of a pair of questions ((tQ,A, xQ,A), (tQ,B, xQ,B)) with positive probability
for SORAC, together with an arbitrary pair ((tΠ,A, xΠ,A), (tΠ,B, xΠ,B)). Using that S ORAC is commuting
and that the additional operations associated with ((tΠ,A, xΠ,A), (tΠ,B, xΠ,B)) amount to classical post-
processing it follows that S ′′ is commuting.

This establishes the existence of a symmetric PCC strategy for VAR
n with value 1. By Lemma 6.18 it

follows that there exists a symmetric PCC strategy for detype(VAR)n with value 1.
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Sampler complexity. The sampler SAR depends only on SORAC, which itself depends only on S (see
Theorem 9.1). Using Theorem 9.1, SORAC is a max{`, 1}-level typed sampler. Using Lemma 6.18 for
the detyping it follows that SORAC is a max{` + 2, 3}-level typed sampler. Using Lemma 6.18 again,
detype(SAR) is a max{`+ 4, 5}-level sampler.

In addition to the space VORAC used by SORAC, SAR uses space VPCP of dimension O(m + s) over Fq
defined in Eq. (131), and the claim on the randomness complexity follows. Time complexity is clear as well.
The complexity of detype(SAR) follows by Lemma 6.18.

Decider complexity. The decider DAR executes subroutines DLD and MAR. The runtime of DLD is
poly(m, d, m′, log q) by Lemma 7.7, which for our choice of parameters is poly(µn). The runtime ofMAR
is given in Theorem 10.21; for T and Q as in (129) it is poly(µn, (σn)σ, |D|). In addition to the subroutines,
DAR performs only simple field manipulations in Fq, which by Lemma 3.18 can also be implemented in
poly(µn) time since q is polynomial. The complexity of detype(DAR) follows by Lemma 6.18.

Efficient computability. The description of SAR can be computed, in polynomial time, from the descrip-
tion of S alone. The description ofDAR can be computed in polynomial time from the descriptions of S ,D,
as well asDLD; the latter can be computed in polynomial time by Lemma 7.7. The complexity of computing
descriptions of the detyped sampler and decider follows by Lemma 6.18.

10.7 Soundness of the answer-reduced verifier

Theorem 10.24 (Soundness of the answer-reduced verifier). Let µ, σ ∈ N. Let V = (S ,D) be a normal
form verifier satisfying assumption (130). Let VAR = (SAR,DAR) be the answer-reduced verifier corre-
sponding to V and parameters (λ, µ, σ), as described in Section 10.5. Let detype(VAR) denote the detyped
verifier, as in Definition 6.17. There exists a δ(ε, n) = poly(ε + 1/n) such that the following hold. For all
n ≥ 1,

1. If val∗(detype(VAR)n) > 1− ε for some ε > 0 then val∗(Vn) ≥ 1− δ(ε, n).

2. Let E (·) be as defined in Definition 5.12. Then for all ε ≥ 0,

E (detype(VAR)n, 1− ε) ≥ E (Vn, 1− δ(ε, n)) .

Proof. We first show the first item, soundness, for the typed verifier VAR. Soundness for the detyped verifier
detype(VAR) follows from Lemma 6.18, with a constant-factor loss using that the type set T AR for VAR

has constant size.
We proceed in two steps. Fix an index n ≥ 1 and suppose that val∗(VAR

n ) > 1− ε for some ε > 0.
Observe that SORAC and SPCP both sample distributions that are invariant under permutation of the two
players; therefore, the same holds for SAR. Moreover, the decider DAR treats both players symmetrically.
Therefore, the game played by VAR

n is a symmetric game. Applying Lemma 5.7 it follows that there exists
a symmetric projective strategy S = (|ψ〉, M) for VAR

n with value 1− ε.
We use the following shorthand notation. A pair of questions to the players is ((tA, x′A), (tB, x′B)) where

for w ∈ {A, B}, tw = (tQ,w, tΠ,w) and x′w = (x′Q,w, x′Π,w). When w is clear from context we omit it from
the subscript. Fixing a w, whenever tQ = ORACLE we introduce xA = LA(xQ) and xB = LB(x′Q) and
often write directly the player’s question as xQ = (xA, xB). Whenever tQ = v ∈ {A, B} we slightly abuse
notation and write the question as xQ = (xv, v), explicitly including the type to clarify which player it
points to.
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We denote the measurements used by both players in strategy S by {M(xQ)
xΠ
a }, where for the sake of

clarity we have notationally separated the two parts xQ and xΠ of the question and omitted explicit mention
of the associated types tQ and tΠ (we include the type and write M(xQ)

tΠ,xΠ
a when it is needed for clarity).

First we show that the strategy S is close to a strategy S ′ that performs “low-degree” measurements: upon
receipt of a typed question (t, x) = ((tQ, tΠ), (xQ, xΠ)) a player first performs a measurement depending
on xQ to obtain a tuple of low-degree polynomials, and then returns evaluations of those polynomials on the
subspaces specified by xΠ. This step of the argument uses the quantum soundness of the low-degree test
performed in items 3. and 4 of Figure 13. Next, we “decode” this strategy to produce a strategy S ′′ for
VORAC with a high value. This step makes use of the classical soundness of the underlying PCP shown in
Section 10.4. The conclusion of the theorem then follows from the soundness of VORAC (Theorem 9.2). We
proceed with the details.

We start by showing a sequence of claims that establish approximations implied by the assumption that
S AR succeeds with probability at least 1 − ε in the decision procedure implemented by the decider in
Figure 13.

Claim 10.25 (Global consistency check, Item 1). On average over questions (tA, xA) = ((tQ, tΠ), (xQ, xΠ))
sampled from the marginal distribution of µSAR on the first player it holds that

M(xQ)
xΠ
a ⊗ I 'ε I ⊗M(xQ)

xΠ
a . (132)

Proof. First we observe that the condition tA = tB for the global consistency check, item 1 in Figure 13,
holds with constant probability over the choice of a pair of questions (tA, xA), (tB, xB) sampled according
to µSAR . Thus S must succeed in this test with probability 1−O(ε), conditioned on the test being executed:
this is because each of SORAC and SPCP have a constant probability of returning a pair of questions of the
same type.

Moreover, observe that conditioned on tA = tB a pair of questions ((tA, xA), (tA, xB)) ∼ µSAR is
such that xA = xB = LtA(z), where z is the sampler seed and LtA the CL function of type tA associated
with SAR. The claim then follows directly from the test and the definition of approximate consistency
(Definition 5.14).

Claim 10.26 (Input consistency check, Item 2). For all v ∈ {A, B}, on average over question pairs
(xA, xB) ∼ µS and z = (y1, . . . , y5, o, w) ∈ Fm′

q sampled uniformly at random,

M(xA, xB)
POINT6,z
αv

⊗ I 'ε I ⊗M(xv, v)POINTv,yv
αv , (133)

where as in Remark 10.22 we made the identification 1↔ A and 2↔ B. Moreover, an analogous relation
holds for operators acting on opposite sides of the tensor product.

Proof. For w = A and fixed v ∈ {A, B} there is a constant probability that tQ,w = ORACLE, tQ,w = v,
and (tΠ,w, tΠ,w) = (POINT6, POINTv). Therefore, the input consistency check in Item 2 is executed with
constant probability, and S must pass it with probability 1−O(ε), conditioned on the test being executed.

Moreover, conditioned on tQ,w = ORACLE, tQ,w = v, and (tΠ,w, tΠ,w) = (POINT6, POINTv), the
distribution of (xQ,w, xQ,w) is ((xA, xB), xv) for (xA, xB) ∼ µS and the distribution of (xΠ,w, xΠ,w) is
(z, yv) for a uniformly random z ∈ Fm′

q . Eq. (133) then follows directly from the specification of the test
and the definition of approximate consistency. The “moreover” part follows from the case w = B.

Claim 10.27 (Input low degree test, Item 3). For each v ∈ {A, B} and for each x in the support of the
marginal of µS on player v there exists a measurement {Gx,v

g } ∈ PolyMeas(m, d, q) such that the following
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hold for some δ1 = O(δLD(O(ε), q, m, d, 1)), where δLD is defined in Lemma 7.4. For all v ∈ {A, B}, on
average over x chosen from the marginal of µS on player v and yv ∈ Fm

q sampled uniformly at random,

M(x, v)POINTv,yv
α ⊗ I 'δ1 I ⊗ Gx,v

[evalyv (·)=α]
, (134)

I ⊗M(x, v)POINTv,yv
α 'δ1 Gx,v

[evalyv (·)=α]
⊗ I , (135)

Gx,v
g ⊗ I 'δ1 I ⊗ Gx,v

g , (136)

where we used the notation evalyv(g) = g(yv) for the evaluation map.

Proof. Fix v ∈ {A, B}. For any w ∈ {A, B} there is a constant probability that tQ,w = tQ,w = v and
(tΠ,w, tΠ,w) = (POINTv, PLANEv). Therefore, the input low degree test in Item 3 is executed with constant
probability, and S must pass it with probability 1−O(ε), conditioned on the test being executed.

Observe that by definition the distribution of (xΠ,A, xΠ,B) conditioned on tQ,w = tQ,w = v, uniformly
random xQ = (xv, v), and (tΠ,w, tΠ,w) = (POINTv, PLANEv), where w ∈ {A, B} is uniformly ran-
dom, is exactly the distribution of questions in the game GLD described in Section 7.1.1, parametrized by
ldparams = (q, m, d, 1).

For every v ∈ {A, B} and question x = Lv(z) in the support of the marginal distribution of µS on
player v let εx,v be the probability that S is accepted in Item 3, conditioned on the test being executed
and on average over w ∈ {A, B}. Then E[εx,v] = O(ε), where the expectation is taken over a uniformly
random v ∈ {A, B} and x = Lv(z) for uniformly random z.

By definition it follows that the strategy SAR conditioned on the first part of the players’ questions being
tQ,w = tQ,w = v and xQ,A = xQ,B = x is a projective strategy that succeeds with probability 1− εx,v in
the low-degree test DLD

ldparams executed in Item 3.
We may thus apply Lemma 7.4 to obtain {Gx,v

g } ∈ PolyMeas(m, d, q) such that (134), (135) and (136)
each hold with approximation error O(δLD(εx,v, q, m, d, 1)). Using that for fixed q, m, d the function ε 7→
δLD(ε, q, m, d, 1) is concave, the claim follows from Jensen’s inequality.

Claim 10.28 (Proof encoding checks, Item 4). For each xQ = (xA, xB) in the support of µS there exist

measurements {G(xA ,xB),i
g } ∈ PolyMeas(m, d, q) for each i ∈ {3, 4, 5} and

{J(xA ,xB)
f1,..., f5,c0,...,cm′

} ∈ PolyMeas(m′, d, q, m′ + 6)

such that the following hold for some

δ2 = O
(
δLD(O(ε), q, m, d, 1) + δLD(O(ε), q, m′, d, m′ + 6)

)
.

First, for all i ∈ {3, 4, 5}, on average over (xA, xB) ∼ µS and z = (y1, . . . , y5, o, w) of type POINT6
sampled uniformly at random,

I ⊗M(xA, xB)
POINTi ,yi
αi 'ε M(xA, xB)

POINT6,z
αi

⊗ I . (137)

Second, for all i ∈ {3, 4, 5} and on average over (xA, xB) ∼ µS and yi ∈ Fm
q sampled uniformly at

random,

M(xA, xB)
POINTi ,yi
α ⊗ I 'δ2 I ⊗ G(xA ,xB),i

[evalyi (·)=α]
, (138)

G(xA ,xB),i
g ⊗ I 'δ2 I ⊗ G(xA ,xB),i

g . (139)
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Third, for all i ∈ {1, . . . , 5} and j ∈ {0, . . . , m′}, on average over (xA, xB) ∼ µS and z ∈ Fm′
q sampled

uniformly at random,

M(xA, xB)
POINT6,z
α1,...,α5,β0,...,βm′

⊗ I 'δ2 I ⊗ J(xA ,xB)
[evalz(·)=(α1,...,α5,β0,...,βm′ )]

, (140)

J(xA ,xB)
f1,..., f5,c0,...,cm′

⊗ I 'δ2 I ⊗ J(xA ,xB)
f1,..., f5,c0,...,cm′

. (141)

Moreover, analogous equations to (137), (138) and (140) hold with operators acting on opposite sides of
the tensor product.

Proof. The proof of the first item is similar to the proof of Claim 10.26, and we omit it.
The proof of the second and third items is similar to the proof of Claim 10.27, and we include more

details. Fix an i ∈ {3, 4, 5}. For any w ∈ {A, B} there is a constant probability that tQ,w = tQ,w =
ORACLE and (tΠ,w, tΠ,w) = (POINTi, PLANEi), in which case the individual low-degree test in Item 4b is
executed. Therefore, S must succeed in that part of the test with probability 1−O(ε) conditioned on the
test being executed.

Furthermore, for fixed i ∈ {3, 4, 5} and uniformly random w ∈ {A, B}, conditioned on the test being
executed for that i and w the distribution of (xΠ,A, xΠ,B) is exactly the distribution of questions in the game
GLD described in Section 7.1.1, parametrized by ldparams = (q, m, d, 1).

For every i ∈ {3, 4, 5} and x = (xA, xB) in the support of µS let εx,i be the probability that S is
accepted in Item 4b, conditioned on the test being executed for that i and on average over w ∈ {A, B}.
Then for each i, E[εx,i] = O(ε), where the expectation is taken over a uniformly random x ∼ µS .

By definition of the individual low-degree test it follows from Lemma 7.4 that for every x = (xA, xB)

in the support of µS and i ∈ {3, 4, 5} there is a measurement {G(xA ,xB),i
g } ∈ PolyMeas(m, d, q) such that

on average over yi ∈ Fm′
q of type POINTi sampled uniformly at random, Eq. (138) and (139) both hold

with approximation error O(δLD(εx,i, q, m, d, 1)). Eq (138) and (139) follow using the concavity of δLD as a
function of ε.

Finally we consider the simultaneous low-degree test, Item 4c. Here as well, using that there is a constant
probability that tQ,w = tQ,w = ORACLE and (tΠ,w, tΠ,w) = (POINT6, PLANE6) it follows that S AR must
succeed in that part of the test with probability 1−O(ε). Using a similar argument as before it follows
from Lemma 7.4 (this time for parameters (q, m′, d, m′ + 6)) that for every (xA, xB) there is a family of
measurements {J(xA ,xB)

f1,..., f5,c0,...,cm′
} ∈ PolyMeas(m′, d, q, m′ + 6) such that on average over z ∈ Fm′

q sampled
uniformly at random, Eq. (140) and (141) both hold with approximation error O(δLD(O(ε), q, m′, d, m′ +
6)).

The families of measurements {GxQ,i
g } and {JxQ

f1,..., f5,c0,...,cm′
}, for xQ in the support of µS and i ∈

{1, . . . , 5}, whose existence follows from Claim 10.27 and Claim 10.28 have outcomes that are low-degree
polynomials: for the first family, degree d polynomials g : Fm

q → Fq, and for the second, tuples of degree
d polynomials fi, cj : Fm′

q → Fq. Recall that m′ = 5m + 5 + s and that an element z ∈ Fm′
q is written as

a triple (y, o, w) with x = (y1, . . . , y5) ∈ F5m
q , o ∈ F5

q and w ∈ Fs
q. The following claim, whose proof is

based on Lemma 5.23, shows that we can reduce to a situation where the polynomials f1, . . . , f5 returned
by J are such that for each i ∈ {1, . . . , 5}, fi only depends on the yi, and not on the entire variable z.

Claim 10.29. For all (xA, xB) in the support of µS and degree d polynomials g1, . . . , g5 : Fm
q → Fq and

c0, . . . , cm′ : Fm′
q → Fq define

ΛxA ,xB
g1,...,g5,c0,...,cm′

= GxA ,1
g1

GxB ,2
g2

G(xA ,xB),3
g3 · · ·G(xA ,xB),5

g5 J(xA ,xB)
c0,...,cm′

G(xA ,xB),5
g5 · · ·G(xA ,xB),3

g3 GxB ,2
g2

GxA ,1
g1

, (142)
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where the outcomes ( f1, . . . , f5) of the J operator in the middle have been marginalized over. Then there is
a

δ3 = O
((

δLD(ε, q, m′, d, m′ + 6) +
d
q

)1/2)
such that

δ3 ≥ max
{

ε, δ1, δ2
}

and on average over (xA, xB) ∼ µS and z ∈ Fm′
q sampled uniformly at random,

ΛxA ,xB
[evalz(·)=(α,β)] ⊗ I 'δ3 I ⊗ JxA ,xB

[evalz(·)=(α,β)] . (143)

Moreover, a similar equation holds with the operators acting on opposite sides of the tensor product.

Proof. We apply Lemma 5.23 with the following setting of parameters. The number of sets of functions k
is set to 6. The question set X is set to the support of µS , and the distribution µ on it is the distribution µS .
The sets Gi for i ∈ {1, . . . , 5} consist of degree d polynomials over Fm′

q that depend only on the i-th block
of m variables. The set G6 consists of (m′ + 1)-tuples of degree d polynomials over Fm′

q .
We first verify the assumption on the sets of functions. Since all polynomials have degree at most d,

by Lemma 3.20 the parameter ε in Lemma 5.23 can be set to d/q.
The family of measurements {Ax

g1,...,g6
} in Lemma 5.23 is the family of measurements {J(xA ,xB)

f1,..., f5,c0,...,cm′
}

here, where we set gi = fi for i ∈ {1, . . . , 5} and g6 = (c0, . . . , cm′). The measurements {Gi,x
g } in

Lemma 5.23 are {GxA ,i
g } for i ∈ {1, 2}, {G(xA ,xB),i

g } for i ∈ {3, 4, 5}, and {J(xA ,xB)
g } for i = 6. To ensure

that all polynomials are defined over the same range, we treat g : Fm
q → Fq that is an outcome of some

{Gi,x
g } as a polynomial g′ : Fm′

q → Fq, where the role of the m variables of g is taken by the i-th block of
m variables of g′.

We verify assumption (38) in the lemma. For i ∈ {1, 2} the assumption follows by combining (133)
and (135) with (140) and Fact 5.21. For i ∈ {3, 4, 5} we use (137) instead of (133) and (138) instead of
(135). Finally, for i = 6 we use (141) and Fact 5.21. In these derivations, we use Fact 5.20, the triangle
inequality for “'”.

The conclusion follows from Lemma 5.23, using also that ε, δ1, δ2 = O(δLD(ε, q, m′, d, m′ + 6)), as can
be verified from the definition of δLD given in Lemma 7.4.

At this point, we have constructed measurements G and Λ that return low-degree polynomials in a
similar way as is expected from the honest strategy in VAR

n , as described in the proof of Theorem 10.23.
These measurements can be used to specify a new strategy S ′ for the game VAR

n as follows. The shared
state remains the state |ψ〉 used in S . For w ∈ {A, B}, upon reception of a question (tw, xw) player w
performs the following. If tw = (tQ,w, tΠ,w) is such that tQ,w = ORACLE, the player measures their share
of |ψ〉 using the measurement ΛxQ,w defined in Claim 10.29 to obtain a tuple (g1, . . . , g5, c0, . . . , cm′) of
polynomials. The player then answers exactly as in the strategy described in the “completeness” part of the
proof of Theorem 10.23. Similarly, if tQ,w = v ∈ {A, B} the player first measures their share of |ψ〉 using
the measurement GxQ,w,v from Lemma 10.27 to obtain a polynomial g as outcome; the player then answers
according to the same honest strategy.

Lemma 10.30. The strategy S ′ succeeds with probability 1−O(δ3) in the game VAR
n .
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Proof. First we establish useful consistency relations. By combining Equation (143) and Equation (140)
and applying Fact 5.21 we obtain that for all i ∈ {1, . . . , 5}, on average over (xA, xB) ∼ µS and z ∈ Fm′

q
sampled uniformly at random,

M(xA, xB)
POINT6,z
αi

⊗ I 'δ3 I ⊗Λ(xA ,xB)
[evalz(·)i=αi ]

, (144)

and a similar equation holds with the operators acting on opposite sides of the tensor product. Next, combin-
ing (144) together with Equation (133) and Equation (134) it follows that for each v ∈ {A, B}, on average
over (xA, xB) ∼ µS and z = (y1, . . . , y5, o, w) ∈ Fm′

q sampled uniformly at random,

Gxv,v
[evalyv (·)=αv]

⊗ I 'δ3 I ⊗Λ(xA ,xB)
[evalz(·)v=αv]

. (145)

From the Schwartz-Zippel lemma (Lemma 3.20) it follows that the probability that any two distinct degree
d polynomials gv (an outcome of Gxv,v) and g′v (an outcome of Λ(xA ,xB)) agree at a uniformly random point
yv ∈ Fm

q is at most d/q. It thus follows from (145) that for all v ∈ {A, B}, on average over (xA, xB) ∼ µS
and yv ∈ FM

q sampled uniformly at random,

Gxv,v
gv
⊗ I 'δ3+d/q I ⊗Λ(xA ,xB)

gv . (146)

We now show that S ′ that is accepted by VAR
n with high probability. We bound the probability of succeeding

in each subtest.
First note that the strategy is accepted in item 1. For the G measurements, consistency follows from (136).

For the Λ measurements, note first that by (143) and (141) it follows that on average over (xA, xB) ∼ µS ,

ΛxA ,xB
[evalz(·)=(α,β)] ⊗ I 'δ3 I ⊗ΛxA ,xB

[evalz(·)=(α,β)] . (147)

Using that all outcomes of ΛxA ,xB are degree d polynomials and the Schwartz-Zippel lemma (Lemma 3.20)
it follows that whenever a measurement of ΛxA ,xB ⊗ΛxA ,xB returns distinct outcomes, the outcomes take a
different value at a uniformly random z with probability at least 1− d/q. It then follows from (147) and the
fact that δ3 ≥ d/q by definition that the strategy S ′ is accepted in item 1 with probability O(δ3).

Next, the strategy is also accepted in the consistency check performed in item 2 due to (146), and the
consistency check in item 4(a) for the same reasons as for item 1. Finally, for the low-degree tests performed
in item 3 and items 4(b) and 4(c), the strategy succeeds due to consistency and the fact that, as long as both
players obtain the same polynomial outcomes, they pass the low-degree tests with probability 1.

It remains to analyze the strategy’s success probability in Item 5, the game check. Note that by as-
sumption the original strategy S succeeds with probability 1−O(ε) in that test. Using (143) and (140)
together with the consistency relations established at the start of the proof, it follows that S and S ′ generate
outcomes aw in Item 5 that are within total variation distance O(δ3). The lemma fellows.

We now complete the proof by a reduction to the game VORAC
n : from the strategy S ′ we construct a

symmetric strategy S ′′ = (|ψ〉, A) for VORAC by “decoding” the low-degree measurements G and Λ. The
state |ψ〉 in S ′′ is identical to the state used in S ′ (which is identical to the state used in S ). To begin, we
define a decoding map Dec(·), which takes in a polynomial g : Fm

q → Fq and outputs a string in F∗q . This
map is computed as follows:

• First, compute a = Decπ(g) ∈ FL
2 , where Decπ is the low-degree decoding of the low-degree code

defined in Section 3.4 (with S = L = 2`, ` specified by pcpparams(n, T, Q, λ), and π = πL is the
canonical map from Definition 3.22).
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• If there exists an aprefix ∈ {0, 1}∗ of length `a such that a = encΓ(aprefix,tL−`a), then Dec(g) =
aprefix. Otherwise, Dec(g) is allowed to be arbitrary.

We can now define the “decoded” measurements {Axv,v} and {AxA ,xB} as follows:

Axv,v
a = Gxv,v

[Dec(·)=a] , AxA ,xB
aA ,aB

= ΛxA ,xB
[Dec(·)A,B=(aA ,aB)]

. (148)

Lemma 10.31. The strategy S ′′ succeeds with probability 1−O(δ3) in the game VORAC
n .

Proof. We consider the different subtests executed by DORAC (see Figure 12). We start with item 2, the
consistency checks. Success in the first check, item 2a, follows from the success of S ′ in the global
consistency check, item 1 of DAR, the definition (148), and the fact that conditioned on tQ,A = tQ,B =
ORACLE, the distribution of (xQ,A, xQ,B) in VAR

n is the same as the distribution of (xA, xB) in VORAC
n ,

conditioned on tA = tB = ORACLE. Similarly, success in the second check, item 2b, follows from success
of S ′ in the input consistency check, item 2 of DAR.

Next we consider the game check of DORAC, item 1. To analyze the success probability of S ′′ we use
that S ′ succeeds in the game check of DAR, item 5, and the soundness of the PCP, as shown in Theo-
rem 10.21. Let psound be as in Theorem 10.21.

Let w ∈ {A, B}, (xA, xB) be in the support of µS , and Π = (g1, . . . , g5, c0, . . . , cm′) an outcome of
ΛxA ,xB such that conditioned on that outcome being obtained by player w in the game check of DAR,MAR
accepts the pair of inputs (D, n, T, Q, q, xA, xB) and (z, aw) with probability at least psound over the choice
of a uniformly random z ∈ Fm′

q and aw = evalz(Π).
For any such Π, the soundness statement of Theorem 10.21 states that there exist aA, aB ∈ {0, 1}∗ such

that D(n, xA, xB, aA, aB) = 1 and degree d polynomials fA, fB : Fm
q → Fq such that for v ∈ {A, B},

Dec( fv) = av and fv agrees with gv on at least 0.8 fraction of points z ∈ Fm
q . Since moreover gv is also

a degree d polynomial, it follows from the Schwartz-Zippel lemma (Lemma 3.20) that fv = gv. (Since
δ3 ≥ d/q by definition, we may assume without loss of generality that d/q < 0.2; otherwise, the statement
of the lemma is trivial.)

It follows that for any proof Π returned by {ΛxA ,xB
Π } which is accepted with probability greater than

psound in the game check of DAR it holds that D(n, xA, xB, Dec(gA), Dec(gB)) = 1. Using this observa-
tion we evaluate the probability q′′g that the strategy S ′′ succeeds in the game check of VORAC. Let q′g be the
probability that S ′ succeeds in the game check of DAR.

q′′g = E
(xA ,xB)∼µS

∑
aA ,aB :D(n,xA ,xB ,aA ,aB)=1

〈ψ|A(xA ,xB)
aA ,aB ⊗ I|ψ〉

= E
(xA ,xB)∼µS

∑
Π:D(n,xA ,xB ,Dec(g1),Dec(g2))=1

〈ψ|Λ(xA ,xB)
Π ⊗ I|ψ〉

≥ E
(xA ,xB)∼µS

∑
Π:D(n,xA ,xB ,Dec(g1),Dec(g2))=1

〈ψ|Λ(xA ,xB)
Π ⊗ I|ψ〉 · Pr

z∼Fm′
q

[V(evalz(Π)) = 1]

= q′g − E
(xA ,xB)∼µS

∑
Π:D(n,xA ,xB ,Dec(g1),Dec(g2))=0

〈ψ|Λ(xA ,xB)
Π ⊗ I|ψ〉 · Pr

z∼Fm′
q

[V(evalz(Π)) = 1]

≥ q′g − (1− q′′g ) · psound .

Rearranging terms,

q′′g ≥
q′g − psound

1− psound
= 1−

1− q′g
1− psound

. (149)
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Altogether, using Lemma 10.30 we have shown that S ′′ is accepted in each subtest performed by DORAC

with probability at least 1−O(δ3). Since every subtest occurs with constant probability, the lemma follows.

To conclude the proof of the first part of the theorem we appeal to the soundness statement for VORAC,
given in Theorem 9.2. To obtain the bound stated in the theorem, observe that by the choice of q in Defini-
tion 10.18 it holds that δ3 = poly(ε + 1/n).

To show the second part, the bound on entanglement, we observe that the strategy S ′′ for VORAC con-
structed above uses the same entangled state |ψ〉 as the strategy S for VAR that we started with; the claimed
bound follows.
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11 Parallel Repetition

In each of the transformations on verifiers presented so far (introspection, oracularization, and answer re-
duction), the soundness gap of the resulting verifier is slightly degraded: while the completeness property,
i.e. the property of having a PCC strategy with success probability 1, is preserved, if the starting game Vn
has value at most 1− ε, the resulting game V ′n has value at most 1− Cεc for some universal c, C ≥ 1. In
order to apply the compression procedure recursively we need a way to restore the soundness gap after a
sequence of transformations. We accomplish this using (a modification of) the technique of parallel repe-
tition. Informally, this amounts to transforming a two-player game G into another two-player game Gk in
which the verifier plays k simultaneous copies of G with the players, and accepts if and only if the players’
answers correspond to valid answers in each copy.

Intuitively, if the value of G is v < 1, then one would expect the value of Gk to decay exponen-
tially with the number of repetitions k. It is not true in general that the value of Gk is vk, but exponential
decay bounds on the (tensor product) value of parallel-repeated games are known for specific classes of
games [JPY14, DSV15, BVY17]. In particular, it was shown in [BVY17] that the class of anchored games
satisfies exponential-decay parallel repetition, and furthermore every game can be efficiently transformed
into an equivalent anchored game. Put together, this gives a general soundness amplification procedure
called “anchored parallel repetition,” which we use in our compression procedure to reset the soundness gap
to a fixed constant.

The parallel repetition theorems of [DSV15, Yue16] are also applicable for the purpose of soundness
amplification, but are not sufficient for us. The crucial point here is that the anchored parallel repetition
result of [BVY17] allows us to relate the amount of entanglement needed to play the repeated game Gk to
the entanglement needed to play the original anchored game G: roughly speaking, [BVY17] show that for
v ≥ exp(−cε8 · k/A)), where c is a universal constant and A an upper bound on the length of answers
from the players in G, we have E (Gk, v) ≥ E (G, 1− ε). On the other hand, the parallel repetition theorems
of [DSV15, Yue16] only imply that E (Gk, v) ≥ log E (G, 1− ε),23 which is not sufficient for our purposes.

11.1 The anchoring transformation

Let V = (S ,D) be a normal form verifier. We present a transformation on the verifier V , called anchoring,
that produces another normal form verifier VANCH = (SANCH,DANCH).

We define the anchoring VANCH of V by first defining a typed verifier ṼANCH = (S̃ANCH, D̃ANCH), and
then detyping ṼANCH using Lemma 6.18 to obtain VANCH. Define the type set T ANCH = {GAME, ANCHOR}
and type graph GAMEANCH the complete graph over T ANCH along with self-loops at each vertex.

The sampler S̃ANCH is a T ANCH-typed sampler, with field size q(n) = 2 and the same dimension s(n) as
that of the sampler S . Fix an integer n ∈N. Let V = F

s(n)
2 denote the ambient space of S on index n. Let

LA, LB : V → V denote the CL functions of S on index n. For w ∈ {A, B} the associated CL functions
{LANCH, w

t } of S̃ANCH are

LANCH, w
t =

{
Lw if t = GAME

0 if t = ANCHOR .

Intuitively, when the type t sampled for player w is GAME, then they receive a question Lw(z) as they
would according to S . Otherwise if t = ANCHOR, then their question is the zero string. Thus if Lw is an
`-level CL function, then LANCH, w

GAME is also an `-level CL function, and LANCH, w
ANCHOR is a 0-level CL function.

23The reason is due to the use of the “quantum correlated sampling lemma” of [DSV15].
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The decider D̃ANCH performs the following: on input (n, tA, xA, tB, xB, aA, aB), if either tA or tB is
equal to the type ANCHOR, then the decider accepts. Otherwise, it accepts only if D(n, xA, xB, aA, aB)
accepts.

We define the anchoring of V to be the detyped verifier VANCH = detype(ṼANCH).

Proposition 11.1. Let V = (S ,D) be a normal form verifier where S is an `-level sampler. Let VANCH =
(SANCH,DANCH) be the anchoring of V . Then the verifier VANCH is a normal form verifier that satisfies the
following properties: for all n ∈N,

1. (Completeness) If there is a value-1 PCC strategy for Vn, then there is a value-1 PCC strategy for
VANCH

n .

2. (Soundness) For all ε > 0, if val∗(VANCH
n ) ≥ 1− ε, then val∗(Vn) ≥ 1− (4 · 162)ε. Furthermore,

E (VANCH
n , 1− ε) ≥ E

(
Vn, 1− (4 · 162)ε

)
.

3. (Sampler complexity) The time and randomness complexities of the sampler SANCH satisfy

TIMESANCH(n) = poly(TIMES (n)) , RANDSANCH(n) = RANDS (n) + O(1) .

Furthermore the number of levels of SANCH is `+ 2.

4. (Decider complexity) The time complexity of the decider DANCH satisfies

TIMEDANCH(n) = poly(TIMED(n)) .

5. (Efficient computability) The descriptions of SANCH and DANCH can be computed in polynomial time
from the descriptions of S and D, respectively. In particular, the sampler SANCH only depends on the
sampler S .

Proof. We analyze the completeness, soundness, and complexity properties of the typed verifier ṼANCH; the
corresponding properties of the detyped verifier VANCH follow from Lemma 6.18 and the fact that the type
set T ANCH has size 2.

Fix an index n ∈N. For the completeness property, let S be a value-1 PCC strategy for Vn. We define
a value-1 PCC strategy S ANCH for ṼANCH

n : whenever a player receives the ANCHOR type as a question type,
they perform the trivial measurement (i.e. measure the identity operator). Otherwise, the player performs
the same measurement as in S . This is clearly value-1 and PCC. Item 1 follows from this and Lemma 6.18.

For the soundness property, we observe that if a strategy S ANCH has value 1− ε in ṼANCH
n , then

1− ε = 1− γ + γp

where p is the value of S ANCH in the game Vn, and γ = 1/4 is the probability that neither player receives the
question type ANCHOR; this follows from the distribution associated with the typed sampler S̃ANCH. Thus
S ANCH has value 1− ε/γ in Vn, and thus val∗(Vn) ≥ 1− 4ε. Item 2 follows from this and Lemma 6.18.

Items 3, 4, and 5 are straightforward and also follow from Lemma 6.18.

11.2 Parallel repetition of anchored games

We present a second transformation on normal form verifiers that amounts to performing parallel repetition.
Fix a function k : N→N, and let V = (S ,D) be a normal form verifier where S is an `-level sampler with
dimension s(n). LetK denote a 1-input Turing machine that computes a function k : N→N (i.e. the inputs
and outputs are interpreted as positive integers). TheK-fold parallel repeated verifier VREP = (SREP,DREP)
is defined as follows.
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Sampler. The sampler SREP is an `-level sampler. On index n, it has field size q(n) = 2 and dimension
sREP(n) = k(n)s(n). We treat the ambient space VREP of SREP on index n as the k(n)-fold direct sum of
the ambient space V of S on index n. For all integers n ∈ N, w ∈ {A, B}, we define the CL functions
LREP, w : VREP → VREP as follows:

LREP, w =
k(n)⊕
i=1

Lw ,

where LA, LB : V → V are the CL functions of the sampler S on index n. The CL functions LREP, w are
`-level; the j-th factor spaces VREP, w

j, u of LREP, w are defined as

VREP, w
j, u =

k(n)⊕
i=1

Vw
j, ui

for all u = (u1, . . . , uk(n)) where Vw
j, ui

is the j-th factor space of Lw with prefix ui ∈ V. In other words, the
sampler SREP is a k(n)-fold product of the sampler S .

Decider. The decider DREP is defined as follows: on input (n, x, y, a, b) where x, y, a, b are k(n)-tuples of
questions and answers, respectively, accept if and only ifD(n, xi, yi, ai, bi) accepts for all i ∈ {1, . . . , k(n)}.

Theorem 11.2 (Anchored parallel repetition [BVY17]). There exists a universal constant c > 0 such that
the following holds. Let V = (S ,D) be a normal form verifier where S is an `-level sampler. Let V̂ =
(Ŝ , D̂) denote the anchoring of V . Let k : N → N be a function computed by a Turing machine K. Then
the K-fold repeated verifier V̂REP (called the K-fold anchored repetition of V) is a normal form verifier that
satisfies the following properties: for all n ∈N,

1. (Completeness) If Vn has a value-1 PCC strategy, then V̂REP has a value-1 PCC strategy.

2. (Soundness) For all ε > 0, for all

v > exp
(
− c ε8 k(n)

TIMED(n)

)
,

if val∗(V̂REP
n ) > v then val∗(Vn) ≥ 1− ε and furthermore

E (V̂REP
n , v) ≥ E (Vn, 1− ε) .

3. (Sampler complexity) The time and randomness complexities of ŜREP satisfy

TIMEŜREP(n) = O(TIMEK(n) + k(n) · TIMES (n)) ,
RANDŜREP(n) = O(k(n) · RANDS (n)) .

Furthermore, the number of levels of sampler ŜREP is `+ 2.

4. (Decider complexity) The time complexity of D̂REP satisfies

TIMED̂REP(n) = O(TIMEK(n) + k(n) · TIMED(n)) .
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5. (Efficient computability) There exists a 2-input Turing machine ComputeRepeatedVerifier that on in-
put (V ,K), where V = (S ,D) is a normal form verifier andK is a Turing machine, outputs a normal
form verifier V̂REP = (ŜREP, D̂REP) that is the K-fold anchored repetition of V . The time complexity
of ComputeRepeatedVerifier is poly(|V| , |K|). Furthermore, the description of the sampler ŜREP

only depends on the sampler S and K.

Proof. Item 1 follows from the following straightforward observation: if S = (ψ, A, B) is a value-1 PCC
strategy for Vn, then the strategy where the players share k(n) copies of |ψ〉, and for the i-th instance of
the game V̂n, the players use strategy S on the i-th copy of |ψ〉 (and performing the identity measurement
whenever they receive the ANCHOR type). It is straightforward to check that this strategy has value 1 and is
PCC.

To show Item 2 we apply [BVY17, Theorem 17]. The exponential decay bound on the value of V̂ k
n pre-

sented in [BVY17] depends on the answer length of the players in the original game Vn. By Definition 5.28,
this answer length is restricted to {0, 1}TIMED(n), so the claimed bound follows.

Item 3 follows from the fact that computing the direct sum of k(n) CL functions and factor spaces
of the “single-copy” sampler Ŝ requires k(n) times the complexity of the “single-copy” sampler, and the
complexity of Ŝ follows from Proposition 11.1. The dependence on the complexity of K comes from the
sampler ŜREP having to compute the function k(n). Since the CL functions of the sampler Ŝ are (`+ 2)-
level (by Proposition 11.1), and taking the direct sum of CL functions does not increase the number of levels
(by Lemma 4.6), the CL functions LREP, w are (`+ 2)-level.

Item 4 follows from the repeated decider having to run k(n) instances of the decider DANCH, and the
complexity of DANCH follows from Proposition 11.1. which in turn runs an instance of the original decider
D.

Item 5 follows from the fact that (a) the description of the repeated sampler only depends on the the
description of the sampler S and the description of the Turing machine K, and (b) the description of the
repeated decider only depends on D and K.
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12 Gap-preserving Compression

We combine the transformations from the previous sections (the introspection games, oracularization, an-
swer reduction, and parallel repetition) to obtain our main technical result, a gap-preserving compression
theorem for normal form verifiers.

We give a high level explanation of the compression theorem. The theorem is parametrized by an integer
λ which controls upper bounds on the following quantities: the randomness and time complexities of the
verifier V to be compressed (i.e. the “input verifier”) and the description length of the verifier V . The upper
bounds specified by λ are encapsulated in the following definition.

Definition 12.1. Let λ be an integer, and let V = (S ,D) be a normal form verifier. We say that the verifier
V is λ-bounded if

• The number of levels of S is at most 8,

• The description length of V , denoted by |V| and equal to the sum of the description lengths of S and
D, is at most λ, and

• For all n ∈N, RANDS (n), TIMES (n) and TIMED(n) are all at most (λn)λ.

The compression theorem states the existence of an efficient “compression procedure” Compress that
achieves the following. Given as input a λ-bounded verifier V , the procedure returns a “compressed verifier”
VCOMPR such that the n-th game VCOMPR

n simulates the N-th game VN for N = 2n, and furthermore the time
and randomness complexities of VCOMPR

n are exponentially smaller than that of VN .

Theorem 12.2 (Gap-preserving compression of normal form verifiers). There is a universal constant γ such
that the following holds. For all λ ∈N there exist

• A Turing machine Compress that, when given a normal form verifier V as input, has time complexity
poly(|V| , log λ). Furthermore, the description of Compress is computable from the binary represen-
tation of λ in time polylog(λ).

• A 8-level sampler SCOMPR with randomness complexity RANDSCOMPR(n) = poly(n, λ), time complex-
ity TIMESCOMPR(n) = poly (n, λ), and description length |SCOMPR| = polylog(λ). Furthermore, the
description of SCOMPR is computable from the binary representation of λ in time polylog(λ).

For normal form verifiers V , the Turing machine Compress on input V always returns the description of a
normal form verifier VCOMPR = (SCOMPR,DCOMPR) such that the decider DCOMPR has description length
|DCOMPR| = poly(|V| , log λ) and time complexity TIMEDCOMPR(n) = poly(n, |V| , λ). Furthermore,
supposing that V is a λ-bounded normal form verifier, then for all n ≥ γ and N = 2n, the verifier VCOMPR

satisfies the following.

1. (Completeness) If VN has a value-1 PCC strategy, then VCOMPR
n has a value-1 PCC strategy.

2. (Soundness) If val∗(VN) ≤ 1
2 , then val∗(VCOMPR

n ) ≤ 1
2 .

3. (Entanglement lower bound) E (VCOMPR
n , 1

2 ) ≥ max
{

E (VN , 1
2 ),

1
2 · 2(λN)λ

}
.
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12.1 Proof of Theorem 12.2

Recall the following Turing machines.

1. ComputeIntroVerifier takes as input a tuple (V , λ, `) and returns a description of the (detyped) intro-
spective verifier V INTRO corresponding to the verifier V and parameters (λ, `) (see Item 4 of Theo-
rem 8.6).

2. ComputeARVerifier takes input (V INTRO, λ, µ, σ) and returns a description of the answer reduced
verifier VAR corresponding to V INTRO and parameters (λ, µ, σ) (see Item 4 of Theorem 10.23).

3. ComputeRepeatedVerifier takes input (V ,K) and returns the K-fold repeated verifier V̂REP corre-
sponding to V , where K is a 1-input Turing machine computing a function k(n) (see Item 5 of Theo-
rem 11.2).

We specify the Turing machine Compress in Figure 14. The Turing machine depends on the parameter
λ as well as universal constants cINTRO and cREP which are specified in the proof of Theorem 12.2.

Input: the description of a normal form verifier V .

1. Compute V (1) = ComputeIntroVerifier(V , λ, `) where ` = 8.

2. Compute V (2) = ComputeARVerifier(V (1), λINTRO, µ, σ) where µ = σ = λINTRO =
cINTRO λ cINTRO .

3. Compute V (3) = ComputeRepeatedVerifier(V (2),K) where K is a 1-input Turing ma-
chine computing the function k(n) = cREP (λ · n)cREP .

4. Return VCOMPR = V (3).

Figure 14: The Turing machine Compress, parameterized by integer λ.

Lemma 12.3. The time complexity of the Turing machine Compress parameterized by λ on input V is
poly(|V| , log λ). The description of Compress is computable from the binary description of λ in time
polylog(λ). In particular, the description length of Compress is polylog(λ).

Proof. By Theorem 8.6, Theorem 10.23 and Theorem 11.2 respectively it follows that the time complexity
of each of the three steps of Figure 14 is poly(|V| , log λ). For the first step, this uses that ` = 8 is a
constant, and for the third step, that the Turing machine K can be specified using poly log(λ) bits.

The description of the Turing machine Compress consists of the descriptions of the Turing machines
ComputeIntroVerifier, ComputeARVerifier, ComputeRepeatedVerifier, and K, along with the computation
of the parameters µ, σ, and the simulation of these Turing machines. The first three Turing machines are
fixed, universal objects, while the Turing machine K and the parameters µ, σ depend on the binary repre-
sentation of λ. In particular, one can take K to be a Turing machine that performs repeated squaring and
multiplication of its input n to compute k(n); the complexity of this is polylog(n, λ). Aside from the bi-
nary description of λ, the Turing machine K is some fixed Turing machine that doesn’t depend on any other
parameters. Thus |K| ≤ polylog λ.

Therefore the description of Compress can be computed efficiently in polynomial time from the binary
description of λ. The bound on the description length follows.

147



Lemma 12.4. Let λ ∈ N, and let Compress be the Turing machine parameterized by λ specified in Fig-
ure 14. For all verifier V , the output of Compress(V) is a normal form verifier VCOMPR = (SCOMPR,DCOMPR)
such that SCOMPR does not depend on V but only on the parameter λ.

Proof. The verifier VCOMPR = V (3) is a normal form verifier because ComputeIntroVerifier always returns
a normal form verifier (even if the input verifier is not; See Remark 8.8), and by Theorem 10.23 and The-
orem 11.2 the remaining two steps preserve normal form. The introspected verifier computed in Step 1
of Figure 14 has a sampler S INTRO that only depends on the parameter λ, as implied by Lemma 8.1. The
samplers of the subsequent verifiers (the answer reduced verifier from Step 2 and the repeated verifier from
Step 3) only depend on S INTRO and λ; for SAR this is stated in Item 2 of Theorem 10.23, and for SREP it is
stated in Item 5 of Theorem 11.2.

Proof of Theorem 12.2. Fix an integer λ ∈ N and let Compress be the Turing machine specified in Fig-
ure 14 parametrized by λ. We evaluate the parameters of the verifiers generated in each step of the Compress
procedure.

Input verifier. Let V = (S ,D) denote the “input verifier” to be compressed. We specify its properties in
terms of the index N (which should be thought of as N = 2n).

Description lengths
|S|
|D|

TIMES (N) (λN)λ

RANDS (N) (λN)λ

TIMED(N) (λN)λ

Sampler levels ` ≤ 8
Completeness VN has a value-1 PCC strategy
Soundness val∗(VN) ≤ 1

2

Entanglement E (VN , 1
2 )

Figure 15: Parameters and properties of the input verifier V .

All bounds in the table in Figure 15 (except for the description length bounds) follow from the as-
sumptions on the input verifier in Theorem 12.2. Specifically, the bounds on TIMES (N), RANDS (N),
TIMED(N), and the number of sampler levels express the assumption that V is λ-bounded. The “Complete-
ness” entry indicates that in the “Completeness” analysis of the compressed verifier VCOMPR, we assume the
game VN has a value-1 PCC strategy. The “Soundness” entry of the table indicates that in the “Soundness’
analysis of the compressed verifier, we assume the value of VN is at most 1/2. The “Entanglement” entry of
the table indicates the assumed lower bound on the Schmidt rank of the entangled state used by any strategy
that succeeds with probability greater than 1

2 in the game VN .

Introspection. The verifier V (1) = (S (1),D(1)) is the introspective verifier corresponding to V . We state
its parameters and properties in Figure 16 in terms of an index n ∈N.
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Description lengths
|S (1)| ≤ poly(log λ)

|D(1)| ≤ poly(|V| , log λ)

TIMES (1)(n) polylog
(
(λN)λ

)
RANDS (1)(n) polylog

(
(λN)λ

)
TIMED(1)(n) poly

(
(λN)λ

)
Sampler levels 4

Completeness VN has value-1 PCC strategy⇒ V (1)
n has value-1 PCC strat-

egy

Soundness val∗(V (1)
n ) > 1− ε1 ⇒ val∗(VN) ≥ 1− δ1(ε1, n)

Entanglement E (V (1)
n , 1 − ε1) ≥ max

{
E (VN , 1− δ1), (1− δ1)2(λN)λ

}
for δ1 = δ1(ε1, n)

Figure 16: Parameters and properties of the introspective verifier V (1).

The bounds on description length come from the following: by Lemma 8.1 since here ` = 8 the sampler
S (1) only depends on the parameter λ and has description length poly log(λ). The deciderD(1) depends on
the binary representation of λ, as well as the descriptions of the sampler S and decider D. The description
length D(1) follows from Item 4 in Theorem 8.6. The number of levels, time and randomness complexities
of the sampler and decider are specified by Theorem 8.6 as well. As expressed in the statement of The-
orem 12.2, these bounds do not depend on any assumption about the input verifier V ; instead, they only
depend on the index n and the parameter λ.

The statements in the remaining rows of the table assume that the input verifier V is λ-bounded. The
statement in the “Completeness” entry follows from Theorem 8.6; the “Soundness” and “Entanglement”
entries follow from Theorem 8.9, from which it follows that it suffices to choose a function δ1(ε1, n) =

a1

(
ε1 +

1
(λ2n)λ

)b1
for some a1, b1 > 0 that depend on the number of levels of the input sampler S , which

by the λ-bounded assumption is at most 8.
We now specify the universal constant cINTRO > 0. Let it be such that the following inequalities hold for

all n, λ ∈N, under the assumption that V is λ-bounded: letting λINTRO = cINTRO · λ cINTRO ,

max
{

TIMES (1)(n), RANDS (1)(n)
}
≤
(
λINTRO n

)λINTRO ,

TIMED(1)(n) ≤
(
λINTRO N)λINTRO ,

|D(1)| ≤ λINTRO .

Answer reduction. Let V (2) = (S (2),D(2)) denote the answer reduced verifier corresponding to V (1) and
parameters λ = λINTRO and σ = µ = λINTRO. The table in Figure 17 gives the properties of V (2).

149



Description lengths
|S (2)| ≤ polylog(λ)
|D(2)| ≤ poly(|V| , log λ)

TIMES (2)(n) polylog
(
(λN)λ

)
RANDS (2)(n) polylog

(
(λN)λ

)
TIMED(2)(n) poly

(
log
(
(λN)λ

)
, |D|

)
Sampler levels 6

Completeness V (1)
n has value-1 PCC strategy⇒ V (2)

n has value-1 PCC strategy

Soundness val∗(V (2)
n ) > 1− ε2 ⇒ val∗(V (1)

n ) ≥ 1− δ2(ε2, n)
Entanglement E (V (2)

n , 1− ε2) ≥ E (V (1)
n , 1− δ2(ε2, n))

Figure 17: Parameters and properties of the answer reduced verifier V (2).

The statements and bounds in Figure 17 only depend on the bounds stated for verifier V (1) in Figure 16
but not on the λ-bounded property of the input verifier V . Note that by the choice of cINTRO made above
the complexity bounds on V (1) satisfy assumption (130). The bounds on the description lengths then follow
from Item 4 in Theorem 10.23, together with Item 2 to justify that S (2) only depends on λ and S (1) but not
on D(1) (and hence not on D).

The bounds on the number of sampler levels and the time and randomness complexities follow from
Items 2 and 3 of Theorem 10.23.

The statement in the “Completeness” entry follows from Theorem 10.23 and assumption (130). The
“Soundness” and “Entanglement” entries follow from Theorem 10.24 and assumption (130). It follows from
Theorem 10.24 that one can choose δ2(ε2, n) = a2

(
ε2 +

1
n

)b2 for some universal constants a2, b2 > 0.

Parallel repetition. Let V (3) = (S (3),D(3)) denote the K-fold anchored repetition (see Section 11.2) of
V (2), where K is a 1-input Turing machine computing the function k(n) = cREP (λ · n)cREP . As already
argued in the proof of Lemma 12.3, there is an explicit choice for K such that |K| ≤ polylog λ.

We state the parameters and properties of V (3) in Figure 18.

Description lengths
|S (3)| ≤ polylog(λ)
|D(3)| ≤ poly(|V| , log λ)

TIMES (3)(n) poly
(
k(n), log

(
(λN)λ

))
RANDS (3)(n) poly

(
k(n), log

(
(λN)λ

))
TIMED(3)(n) poly

(
k(n), log

(
(λN)λ

)
, |D|

)
Sampler levels 8

Completeness V (2)
n has value-1 PCC strategy⇒ V (3)

n has value-1 PCC strategy

Soundness val∗(V (3)
n ) > 1− ε3 ⇒ val∗(V (2)

n ) ≥ 1− δ3(ε3)

Entanglement E (V (3)
n , 1− ε3) ≥ E (V (2)

n , 1− δ3(ε3))

Figure 18: Parameters and properties of the parallel repeated verifier V (3).
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The statements and bounds in Figure 18 only depend on the bounds stated for verifier V (2) in Figure 17,
and again do not depend on whether the input verifier V is λ-bounded.

The bounds on description length follow from Item 5 of Theorem 11.2, the description length bounds
of V (2) stated in Figure 17, and the aforementioned bound on the description length of K. The time and
randomness complexities of S (3) and D(3) follow from Items 3 and 4 of Theorem 11.2 and the complexity
upper bounds on S (2) and D(2) specified in Figure 17. The statement in the “completeness” entry fol-
lows from Item 1 of Theorem 11.2. The “soundness” and “entanglement” entries follow from Item 2 of
Theorem 11.2 for some

δ3(ε3) =

(
a3TIMED(2)(n) log 1

1−ε3

k(n)

)1/8

, (150)

for some universal constant a3 > 0.

Putting everything together. The verifier VCOMPR is V (3). We now put together the bounds and parame-
ters from Figures 15, 16, 17, and 18 to obtain the stated conclusions of Theorem 12.2.

The universal constants cREP and γ are specified in (153) and (154) respectively. The claimed time
complexity and computability of the Turing machine Compress follow from Lemma 12.3. The claimed
number of levels, time and randomness complexity of the sampler SCOMPR follows from the complexity
bounds in Figures 16, 17, and 18, which in turn only depend on the parameter λ. The description length of
SCOMPR follows from the description length bound on S (3). In particular the sampler SCOMPR is independent
of the input verifier V , as shown in Lemma 12.4. Finally, the claimed time complexity to compute the
description of SCOMPR follows from the fact that we can simply run Compress on the verifier defined by two
fixed Turing machines S ′ and D′ (e.g., these could be trivial Turing machines that halt immediately), and
again by the independence property described in Lemma 12.4, the first Turing machine it outputs will be
SCOMPR. By Lemma 12.3, this takes time polylog(λ).

The claimed time complexity of DCOMPR in the theorem statement follows from our setting of k(n) =
cREP(λn)cREP into the bound on TIMED(3)(n). The description length of DCOMPR follows from the descrip-
tion length bound on D(3).

We now establish the completeness, soundness, and entanglement properties of VCOMPR. Assume that the
input verifier V is λ-bounded and fix an index n ∈N. The completeness property (Item 1 in Theorem 12.2)
follows from chaining together the completeness properties of V (3)

n , V (2)
n , V (1)

n , and the assumption that VN
has a value-1 PCC strategy.

We now establish the soundness property (Item 2 in Theorem 12.2). Assume for now that we have set
the universal constants γ and cREP so that for all integers λ, n such that n ≥ γ the following inequality
holds:

δ1

(
2δ2

(
2δ3

(1
2

)
, n
)

, n
)
<

1
2

. (151)

Suppose for contradiction that n ≥ γ, the verifier V is λ-bounded, and val∗(VN) ≤ 1
2 , but val∗(V (3)

n ) > 1
2 .

By chaining together the soundness guarantees of the three verifiers V (3)
n , V (2)

n , and V (1)
n , we obtain

val∗(VN) ≥ 1− δ1

(
2δ2

(
2δ3

(1
2

)
, n
)

, n
)
>

1
2

,

a contradiction.24

24Due to the strict inequality vs. non-strict inequality distinction in the soundness statements, in order to do the chaining, we
need that δj(ε) < 2δj(ε) for non-zero ε and j ∈ {1, 2, 3}, which holds in our case.

151



It remains to show that there is a suitable choice for the constants γ and cREP. We work backwards and
first identify a number β1 such that δ1(β1, n) = a1(β1 +

1
(λ2n)λ )

b1 < 1
2 . Setting β1 = 1

2

( 1
4a1

)1/b1 , we get

that for all n ≥ β−1
1

δ1(β1, n) = a1

(
β1 +

1
(λ2n)λ

)b1
≤ a1(β1 +

1
n
)b1 ≤ a1(2β1)

b1 <
1
2

,

where we used that λ ≥ 1 in the first inequality. Similarly, by setting

β2 =
1
2
( β1

4a2

)1/b2

we get that 2δ2(β2, n) < β1 for all n ≥ β−1
2 . Let c4 > 0 be a universal constant such that

TIMED(2)(n) ≤ c4
(
log(λN)λ · |D|

)c4 . (152)

The existence of c4 follows from the upper bound on TIMED(2)(n) shown earlier in the proof. Using
moreover that V is λ-bounded, and thus that |D| ≤ λ, the right-hand side of (152) is at most c4 (λ

2 ·
(n + log λ))c4 . We specify the constant cREP used in the description of the Turing machine Compress in
Figure 14. Let cREP be the minimum integer such that for all n, λ ∈N,

(β2/2)−8 · a3 · c4 · (λ2 · (n + log λ))c4 ≤ cREP(λ · n)cREP . (153)

For this choice of cREP, using that k(n) is defined as cREP(λ · n)cREP we have that the function δ3 defined
in (150) satisfies 2δ3(

1
2 ) < β2. Let

γ = max{β−1
1 , β−1

2 } . (154)

For this choice of γ, the inequality in (151) holds for all n ≥ γ. This establishes Item 2.
Finally we show the entanglement lower bound. For all n ≥ γ,

E (V (3)
n , 1/2) ≥ E

(
V (2)

n , 1− β2

)
≥ E

(
V (1)

n , 1− β1

)
≥ max

{
E (VN ,

1
2
),

1
2
· 2(λN)λ

}
.

This establishes Item 3 in Theorem 12.2, and concludes the proof of the theorem.

12.2 The Kleene-Rogers fixed point theorem

A fundamental result in computability theory is the Kleene-Rogers fixed point theorem, which states that for
every Turing machine F that halts on every input, there exists a Turing machineM that is a fixed point of
F in the sense that given some description ofM, the Turing machine F computes another Turing machine
that computes the same function asM. Surprisingly, such a fixed point can be efficiently computed from
the description of F itself! This Theorem is attributed to Rogers [Rog87], who proved a simpler version of
a recursion theorem due to Kleene [Kle54].

In computability theory, the Kleene-Rogers fixed point theorem is commonly used to argue that a Turing
machineM that can call other Turing machines N on an input that is a description ofM is a well-defined
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notion. In other words, the Turing machineM can “print its own source code.” We use the Kleene-Rogers
fixed point theorem in Section 12.3 to show the existence of a deciderD that calls the compression procedure
Compress on itself.

Since the theorem statement and its proof involve Turing machines acting on descriptions of Turing
machines and then outputting a description of yet another Turing machine, to aid comprehension we use
the following notation (used only in this subsection) to distinguish between Turing machines and their
descriptions. We use calligraphic letters such asM to denote a Turing machine, which is formally a tuple
of parameters that specify the Turing machine’s alphabet, transition rules, and so on. We use the notationM
to denote a binary string that encodes some Turing machineM. We assume an encoding where the states,
the transition rules, and the number of input tapes ofM can be efficiently computed given the description
M. Conversely, for every k ≥ 1, every binary string x ∈ {0, 1}∗ can be interpreted as the description of a
k-input Turing machine, and we use [x]k to denote this Turing machine. IfM is a k-input Turing machine,
we have [M]k =M.

Theorem 12.5 (Kleene’s recursion theorem/Roger’s fixed-point theorem). For all k ∈ N, for all 1-input
Turing machines F computing a total function, there exists a k-input Turing machine M (called a fixed
point of F ) that computes the same (partial) function as computed by the k-input Turing machine described
by F (M).

Furthermore, there exists a 1-input Turing machine ComputeFixedPointk that given input a description
F , outputs a descriptionM of a fixed pointM in time poly(|F |) where |F | denotes the length of F . The
time complexity of the fixed pointM on input x = (x1, . . . , xk) is at most

poly(|F |, TIMEF ,M, TIME[F (M)]k ,x) ,

where we recall the TIME notation from Section 3.1.

We include an elementary proof of this theorem.

Proof. Consider the description S of a 1-input Turing machine S given in Figure 19.

Input: description C of a 1-input Turing machine.

Output: the description of a k-input Turing machine DC that, on input x, does the following:

1. Run C with input tape initialized to C. Let E denote its output (if it halts).

2. Run F on input E , and let E ′ denote its output.

3. Run E ′ on input x and return the output (if it halts).

Figure 19: The Turing machine S .

We mention some important properties of S . First, S never actually runs C or F ; it only performs a
computation based on the descriptions C and F . Next, the description S is computable from the descrip-
tion F , and the length of the description S is poly(|F |). Finally, the running time of S on input C is
poly(|C|, |F |). This is the time it takes to construct the description of the Turing machine DC .
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Thus, for all Turing machines C, S(C) is the description of a Turing machine DC such that for all inputs
x,

DC(x) =
[
F (C(C))

]
k (x) ,

provided that C halts when given C as input. Here, we use the fact that F is a total function, so the Turing
machine

[
F (C(C))

]
k is well defined.

Input: description F of a 1-input Turing machine.

Output:

1. Compute the description S from F .

2. Output S(S).

Figure 20: The Turing machine ComputeFixedPointk.

Next, consider the Turing machine ComputeFixedPointk defined in Figure 20. LetM denote the output
of ComputeFixedPointk on input F . Note thatM = DS , and is a k-input Turing machine by construction.
By definition, S halts on every input as well, hence it halts when given S as input. Thus for all inputs x,

M(x) = DS (x) =
[
F (S(S))

]
k (x) =

[
F (M)

]
k (x)

where again the Turing machines in brackets are well-defined because F is a total function.
This demonstrates that a fixed point M of F can be computed from F . The time complexity of

ComputeFixedPointk on input F is poly(|F |), based on the description and time complexity of S . The
time complexity ofM (equivalently, DS ) on input x is equal to some polynomial function of

1. The time complexity of running S on input S .

2. The time complexity of running F on inputM.

3. The time complexity of running [F (M)]k on input x.

12.3 An MIP∗ protocol for the Halting problem

We use the Kleene-Rogers fixed point theorem to construct, for every Turing machineM, a verifier for a
game that decides whetherM halts or not.

First, for every Turing machineM and integers ∆, λ ∈N in Figure 21 we define a Turing machine F .
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Input: description D of a 5-input Turing machine.

Output: the description D′ of a 5-input Turing machine that performs the following on input
(n, x, y, a, b): run the following steps for at most (∆n)∆ time steps (if it has not halted by that
time, then reject):

1. RunM on the empty tape for n steps. IfM halts, then accept. Otherwise, ifM hasn’t
halted yet, then proceed to the next step.

2. Compute VCOMPR = Compress(V), where V = (SCOMPR,D) and Compress given in
Theorem 12.2 depends on the parameter λ. Let VCOMPR = (SCOMPR,DCOMPR).

3. Accept iff DCOMPR(n, x, y, a, b) accepts.

Figure 21: The Turing machine F , parameterized by integers λ, ∆ and the Turing machineM.

Lemma 12.6. For all Turing machines M, integers ∆, λ ∈ N, the corresponding Turing machine F
satisfies the following properties:

• F computes a total function.

• The description of F can be computed in polynomial time given the description ofM and the binary
representation of ∆, λ.

Proof. The first item follows by inspection (the Turing machine F halts on every input). The second
item follows because the description of F depends on descriptions of Turing machines M, Compress,
and SCOMPR (the last two of which depend on the parameter λ), and the integer ∆. The descriptions of
Compress and SCOMPR can be computed in polynomial time from the binary representation of λ, as shown
in Lemma 12.3.

Since F computes a total function, by applying the Kleene-Rogers fixed point theorem (Theorem 12.5)
with k = 5, there exists a 5-input Turing machine DHALT computing the same function as F (DHALT), and
the description of DHALT is polynomial-time computable from the description of F .

Let VHALT = (SHALT,DHALT), where SHALT is defined to be the sampler SCOMPR from Theorem 12.2
corresponding to parameter λ. Since F and SHALT are polynomial-time computable fromM, λ, and ∆, the
description of the verifier VHALT is also computable from these parameters.

From the definition of DHALT as a fixed point of F , we get the following properties.

Lemma 12.7. Let M be a Turing machine and λ, ∆ integer. Then the verifier VHALT has the following
properties.

1. For any integer n, ifM halts in n steps then val∗(VHALT
n ) = 1. Furthermore, there is a value-1 PCC

strategy for the game VHALT
n .

2. For any integer n, ifM does not halt in n steps then VHALT
n has a value-1 PCC strategy if and only if

(VHALT)COMPR
n does. Furthermore, under the same assumption it holds that for any α ∈ [0, 1],

E
(
VHALT

n , α
)
= E

(
(VHALT)COMPR

n , α
)

.
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Proof. By definition, DHALT computes the same function as F (DHALT). SupposeM halts in n steps. Then
from the definition of F , it follows that F (DHALT) accepts on input (n, x, y, a, b) for all x, y, a, b, and hence
val∗(VHALT

n ) = 1. If M does not halt in n steps, then again from the definition of F , it follows that
F (DHALT) accepts on input (n, x, y, a, b) if and only if (DHALT)COMPR accepts on (n, x, y, a, b).

We now argue that the parameters λ, ∆ can be chosen so that VHALT is λ-bounded, thus satisfying the
conditions of Theorem 12.2.

Lemma 12.8. For all Turing machines M and integers ∆, λ ∈ N, the description of the corresponding
verifier VHALT can be computed in polynomial time from the description ofM and the binary representation
of ∆, λ. Furthermore, VHALT is a normal form verifier satisfying

1. |SHALT|, |DHALT| ≤ poly(log ∆, |M|, log λ)

2. RANDSHALT(n) ≤ poly(n, λ)

3. TIMESHALT(n) ≤ poly(n, λ)

4. TIMEDHALT(n) ≤ poly((∆n)∆, log λ, |M|)

Proof. Lemma 12.6 implies that F can be computed in polynomial time from (M, λ, ∆); Theorem 12.5
then implies that DHALT can be computed in polynomial time from (M, λ, ∆). Second, combining Lem-
mas 12.3 and 12.4 shows that SHALT = SCOMPR (corresponding to parameter λ) can be computed in poly-
nomial time from the binary representation of λ.

We now establish the complexity bounds on VHALT. Since SHALT = SCOMPR, the description length, ran-
domness and time complexities of SHALT are determined by Theorem 12.2. To analyze the time complexity
of the decider DHALT, we observe that

• The description length |F | = poly(log ∆, |M|, log λ), because ∆ is written in binary in the descrip-
tion ofF , and the dependence on the parameter λ come from the description length of the compression
procedure Compress. All other steps have constant-size descriptions.

• By Theorem 12.5, the description length |DHALT| is bounded by poly(|F |).

• The time complexity of F on input DHALT is at most poly(log ∆, |M|, |DHALT|, log λ), because it
simply writes out the description of the Turing machine D′ described in Figure 21.

• The time complexity of the Turing machine described by F (DHALT) on any input (n, x, y, a, b) is, by
construction, at most (∆n)∆.

Putting everything together, Theorem 12.5 implies that the time complexity ofDHALT on inputs (n, x, y, a, b)
is at most poly((∆n)∆, log λ, |M|).

Lemma 12.9 (Self-consistent compression parameters). For all Turing machines M, there exist integers
λ, ∆ ∈ N and corresponding Turing machines F , DHALT such that the corresponding verifier VHALT =
(SHALT,DHALT) is λ-bounded (see Definition 12.1), and the Turing machineF (DHALT) on input (n, x, y, a, b)
does not reject due to exceeding the time limit ∆n∆. Furthermore, integers λ, ∆ satisfying these conditions
are polynomial-time computable from the description ofM.
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Proof. The time complexity of the three steps of the Turing machine described by F (DHALT) on input
(n, x, y, a, b) is bounded by

poly(n, |M|)︸ ︷︷ ︸
Step 1

+poly(|SHALT|, |DHALT|, log λ)︸ ︷︷ ︸
Step 2

+poly(n, λ, |SHALT|, |DHALT|)︸ ︷︷ ︸
Step 3

. (155)

Step 1 comes from simulating the Turing machine M, Step 2 comes from the complexity of running the
Compress procedure, and Step 3 is the complexity of the decider that is output by the Compress procedure,
given by Theorem 12.2. Note that we obtain the bound for Step 3 without assuming that the verifier VHALT

is λ-bounded—this is precisely the statement we are trying to prove! Substituting upper bounds on the
description lengths of SHALT and DHALT(as given by Theorem 12.2 and Lemma 12.8), we get that (155) is
at most poly(n, λ, log ∆, |M|).

Let C ∈N be a universal constant such that the polynomials on the right hand side of Items 1 through 4
of Lemma 12.8 as well as the polynomial upper bound on (155) all satisfy poly(a1, . . . , ak) ≤ C(a1 · · · ak)

C

for all integers a1, . . . , ak ∈N, where a1, . . . , ak represent possible values for the argument of each polyno-
mial (e.g. n, λ, etc.). To prove the lemma it suffices to identify integers ∆, λ such that for all n ∈N,

1. C(log ∆ · log λ · |M|)C ≤ λ

2. C(n · λ)C ≤ (λn)λ

3. C((∆n)∆ · log λ · |M|)C ≤ (λn)λ

4. C(n · λ · log ∆ · |M|)C ≤ (∆n)∆

The first three items are to establish the λ-bounded property of VHALT (the first is so that the description
length of |DHALT| is at most λ, and the next two are to bound the time and randomness complexities of
SHALT,DHALT). The fourth item is used to argue that DHALT does not reject due to exceeding the “time-out”
limit of (∆n)∆.

We choose ∆ = 128 · C2 · |M| and λ = ∆2C. To see that these satisfy the inequalities, we note that
the power n is raised to on the left-hand sides of the inequalities is always less than the power it’s raised to
on the right-hand sides. As a result, it is sufficient to check that these satisfy satisfying the inequalities for
n = 1, which they do. These integers are clearly computable in polynomial-time from the description of
M.

Putting things together we obtain the following result.

Theorem 12.10. For all Turing machinesM, there exists a game G such that

1. IfM halts on the empty tape, then val∗(G) = 1.

2. IfM does not halt on the empty tape, then val∗(G) ≤ 1
2 .

Furthermore, the game G is polynomial-time computable from the description ofM.

Proof. Fix α = 1
2 . Fix a Turing machineM. Let ∆, λ,F , andDHALT be as promised by Lemma 12.9 for this

choice ofM. In particular, the parameters ∆, λ are polynomial-time computable from the description ofM,
and therefore by Lemma 12.8 VHALT is polynomial-time computable fromM. Furthermore, Lemma 12.9
ensures that VHALT is λ-bounded.
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Let n0 = γ, where γ is the universal constant specified in Theorem 12.2. For all n ≥ n0, let Gn
denote the game corresponding to the verifier VHALT

n , and let GCOMPR
n denote the game corresponding to

the compressed verifier V ′n where V ′ = Compress(VHALT), where the Compress procedure depends on the
parameter λ. Finally, let G = Gn0 .

Suppose thatM halts on the empty tape; let T be the minimum number of time steps required forM
to halt on the empty tape. Observe that for all n ≥ T, by Lemma 12.7 it holds that Gn has a value-1 PCC
strategy. We will use this to show inductively that Gn also has a value-1 PCC strategy, for all n0 ≤ n < T.

Claim 12.11. Let n0 ≤ n < T. Suppose that Gm has a value 1 PCC strategy for all m > n. Then Gn also
has a value 1 PCC strategy.

Proof. Since by assumptionM does not halt in n steps, by Lemma 12.7 it holds that Gn has a value 1 PCC
strategy if GCOMPR

n does. Since VHALT is λ-bounded and n ≥ n0, by Theorem 12.2 it follows that GCOMPR
n

has a value 1 PCC strategy if G2n does. Since 2n > n, this is true by the hypothesis of the claim. Thus, Gn
has a value 1 PCC strategy as claimed.

By Claim 12.11 and downwards induction on n (with the base case n = T), we have that Gn has a
value-1 PCC strategy for all n ≥ n0. In particular, we have val∗(G) = val∗(Gn0) = 1. This shows the first
item in the theorem statement.

Now suppose thatM does not halt on the empty tape. We have that for all n ∈N:

E (Gn, α) = E (GCOMPR
n , α) ≥ E (GN , α) ,

where the equality follows from Lemma 12.7 and the inequality follows from Theorem 12.2 (again using
the λ-bounded property of VHALT). By induction, we get that for all k ∈N,

E (G, α) = E (Gn0 , α) ≥ E (Gg(k)(n0)
, α) = E (GCOMPR

g(k)(n0)
, α) ≥ α2λ(g(k)(n0))

λ
,

where g(k)(·) is the k-fold composition of the function g(n) = 2n and the second inequality follows from
Theorem 12.2 again. Since g(·) is a monotonically increasing function and by definition α > 0, this implies
that there is no finite upper bound on E (G, α), and therefore every finite dimensional strategy for the game
G must have success probability at most α = 1

2 .

Recall the definition of the complexity class RE, which stands for the set of recursively enumerable
languages (also called Turing-recognizable languages). Precisely, a language L ⊆ {0, 1}∗ is in RE if
and only if there exists a Turing machine M such that if x ∈ L, then M(x) halts and outputs 1, and if
x /∈ L, then eitherM(x) outputs 0 or it does not halt. The Halting Problem is the language that contains
descriptions of Turing machines that halt on the empty input tape. The following well-known lemma shows
that the Halting Problem is complete for RE. We include the simple proof for convenience.

Lemma 12.12. The Halting Problem is complete for RE.

Proof. To see that the Halting Problem is in RE, define M to take as input an x that represents a Turing
machine N = [x], and runs the universal Turing machine to simulate N on the empty tape; if N halts with
a 1 then so doesM.

To show that the Halting problem is complete for RE, let L ∈ RE andM a Turing machine such that if
x ∈ L, thenM(x) halts and outputs 1. For an input x, let Nx be the following Turing machine. Nx first
runsM on input x. IfM accepts, then Nx accepts. On all other outcomes, Nx goes into an infinite loop.
Thus Nx halts if and only if x ∈ L.
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Corollary 12.13. MIP∗ = RE.

Proof. Since the Halting Problem is complete for RE, and by Theorem 12.10 is contained in MIP∗, we
have the inclusion RE ⊆ MIP∗. The reverse inclusion MIP∗ ⊆ RE follows from the following observation.
Let L ∈ MIP∗ . From the definition of MIP∗ (see e.g. [VW16, Section 6.1], from which we borrow
the notation used here) it follows that there exists a polynomial-time Turing machine R such that for all
x ∈ {0, 1}∗, R(x) is the description of an m-turn verifier Vx interacting with k provers, where m and k are
both polynomial functions of |x| and such that

val∗(Vx) ≥ 2/3 if x ∈ L
val∗(Vx) ≤ 1/3 if x /∈ L

Consider the following Turing machine A: on input x, it computes Vx = R(x), and then exhaustively
searches over tensor-product strategies of increasing dimension and increasing accuracy to evaluate a lower
bound on val∗(Vx). If val∗(Vx) ≥ 2/3, then for arbitrarily small δ there exists a finite dimensional tensor-
product strategy for the players that achieves value 2/3− δ > 1/3. When the Turing machine A identifies
such a strategy it terminates, outputting 1. If there is no such strategy, then A never halts. This implies that
L ∈ RE.

12.4 An explicit separation

As discussed in Section 1.3, Theorem 12.10 implies that Cqa, the set of approximately finite-dimensional
correlations, is a strict subset of Cqc, the set of commuting-operator correlations. This is because if Cqa =
Cqc, then there exists an algorithm to approximate the entangled value of a given nonlocal game G to
arbitrary accuracy. On the other hand, Theorem 12.10 shows that deciding whether a game has entangled
value 1 or at most 1/2, promised that one is the case, is undecidable. Therefore the correlation sets must be
different.

In fact, Theorem 12.10 implies that there is an infinite family M of Turing machines that do not halt on
an empty input tape such that for allM ∈M , the corresponding game GM has val∗(GM) < valco(GM),
where recall that valco(GM) denotes the commuting-operator value of GM, which is supremum of success
probabilities over all commuting-operator strategies for GM.25 However, it is not immediately clear, given
a specific non-halting Turing machine M, whether the associated game GM separates the commuting-
operator model from the tensor product model of strategies. While Theorem 12.10 implies that val∗(GM) ≤
1
2 , it could also be the case that valco(GM) = val∗(GM) in that particular instance. We conjecture that
valco(GM) = 1 for all non-halting Turing machinesM, but it appears to be difficult to identify an explicit
value-1 commuting operator strategy that demonstrates this.

In this section we identify an explicit game G that separates the tensor product model from the commuting-
operator model; we show that val∗(G) ≤ 1

2 but valco(G) = 1. Interestingly, the proof does not exhibit an
explicit value-1 commuting-operator strategy for G.

We construct the separating game in a similar manner to the games constructed in Section 12.3. Let
A denote the following 1-input Turing machine: it takes as input a description of a nonlocal game G and
runs the semidefinite programming hierarchy of [NPA08, DLTW08] to compute a non-increasing sequence

25To see why this holds, observe that if it were the case that val∗(GM) = valco(GM) for all but finitely many non-halting
M then we could construct an algorithm A to decide the Halting problem as follows. On inputM, A first checks ifM is one
of the finitely many Turing machines for which val∗(GM) < valco(GM); if so, then it outputs a hard-coded answer for whether
M halts on the empty tape or not. Otherwise, A computes the nonlocal game GM and executes the aforementioned algorithm for
approximating the entangled value of games assuming that Cqa = Cqc.
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α1, α2, . . . of upper bounds on valco(G) such that limn→∞ αn = valco(G). The Turing machine A halts if
it obtains a bound αn < 1. Thus this algorithm eventually halts whenever valco(G) < 1, and otherwise it
runs forever.

Consider the Turing machine R in Figure 22, parameterized by integers λ, ∆. The only difference
between the Turing machine described in Figure 22 and the one described in Figure 21 is that the decider
D′ returned by R(D) runs the algorithm A on some fixed nonlocal game corresponding to the verifier
V = (SCOMPR,D).

Input: description D of a 5-input Turing machine.

Output: the description D′ of a 5-input Turing machine: on input (n, x, y, a, b), D′ runs the
following steps for at most (∆n)∆ time steps (if it has not halted by that time, then reject).

1. Let V = (SCOMPR,D). Compute an explicit description of the nonlocal game G = Vn0 ,
where n0 = γ and γ is the universal constant from Theorem 12.2.

2. Run A on input G for n steps. If A halts, then accept. Otherwise, if A hasn’t halted yet,
then proceed to the next step.

3. Compute VCOMPR = Compress(V), where V = (SCOMPR,D) and Compress is given by
Theorem 12.2 which depends on the parameter λ. Let DCOMPR be the decider of VCOMPR.

4. Accept iff DCOMPR(n, x, y, a, b) accepts.

Figure 22: The Turing machineR, parameterized by integers λ, ∆.

We follow the same steps as in Section 12.3. By applying the Kleene-Rogers fixed point theorem to R,
we obtain a decider DSEP that is a fixed point of R. Let VSEP = (SSEP,DSEP) where SSEP = SCOMPR.
A similar argument to that of Lemmas 12.8 and 12.9 shows that there exist choices of λ, ∆ (computable
from the description of A) such that VSEP is λ-bounded. Fix such parameters λ, ∆ and let VSEP be the
verifier corresponding to these parameters. Define the game GSEP = VSEP

n0
for n0 = γ, where γ is the

universal constant from Theorem 12.2. Note that since DSEP computes the same function as R(DSEP) and
the description of the game G computed by the decider DSEP in Step 1 of Figure 22 only depends on the
predicate computed by D (rather than the details of how the predicate is computed), it follows that G is
identical to GSEP.

Theorem 12.14. For the game GSEP = VSEP
n0

it holds that val∗(GSEP) ≤ 1
2 and valco(GSEP) = 1.

Proof. Suppose that valco(GSEP) = 1. The invocation of the Turing machine A on input GSEP never halts,
and therefore the decider DSEP never accepts in Step 2 of Figure 22. Applying Theorem 12.2, we get that
E (VSEP

n , 1
2 ) ≥ E (VSEP

2n , 1
2 ) and

E (VSEP
n ,

1
2
) ≥ 1

2
2λ(2n)λ

for all n ≥ n0. An inductive argument implies that there is no finite upper bound on E (VSEP
n , 1

2 ), and thus
val∗(GSEP) = val∗(VSEP

n0
) ≤ 1

2 , which implies the theorem.
On the other hand, suppose that valco(GSEP) < 1. Then there exists some m ≥ n0 such that A

halts on input GSEP after m steps, so VSEP
n has a value-1 PCC strategy for all n ≥ m (i.e. the players
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do not respond with any answers). Thus by the completeness statement of Theorem 12.2 and an induction
argument, we have that VSEP

n has a value-1 PCC strategy for all n ≥ n0, which implies that val∗(GSEP) = 1,
a contradiction because of val∗(GSEP) ≤ valco(GSEP). This completes the theorem.
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