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Abstract
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An immediate byproduct of our result is that there is an efficient reduction from the Halting Problem
to the problem of deciding whether a two-player nonlocal game has entangled value 1 or at most %
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problem: we show, by providing an explicit example, that the closure Cg, of the set of quantum tensor
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1 Introduction

For integer 17,k > 2 define the quantum (spatial) correlation set Cgs(1,k) as the subset of R™* that
contains all tuples ( Pubxy) representing families of bipartite distributions that can be locally generated in
non-relativistic quantum mechanics. Formally, (papx,) € Cgs(n,k) if and only if there exist separable
Hilbert spaces Ha and Hp, for every x € {1,...,n} (resp. y € {1,...,n}), a collection of projec-
tions {Ag}ae{l,...,k} on Ha (resp. {Bz}be{l,...,k} on Hg) that sum to identity, and a state (unit vector)
P € Ha ® Hp such that

Vx,y€{1,2,...,n}, Vabe{1,2,...,k}, pabxyzl,b*(A;‘@JBZ)gb. (1)

Note that due to the normalization conditions on ¢ and on {A2} and {Bj}}, for each X, ¥, (Papxy) is a
probability distribution on {1,2,...,k}?. By taking direct sums it is easy to see that the set Cys(1, k) is
convex. Let Cyq(1, k) denote its closure (it is known that Cys(11, k) # Cya(n, k), see [Slo19a]).

Our main result is that the family of sets {Cy4 (7, k) }, ke is extraordinarily complex, in the following
computational sense. For any 0 < & < 1 define the e-weak membership problem for Cg, as the problem of
deciding, given n,k € IN and a point p = (pabxy) c R™F whether p lies in Cyq(n, k) or is e-far from
it in #; distance, promised that one is the case. Then we show that for any given 0 < € < 1 the e-weak
membership problem for Cy, cannot be solved by a Turing machine that halts with the correct answer on
every input.

We show this by directly reducing the Halting problem to the weak membership problem for Cg,: we
show that for all 0 < &€ < 1 and any Turing machine M one can efficiently compute integers 1,k € IN and
a linear functional £ on R™¥ such that, whenever M halts it holds that

sup  |lu(p)| =1, )
pGan(n,k)
whereas if M does not halt then
sup  |lu(p)] < 1—e. 3)
p€Cya(nk)

By standard results in convex optimization, this implies the aforementioned claim on the undecidability of
the e-weak membership problem for C, (forany 0 < e < 1).

Our result has interesting consequences for long-standing conjectures in quantum information theory and
the theory of von Neumann algebras. Through a connection that follows from the work of Navascues, Piro-
nio, and Acin [NPAOS] the undecidability result implies a negative answer to Tsirelson’s problem [Tsi06].
Let Cyc(n, k) denote the set of quantum commuting correlations, which is the set of tuples (p,py,) arising

from operators { A} } and {B} } acting on a single Hilbert space H and a state ¢ € 7 such that
Vx,ye{l,...,n},Va,be{1,...k}, Pabry = " (A3B))¢ and [A}, Bi] =0. (4

Then Tsirelson’s problem asks if, for all n,k, the sets Cyq(1,k) and Cye(n, k) are equal. Using results
from [NPAO8] we give integer 7, k and an explicit linear function ¢ on R™* such that
1

sup ]é(p)‘ =1, but sup }E(p)‘ < 5
pECqye(n,k) pECqa(nk)

which implies that Cyq(11,k) # Cye(n, k). By an implication of Fritz [Fril12] and Junge et al. [INPT11]
we further obtain that Connes’ Embedding Conjecture [Con76] is false; in other words, there exist type II;

4



von Neumann factors that do not embed in an ultrapower of the hyperfinite II; factor. We explain these
connections in more detail in Section 1.3 below.

Our approach to constructing such linear functionals on correlation sets goes through the theory of inter-
active proofs from complexity theory. To explain this connection we first review the concept of interactive
proofs. The reader familiar with interactive proofs may skip the next section to arrive directly at a formal
statement of our main complexity-theoretic result in Section 1.2.

1.1 Interactive proof systems

An interactive proof system is an abstraction that generalizes the familiar notion of proof. Intuitively, given
a formal statement z (for example, “this graph admits a proper 3-coloring”), a proof 7t for z is information
that enables one to check the validity of z more efficiently than without access to the proof (in this example,
7t could be an explicit assignment of colors to each vertex of the graph).

Complexity theory formalizes the notion of proof in a way that emphasizes the role played by the veri-
fication procedure. To explain this, first recall that in complexity theory a language L is a subset of {0,1}",
the set of all bit strings of any length, that intuitively represents all problem instances to which the answer
should be “yes”. For example, the language L = 3-COLORING contains all strings z such that z is the
description (according to some pre-specified encoding scheme) of a 3-colorable graph G. We say that a
language L admits efficiently verifiable proofs if there exists an algorithm V' (formally, a polynomial-time
Turing machine) that satisfies the following two properties: (i) for any z € L there is a string 77 such that
V(z, ) returns 1 (we say that V “accepts”), and (ii) for any z ¢ L there is no string 7t such that V (z, 77)
accepts. Property (i) is generally referred to as the completeness property, and (ii) is the soundness. The
set of all languages L with both these completeness and soundness properties is denoted by the complexity
class NP.

Research in complexity and cryptography in the 1980s and 1990s led to a significant generalization
of the notion of “efficiently verifiable proof”. The first modification is to allow randomized verification
procedures by relaxing (i) and (ii) to high probability statements: every z € L should have a proof 7t that is
accepted with probability at least ¢ (the completeness parameter), and for no z ¢ L should there be a proof
7t that is accepted with probability larger than s (the soundness parameter). A common setting is to take
c= % and s = %; standard amplification techniques reveal that the exact values do not significantly affect
the class of languages that admit such proofs, provided that they are chosen within reasonable bounds.

The second modification is to allow inferactive verification. Informally, this means that instead of re-
ceiving a proof string 7T in its entirety and making a decision based on it, the verification algorithm (called
the “verifier”) instead communicates with another algorithm called a “prover”, and based on the communi-
cation decides whether z € L. There are no restrictions on the computational power of the prover, whereas
the verifier is required to run in polynomial time.'

To understand how randomization and interaction can help for proof checking, consider the following
example of an interactive proof for the language GRAPH NON-ISOMORPHISM, which contains all pairs of
graphs (G, Gy ) such that Gy and G; are not isomorphic.2 It is not known if GRAPH NON-ISOMORPHISM €
NP, because it is not clear how to give an efficiently verifiable proof string that two graphs Gg and G are

IThe reader may find the following mental model useful: in an interactive proof, an all-powerful prover is trying to convince
a skeptical, but computationally limited, verifier that a string z (known to both) lies in the set L, even when it may be that in fact
z ¢ L. By interactively interrogating the prover, the verifier can reject false claims, i.e. determine with high statistical confidence
whether z € L or not. Importantly, the verifier is allowed to probabilistically and adaptively choose its messages to the prover.

2Here and in the rest of the section, we implicitly assume that graphs and tuples of graphs have a canonical encoding as binary
strings.



not isomorphic. (A proof of isomorphism is, of course, trivial: given a bijection from the vertices of Gy to
those of Gy it is straightforward to verify that the bijection induces an isomorphism.) However, consider
the following randomized, interactive verification procedure. Suppose the input to the verifier and prover
is a pair of n-vertex graphs (Go, G1) (if the graphs do not have the same number of vertices, they are
trivially non-isomorphic and the verification procedure can automatically accept). The verifier first selects
a uniformly random b € {0,1} and a uniformly random permutation ¢ of {1, ...,n} and sends the graph
H = 0(Gy) to the prover. The prover is then supposed to respond with a bit b’ € {0,1}; if b’ = b the
verifier accepts and if b’ # b it rejects.

Clearly, if Gg and Gy are not isomorphic then there exists a prover strategy to compute b from H with
probability 1: using its unlimited computational power, the prover can determine whether H is isomorphic
to Gg or to G1. However, if Gy and Gy are isomorphic then the distribution of H is uniform over the
isomorphism class of Gp, which is the same as the isomorphism class of G1, and the prover (despite having
unlimited computational power) cannot distinguish between whether the verifier generated H using G or
G1. Thus the probability that any prover can correctly guess b’ = b is exactly % As a result, we have
shown that the graph non-isomorphism problem has an interactive proof system with completeness ¢ = 1
and soundness s = % Note how little “information” is communicated by the prover: a single bit! The
extreme succinctness of the “proof” comes from the fact that whether Gq is isomorphic to G; determines
whether a prover can reliably compute, given the data available to it (which is Go,G1, and H), the correct
bit b.

We denote by IP the class of languages that admit randomized interactive proof systems such as the one
just described. The class IP is easily seen to contain NP, but it is thought to be a much larger class: one
of the famous results of complexity theory is that IP is exactly the same as PSPACE [LFKN90, Sha90], the
class of languages decidable by Turing machines using polynomial space.’ Thus a polynomial-time verifier,
when augmented with the ability to interrogate an all-powerful prover and use randomization, can solve
computational problems that are (believed to be) vastly more difficult than those that can be checked using
static, deterministic proofs (i.e. NP problems).

Multiprover interactive proofs. We now discuss a generalization of interactive proofs called multiprover
interactive proofs. Here, a polynomial-time verifier can interact with two (or more) provers to decide
whether a given instance z is in a language L or not. In this setting, after the verifier and all the provers
receive the common input z, the provers are not allowed to communicate with each other, and the verifier
“cross-interrogates” the provers in order to decide if z € L. The provers may coordinate a joint strategy
ahead of time, but once the protocol begins the provers can only interact with the verifier. As we will see,
the extra condition that the provers cannot communicate with each other is a powerful constraint that can be
leveraged by the verifier.

Consider the computational problem of deciding membership in a promise language called GAP-MAXCUT.
A promise language L is specified by two disjoint subsets Lyes, Lo € {0,1}*, and the task is to decide
whether a given instance z is in Lyes or Ly, promised that z € Lyes U Lyo. In a proof system for a promise
language, the completeness case consists of accepting with probability at least ¢ if z € Lyes, and the sound-
ness case consists of accepting with probability at most s if z € Ly,. If z ¢ Lyes U Lo, then there are no
constraints on the behavior of the verifier.

The promise language GAP-MAXCUT is defined as follows: GAP-MAXCUT s (resp. GAP-MAXCUTy,)

3The reason PSPACE is considered a “difficult” class of problems is because many computational problems believed to require
super-polynomial or exponential time (such as 3-COLORING or deciding whether a quantified Boolean formula is true) can be
solved using a polynomial amount of space.



is the set of all graphs G with a cut (i.e. a bipartition of the vertices) such that at least 90% of edges cross
the cut (resp. at most 60% of edges cross the cut).* For simplicity, we also assume that all graphs in
GAP-MAXCUTy,s U GAP-MAXCUTy, are regular, i.e. the degree is a constant across all vertices in the
graph.

The GAP-MAXCUT problem clearly lies in NP, since given a candidate cut it is easy to count the number
of edges that cross it and verify that it is at least 90% of the total number of edges. Observe that the length
of the proof and the time required to verify it are linear in the size of the graph (the number of vertices and
edges). Finding the proof is of course much harder, but we are only concerned with the complexity of the
verification procedure.

Now consider the following simple two-prover interactive proof system for GAP-MAXCUT. Given a
graph G, the verification procedure first samples a uniformly random edge e = {u, v} in G. It then sends a
uniformly random x € {u, v} to the first prover, and a uniformly random y € {u, v} to the second prover.
Each prover sees its respective question only and is expected to respond with a single bit, a,b € {0,1}
respectively. The verification procedure accepts if and only if a = bif x = y,anda # bif x # y.

We claim that the verification procedure described in the preceding paragraph is a multiprover interactive
proof system for the language GAP-MAXCUT, with completeness ¢ = 0.95 and soundness s = 0.9, in the
following sense. First, whenever G € GAP-MAXCUT,s then there is a successful strategy for the provers:
specifically, the provers can fix an optimal bipartition and consistently answer “0” when asked about a vertex
from one side of the partition, and “1” when asked about a vertex from the other side; assuming there exists
a cut that is crossed by at least 90% of the edges, this strategy succeeds with probability at least % + %0.9,
where the first factor % arises from the case when both provers are sent the same vertex, in which case they
always succeed.

Conversely, suppose given a strategy for the provers that is accepted with probability p = % + %(1 —9)
when the verification procedure is executed on a (regular) n-vertex graph G. We then claim that G has a
cut crossed by at least a 1 — 2J fraction of all edges. To show this, we leverage the non-communication
assumption on the provers. Since either prover’s question is always a single vertex, their strategy can be rep-
resented by a function from the vertices of G to answers in {0, 1}. Any such function specifies a bipartition
of G. While the provers’ bipartitions need not be identical, the fact that they succeed with high probability,
for the case when they are sent the same vertex, implies that they must be consistent with high probability.
Finally, the fact that they also succeed with high probability when sent opposite endpoints of a randomly
chosen edge implies that either prover’s bipartition must be cut by a large number of edges. Taking the
contrapositive establishes the soundness property.

We denote by MIP the class of languages that have multiprover interactive proof systems such as the
one described in the preceding paragraph. Note that, in comparison to the NP verification procedure for
GAP-MAXCUT considered earlier, the interactive, two-prover verification is much more efficient in terms
of the effort required for the verifier. Assuming the graph is provided in a convenient format,” it is possible
to sample a random edge and verify the provers’ answers in time and space that scales logarithmically with
the size of the graph. This exponential improvement in the efficiency of the verification procedure serves
as the starting point for another celebrated result from complexity theory: MIP is exactly the same as the
class NEXP [BFL91], which are problems that admit exponential-time checkable proofs.® The class NEXP

4The specific numbers 90% and 60% are not too important; the only thing that really matters is that the first one is strictly less
than 100% and the second strictly larger than 50%, as otherwise the problem becomes much easier.

SFor example, the graph can be specified via a circuit that takes as input an edge index — using some arbitrary ordering — and
returns labels for the two endpoints of the edge.

6An example of such a problem is the language SUCCINCT-3-COLORING, which contains descriptions of polynomial-size
circuits C that specify a 3-colorable graph G¢ on exponentially many vertices.



contains PSPACE, but is believed to be much larger; this suggests that the ability to interrogate more than
one prover enables a polynomial-time verifier to verify much more complex statements.

Nonlocal games. In this paper we will only be concerned with multiprover interactive proof systems
that consist of a single round of communication with two provers: the verifier first sends its questions to
each of the provers, the provers respond with their answers, and the verifier decides whether to accept or
reject. The class of problems that admit such interactive proofs is denoted MIP(2,1), and it is known that
MIP = MIP(2,1) [FL92]. Such proof systems have a convenient reformulation using the language of
nonlocal games, that we now explain.

In a nonlocal game, we say that a verifier interacts with multiple non-communicating players (instead
of provers — there is no formal difference between the two terms). An n-question, k-answer nonlocal
game & is specified by two procedures: a question sampling procedure that samples a pair of questions
(x,y) € {1,...,n}?for the players according to a distribution y (known to the verifier and the players), and
a decision procedure that takes as input the players’ questions and their respective answers a,b € {1, ..., k}
and evaluates a predicate D(x,y,a,b) € {0,1} to determine the verifier’s acceptance or rejection. In
classical complexity theory, the main quantity associated with a nonlocal game & is its classical value,
which is the maximum success probability that two cooperating but non-communicating players have in the
game. Formally, the classical value is defined as

val(6) = sup ) u(x,y) ) D(x,y,a,b)papxy , (5)
peCe(nk) x,y ab

where the set Cc (1, k) is the set of classical correlations, which are tuples (papx,) such that there exists a

set A with probability measure v and for every A € A functions A%, B* : {1,2,...,n} — {1,2,...,k}
such that

Vx,y € {1,2,...,n}, Va,b€{1,2,...,k}, Paxy = APr (AMx) =a A B y) =b).
~V

This definition captures the intuitive notion that a classical strategy for the players is specified by (i) a
distribution v on A that represents some probabilistic information shared by the players that is independent
of the verifier’s questions, and (ii) two functions A%, B* that represent each players’ “local strategy” for
answering given their shared randomness A and question x or y. ' Note that due to the shared randomness
A, the set C. (11, k) is a (closed) convex subset of [0,1]"F".

To make the connection with interactive proof systems, observe that the assertion that L € MIP(2,1)
precisely amounts to the specification of an efficient mapping® from problem instances z to games @, such
that whenever z € L then val(®.) > 2, whereas if z ¢ L then val(®.) < 1. Thus the complexity
of the optimization problem (5) captures the complexity of the decision problem L. The aforementioned
characterization of MIP as the class NEXP by [BFL91] shows that in general this optimization problem is
very difficult: it is as hard as deciding any language in NEXP.

7For the functional analyst we briefly note that if we define a tensor

L= Z u(x,y)D(x,y,a,b)exa @ ey € R™* @ R™
x,y,a,b

then val(®) = ||L[|g (¢, )k, 01(¢,)r» With @ denoting the injective tensor norm of Banach spaces. (For more connections between
interactive proofs, nonlocal games and tensor norms we refer to the survey [PV16].)

8Here by “efficient” we mean that there should be a polynomial-time Turing machine that on input z returns (i) a polynomial-size
randomized circuit that samples from y, and (ii) a polynomial-size circuit that evaluates the predicate D.



1.2 Statement of result

We now introduce the main complexity class that is the focus of this paper: MIP*, the “entangled-prover”
analogue of the class MIP considered earlier. Informally the class MIP*, first introduced in [CHTWO04],
contains all languages that can be decided by a classical polynomial-time verifier interacting with multiple
quantum provers sharing entanglement. We focus on the class MIP*(2, 1), which corresponds to the setting
of one-round protocols with two provers. Equivalently, a language L is in MIP* (2, 1) if and only if there is an
efficient mapping from instances z € {0,1}* to nonlocal games & such thatif z € L, then val*(&,) > 2/3
and otherwise val®(&,) < 1/3. Here, for an n-question, k-answer game &, we let val*(®) denote its
entangled value, which is defined as

val'(6) = sup Y u(x,y)) D(x,y,a,b)papy , (6)
p€eCys(nk) xy ab

where the set Cys (1, k) is the quantum spatial correlation set introduced in (1). In other words, the entangled
value is the supremum of the success probabilities achieved by players that use quantum spatial strategies
(i.e., perform local measurements on a shared entangled state). Note that (6) can be equivalently defined as
taking the supremum over the set Cgq(71, k), the closure of Cps(n, k).

Since Cc(n,k) C Cys(n, k), we have that val(&) < val®(®); in other words, using quantum spatial
strategies can do at least as well as classical strategies in a nonlocal game.

The consideration of quantum strategies and the set Cys (11, k) for the definition of MIP* is motivated by
a long line of works in the foundations of quantum mechanics around the topic of Bell inequalities, that are
linear functionals which separate the sets C(71, k) and Cys(n1, k). The simplest such functional is the CHSH
inequality [CHSH69], that shows Cc(2,2) € Cys(2,2). The CHSH inequality can be reformulated as a
game & such that val*(®) > val(®). This game is very simple: it is defined by setting y(x,y) = 1 for
all x,y € {0,1} and D(x,y,a,b) = lifand only if 2 b = x A y. It can be shown that val(&) = 3 and
val* (&) = % + ﬁ > %. The study of Bell inequalities is a large area of research not only in foundations,
where they are a tool to study the nonlocal properties of entanglement, but also in quantum cryptography,
where they form the basis for cryptographic protocols for e.g. quantum key distribution [Eke91].

The introduction of entanglement in the setting of interactive proofs has interesting consequences for
complexity theory; indeed it is not a priori clear how the class MIP* compares to MIP. Take a language
L € MIP(2,1), and let z be an instance. Then the associated game &, is such that val(&,) > % ifze L,
and val(®.) < I otherwise. The fact that in general val*(&.) > val(®.) (and that as demonstrated by
the CHSH game inequality can be strict) cuts both ways. On the one hand, the soundness property can be
affected, so that instances z ¢ L could have val*(®,) = 1, meaning that we would not be able to establish
that L € MIP*. On the other hand, a language L € MIP*(2,1) may not necessarily be in MIP, because for
z € L the fact that val*(&.) > 3 does not automatically imply val(.) > 1 (in other words, the game &
may require the players to use a quantum strategy in order to win with probability greater than 1/3). Just
as the complexity of the class MIP is characterized by the complexity of approximating the classical value
of nonlocal games (the optimization problem in (5)), the complexity of MIP* is intimately related to the
complexity of approximating the entangled value of games (the optimization problem in (6)).

In [TV 12] the first non-trivial lower bound on MIP* was shown, establishing that MIP = NEXP C MIP*.
(Earlier results [KKM ™11, IKM09] gave more limited hardness results, for approximating the entangled
value up to inverse polynomial precision.) This was proved by arguing that for the specific games con-
structed by [BFLI1] that show NEXP C MIP, the classical and entangled values are approximately the
same. In other words, the classical soundness and completeness properties of the proof system of [BFLI1]



are maintained in the presence of shared entanglement between the provers. Following [IV12] a sequence of
works [Vid16, Ji16, NV18b, Jil7, NV18a, FIVY19] established progressively stronger lower bounds on the
complexity of approximating the entangled value of nonlocal games, culminating in [NW19] which showed
that approximating the entangled value is at least as hard as NEEXP, the collection of languages decidable
in non-deterministic doubly exponential time. This proves that NEEXP C MIP*, and since it is known that
NEXP C NEEXP it follows that MIP £ MIP*.

In contrast to these increasingly strong lower bounds the only upper bound known on MIP* is the trivial
inclusion MIP* C RE, the class of recursively enumerable languages, i.e. languages L such that there
exists a Turing machine M such that x € L if and only if M halts and accepts on input x. This inclusion
follows since the supremum in (6) can be approximated from below by performing an exhaustive search in
increasing dimension and with increasing accuracy. We note that, in addition to containing all decidable
languages, this class also contains undecidable problems such as the Halting problem, which is to decide
whether a given Turing machine eventually halts.

Our main result is a proof of the reverse inclusion: RE C MIP*. Combined with the preceding observa-
tion it follows that

MIP* = RE,

which is a full characterization of the power of entangled-prover interactive proofs. In particular for any
0 < € < 1, it is an undecidable problem to determine whether a given nonlocal game has entangled value 1
or at most 1 — ¢ (promised that one is the case).

Proof summary. The proof of the inclusion RE C MIP* is obtained by designing an entangled-prover
interactive proof for the Halting problem, which is complete for the class RE. Specifically, we design an
efficient transformation that maps any Turing machine M to a nonlocal game & 5,4 such that, if M halts
(when run on an empty input tape) then there is a quantum strategy for the provers that succeeds with
probability 1 in &y (i.e. val* (&) = 1), whereas if M does not halt then no quantum strategy can
succeed with probability larger than 3 in the game (i.e. val* (&) < 3).

A very rough sketch of this construction is as follows (we give a detailed overview in Section 2). Given
an infinite family of games {&, } ,ciN, we say that the family is uniformly generated if there is a polynomial-
time Turing machine that on input 7 returns a description of the game &,. Given a game & and p € [0,1]
let £(®, p) denote the minimum local dimension of an entangled state shared by the players in order for
them to succeed in & with probability at least p.

We proceed in two steps. First, we design a compression procedure for a specific class of nonlocal
games that we call normal form. Given as input a uniformly generated family {&, },cn of normal form
games, the compression procedure returns another uniformly generated family {®/ },cn of normal form
games with the following properties: (i) for all 7, if val®(®2:) = 1 then val*(&/,) = 1, and (ii) for all n, if
val*(®y) < 1 then val*(®/},) < } and moreover

5((’5;,%) > max {é"(@zn,%), 220(n)} .

The construction of this compression procedure is our main contribution. Informally, it combines the
recursive compression technique developed in [Ji17, FIVY19] with the so-called “introspection” technique
of [NW19] that was used to prove NEEXP C MIP*. The introspection technique itself relies heavily on the
quantum low-degree test of [NV 18a] to robustly self-test certain distributions that arise from constructions
of classical probabilistically checkable proofs. The quantum low-degree test and the introspection technique
allow us to avoid the shrinking gap limitation of the results from [FIVY19].
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In the second step, we use the compression procedure in an iterated fashion to construct an interactive
proof system for the Halting problem. Fix a Turing machine M and consider the following family of

nonlocal games {Qisgl) 1 nen: forall n € IN, if M halts in at most n steps (when run on an empty input

tape), then Val*(ﬁs\o/l),n) = 1, and otherwise Val*((’ﬁg\o,l)’n) <3
Constructing such a family of games is trivial; furthermore, they can be made in the “normal form”

required by the compression procedure. However, consider applying the compression procedure to obtain a
family of normal form games {65\1,2 1 tnen- Then for all n € IN, it holds that if M halts in at most 2" steps

then val® ((’55\1,2,71) = 1, and otherwise val® (055\14),”) < 1, and furthermore any strategy that achieves a value

of at least % requires an entangled state of dimension at least 22
Intuitively, one would expect that iterating this procedure and “taking the limit” gives a family of games

{(’5&3101)”}”6]1\1 such that if M halts then val* ((’55\0/?),1) = 1forall n € IN, whereas if M does not halt then no
(o)

finite-dimensional strategy can succeed with probability larger than 5 in & /",

for all n € IN; in particular
Val*((’5(°°)n) < % Formally, we do not take such a limit but instead define directly the family of games

{65&0)” }nen as a fixed point of the Turing machine that implements the compression procedure. The game

(c0)

&\ can then be taken as &), ;. We describe this in more detail in Section 2.

1.3 Consequences

Our result is motivated by a connection with Tsirelson’s problem from quantum information theory, itself
related to Connes’ Embedding Conjecture in the theory of von Neumann algebras [Con76]. In a celebrated
sequence of papers, Tsirelson [Tsi93] initiated the systematic study of quantum correlation sets. Recall the
definition of the set of quantum spatial correlations

Cys(1,k) = {(Pabsy) | Pavxy = (Y| A; @ By|), |¢) € Ha @ Ha, Vxy, {A;}a, {B}}» POVM}, (7)

where here |i) ranges over all unit norm vectors |p) € Ha @ Hg with H o and Hp arbitrary (separable)
Hilbert spaces, and a POVM is defined as a collection of positive semidefinite operators that sum to identity.
(From now on we use the Dirac ket notation [¢) for states.) Recall the closure Cgq (71, k) of Cps(n, k).

Tsirelson observed that there is a natural alternative definition to the quantum spatial correlation set,
called the quantum commuting correlation set and defined as

ch(nr k) = {(pabxy) | pabxy = <IP|A§ BZ|4]>} ’ (8)

where |¢p) € H is a quantum state, {AX} and {B}} are POVMs for all x,y, and [A¥, B]] = O for all
a,b, x,y. Note the key difference with spatial correlations is that in (8) all operators act on the same (separa-
ble) Hilbert space. The requirement that operators associated with different inputs (questions) x, iy commute
is arguably a minimal requirement within the context of quantum mechanics for there to not exist any causal
connection between outputs (answers) a, b obtained in response to the respective input.

The set Cyc(n, k) is closed and convex, and it is easy to see that Cyq(11,k) C Cpe(n, k) for all m, k > 1.
When Tsirelson initially introduced these sets he claimed that equality holds. However, it was later pointed
out that this is not obviously true. The question of equality between Cyc and Cgg, (for all 71, k) is now known
as Tsirelson’s problem [Tsi06]. Let C;(n,k) denote the same as Cys(n, k) except that both Ha and Hp

9There is nothing special about the choice of %; this can be set to any constant that is less than 1.
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in (7) are restricted to finite-dimensional spaces. Then more generally one can consider the following chain
of inclusions

Cy(n, k) € Cys(n, k) € Cga(n, k) € Cye(n, k), 9)

for all n,k € IN, and ask which (if any) of these inclusions are strict. We let Cy, Cgs, Cga, Cye denote the
union of Cy (1, k), Cgs(n, k), Cga(n, k), Cye(n, k), respectively, over all integers 1, k € IN. In a breakthrough
work, Slofstra established the first separation between these four correlation sets by proving that Cgs #
Cyc [Slo19b]; he later proved the stronger statement that Cps # Cgq [Slo19a]. As a consequence of the
technique used to demonstrate the separation Slofstra also obtains the complexity-theoretic statement that
the problem of determining whether an element p lies in Cyc, even promised that if it does, then it also lies in
Cja, 1s undecidable. Interestingly, this is shown by reduction from the complement of the halting problem;
for our result we reduce from the halting problem (see Section 1.4 for further discussion of this point).
Since his work, simpler proofs of Slofstra’s results have been found [DPP19, MR18, Col19]. In [CS18],
Coladangelo and Stark showed that C; # Cgs by exhibiting a 5-input, 3-output correlation that can be
attained using infinite-dimensional spatial strategies (i.e. infinite-dimensional Hilbert spaces, a state and
POVMs satisfying (7)) but cannot be attained via finite-dimensional strategies.

As already noted in [FNT14] (and further elaborated on by [FIVY 19]), the undecidability of MIP*(2,1)
implies the separation Cg, # ch.lo This follows from the observation that if Cg, = C, then there exists
an algorithm that can correctly determine if a nonlocal game & satisfies val*(®) = 1 or val*(®) < 1 and
always halts: this algorithm interleaves a hierarchy of semidefinite programs providing outer approximations
to the set Cyc [NPAOS, DLTWO08] with a simple exhaustive search procedure providing inner approximations
to C4. Our result that RE C MIP*(2,1) implies that no such algorithm exists, thus resolving Tsirelson’s
problem in the negative.

We furthermore exhibit an explicit nonlocal game & such that val* (&) < val®(®) = 1, where
val®(®) is defined as val®(®) except that the supremum is taken over the set Cyc(71,k) in (8). This in
turn yields an explicit correlation that is in the set Cyc but not in Cg,. This game closely resembles the game
® 4 described in the sketch of the proof that RE C MIP*, where M is the Turing machine that runs the
hierarchy of semidefinite programs on the game & 5 and halts if it certifies that val®® (&) < 1. Itis in
principle possible to determine an upper bound on the parameters 7, k for our separating correlation from the
proof. While we do not provide such a bound, there is no step in the proof that requires it to be astronomical;
e.g. we believe (without proof) that 10?0 is a clear upper bound.

Connes’ Embedding Conjecture. Connes’ Embedding Conjecture (CEC) [Con76] is a conjecture in the
theory of von Neumann algebras. Briefly, CEC posits that every type II; von Neumann factor embeds into an
ultrapower of the hyperfinite II; factor. We refer to [Ozal3] for a precise formulation of the conjecture and
connections to other conjectures in operator algebras, such as Kirchberg’s QWEP conjecture. In independent
work Fritz [Fril12] and Junge et al. [JNP"11] showed that a positive answer to CEC would imply a positive
resolution of Tsirelson’s problem, i.e. that Cyq(11, k) = Cyc(n, k) for all n, k. (This was later promoted to an
equivalence by Ozawa [Ozal3].) Since our result disproves this equality for some #, k it also implies that
CEC does not hold. We note that using the constructive aspect of our result it may be possible to give an
explicit description of a factor that does not embed into an ultrapower of the hyperfinite II; factor, but we
do not give such a construction.

10Technically [FNT14] make the observation for the commuting-prover analogue MIP (2,1), discussed further in Section 1.4,
but the reasoning is the same.
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Entanglement tests. As a step towards showing our result for any integer n > 1 we construct a game
®,,, with question and answer length polynomial in the size of the smallest Turing machine M, that halts
(on the empty tape) in exactly 7 steps (i.e. the Kolmogorov complexity of n), such that val*(&,) = 1 yet
any quantum strategy that succeeds in &, with probability larger than % must use an entangled state whose

Schmidt rank is at least 222(") This is by far the most efficient entanglement test that we are aware of.

Prover and round reduction for MIP* protocols. Let MIP*(k,7) denote the collection of languages
decidable by MIP* protocols with k > 2 provers and 7 rounds. Prior to our work it was known how to
perform round reduction for MIP* protocols, at the cost of adding provers; it was shown by [Ji17, FIVY19]
that MIP*(k,r) C MIP*(k + 15,1) for all k, r. However, it was an open question whether the complexity
of the class MIP* increases if we add more provers. Our main complexity-theoretic result implies that
MIP* = MIP*(2,1). This follows from the following chain of inclusions: for all polynomially-bounded
functions k, ,
MIP*(2,1) € MIP*(k,r) C RE C MIP*(2,1) .

The first inclusion follows since the verifier in an MIP* protocol can always ignore extra provers and rounds;
the second inclusion follows from a simple exhaustive-search procedure that enumerates over strategies for
a given MIP*(k, r) protocol; the third result is proven in this paper.'!

However, this method of reducing provers and rounds in a given MIP* protocol is indirect; it involves
first converting a given MIP* protocol into a Turing machine that accepts if and only if the MIP* protocol
has value larger than %, and then constructing an MIP*(2, 1) protocol to decide whether the Turing machine
halts. In particular this transformation does not generally preserve the complexity of the provers and verifier
in the original protocols. We leave it as an open question to find a more direct method for reducing the
number of provers in an MIP* protocol.

1.4 Open questions

We mention several questions left open by our work.

Explicit constructions of counter-examples to Connes’ Embedding Conjecture. We provide an ex-
plicit counter-example to Tsirelson’s problem in the form of a game whose entangled value differs from
its commuting-operator value. Through the aforementioned connection with Connes’ embedding conjec-
ture [Fril2, JINPT11, Ozal3], the counter-example may lead to the construction of interesting objects in
other areas of mathematics. A first question is whether it can lead to an explicit description of a type II;
factor that does not satisfy the Connes embedding property. Such a construction could be obtained along
the lines of [KPS18], using the fact that our game & such that val®(®) < val®(®) = 1 has the property
of being synchronous, i.e. perfect strategies in the game are required to return the same answer when both
parties are provided the same question.

Going further, one may ask if the example can eventually lead to a construction of a group that is not
sofic, or even not hyperlinear (see e.g. [CLP15] for the connection). Many other formulations of CEC are
known, and we leave the discussion of additional potential applications of our results to a future version of
the paper.

n fact, we note that the second term MIP* (k,7) can be replaced by QMIP* (k, r), which is the analogous class with a quantum
verifier and quantum messages, since the first inclusion is trivial and the second remains true. As a result, we obtain that QMIP* =
MIP*(2,1) as well.
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The complexity of variants of MIP*. Our result characterizes the complexity class MIP* as the set of
recursively enumerable languages. One can also consider the complexity class MIP, which stands for
multiprover interactive proofs in the commuting-operator model. For the sake of the discussion we consider
only two-prover one-round protocols; a language L is in MIP®(2,1) if there exists an efficient reduction
that maps z € {0,1}" to a nonlocal game & such that if z € L then val®®(®;) > 2, and otherwise
val®(6,) < %

The semidefinite programming hierarchy of [NPA0O8, DLTW08] can be used to show that MIP®(2,1)
is contained in the complement of RE, denoted as coRE: to certify that z ¢ L it suffices to run the hierarchy
until it obtains a certificate that val®®(®,) < 2. Since it is known that RE # coRE,'” this implies that
MIP*(2,1) # MIP<°(2,1).

It is thus plausible that MIP® = coRE,'* which would provide a very pleasing “dual” complexity
characterization to MIP* = RE. One possible route to proving this would be to adapt our gap-preserving
compression framework to the commuting-operator setting by showing that each of the steps (question
reduction, answer reduction, and parallel repetition) remain sound against commuting-operator strategies.
Using the connection established in [FNT14], this would imply that the operator norm over the maximal C*
algebra C*(F, * F,), where F; is the free group on two elements, is uncomputable.

Another interesting open question concerns the zero gap variants of MIP* and MIP°, which we denote
by MIP; and MIP°y, respectively. These classes capture the complexity of deciding whether a nonlocal
game ® has entangled value (or commuting-operator value respectively) exactly equal to 1. In [Slo19a],
Slofstra shows that there is an efficient reduction from Turing machines M to nonlocal games & 4 such
that M does not halt if and only if val*(® ) = val®®(& ) = 1. This implies that coRE = MIP°(2,1)
and furthermore coRE C MIP;. However, since RE C MIP* C MIPy, this implies that MIPj is strictly
bigger than either RE and coRE. Thus it is plausible that the complexity landscape of nonlocal games looks
like the following: MIP®® = MIP®, = coRE, but RE = MIP* # MIPj. Such statements about the
complexity of MIP* versus MIP<°, in both the gapped and zero-gap cases, may reveal additional insights
into the difference between the tensor product and commuting-operator models of correlations.
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2 Proof Overview

In this section we give an overview of the proof of the inclusion RE C MIP*. Since all interactive proof
systems considered in the paper involve a single-round interaction between a classical verifier and two
quantum provers sharing entanglement we generally use the language of nonlocal games to describe such
proof systems, and often refer to the provers as “players”. In a nonlocal game & (or simply “game” for
short), the verifier can be described as the combination of two procedures: a question sampling procedure
that samples a pair of questions (x, y) for the players according to a distribution y (known to the verifier and
the players), and a decision procedure (also known to all parties) that takes as input the players’ questions
and their respective answers a, b and evaluates a predicate D(x,y,4,b) € {O, 1} to determine the verifier’s
acceptance or rejection. Given a description of a nonlocal game &, recall that val® (&) denotes the entangled
value of the game, which is defined as the supremum (6) of the players’ success probability in the game over
all finite-dimensional tensor product strategies. (We refer to Section 5 for definitions regarding nonlocal
games.)

Our results establish the existence of transformations on families of nonlocal games {®,},cN hav-
ing certain properties. In order to keep track of efficiency (and ultimately, computability) properties it is
important to have a way to specify such families in a uniform manner. Towards this we introduce the fol-
lowing formalism. A uniformly generated family of games is specified through a pair of Turing machines
V = (8, D) that satisfy certain conditions, in which case the pair is called a normal form verifier. The Tur-
ing machine S (called a sampler) takes as input an index n € IN and returns the description of a procedure
that can be used to sample questions (x,y) in the game (this procedure itself obeys a certain format asso-
ciated with “conditionally linear” distributions, defined below). The Turing machine D (called a decider)
takes as input an index 7, questions (x, y), and answers (4, b), and returns a single-bit decision. For the sake
of this proof overview we assume that the sampling and decision procedures run in time polynomial in the
index n; we refer to the running time of these procedures as the complexity of the verifier. Given a normal
form verifier V = (S, D) we associate to it an infinite family of nonlocal games {®, = V,} indexed by
positive integers in the natural way.

The main technical result of this paper is a gap-preserving compression transformation on normal form
verifiers. The following theorem presents an informal summary of the properties of this transformation.
Recall that for a game & and probability 0 < p < 1, &(&, p) denotes the minimum local dimension of an
entangled state shared by the players in order for them to succeed in & with probability at least p.

Theorem 2.1 (Gap-preserving compression of normal form verifiers, informal). There exists a polynomial-
time Turing machine Compress that, when given as input the description of a normal form verifier V =
(S, D), outputs the description of another normal form verifier V' = (S',D’) that satisfies the following
properties: for alln € N, letting N = 2",

1. (Completeness) If val*(Vy) = 1 then val*(V))

1.
2. (Soundness) If val*(Vy) < 1 then val*(V},) < 1.

3. (Entanglement lower bound) & (V), %) > max{@@(VN,%),ZZQ(")}.

The formal version of this theorem is stated in Section 12 as Theorem 12.2. The terminology compression is
motivated by the fact, implicit in the informal statement of the theorem, that the time complexity of the ver-
ifier’s sampling and decision procedures in the game V), which is polynomial in 7, is exponentially smaller
than the time complexity of the verifier in the game Vy, which is polynomial in N and thus exponential in
n.
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Before giving an overview of the proof of Theorem 2.1 we sketch how the existence of a Turing machine
Compress with the properties stated in the theorem implies the inclusion RE C MIP*. Recall that the
complexity class RE consists of all languages L such that there is a Turing machine M that accepts instances
x in L, and does not accept instances x that are not in L (but is not required to terminate on such instances).
To show RE C MIP* we give an MIP* protocol for the Halting Problem, which is a complete problem for
RE. The Halting Problem is the language that consists of all Turing machine descriptions M such that M
halts when run on an empty input tape. (For the purposes of this overview, we blur the distinction between a
Turing machine and its description as a string of bits.) We give a procedure that given a Turing machine M
as input returns the description of a normal form verifier VM = (S M, DM) with the following properties.
First, if M does eventually halt on an empty input tape, then it holds that for all n € IN, val® (V,{Vl) =1.
Second, if M does not halt then for all n € N, val* (V) < 1.

We describe the procedure that achieves this. Informally, the procedure returns the specification of a
verifier YM = (SM, DM) such that DM proceeds as follows: on input (n,x,y,a,Db) it first executes the
Turing machine M for n steps. If M halts, then DM accepts. Otherwise, DM computes the description
of the compressed verifier V' = (S’, D’) that is the output of Compress on input YM | then executes the
decision procedure D’(1,x,v,a,b) and accepts if and only if D’ accepts.'*

To show that this procedure achieves the claimed transformation, consider two cases. First, observe that
if M eventually halts in some number of time steps T, then by definition val* (VM) = 1 for all n > T.
Using Theorem 2.1 along with an inductive argument it then follows that val* (V,ﬁ\/l) =1foralln > 1.
Second, if M never halts, then observe that for any #n > 1 Theorem 2.1 implies two separate lower bounds
on the amount of entanglement required to win the game V,ﬁw with probability at least %: the dimension

is (a) at least 220("), and (b) at least the dimension needed to win the game sz}fl with probability at least
%. Applying an inductive argument it follows that an infinite amount of entanglement is needed to win the
game V,, with any probability greater than % Thus, a sequence of finite-dimension strategies for V,, cannot
lead to a limiting value larger than 3, and val* (V) < 1.

We continue with an overview of the ideas behind the proof of Theorem 2.1.

Compression by introspection. To start, it is useful to review the protocol introduced in [NW19] to
show the inclusion NEEXP C MIP*. Fix an NEEXP-complete language L. The MIP* protocol for NEXP
from [NV18b], when scaled up to decide languages from NEEXP, yields a family of nonlocal games {®, }
that are indexed by instances z € {0,1}*. The family of games decides L in the sense that for all z, the
game &, has entangled value 1 if z € L, and has entangled value at most % if z ¢ L. Furthermore, if
n = |z| is the length of z, the verifier of the game &, has complexity poly(N) = exp(|z|) (recall that we
use this terminology to refer to an upper bound on the running time of the verifier’s sampling and decision
procedure). Thus, this family of games does not by itself yield an MIP* protocol for L. To overcome this the
main contribution in [NW19] is the design of an efficient compression procedure Com press"™ that applies
specifically to the family of games {&,}. When given as input the description of &, Com press\"V returns
the description of a game &, such that if val*(®;) = 1, then val*(®,) = 1, and if val*(®;) < 1, then
val"(®.) < 3. Furthermore, the complexity of the verifier for &/ is poly(n). Thus the family of games
{&.} decides L and this shows that NEEXP C MIP*, which is the best lower bound known on MIP* prior
to our work.

Presented in this way, it is natural to suggest iterating the procedure Compress"" to achieve e.g. the
inclusion NEEEXP C MIP*. To explain the difficulty in doing so, we give a little more detail on the

14The fact that the decider DM can invoke the Compress procedure on itself follows from a well-known result in computability
theory known as Kleene’s recursion theorem (also called Roger’s fixed point theorem) [Kle54, Rog87].
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compression procedure. It consists of two main steps: starting from &, perform (1) question reduction, and
(2) answer reduction. The goal of (1) is to reduce the length of the questions generated by the verifier in
&, from poly(N) to poly(n). The goal of (2) is to achieve the same with respect to the length of answers
expected from the players. Furthermore, the complexity of the verifier of the resulting game &, should be
reduced from poly(N) to poly(n).

Part (1) is achieved through a technique referred to as “introspection” where, rather than sampling ques-
tions (x,y) of length poly(N) as in the game &, the verifier instead executes a carefully crafted nonlo-
cal game with the players that (a) requires questions of length poly(#), (b) checks that the players share
poly(N) EPR pairs, and (c) checks that the players measure the EPR pairs in such a way as to sample for
themselves a question pair (x, 1) such that one player gets x and the other player gets y. In other words, the
players are essentially forced to introspectively ask themselves the questions of &,.

After question reduction, the players still respond with poly(N)-length answers, which the verifier
has to check satisfies the decision predicate of the original game &,. The goal of Part (2) is to enable
the decision procedure to implement the verification procedure while not requiring the entire full-length
answers from the players. In the answer reduction scheme of [NW19] this is achieved by having the verifier
run a probabilistically checkable proof (PCP) with the players so that they succinctly prove that first, they
have introspected questions (x,y) from the correct distribution, and second, that they are able to generate
poly(N)-length answers (a,b) that would satisfy the decision predicate of the original game &, when
executed on (x,y) and (a,b). Since the questions and answers in the PCP are of length poly(n), this
achieves the desired answer length reduction.

Iterating this scheme presents a number of immediate difficulties that have to do with the fact that the
sampling and decision procedures of the verifier in &, do not have such a nice form as those in &,. First of
all, the compression procedure of [NW19] can only “introspect” a very specific question distribution, which
is a variant of the plane-point distribution used by the verifier from [NV18b]."> However, the resulting
question distribution of the question-reduced verifier, which is used to check the introspection, has a much
more complex structure. A similar issue arises with the modifications required to perform answer reduction.
In the PCP employed to achieve this the question distribution appears to be much more complex than the
plane-point distribution (this is in large part due to the need for a specially tailored PCP procedure that
encodes separately different chunks of the witness, corresponding to answers from different players). As
a result it is entirely unclear at first whether the question distribution used by the verifier in &/, can be
“introspected” for a second time.

To overcome these difficulties we identify a natural class of question distributions, called conditionally
linear distributions, that generalize the classic plane-point distribution. We show that conditionally linear
distributions can be “introspected” using conditionally linear distributions only, enabling recursive intro-
spection. (In particular, they are a rich enough class to capture the types of question distributions produced
by the compression scheme of [NW19].) We define normal form verifiers by restricting their sampling pro-
cedure to generate conditionally linear question distributions, and this allows us to obtain the compression
procedure on normal form verifiers described in Theorem 2.1.

Conceptually, the identification of a natural class of distributions that is “closed under introspection” is
a key step that enables the introspection technique to be applied recursively. (As we will see later, other
closure properties of conditionally linear distributions, such as taking direct products, play an important role
as well.) Since conditionally linear distributions are central to our construction we describe them next.

I5This distribution returns a pair (x,y = p) where p is the description a uniformly random affine plane in IF™, for some given
finite field IF and integer m > 2, and x a uniformly random point in p.
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Conditionally linear distributions. Fix a vector space V that is identified with IF", for a finite field IF and
integer m. Informally (see Definition 4.1 for a precise definition), a function L on V is conditionally linear
(CL for short) if it can be evaluated by a procedure that takes the following form: (i) read a substring z
of z; (ii) evaluate a linear function L on z(); (iii) repeat steps (i) and (ii) with the remaining coordinates
z\z(l), such that the next steps are allowed to depend in an arbitrary way on Lq (z(l)) but not directly on z(1)
itself. What distinguishes a function of this form from an arbitrary function is that we restrict the number of
iterations of (i)—(ii) to a constant number, typically 2—-8. (One may also think of CL functions as “adaptively
linear” functions, where the number of “levels” of adaptivity is the number of iterations of (i)—(ii).)

A distribution y over pairs (x,) € V x V is called conditionally linear if it is the image under a
pair of conditionally linear functions LA, LB : V — V of the uniform distribution on V, i.e. (x,y) ~
(LA(z),LB(z)) for uniformly random z € V. An important example of a CL distribution is the plane-point
distribution. Set V = V| @ V, & V3, where fori € {1,2,3}, V; = F". Set LB to be the projection on V;.
Define L as follows. Let z € V. First, read the components z, and z3 of z that lie in V> and V3 respectively
and set Lf‘ to be the identity function on V, @ V3. Second, conditioned on the observed value (2, z3), let Lﬁ‘
be the linear function on V that projects orthogonally to Span{z1,z,}, seen as an (at most) 2-dimensional
subspace of V;. Finally, let L*(z) = L{*(z) 4+ L5 (z1) € V. Itis not hard to see (and shown formally in
Section 7.1.2) that the distribution of (L*(z), LB(z)), for z uniform in V, is identical (up to relabeling) to
the distribution (PL, PT) where PL is a uniformly random subspace of [F" of dimension at most 2, and PT a
uniformly random point in PL.

Our main result about CL distributions, presented in Section 8, is that any CL distribution y, associated
with a pair of CL functions (L*,LB) over a linear space V = F™, can be “introspected” using a CL
distribution that is “exponentially smaller” than the initial distribution. Slightly more formally, to any CL
distribution p we associate a two-player game &, (called the “introspection game”) in which questions
from the verifier are sampled from a CL distribution s’ over " for some m' = polylog(m) and such
that in any successful strategy for the game &, when the players are queried on a special question labeled
INTRO, they must respond with a pair (x,y) that is approximately distributed according to y#. (The game
allows us to do more: it allows us to conclude how the players obtained (x, y) — by measuring shared EPR
pairs in a specific basis — and this will be important when using the game as part of a larger protocol that
involves other checks.) Crucially for us, the distribution 3’ only depends on a size parameter associated with
(LA, LB) (essentially, the integer m together with the number of “levels” of adaptivity of L and LB), but
not on any other structural property of (L*, LB). Only the decision predicate for the introspection game & u
depends on the entire description of (L*,LB).

We say a few words about the design of 3’ and the associated introspection game, which borrow heavily
from [NW19]. Building on the “quantum low-degree test” introduced in [NV 18a] it is already known how a
verifier can force a pair of players to measure m EPR pairs in either the computational or Hadamard basis and
report the (necessarily identical) outcome z obtained, all the while using questions of length polylogarithmic
in m only. The added difficulty in our situation is to ensure that a player obtains, and returns, precisely the
information about z that is contained in L*(z) (resp. LB(z)), and not more. A simple example is the plane-
point distribution described earlier: there, the idea to ensure that e.g. the first player only obtains the first
component, z1, of z, the verifier demands that the player measures their qubits associated with spaces V;
and V3 in the Hadamard, instead of computational, basis; due to the uncertainty principle this has the effect
of “erasing” the outcome in the computational basis. The case of the player receiving a “plane” question is
a little more complex, but it was shown possible in [NW19].

We can now describe how samplers of normal form verifiers are defined: these are Turing machines
S that specify an infinite family of CL distributions {, } such that, when given index n, the sampler S
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computes the CL functions (L*", LB-™) associated with y, and also computes various parameters of the
CL functions. (See Definition 4.12 for a formal definition of samplers.) Thus, the question distributions of
a normal form verifier V = (S, D) are the CL distributions corresponding to S.

Question reduction. Just like the compression procedure of [NW19], the compression procedure Compress
of Theorem 2.1 begins with performing question reduction on the input game. Given a normal form verifier
V = (8, D), the procedure Compress first computes a normal form verifier VINTRO = (SINTRO DINTRO)
where for all n € IN, the game VINTRO consists of playing the original game Vy where N = 2", except
that instead of sampling the questions according to the CL distribution yy specified by the sampler Sy,
the verifier executes the introspection game &, described in the previous subsection. Thus, in the game
VINTRO " \when both players receive the question labeled INTRO they are expected to sample (x, ) respec-
tively according to y, and respond with the sampled question together with answers 4, b respectively. The
decider DNTRO on index n evaluates D(N, x, v, a,b) and accepts if and only if D accepts. As a result the
time complexity of decider D™R® on index 7 remains that of D, i.e. poly(N). However, the length of
questions asked in VINTRO and the complexity of the sampler S™™° are exponentially reduced, to poly().

For convenience we refer to the questions asked by the verifier in the “question-reduced” game VINTRO
as “small questions,” and the questions that are introspected by the players in VINTRO (equivalently, the
questions asked in the original game Vy) as “big questions.”

Answer reduction. Having reduced the complexity of the question sampling, the next step in the compres-
sion procedure Compress is to reduce the complexity of decider D™ from poly(N) to poly(n) (which
necessarily implies reducing the answer length to poly(n)). To achieve this the compression procedure
computes a normal form verifier VAR = (SAR DAR) from VINTRO gych that both the sampler and decider
complexity in VAR are poly(n) (here, AR stands for “answer reduction”).

Similarly to the answer reduction performed in [NW19], at a high level this is achieved by composing
the game VINTRO with a probabilistically checkable proof (PCP). In our context a PCP is a proof encoding
that allows a verifier to check whether, given Turing machine .4 and time bound T provided as input, there
exists some input x that A accepts in time T. The PCP proof can be computed from A, T, and the accepting
input (if it exists) and has length polynomial in T and the description length | A| of A. Crucially, the
verifier can check a purported proof while only reading a constant number of symbols of it, each of length
polylog(T, | A|]), and executing a verification procedure that runs in time polylog (T, |.A|).

We use PCPs for answer reduction as follows. The verifier in the game VAR samples questions as VINTRO
would and sends them to the players. Instead of receiving the introspected questions and answers (x, y,4, b)
for the original game Vy and running the decision procedure D(N, x,y,a,b), the verifier instead asks the
players to compute a PCP IT for the statement that the original decider D accepts the input (N, x,y,4,b) in
time T = poly(N). The verifier then samples additional questions for the players that ask them to return
specific entries of the proof I'1. Finally, upon receipt of the players’ answers, the verifier executes the PCP
verification procedure. Because of the efficiency of the PCP, both the sampling of the additional questions
and the decision procedure can be executed in time poly(n).'°

This very rough sketch presents some immediate difficulties. A first difficulty is that in general no player
by themselves has access to the entire input (N, x, y,a, b) to D, so no player can compute the entire proof IT.
We discuss this issue in the next paragraph. A second difficulty is that a black-box application of an existing
PCP, as done in [NW19], results in a question distribution for VAR (i.e. the sampling of the proof locations

16This idea is inspired by the technique of composition in the PCP literature, in which the complexity of a verification procedure
can be reduced by composing a proof system (often a PCP itself) with another PCP.
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to be queried) that is rather complex — and in particular, it may no longer fall within the framework of
CL distributions for which we can do introspection. To avoid this, we design a bespoke PCP based on the
classical MIP for NEXP (in particular, we borrow and adapt techniques from [BSS05, BSGH"06]). Two
essential properties for us are that (i) the PCP proof is a collection of several low-degree polynomials, two of
which are low-degree encodings of each player’s big answer in the game VN8O, and (ii) verifying the proof
only requires (a) running low-degree tests, (b) querying all polynomials at a uniformly random point, and
(c) performing simple consistency checks. Property (i) allows us to eliminate the extra layer of encoding
in [NW19], who had to consider a PCP of proximity for a circuit applied to the low-degree encodings of
the players’ big answers. Property (ii) allows us to ensure that the question distribution employed by VAR
remains conditionally linear.

Oracularization. The preceding paragraph raises a non-trivial difficulty. In order for the players to com-
pute a proof for the claim that D(N, x,y,a,b) = 1 they need to know the entire input (x,y,a,b). However,
in general a player only has access to their own question and answer: one player only knows (x,a) and
the other player knows (y,b). The standard way of circumventing this difficulty is to consider an “orac-
ularized” version of the game, where one player gets both questions (x,y) and is able to determine both
answers (a,b), while the other player only gets one of the questions at random, and is only asked for one of
the answers, that is then checked for consistency with the first player’s answer.

While this technique works well for games with classical players, when the players are allowed to use
quantum strategies using entanglement oracularization does not, in general, preserve the completeness prop-
erty of the game. To ensure that completeness is preserved we need an additional property of a completeness-
achieving strategy for the original game: that there exists a commuting and consistent strategy on all pairs of
questions (x, y) that are asked in the game with positive probability. Here commuting means that the mea-
surement { A} }, performed by the player receiving x commutes with the measurement {BZ }» performed by
the player receiving y.!” Consistent means that if both players perform measurements associated with the
same question they obtain the same answer. If both properties hold then in the oracularized game when one
player receives a pair (x,y) and the other player receives the question x (say), the first player can simultane-
ously measure both {AX}, and {BJ },, on their own space to obtain a pair of answers (a,b), and the second
player can measure { AX}, to obtain a consistent answer 4.

For answer reduction to be possible it is thus applied to the oracularized version of the introspection
game VINTRO | This in turn requires us to ensure that the introspection game VN’ has a commuting and
consistent strategy achieving value 1 whenever it is the case that val*(VINT™R) = 1. For this property to
hold we verify that it holds for the initial game that is used to seed the compression procedure (this is true
because we can start with an MIP* protocol for NEXP for which there exists a perfect classical strategy)
and we also ensure that each of the transformations of the compression protocol (question reduction, answer
reduction, and parallel repetition described next) maintains it.

Parallel repetition. The combined steps of question reduction (via introspection) and answer reduction
(via PCP composition) result in a game VAR such that the complexity of the verifier is poly(n). Further-
more, if the original game Vy has value 1, then V2R also has value 1. Unfortunately the sequence of
transformations incurs a loss in the soundness parameters: if val®(Vy) < % then we can only establish that
val* (VR) < 1 — C for some positive constant C < } (we call C the soundness gap). Such a loss would

17We stress that the commuting property only applies to question pairs that occur with positive probability, and does not mean
that all pairs of measurement operators are required to commute; indeed this would imply that the strategy is effectively classical.
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prevent us from recursively applying the compression procedure Compress an arbitrary number of times,
which is needed to obtain the desired complexity results for MIP*,

To overcome this we need a final transformation to restore the soundness gap of the games after answer
reduction to a constant larger than % To achieve this we use the technique of parallel repetition. The parallel
repetition of a game @ is another nonlocal game &*, for some number of repetitions k, which consists of
playing k independent and simultaneous instances of & and accepting if and only if all k instances accept.
Intuitively, parallel repetition is meant to decrease the value of a game & exponentially fast in k, provided
val®*(®) < 1 to begin with. However, it is an open question of whether this is generally true for the
entangled value val®.

Nevertheless, some variants of parallel repetition are known to achieve exponential amplification. We
use a variant called “anchored parallel repetition” and introduced in [BVY17]. This allows us to devise
a transformation that efficiently amplifies the soundness gap to a constant. The resulting game VRF? has
the property that if val*(VAR) = 1, then val*(VXE) = 1 (and moreover this is achieved using a com-
muting and consistent strategy), whereas if val*(VR) < 1 — C for some universal constant C > 0 then
val*(VREP) < % Furthermore, we have the additional property, essential for us, that good strategies in
the game VRFP require as much entanglement as good strategies in the game V'R (which in turn require
as much entanglement as good strategies in the game Vy). The complexity of the verifier in VRE? remains
poly(n).

The anchored parallel repetition procedure, when applied to a normal form verifier, also yields a normal
form verifier: this is because the direct product of CL distributions is still conditionally linear.

Putting it all together. This completes the overview of the transformations performed by the compres-
sion procedure Compress of Theorem 2.1. To summarize, given an input normal form verifier , question
reduction is applied to obtain VINTR® answer reduction is applied to the oracularized version of VINTRO to
obtain VAR and anchored parallel repetition is applied to obtain VR®?, which is returned by the compression
procedure. Each of these transformations preserves completeness (including the commuting and consistent
properties of a value-1 strategy) as well as the entanglement requirements of each game; moreover, the
overall transformation preserves soundness.
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3 Preliminaries

Notation. We use X to denote a finite alphabet. IN is the set of positive integers. For w € {0,1}, @
denotes 1 —w. Forw € {A,B}, w = Bif w = A and W = A otherwise. (For notational convenience we
often implicitly make the identifications 1 <+ A and 2 <+ B.) We use [F to denote a finite field. We write
M, (TF) to denote the set of n X n matrices over IF. We write I to denote the identity operator on a vector
space. We write Tr(+) for the matrix trace. We write  to denote a separable Hilbert space. For a linear
operator T, || T|| denotes the operator norm.

Asymptotics. All logarithms are base 2. We use the notation O(-), poly(-), and polylog(-) in the fol-
lowing way. For f,¢ : IN — R, we write f(n) = O(g(n)) (omitting the integer n when it is clear from
context) to mean that there exists a constant C > 0 such that for all n € N, f(n) < Cg(n). When we
write f(ay,...,a;) = poly(ay,...,ax), this indicates that there exists a universal constant C > 0 (which
may vary each time the notation is used in the paper) such that f(ay,...,a;) < C(ay - --a;) for all pos-
itive a1, ...,a. Similarly, when we write f(ay,...,a;) = polylog(ay, ..., a), there exists a universal
constant C such that f(ay,...,a5) < CHLl logc(l + a;) for all positive ay,...,a;. Finally, we write
log(ay, ..., ax) as short hand for [T¥_, log(1 + a;).'®

3.1 Turing machines

Turing machines are a model of computation introduced in [Tur37]. Turing machines play a central role in
our modeling of verifiers for nonlocal games. For an in-depth discussion of Turing machines, we refer the
reader to Papadimitriou’s textbook [Pap94]. Here we establish notation used throughout the paper.

All Turing machines considered in the paper are deterministic and use the binary alphabet. The tapes of
a Turing machine are infinite one-dimensional arrays of cells that are indexed by natural numbers. A k-input
Turing machine M has k input tapes, one work tape, and one output tape. Each cell of a tape has symbols
taken either from the set {0,1} or the blank symbol LI. At the start of the execution of a Turing machine,
the work and output tapes are initialized to have all blank symbols. A Turing machine halts when it enters
a designated halt state. The output of a Turing machine, when it halts, is the binary string that occupies the
longest initial stretch of the output tape that does not have a blank symbol. If there are only blank symbols
on the output tape, then by convention we say that the Turing machine’s output is 0.

Every k-input Turing machine M computes a (partial) function f : ({0,1}*)* — {0,1}* where the
function is only defined on subset S C ({0,1}*)* of inputs x on which M halts. We use M (x1,x2, ..., X;)
to denote the output of a k-input Turing machine M when x; € {0,1}* is written on the i-th input tape for
i€{1,2,...,k}. If M does not halt on an input x, then we define M (x) to be L. A Turing machine that
halts on all inputs computes a fotal function.

We often leave the number of input tapes of a Turing machine implicit. The time complexity of a Turing
machine M on input x = (xq,x2,...,%), denoted by TIME  ,, is the number of time steps that M
takes on input x before it enters its designated halt state; if M never halts on input x, then we define
TIME p x = o0.

The finite number of states and the transition rules of a Turing machine M can be encoded as a bit
string M € {0,1}*, called the description of M. For every integer k € IN and every string &« € {0,1}*,
the k-input Turing machine described by « is denoted [a];. We assume without loss of generality that for

18The additional 1 in the argument of the log(-) is to ensure that this quantity is strictly positive.
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all k € IN, every bit string represents some k-input Turing machine and every k-input Turing machine is
represented by infinitely many different bit strings.

Throughout the paper we frequently construct Turing machines that run or simulate other Turing ma-
chines. Implicitly we assume that this simulation can be done efficiently, as given by the following re-
sult [HS66].

Theorem 3.1 (Efficient universal Turing machine). For all k € IN, there exists a 2-input Turing machine
Uy such that for every x, o € {0,1}*, Uy (a, x) = [a]x(x). Moreover, if [a]y halts on input x in T steps then
Uy (a, x) halts within CT log T steps, where C is a constant depending only on k and the number of states

Of [Dé]k.

Remark 3.2. Although the inputs and outputs of a Turing machine are strictly speaking binary strings, we
oftentimes slightly abuse notation and specify Turing machines that treat their inputs and outputs as objects
with more structure, such as finite field elements, integers, symbols from a larger alphabet, and so on. In this
case we implicitly assume that the Turing machine specification uses a consistent convention to represent
these structured objects as binary strings. Conventions for objects such as integers are straightforward. For
representations of finite field elements, we refer the reader to Section 3.3.2. We also sometimes pass tuples
as inputs to a single tape; here again we assume the binary encoding of inputs chosen such that the Turing
machine can separate the different components of the tuple: specifically, we may precede each element of
the tuple by its length in unary followed by a single “0”.

3.2 Linear spaces

Linear spaces considered in the paper generally take the form V = F" for a finite field IF and integer n > 1.
In particular, when we write “let V be a linear space”, unless explicitly stated otherwise we always mean a
space of the form IF". Let E = {ey, ey, ..., e, } denote the standard basis of V, where fori € {1,2,...,n},

e; = (0,...,0,1,0,...,0)

has a 1 in the i-th coordinate and 0’s elsewhere. We write End (V) to denote the set of linear transformations
from V to itself.

Definition 3.3 (Register subspace). A register subspace S of V is a subspace that is the span of a subset of
the standard basis of V.!” We often represent such a subspace as an indicator vector u € {0,1}°, where
s = dim(V), such that if {ey, ..., es} is the standard basis of V then S = span{e;| u; = 1}.

Definition 3.4. Let E = {¢;} be the standard basis of V' = F". For two vectors u = Y ' ; uje;, v =
Y1 vie; in V, define the dot product

u-v=>y uv; €IF.

M-

N
I
—_

Let S be a subspace of V. The subspace orthogonal to S in 'V is
= {ue V:u-vzoforaHUES}.

Although the notation S does not explicitly refer to V, the ambient space will always be clear from context.

19The use of the term “register” is meant to create an analogy for how the space of multiple qubits is often partitioned into
“registers” containing a few qubits each.
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We note that over finite fields, the notion of orthogonality does not possess all of the same intuitive
properties of orthogonality over fields such as IR or C; for example, a non-zero subspace S may be orthogonal
to itself (e.g. span{(1,1) } over IF,). However, the following remains true over all fields.

Lemma 3.5. Suppose S is a subspace of V. Then
(shHt=s.
Furthermore, diim(S) 4+ dim(S+) = dim(V).

Proof. The “furthermore” part follows from the fact that vectors in S are the solution to a feasible linear
system of equations with dim(S) linearly independent rows; this implies that the solution space has dimen-
sion exactly dim(V) — dim(S). Next, we argue that S C (S+)*. Letu € S. Since all vectors v € S+
are orthogonal to every vector in S, in particular u, this implies that u € (S*)*. By dimension counting, it
follows that (S+)+ = . O

Definition 3.6. Given a linear space V, two subspaces S and T of V are said to form a pair of complementary
subspaces of V if
SNT={0}, S+T=V.

In this case, we write V = S@ T. Any x € V can be written as x = x° + xT for x> € Sand xT € T in
a unique way. We refer to x° (resp. x7) as the projection of x onto S parallel to T (resp. onto T parallel to
S). We call the unique linear map L : V — V that maps x — x° the projector onto S parallel to T.

A given subspace may have many different complementary subspaces: consider the example of S =
span{(1,1)} in IF3. Different complementary subspaces include T = span{(1,0)} and T’ = span{(0,1)}.
It is convenient to define the notion of a canonical complement of a subspace S, given a basis for S.

Definition 3.7. Let E be the standard basis of linear space V = IF". Let F = {v1,v2,...,0,} C V be aset
of m linearly independent vectors in V. The canonical complement F- of F is the set of n — m independent
vectors defined as follows. Write v; = 27:1 ajjej. Using a canonical algorithm for Gaussian elimination
that works over arbitrary fields, transform the m x n matrix (a;;) to reduced row echelon form (b; ;). Let
J be the set of m column indices of the leading 1 entry in each row of (bi,]-). The canonical complement is
defined as F- = {e; : j & | }.

Remark 3.8. Let E be the standard basis of V. Suppose subspace S is a register subspace of V spanned by
Eo C E. Then it is not hard to verify that the canonical complement of S is the span of E \ Ey and coincides
with S*.

Lemma 3.9. Ler S be the span of linearly independent vectors F = {v1,...,0,} C V and let F* be the
canonical complement of F as defined in Definition 3.7. Let T = span(F ). Then

SNT={0}, S+T=V.

Proof. Let A = (a; ;) be the m x n matrix over IF associated with the v; as in Definition 3.7. Write A = UB
where U is invertible and B is in reduced row echelon form. Let | be as in Definition 3.7. Then the columns
of A indexed by | are linearly independent and span IF”. This means that for any vector u € V there is
v € Ssuch thatu; = v; forall j € J. Then u = v + w for some w € T. This shows S + T = V. Counting
dimensions shows that necessarily SN T = {0}. O
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Definition 3.10. Let F C V be a set of linearly independent vectors. Let F- be the canonical complement
of F. Define the canonical linear map L € End (V') with kernel basis F as the projector onto T parallel to
S, where S = span(F) and T = span(F*). When the basis F for S is clear from context, we refer to this
map as the canonical linear map with kernel S.

Definition 3.11. Let L € End(V) be a linear map, and let F be a basis for ker(L)*. Define L* : V — V
as the canonical linear map with kernel basis F.

Lemma 3.12. Let L € End(V) be a linear map and F a basis for ker(L)*. Let L+ € End(V) be the
linear map defined in Definition 3.11. Then ker(L*) = ker(L)".

Proof. Let F* be the canonical complement of F. By definition, L= is the projector onto span(F-) parallel
to span(F) = ker(L)*. By Lemma 3.9, span(F') and span(F) are complementary subspaces, and the

projector onto span(F-) parallel to ker(L)* must map all vectors in ker(L)~ to 0. Furthermore, if the

projector maps a vector v to 0, it must be that v € ker(L)"’. O

3.3 Finite fields

Let p be a prime and g = p* be a prime power. We denote the finite fields of p and g elements by IF, and
IF, respectively. The prime p is the characteristic of field IF,, and field IF is the prime subfield of F;. We
sometimes omit the subscript and simply use [F to denote the finite field when the size of the field is implicit
from context. For general background on finite fields, and explicit algorithms for elementary arithmetic
operations, we refer to [MP13].

3.3.1 Subfields and bases

Let g be a prime power and k an integer. The field IF; is a subfield of IFqk and IFqk is a linear space of
dimension k over IF,. Let {ei}fle be a basis of IFqk as a linear space over IF;. Introduce a bijection %, :

Fo — ]Fg between Fx and ]Fg defined with respect to the basis {;}5_; by

Kg:a— (ai)i-‘:1

where a = Zi-(zl a;e;. This map satisfies several nice properties. First, the map is IF;-linear and, in particular,
addition in IFqk naturally corresponds to vector addition in IFS. Namely, for all a,b € IFqk,

Kg(a+b) =x4(a) +x4(b) .

Second, multiplication by a field element in IFqk corresponds to a linear map on ]F’q‘ . Foralla € ]Fqk, there
exists a matrix K, € M (IFg) such that for all b € F,

Kg(ab) = Kyx4(b) .

The matrix K, is called the multiplication table of a with respect to basis {e; ;‘:1.
We extend the map «; to vectors, matrices and sets over quk. Forv = (v1,v,...,0,) € IFZk, define

Kq(v) = (Kq(vi))?zl € ]FZ” )
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Similarly, for matrix M = (M ;) € My,n(F ), define
XQ(M) = (KM,‘,]‘) € Mmk,nk(IFq) ’

the block matrix whose (i, j)-th block is the multiplication table Ky, of M; ; with respect to basis {e; iy
For a set S of vectors in IF:I’k, define

kg(S) = {xy(v) : v € S} .

We omit the subscript and write « and x for k; and x, respectively when g equals to p, the characteristic of
the field.
The trace of ]Fqk over IF; is defined as

trp .t a — Tr(K,) (10)

for a € IF i, where Tr(K,) is the trace of the multiplication table of a with respect to the basis {e;}. By
definition, the trace is an IF;-linear map from IF i to IF;. An equivalent definition of the trace is

k=1
]
trg (a) =) a” .

j=0

A dual basis {e},¢),...,e.} of {e1, ey, ..., e} is a basis such that tqu%q(eie;-) = 0;; forall i,j €

{1,2,...,k}. A self-dual basis is one that is equal to its dual. If for some a € IFx the set {oﬂj};‘;& forms a
basis of IF « over IFy, the basis is called a normal basis.
We record some convenient facts about the maps x(-) and x(-) for self-dual bases.

Lemma 3.13. Let q be a prime power, k an integer and {e;} a self-dual basis for ]Fqk over IF,. The map
Kq(~) corresponding to {e;} satisfies the following properties:

1. Forall x € Fu, q(x) = (trge_ (xer), ... trg, (xer)).
2. Forallx,y € Fu, trpe_, . (xy) = x4(x) - 14 (y).
3. Forall M € My, n(F ) and v € I, we have Xq(M)xy(v) = xq(Mo).

Proof. The properties follow from the definition of the map #,(-) and the fact that {e;} is a self-dual basis.
O

For z € [F" and V, W a pair of complementary subspaces, recall from Definition 3.6 the notation z" for
the projection of z onto V and parallel to W.

Lemma 3.14. Let Kq(‘) denote the map corresponding to a self-dual basis {e;} for ]Fqk overFy. LetV be a
subspace of ]F;k with linearly independent basis {by, ..., b} C ]F;lk. Then the following hold:

1. x4(V) is a subspace of ngk.

2. {xy(eibj)}i; is a linearly independent basis of k;(V) over IF,.
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3. Let V,W be complementary subspaces of IFZk. Then V' = x4(V) and W' = x4(W) are comple-

mentary subspaces of IF'{;”, and furthermore for all vectors z € IFZk, we have K, (ZV) = Kq (Z)V, and
Wy — w’
K5(z™) = x4(2)".

Proof. For the first item, we first verify that (V) is a subspace. Since V is a subspace, it contains 0 € IFZ"’

and therefore #,(0) = 0 is also in x,(V). Let u/,v" € x,(V). Using that x, is a bijection there exist
u,v e ]ng such that u’ = x,(u) and v’ = x,(v). Therefore

u' + 0" = xg(u) +14(v) = k5 (u+0) € x5(V),

where the inclusion follows because V is a subspace and thus contains u + v. Finally, for all x’ € IF,, for all
v € V, wehave that X'k, (v) = #,(x'v) € x,(V') where we used that V is closed under scalar multiplication
by IFqk and thus by IF; (since IFj is a subfield of IFqk). Thus x,(V) is closed under scalar multiplication by
F,.

For the second item, note that an element v € V can be expressed uniquely as v = Zle v;b; for
v; € ]Fqk. The element v; can further be written as Z]' v; jej where v; ; € F;. Thus v is a linear combination
of the vectors {e;b; }, and therefore x, () is a linear combination of the vectors {x;(e;b;)}. To establish that
the vectors {, (ejbl-)} are linearly independent, suppose towards contradiction that they are not. Then there
would exist «; ; € IFq such that at least one «; ; is nonzero and

0= lei,ﬂ(q (e]'bi)
ij

= Ky <Z(}Z ijej)bi )

i

(o)

where we define B; = Z]- a; jej. Since at least one w; ; # 0 and the {ej} are linearly independent over IFg,
there exists i such that 8; # 0, which means that there is a non-trivial linear combination of the basis ele-
ments b; that equals 0 under (). Since x,(-) is injective, we get a contradiction with linear independence
of the {b;}.

For the third item, we observe that x,; (V') and x;(W) must be complementary because () is a linear
map as well as a bijection. Let {v,...,v,} and {041, ...,0,} denote bases for V and W, respectively.
Thus the set {vy, ..., v, } forms a basis for ]F;lk, and from the previous item, the set {x;(ejv;)}; ; is a basis

for IF;‘”. Furthermore, the sets {r;(€;v;)}; i=1,..m and {x;(€;v;) } i=m-+1,...n are bases for x, (V') and x; (W),
respectively.
There is a unique choice of coefficients a;; € IF; such that x4(z) = Y; ; a; j,(ejv;). But then

K9(2) = 1 (Z(}Z"‘i,jej)vi)

i

=Ky (; lxivi> ’
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where we define a; = 2]- jjej. Since Kq(-) is a bijection, this implies that z = ), «;v;, and therefore

z¥ =Y, a;v; (and similarly 2"V = Y77 . a;0;). This implies that

m
Kq(Z)V = ZZ“f,qu(erz‘) = Kq(ZV) ’
=17
and similarly x, ()W = xq(z"). This completes the proof of the lemma. O

3.3.2 Bit string representations

As mentioned in Remark 3.2, we sometimes treat the inputs and outputs of Turing machines as representing
elements of a finite field, or a vector space over a finite field. We discuss some important details about bit
representations of finite field elements and arithmetic over finite fields.

In the paper we only consider fields IF,« where k is odd.

Definition 3.15. A field size g is called an admissible field size if § = 2* for odd k.

Elements of IF, are naturally represented using bits. To represent elements of IFox as binary strings we
require the specification of a basis of IF,« over IF,. Given a basis {ei}f-‘zl of IFy, every element a € [Fy has
a unique expansion 4 = Zi-‘zl a;e; and can be represented as the k-bit string corresponding to k(a) € ]Fé
Note that we omitted the subscript 2 of «k as it maps to the linear space over the prime subfield IF,. Thus the
binary representation of a € FFy is defined as the natural binary representation of x(a) € IF’E (which in turn
is the [Fp-representation of a). Throughout the paper we freely associate between the binary representation
of a field element 2 € Fy and its IFo-representation, although—technically speaking—these are distinct
objects.

Given the representations x(a),x(b) of a,b € Fy, to compute the binary representation of a + b it
suffices to compute the addition bit-wise, modulo 2. Computing the multiplication of elements a, b requires
the specification of the multiplication tables {K,, € M (IF2)}X_; for the basis {¢;}. Given representations
k(a) = (a;)%_,, x(b) = (b;)X_, for a,b € Fy respectively, the representation «(ab) of the product ab is
computed as

Kk(ab) = i a;k(eb) = i a;(Ke, k(D)) (11)
i=1 i=1

Thus, using our representation for field elements, efficiently performing finite field arithmetic in IFx reduces
to having access to the multiplication table of some basis of IF,x over IFs.

The following fact provides an efficient deterministic algorithm for computing a self-dual normal basis
for IF,x over IF5 and the corresponding multiplication tables for any odd k.

Lemma 3.16. There exists a deterministic algorithm that given an odd integer k > 0, outputs a self-dual
normal basis of For over Fy and the multiplication tables of the basis in poly (k) time.

Proof. The algorithm of Shoup [Sho90, Theorem 3.2] shows that for prime p, an irreducible polynomial in
IF,[X] of degree k can be computed in time poly(p, k). Then, the algorithm of Lenstra [LJ91, Theorem 1.1]
shows that given such an irreducible polynomial, the multiplication table of a normal basis of ]Fpk over IF,
can be computed in poly(k, log p) time. Finally, the algorithm of Wang [Wan89] shows that for odd k and
a multiplication table K of a normal basis of IF,« over IF», a multiplication table K’ for a self-dual normal
basis of IF over IF, can be computed in poly(k) time. Putting these three algorithms together yields the
claimed statement. O
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Lemma 3.17. Let k be an odd integer and {ei}i'(:l be a self-dual normal basis of Fy over Fp. Then
tr(e;) = 1 for all i, and furthermore the representation k(1) of the unit 1 € Foy is the all ones vector in 5.

Proof. Since {e;} is a normal basis, ¢; = &% for some element a € IFor. Furthermore, for every element
b € Fy, we have that tr(b?) = tr(b). This is because

k=1 i+1 k=1 i
tr(b?) = ) o= sz = tr(b),

i=0 i=0

where we use that b2 = b for all b € F,. Since ¢j 1 = e7, we get that tr(e;) = tr(e;) for all 7, j. It cannot
be the case that tr(e;) = O for all i. Suppose that this were the case. This would imply that tr(b) = 0 for
all b € Fy. But then forall j € {1,...,k} and for some b # 0, we would also have that b; = tr(be;) = 0
where b = }_; bje; with b; € IF,. This implies that b is the all zero element of F, which is a contradiction.
Thus tr(e;) = 1foralli =1,2,...,k.

The “furthermore” part follows from the expansion

k k
Z (1-e)e; = Zei . ]
i=1 i=1

Lemma 3.18. For any odd integer k, let {el 1 denote the self-dual normal basis of IFx over I that is

returned by the algorithm specified in Lemma 3 ] 6 on input k. Then the following can be computed in time
poly (k) on input k:

1. The representation k(a + b) of the sum a + b given the representations «(a) and x(b) of a,b € Fy.
2. The representation k(ab) of the product ab given the representations «(a) and x(b) of a,b € Fx.

3. The multiplication table K, € My(IFy) given the representation x(a) of a € Fo.

4. The representation x(a~') of the multiplicative inverse of a € By, given the representation x(a).

5. The trace tr(a) given the multiplication table K, of a € Fo.

Furthermore, for all integers n, the representations of projections x(x°) and x(x") of x € Y for com-
plementary subspaces S, T of ! can be computed in poly(k,n) time, given the representations x(x),
{x(v1),x(v2),...,x(vm)} and {x(w1),x(w2), ..., k(Wy—m)} where {v;} and {w;} are bases for S and
T respectively.

Proof. Given an odd integer k as input, by Lemma 3.16 it is possible to compute the self-dual basis {ei}é‘zl
together with the multiplication tables K,, fori = 1,2,...,k. Addition is performed component-wise, and
multiplication is done using Eq. (11). For the multiplication table K, it suffices to compute the k products

«(ae;) fori € {1,...,k}. To compute inverses, observe that k(1) = x(aa~!) = K,x(a~!). The matrices K,
are invertible over le, so therefore x(a~1') = K 'x(1); moreover, (1) can be computed by Lemma 3.17.
Inverting the matrix can be done in poly (k) time via Gaussian elimination. The trace of an element a € Fy
is by definition the trace of the multiplication table K.

For the “Furthermore” part, we observe that since {v1,v2, ..., 0y } U{w1, wy, ..., Wy_p } forms a basis
for I}, there is a unique way to write x as a IFy linear combination of {v;} and {w;}. Via Gaussian
elimination over IF, the IF,-representation of the coefficients of this linear combination can be computed in
poly(n, k) time. Here we use that addition, multiplication and division over [Fy can be performed in time
poly (k) using the previous items of the Lemma. O
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Remark 3.19. Throughout this paper, whenever we refer to Turing machines that perform computations
with elements of a field IF; for an admissible field size q = 2K we mean that that the Turing machines are
representing elements of IF, as vectors in {0, 1}k using the basis specified by the algorithm of Lemma 3.16
and performing arithmetic as described in Lemma 3.18.

3.4 Low-degree encoding

In this section, we introduce a standard error-correcting code in the literature known as the low-degree
code. Given a finite set S and a “message” string a € F>, the low-degree code encodes a as a low-degree
multivariate polynomial g : IFZ1 — IF,. This polynomial is constructed so that the coordinates of a are
directly embedded into specific coordinates of g, meaning that for each s € S, there is a 7(s) € FFy' such
that g(s) = as. As a result, ¢ can be defined by polynomial interpolation though the points {77(s) }ses.
In general, polynomial interpolation can produce polynomials with high degree, and so to ensure that g is
low-degree, we restrict 77(+) so that it only ever maps elements s € S to elements of the set H™, where
H is a subset of IF,; generally selected to have size much smaller than q. This is an error-correcting code
because two different strings a,a’ € IFg will be mapped to two different low-degree polynomials g, ¢’, and
by the Schwartz-Zippel lemma (Lemma 3.20 below), two non-equal low-degree polynomials will disagree
on most points in their domain. In our application, we will always take S to be either S = {0,...,n — 1}
orS = {1,...,n}, for some integer n.

Let /i, m > 0 be integers, and let § = 2 be a power of 2 such that i < g. Let H be a subset of IF; of
size h. Given a point x € H", we define the indicator polynomial indg », » IF;” — IF; as follows:

_ H;mzl HaeH:u#xi (yl - a)
Hzmzl HaeH:a;éx,v(xi - a)

This is a degree-m(h — 1) polynomial and has the property that for any y € H™, indgmy(y) = 1ify = x
and O otherwise.

Let S be a finite set such that 4™ > |S|, and let 7t : S — H™ be an injection. We define the function
indpm, : By — IF; as follows: given y € !, z = indp ,»(y) is the element of IF; such that for each
seSs,

indH,m,x (y)

Zs = indH,m,r{(s) (y) :
Supposing that y € H™, if y = 7(s) for some s € S, then z is equal to es, the standard basis vector
corresponding to s, and otherwise z = 0.
Let a be a point in IF; . Then the low-degree encoding of a is the polynomial g, » : ]FZI" — [F; defined as

Qan(X) = a-indp 7 (x) =Y as - indpy 7 (5) (%) - (12)
seS

This is a degree-m(h — 1) polynomial and has the property that for any s € S,
8an(71(s)) = as.

In addition, we define the low-degree decoding Dec; to be the function which maps functions g : IF;” — Fy
to strings a € IF; defined as follows: a = Dec,(g) is the string in IF;; such that for each s € S,
as = g(7(s)) -

By construction, Decy(gq ) = 4.
The set of low-degree encodings of strings a € ]Fg forms an error-correcting code known as the low-
degree code. The following lemma gives a lower bound on the distance of this code.
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Lemma 3.20 (Schwartz-Zippel lemma [Sch80, Zip79]). Let f,g : ng1 — IF; be two unequal degree-d
polynomials. Then

Pr [f(x) =g(x)] <d/q.

~JFm
x]Fq

3.4.1 A canonical injection

The low-degree code affords us with the ability to pick a variety of parameters. In this section, we will
describe a canonical way to choose the parameters /1, H, and 7t once the parameters m, q = Zk, and S
have been chosen, where S = {0,...,n — 1} for some integer . This is similar to the canonical choice of
parameters in [NW19, Section 3.4].

Let k be an odd integer and basis(k) = {e;}X_, be the self-dual normal basis of IF,x over IF, produced
by the algorithm from Lemma 3.16 on input k. In addition, for £ € {0,..., k}, we write H(k, ¢) for the
subspace of I, spanned by {e;}{_; over IF, i.e.

H(k,f) = {x161 + Xp€p + - - - + Xpey ’ X; € IF‘Q} .

Definition 3.21 (Binary representation). Given an integer # and another integer ¢ between 0 and 2" — 1, we
write binary, (c) for the n-digit binary representation of c. In addition, given a string x € {0, 1}", we write
number, (x) for the integer between 0 and 2" — 1 encoded by x. As a result, binary, and number,, are
each others’ inverses.

Definition 3.22 (Canonical injection). Let m be an integer and g = 2 be a power of 2 for odd k. Let 1 be
an integer such that n < g™. Let

b i) — { ifn=1,
o B llog,(n —1)] +1 otherwise,

and let ¢ = ¢(n,m) = [b(n)/m]. The canonical subspace is defined to be the set H = Heanonmin ‘=
H(k, ¢). 1t has size heanonmin := 2. Next, define the function coeff : {0, 1} — H™ given by

coeff(ay, ..., ame) = (k' (ay,...,a0), K (aps1, - 020), - K H@(m1)041r - - Amer))
= (me1+---+apey, ap1e1+ -+ axey, ..., A(p—1).04161 T -+ Ap.0€p) -
Then the canonical injection is the map T = Teanonmin : 10,1,...,m —1} — H™ given by
m(c) := coeff(binary, ,(c)) .
We note that it is a bijection when n = 2°™ for some integer s € {0,...,k}.
Now we observe that the canonical injection can be computed efficiently.

Lemma 3.23 (Runtime of the canonical injection). Let m be an integer and k be an odd integer, and let
q = 2%, Let n be an integer such that n < q", and set T := Tlcanonmin- 1hen the following can be
computed in time poly(m, k).

1. The representation x(7t(c)) given m, k, and a number ¢ € {0,1,...,n —1}.

2. The inverse w—1(a) given m, k, and the representation x(a) of a € HY onmkn
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Proof. The key step in computing 7t is computing coeff(ay, ..., a,,). This step involves first rearranging
the a;’s, a poly(m, k)-time task, and then applying the ¥~ map, which is trivial, as elements of F, are
already represented on a Turing machine via their coefficients in the basis basis(k). The remaining tasks
are computing b(n), ¢(n, m), and subtracting 1 from c, and these are all poly(m, k)-time tasks. Computing
the inverse follows similarly. O

Having defined the canonical injection, we can now define the canonical low-degree encoding of a string.

Definition 3.24 (Canonical low-degree encoding). Let m be an integer and k be an odd integer, and let
q = 2k Let n be an integer such that n < g". Leta € ng for S = {0,...,n — 1}. Then the canonical
low-degree encoding of a is the polynomial gcanon,amin : IFZ1 — ]Fq equal to 80, Teanonmin

We will need a further, technical property of the canonical injection, which is that its inverse can be
computed by a low-degree polynomial. This is provided by the following definition.

Definition 3.25 (Canonical semi-inverse). Let m be an integer and k be an odd integer, and let g := 2k,
Let 1 be an integer such that n < ¢, and set b := b(n) and ¢ := ¢(n,m). Let {e;}*_, = basis(k) and
H = Henonmin- Foreachi € {1,...,¢}, define the function ¢ : F, — ]Fg whose i-th coordinate is given

by
aly)= ), indui(y).
x€H :tr(e;-x)=1
Next, define the function -y : Fy' — ]qué given by y(x1,...,xm) = (1(x1),...,1(xp)). Then the
canonical semi-inverse is the function Veanon min - ]FZ1 — IFS given by
Vecanon,m, k,n (X) = ('7mk—b+1 (X), ceey ’)’mk(x)) .
(Here, we write ; : ]Fg1 — IF, for the i-th component of 7y.)

The canonical injection 7T = TTeanon,mk,» Maps integers from {0,1,...,n — 1} into the set H™ C ",
where H = Hcanonm kn- The purpose of the canonical semi-inverse V = Veanon m k1S to invert this map:
given x € F, if x = 7t(c) for some ¢ € {0,1,...,n — 1}, then v(x) is the (b = b(n))-digit binary
representation of ¢, i.e. binary, (c), as an element of IFZ . Otherwise, v(x) is some element of IFZ, though we
won’t care which one. The crucial property we need is that v can achieve these properties while still being
a low-degree multivariate polynomial. This is formalized in the following proposition.

Proposition 3.26 (Properties of the canonical semi-inverse). Let m be an integer and k be an odd integer,
and let q := 2%, Let n be an integer such that n < q", let b = b(n), and let h := heanonmin- Then the
following statements are true.

1. Each coordinate of V := Veanon,m k. IS computed a degree-(h — 1) polynomial.
2. Writing T := Tleanon,m kx> We have that for any c € {0,1,...,n —1}, v(rt(c)) = binary,(c).
3. Forany x € F", the value v(x) can be computed in time poly(m, h, k).

Proof. The first item follows from the fact that each coordinate of v is expressed as a sum of polynomials of
the form indp (), which are degree-(h — 1) by definition. As for the second, let y = bje; + - - - + byey €
H. Then for each i € [¢],

sy)= ),  indgi(y)= ), 1x=yl=0b

x€H:tr(e;-x)=1 x€H:tr(e;-x)=1
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As aresult, (b) = (by,...,by). Let ¢ € [n], and write a = binary,,,(c). Then

v(7t(c)) = y(coeff(a)) = y(x~ (a1, ..., a0), .., K (Apu—1)p41-- - Amer))
L(K (all : .,llg)), ce [(Kil (a(mfl)-erlf s /am-é)))

ai,. +s A(m—1)-t41s - - - Am-¢) = @ = binary,,(c).

o~~~

The claim follows, because v simply truncates y to its last b binary digits, producing binary, (c).
Computing indp 1 () requires taking O(h) sums and products in IF;, each of which takes time poly (k),
for a total cost of O(h) - poly(k). Computing ¢;(y) requires computing O(h) indg 1 ,(y)’s and sum-
ming them together, which takes a total of O(h?) - poly(k) time. Computing ¢(y) requires computing ¢
1i(y)’s, and computing v(c) requires computing O(m) t(y)’s, for a total time complexity of O(m - £ - h? -
poly(k)) = poly(m, h, k). O

3.5 Linear spaces and registers

For a set V, we write CV for the complex vector space of dimension |V|. The space C" is endowed with a
canonical orthonormal basis {|x) } ycy. By “a quantum state on V> we mean a unit vector

‘l,b)v eC’.

ItV = 695-‘:1 Vi is the direct sum of subspaces Vi over FF, then CV can be identified with ®i-‘:1 Cc".
As a special case, if {el} is a basis of V the decomposition V = @¥_, (Fe;) yields the tensor product
decomposition C¥ = ® C“F|. We sometimes refer to the spaces C/Fl as the “qudits” of CV (or of a state
on it).

Definition 3.27. For linear space V over finite field IF, define the EPR state on C¥ ® CV by

IEPR)y

X |x
- T ek

We also write |[EPR)F, as [EPR,) and |[EPR;) as [EPR).

3.6 Measurements and observables

Quantum measurements are modeled as positive operator-valued measures (POVMs). A POVM consists
of a set of positive semidefinite operators { M, },cs indexed by outcomes a € S that satisfy the condition
Y. M, = I. We sometimes use the same letter M to refer to the collection of operators defining the POVM.
The probability that the measurement returns outcome 4 on state |) is given by

Pr(a) = ($|Maly) -

APOVM M = {M,} is said to be projective if each operator M, is a projector (M2 M,). An observable
is a unitary matrix. A binary observable is an observable O such that O?> = I, i.e. O has eigenvalues in

(~1,1}.
We follow the convention that subscripts of the measurement index the outcome and superscripts of
the measurement are used to index different measurements. For example, we use {M ,} to represent a
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measurement indexed by x whose outcome consists of two parts a and b. In this case, by slightly abusing
the notation, we use {M; } and { M} } to denote

M;=) M;,, Mj=) M,.
b a

For any x, { M7} and { M} are POVMs sometimes referred to as the “marginals” of { M7 , }.

Definition 3.28. Let { M} },c4 be a family of POVMs indexed by x € X. Let f : A — B be an arbitrary
function. We write {Mﬁf(_):b]} for the POVM derived from {M} } by applying the function f before
returning the outcome. More precisely,

Mifo—y = Y. M.
a:f(a)=b

If b is not in the image of f, then we define Mfcf(-):b} to be 0.

3.7 Generalized Pauli observables

For prime number p, the generalized Pauli operators over IF,, are a collection of observables indexed by a
basis setting X or Z and an element a or b of IF,, with eigenvalues that are p-th roots of unity. They are

given by ‘
oX(a)= Y li+a)(jl and  o%(b)= ) ")l (13)
jeFy j€F,

27ti
where w = e 7, and addition and multiplication are over IF),. These observables obey the “twisted commu-
tation” relations
Va,b € Fp, oX(a) c?(b) = w " c?(b) cX(a) . (14)
Similarly, over a field IF; we can consider a set of generalized Pauli operators, indexed by a basis setting X
or Z and an element of IF; and with eigenvalues that are p-th roots of unity. For a,b € IF, they are given by

™@) =Y li+a)(jl and THb) =) "),
j€F, j€Fq

where addition and multiplication are over IF,. For all W € {X,Z},a € IF;, and be IF,, powers of these
observables obey the relation

(Tw(a))b = 1tV(ab) .
In particular, since pa = 0 for any a € F, we get that that (t"V(a))? = I for any a € F,. The observables
obey analogous “twisted commutation” relations to (14),

Va,beF,,  %(a) T4 (b) = w " 2 (b) 7X(a) . 15)

It is clear from the definition that all of the TX operators commute with each other, and similarly all the T
operators with each other. Thus, it is meaningful to speak of a common eigenbasis for all T¥ operators, and a
common eigenbasis for all T4 operators. The common eigenbasis for the TZ operators is the computational
basis. To map this basis to the common eigenbasis of the TX operators, one can apply the Fourier transform

F=— w™ @) |g) (b| . (16)
Vi,
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Explicitly, the eigenbases consist of the vectors |ey) labeled by an element e € IF; and W € {X, Z}, given
by

ev) = L w—tr(e') : er) = le
lex) Vﬂ72; Dy, lez) =le).

We denote the POVM whose elements are projectors onto basis vectors of the eigenbasis associated with the
observables 7"V by {7," }.. Then forall W € {W, Z} and a € F,, the observables 7" (a) can be written as

™)=Y @tV 17)
bel,
This relation can be inverted as
E w—tr(ab)TW a) = E wtr(a(b’—b))TV/V _ TW, 18
aclF, ( ) b/qu a€lFy, b b (18)

where the second step follows from Lemma 8.3.

For systems with many qudits, we will consider tensor products of the operators T". Slightly abusing
notation, for W € {X,Z} and a € Fj we denote by 7 (a) the tensor product TV (a;) ® ... @ ™ (ay,).
These obey the twisted commutation relations

Va,b € By, (a)*(b) = w5 @) 22(p) X(a) ,
where a-b =Yy a;b; € Fy. For W € {X, Z} and e € ] define the eigenstates

lew) = [(en)w) ® ... ® [(en)w) ,

and associated rank-1 projectors T,".

Since we only consider finite fields IF; such that g = 2K the maximally entangled state |[EPR,) and the
corresponding qudit Pauli observables/projectors are isomorphic to a tensor product of maximally entangled
states |[EPR;) and gubit Pauli observables/projectors respectively; this is shown in the next lemma. This is
used to argue that the Pauli basis test (described in Section 7.3) gives a self-test for Pauli observables and
maximally entangled states over qubits.

Lemma 3.29. For all admissible field sizes q = 2K and integers T, there exists an isomorphism ¢ :
(CT®T — (C?)®'* such that
¢ @ ¢ |EPRy)"" = [EPRy) ", (19)

and for all W € {X,Z} and for all u € Ty

1% T W
=g (® ®au,_]_) ¢ (20)
i=1 j=1
Here, the (u;;);; denotes a vector of Fy values such that u; = Y.juijej for all i € {1,...,T} with

{e1,...,ex} being the self-dual basis of Iy over Iy specified by Lemma 3.16. Fori € {1,...,T} and
jeA{l,...,q} the (i,])-th factor 0’% denotes the projector 3 (I + (—1)"ic"™ (1)) acting on the s-th qubit
of |EPR2)®TK, where s = (i — 1)k +j.
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Proof. Since q = 2k is an admissible field size, there exists a self-dual basis {e1,...,ex} of IF; over IFs.
Define the isometry 6 : C1 — (C?)® as 0 |a) = |ayay - - - ax) where k(a) = (ay,a,...,a;) € FX is the
bijection introduced in Section 3.3 corresponding to the basis {ey, ..., e }.

Leta € Fy, and let k(a) = (ay,...,a;) € FF5. Then from (18), we get

T,ZW - E (_1)tr(ab) Tw(b)

beF,
= E -1 tr(zjajejb) TW b

beIFq( ) ( ) 21
= Z] ajbj ¢ b; ,

bqu( <Z e])

where b = ), bje;; since the basis {e;} is self-dual, we have that b; = tr(be;). From (21) we get that
k
o= E _ TI(=D)%c"(be)
L (22)
= H E (—1)afbj Tw(bjEj) .

Next we claim that for all ¢ € IF2, we have " (ce;) = 0%0"/(c)6 where c™7(c) = I'if ¢ = 0, and
otherwise is the Pauli W observable acting on the j-th qubit of (C2)®k. This can be verified by comparing
the actions of both operators on the basis states of C1.

Thus we obtain that the right-hand side of (22) is equal to

k
—1)%b |gtocWi(p.g| = ot 1) oY (b o -
Hb,-leEle( )" [ o (])} g)(hjgz( )b o (])) 23)
k
(&)

Define ¢ = 6=, The projector 7!V can be decomposed as the tensor product ® -1 T where T acts on
the i-th factor of (C7)®T. Express each u; as Y_j uijej where u;; € Fp. Then from Equatlon (24) we get that

r I &
® w =¢" | QKo | ¢ (25)
i=1 i=1 j=1
which establishes Equation (20). We observe that (19) follows immediately from (20). ]
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4 Conditionally Linear Functions, Distributions, and Samplers

4.1 Conditionally linear functions and distributions

We first introduce conditionally linear functions, which are used to specify the question distribution for
games considered in the paper in a way that the question distribution can be “introspected”, as described
in Section 8. Intuitively, a conditionally linear function takes as input an element x € V = [F" for some
n > 0, and applies linear maps L; sequentially on xVi where Vi, Vs, ... are a sequence of complementary
register subspaces such that both the linear maps L; and the subspace V; may depend on the values taken by
previous linear maps Ly (x"1), Ly (x"2), etc.

In the remainder of the section we use V to denote the linear space IF" for some integer n > 0. For
ease of notation we extensively use the subscript range notation. For example, if Vq, V5, ..., V, are fixed
subspaces of V and k € {1,2,...,/} we write

Va= @ Vv, V= P Vv,

ji1<j<k jil>j>k

and it is understood that V. and V- are identical to V1 and V- ;_1, respectively. Moreover, if V' is a
. r s . . /

register subspace of V, F : V/ — V' alinear map, and x € V, we write x© to denote F(x""). For example,

in the following definition x’ is used as shorthand notation for Ly (x"1).

Definition 4.1. Let V be IF” for some n > 0. For all integers £ > 0 the collection of ¢-level conditionally
linear functions (implicitly, on V) is defined inductively as follows.

1. There is a single O-level conditionally linear function, which is the 0 function on V.

2. Let £ > 1 and suppose the collection of (¢ — 1)-level conditionally linear functions has been defined.
The collection of /-level conditionally linear functions on V consists of all functions L on V that can
be expressed in the following form. There exist complementary register subspaces V; and V<1 of V, a
linear function Lq on Vi, and for all v € L1(V7), an (¢ — 1)-level conditionally linear function L~ ,
on V51, such that forall x € V,

L(x) = xb + Loy (xV>1) .

Remark 4.2. Note that for any integer £ > 1 the collection of £-level CL functions trivially contains the
collection of (¢ — 1)-level CL functions: for this it suffices to note that the O function, which is a 0-level
CL function, is also a 1-level CL function by setting V1 = V, Vo1 = {0}, L1(x) = 0 forall x € V, and
L1 1 isthe Omap forallx € V.

Definition 4.3. Let L, R : V — V be conditionally linear functions. The conditionally linear distribution
ur R corresponding to (L, R) is defined as the distribution over pairs (L(x), R(x)) € V x V for x drawn
uniformly at random from V.

Throughout the paper we abbreviate “conditionally linear functions” and “conditionally linear distribu-
tions” as CL functions and CL distributions, respectively.

The following lemma elucidates structural properties of /-level CL functions. Recall that using our
shorthand notation, x"<¢ and x%* in the lemma denote L_;(x) and Ly (x"k*) where u = L_j(x).

Lemma 4.4. Let £ > 1 and V = [F" for some integer n > 0. A function L : V — V is an £-level CL
function if and only if the following collection of functions and subspaces exists:
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(i) Foreachk € {1,2,...,¢}, a function L<y : V — V called the k-th marginal of L;

(ii) For eachk € {1,2,...,0} and u € L_(V), a register subspace Vi , of V called the k-th factor
space with prefix u;

(iti) Foreachk € {1,2,...,0} andu € L_4(V), a linear map Ly, : Vi, = Vi y called the k-th linear
map of L with prefix u;

such that the following conditions hold for allk € {1,2,...,0}.
1. L.y is a k-level CL function on V;

2. V=09, Vi st forallx € V;

3. Lep(x) = Y5, x for all x € V, where L; is shorthand notation for L,

1x<l’

4. L= L.
As in Item 3, we sometimes use Vi and Ly to denote Vi ,, and Ly ,, respectively, leaving the prefix u implicit.

Proof. We first prove the “if” direction: if there exist spaces and functions satisfying the conditions in the
lemma, the fact that L is an ¢-level CL function follows from Items 1 and 4 of the lemma statement.

We now prove the “only if” direction. Given a CL function L on V, we construct the k-th family of
subspaces and functions for all k € {1,...,/¢} by induction on the level ¢. First consider the base case
¢ = 1. Since L.; = 0, we omit the mentioning of the prefix u € L.1(V). Define L<; = L, the factor
space V1 = V, and the linear map L1 = L. It is straightforward to verify that the conditions in the lemma
hold for these choices of linear maps and spaces.

Now, assume that the lemma holds for CL functions of level at most £ — 1, and we prove the lemma for
{-level CL functions. By definition, an /-level CL function L can be written as

L(x) = xb 4 Loy, (xV>1)
for some linear map L1 : V; — Vj and a family of (¢ — 1)-level CL functions
{L>1,v Vo1 — V>1}v€L1(V1)

where V7 and V.1 are complementary register subspaces of V. Next, using the inductive hypothesis on the
(¢ —1)-level CL function L~ , we get that forall v € L1(V;) and allk € {1,2,...,¢ — 1} there exist k-th
marginal functions L’ v <k : Vo1 — Vi1, k-th factor spaces Vzﬁ ko and k-th hnear maps L/ of L+ , with
prefix u € L], <k(V>1) such that the conditions of the lemma for L~ , hold.

Define the marginal functions L<j : V — V, factor spaces Vj ,, and linear maps Ly , for L as follows.

v, k,u

(i) Define L<q = L; and the first factor space to be V1;
(i) Forallk € {2,3,...,/¢}, define

Lepixesxb4 L (x1) forx €V (26)

xl1, <k

(i) For all k € {2,3,...,¢} and u € L4(V), define Vi, = V,, | , and Ly, = L
Vor,

0 k—1,w where

v=umandw = u
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We verify that the conditions of the lemma are satisfied. Since L. <k 1s by assumption a (k — 1)-level CL
function on V-1, we get that L is a k-level CL function on V from Eq. (26), establishing Item 1. By the
induction hypothesis, we have forall v € L (V;) andy € V-4,

(-1
/
1= @ VU, Z"yL;;,<i, (27)
i=1

which implies that for all x € V and v = x1,

V= Vl@(EB vzxv<1) Vl@(@ zx<:> @ i, xb<i

The first equality follows from Eq. (27) while the second and third equalities follow from the definition of
Vi, u. This establishes Item 2.
Next, we have that forall x € V, v = x!1, and k € {1,2,...,/},

Leg(x) = v+ L, 4 (x"1) (28)
k—1 , k

—o+ Y alhi = Y xk, 29)
i=1 i=1

where L. . is the i-th linear map of L1, , with prefix Lv ~;(x) and L; is the i-th linear map of L with prefix
L_i(x). The second line follows from the inductive hypothesis applied to L < and the third line follows
from the definition of L;. Line (29) implies Item 3 of the lemma.

Finally, Item 4 follows from (28) where we set k = ¢ and observe that L’ i, <r-1 ~1 ¢l
by the inductive hypothesis. This shows that L<y, Vi ,, and Ly , satisfy the conditions of the lemma and
completes the induction. O

is equal to L

We note that the marginal functions, factor spaces, and linear maps of a given CL function L may not be
unique; for example, consider the identity function on a linear space V = IF". This is clearly a 1-level CL
function, but it can also be viewed as a k-level CL function for k € {2,...,n} with an arbitrary partition of
V into factor spaces.

Lemma 4.5. Let {,k > 0 be integers and U = F", V = F™ be linear spaces. Suppose L is a k-level CL
function on U and R,; is an {-level CL function on V for each u € L(U). Then the concatenation T of L
and {Ry },, defined as

T(x) = L(Xu) + RL(XU)(XV)

is a (k + £)-level conditionally linear function on U © V.

Proof. We prove the claim by induction on k. The case k = 0 follows from the Definition 4.1. Assume
that the lemma holds for L being at most (k — 1)-level. By Definition 4.1, there are complementary register
subspaces Uj and U1 of U, a linear function L; on Uy, and a family of (k — 1)-level CL functions L~1
for v € L1(Uy) such that

L(x") = xb1 4+ Loy (xt1).

For all xL1, define function T>1 X

nponUs; @V as
T>1,xL1 (xu>1€BV) = L>1,xL1 (xu>1) + RxL1+xL>1 (xV)’
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the concatenation of L_; .1, and {RL(XU) -1 Where L is the shorthand notation of L_, ,1,. By the
induction hypothesis, T_; 1, is (k + ¢ — 1)-level conditionally linear. The lemma follows from Defini-
tion 4.1. O

Lemma 4.6 (Direct sums of CL functions). Let V(l), V(z),. oy V(m) pe register subspaces of V such that
V= @]m:l V). Suppose that, for each j E {1,2,...,m}, LY is an {j-level conditionally linear function
on V). Then the direct sum L = @71:1 LY) is an 0-level CL function over V for { = max;{/;}, where L is
defined by

m B .
L(x) = ZL(])(X(]))
i=1

]
forallx =Y xV) e @I, V),

Proof. Tt is easy to see that an /-level CL function is also k-level conditionally linear for all k > ¢. Hence,
it suffices to prove the claim where ¢ = lforj=1,2,...,m.

We prove the theorem by an induction on £. For ¢ = 1, the functions LU) are linear and the claim
follows by the fact that the direct sum of linear maps is linear.

Assume now the theorem holds for conditionally linear functions of level at most £ — 1 and LY) are
{-level conditionally linear functions for j = 1,2,,...,m. By definition, LU is the concatenation of condi-

tionally linear functions ng ) on Vl(j ) and {L(>])1 vj}vj on Vgl) of levels 1, and ¢ — 1 respectively. Furthermore,

. )
where v; = Lgf ) ((x(]))vl(] ) By the induction hypothesis,

—

Li(x"1) = ZL

]

[y

v L0 (¢ Yy ) (V)
L0 (). Lt~ E18, (4074)

are 1-level and (¢ — 1)-level conditionally linear respectively for v = v, Vi = @71:1 Vl(j ), and Vo1 =

@;”:1 Vgl). This proves that L is /-level conditionally linear. O

Lemma 4.7. Foreachi € {1,...,m} let L(i),R(i) V0 5 v pe U;-level conditionally linear functions
andlet L,R : V. — V be the direct sums L = @; L; and R = @; R;, respectively, as defined in Lemma 4.6.
Then the conditionally linear distribution yup, g is the product distribution T/, p L@ R over VX V.

Proof. The distribution pp g is the distribution over pairs (L(x), R(x)) where x is sampled uniformly from
V x V. By Lemma 4.6, this is equivalent to the distribution over pairs ((L;(x"))™,, (R;(x"1))"™ ) where x
is chosen uniformly at random from V. This distribution is exactly the product of the distributions ;) g
fori=1,2,...,m. O

CL functions used in the paper are frequently defined over a “large” field IF,: (e.g., the CL functions
used in the low degree tests of Section 7). However, the introspection protocol in Section 8 handles CL
functions defined over IF,. The following definition and lemma show that CL functions over prime power
fields can be viewed as CL functions over the prime field via a “downsizing” operation.
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Definition 4.8 (Downsizing CL functions). Let V = IFZ be a linear space for a prime power g = p'. Let
L :V — V be a function. Let «(-) denote the downsize map from Section 3.3 corresponding to the basis
{e1,..., e} of IF; over IF, specified by Lemma 3.16. In particular, x is linear over IF ), and by Lemma 3.14,
the set (V) is the linear space IF'. Define the downsized function L* : x(V) — k(V) by L* = ko Lox ™",

Lemma 4.9. Let V = IFZ for a prime power q = p'. Let L : V. — V be an {-level CL function over V for
some integer { > 0. Let L<j, Vju, and L; ,, denote the j-th marginal functions, factor spaces, and linear
maps corresponding to L as guaranteed by Lemma 4.4. Then L* : k(V) — x(V) is an {-level CL function
on V¥ =x(V) = Ith with marginal functions LC i factor spaces Vj’fv, and linear maps L;-‘,v that satisfy the
following forall j € {1,...,(}.

1. The j-th marginal function L’;]- of L* is equal to x o L<j o kL

2. Forallu € L.j(V), the j-th factor space \/jKK(u) and the j-th linear map L;.‘ (1) of L* are equal to
k(Vj,u) andx o L; () © k1 respectively.
Proof. We prove the lemma by induction on £. Let L : V' — V be an £-level CL function. For the base case
¢ =1, observe that since x is a linear bijection between IF; and ]F; as linear spaces over IF), the function
L* is linear, and thus a 1-level CL function over (V) = IF’;,t. Furthermore, the first marginal function
LX, = L* = ko L< ox™!; the factor space Vi = x(V1) = x(V),and Lf = L = ko Lyox™ ..
Assume that the statement of the lemma holds for some £ —1 > 1. Let L<;, Vj 4, and L; , denote

the marginal functions, factor spaces, and linear maps corresponding to L as guaranteed by Lemma 4.4.
Recursively define the following functions and spaces, for j € {1,...,/(}.

I LY, :KOLS]'OK_l.

2. Forall u € L<j(V)’ set ijfx(u) h

We argue that {LZ }, {V/,}, and {L¥ } satisfy the conditions of Lemma 4.4 for the function L*, which

implies that L* is an ¢-level CL function over (V).
We first establish Item 4 of Lemma 4.4. Since L, = L, this implies

= (V) and set L*

() ko Lj,K(ll) oK

-1 -1
L*=xoLlox " =kxolgox =1,

as desired. Next, forall j € {1,2,...,¢}, forall y € x(V) with y = x(x) for some x € V, letting
uj = L.j(x), we have

¢ ‘
(V) = k(@ Viar ) = Dr(Vir) = BVt
j=1 j =1

j=1

The first equality follows from Item 2 of Lemma 4.4, the second equality follows from Lemma 3.14, and
the third equality follows by definition. Since x(x</) = L jox(x) = LZ(y), this establishes Item 2 of
Lemma 4.4.

Next, we have forall j € {1,2,...,¢} and ally € x(V) with y = x(x) for some x € V,

K(fo/XL<i)

-

L5 = (ko Lejor ) (y) = (ko L) () = 1]

j K V. L_;: ] K 1%
- ZLi,Uz’ (K(x i <1)) = ZLi,U,'<y wi)
i=1 i=1
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where v; = L¥,(y) = x(x%<i). The first equality follows from definition of L j» the second equality follows
from y = x(x), the third equality follows from Item 3 of Lemma 4.4 applied to L< j» the fourth equality
follows from the definition of the linear map L;‘,v, and the fifth equality follows from Lemma 3.14. This
establishes Item 3 of Lemma 4.4 for L% ..

Finally, since L<; is a j-level CL function over V, using the inductive hypothesis we have that L’; i isa
j-level CL function over x(V') when j € {1,2,...,¢ — 1}. It remains to establish that L, is an /-level CL
function. Since L is an /-level CL function, there exists register subspaces V7, V-1 suchthat V. = V; @ V.,
a linear map Ly : V3 — Vj and a collection of (¢ — 1)-level CL functions {L~1,, : V51 — V>1}U€L1(Vl)
such that L(x) = x!1 + L_; .1, (x¥>1) for all x € V. Observe that LY is a 1-level CL function on VJ =
x(V1), and for v’ = k(v) € L’l‘(Vf{) the inductive hypothesis implies the function LY, , is an (£ —1)-level
CL function on VZ; = x(V>1). Furthermore, since L% , = L, we have that for ally € x(V) withy = x(x)
for some x € V,

<y) = L8y) = Li(y) + Ly 1x(y) (y"1)

which implies that L , is an ¢-level CL function over k(V) = x(V7) @ x(V~1). This establishes Item 1 of
Lemma 4.4, and completes the induction. O

Lemma 4.10. Let V = ng for some integer n and prime power q = p'. Let L,R : V. — V be CL functions.
Let L*,R* : k(V) — (V) be the associated downsized CL functions, as defined in Definition 4.8. Then
the distribution ppx gx over k(V) x k(V') defined in Definition 4.3 is identical to the distribution of (x,y) €
k(V) x k(V) obtained by first sampling (x',y') according to uy g and then returning (x(x"), x(y")).

Proof. The fact that L, R* are well-defined CL functions follows from Lemma 4.9. The lemma is immedi-
ate from the definition of y;« g« and the fact that x is a bijection. O

4.2 Conditionally linear samplers

Samplers are Turing machines that perform computations corresponding to CL functions defined in Sec-
tion 4.1. The inputs and outputs of the sampler are binary strings that are interpreted as representing data
of different types (integers, bits, vectors in IFJ, etc.). See Section 3.3.2 and in particular Remark 3.19 for an
in-depth discussion of representing structured objects on a Turing machine.

Definition 4.11. A function g : N — IN is an admissible field size function if for all n € IN, g(n) is an
admissible field size as defined in Definition 3.15.

Definition 4.12 (Conditionally linear samplers). Let g : IN — IN be an admissible field size function, and
lets : N — IN be a function. A 6-input Turing machine S is a ¢-level conditionally linear sampler with
field size q(n) and dimension s(n) if for all n € IN, letting ¢ = q(n) and s = s(n), there exist ¢-level CL
functions L*", L®" : F; — TF; with marginal functions {Lz]"} and factor spaces {V]w”"} forw € {A,B}
satisfying the conditions of Lemma 4.4, such that forallw € {A,B},j € {1,...,¢},z € F}:

e On input (1, DIMENSION), the sampler S outputs the dimension s().

e On input (1, w, MARGINAL, j, z), the sampler S outputs the binary representation of L;"’j"(z),

e Oninput (1, w, LINEAR, j, 1, ), the sampler S outputs the binary representation of L;.‘,”u” (y), where u
is interpreted as an element of Vz’] ",
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e On input (1, w, FACTOR, j, 1), the sampler S outputs the j-th factor space ijb’l” of L™ with prefix
ue Lz’]-”(V), represented as an indicator vector in {0, 1}°.

We call IFZ((Z)) the ambient space of S. We call the CL functions L“" for w € {A,B} the CL functions of

S on index n. The time complexity of S, denoted as TIMEg(n), is the number of steps before S halts for
index 1. The randomness complexity of S, denoted by RANDg(1), is defined to be s(1) log q(n).

Remark 4.13. Conditionally linear samplers are defined to have 6-input tapes, but depending on the input,
not all input tapes are read. For example, if the second input tape has the input DIMENSION, then the re-
maining input tapes are ignored. Thus for notational convenience we write samplers with different numbers
of arguments, depending on the type of argument it gets. The number of arguments is always at most 6,
however.

The following definition shows how samplers naturally correspond to conditionally linear distributions.

Definition 4.14 (Distribution of a sampler). Let S be a sampler with field size q(n), dimension s(n). For
each n € IN, let LA, LB denote the CL functions of S on index 7. Let jis , denote the CL distribution
Jpan pea corresponding to (LA", LB™), as defined in Definition 4.3. We call ys,, the distribution of
sampler S on index n.

The following provides a definition of a “downsized” sampler that can be obtained from any sampler S
over an admissible field IF,.

Definition 4.15 (Downsized sampler). Let g : IN — IN be an admissible field size function. Let S be an
¢-level sampler with field size q(n) and dimension s(#). Define x(S) as the following Turing machine. For

alln € N,w e {A,B},j€{1,...,0},and z € 8" where g = q(n) and s = s(n):

e On input (1, DIMENSION), the sampler returns the output of S(#, DIMENSION) multiplied by log g.
e On input (1, w, MARGINAL, , z), the sampler x(S) returns the output of S (7, w, MARGINAL, j, z).

e On input (1, w, LINEAR, j, 1/, y), the sampler x(S) computes u such that u’ = x(u) and returns the
output of S(n, w, LINEAR, j, i, ).

e On input (1, w, FACTOR, j, u’), the sampler «(S) computes u such that ' = x(u) and the indicator
vector
C = S(n,w,FACTOR, j,u) € {0,1}°,

and returns the expanded indicator vector (Dy, Ds, ..., Ds) € ({0,1}1987) where D; is the all ones
vector in {0,1}1°89 if C; = 1 and D; is the all zeroes vector otherwise.

The next lemma establishes that x(S) is a well-defined CL sampler, in the sense that it can be derived
from a family of CL functions as in Definition 4.12.

Lemma 4.16. Let ¢ > 1 be such that S is an (-level CL sampler, and let q(n) and s(n) be as in
Definition 4.15. Then the Turing machine x(S) is an {-level CL sampler with field size 2, dimension
s'(n) = s(n)logq(n), and randomness and time complexities

RAND,(s)(1n) = RANDg (1), TIME,(s)(1) = O(TIMEg(n)logq(n)) .

Furthermore, for every integer n € IN the CL functions of k(S) on index n are (LA™)* and (LB™)*, where
LA™, LB are the CL functions of S on index n.
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Proof. To show that x(S) is an ¢-level CL sampler we first show the “Furthermore™ part, i.e. verify that
for any integer n > 1 the CL functions (L") and (LB-")¥ are its associated CL functions on index 7, as
defined in Definition 4.12.

Observe that for z € V, the binary representation of z as an element of {0,1}°1°87 passed as input to
S is, by definition (see Section 3.3.2), identical to the binary representation of x(z). Using the definition
(L") = xo L»" ok~ ! forw € {A, B} this justifies that x(S) returns the correct output when executed
on inputs of the form (1, DIMENSION), (1, w, MARGINAL, j, z) and (1, w, LINEAR, j, 1, ).

Next, if T is a register subspace of IF; with indicator vector C € {0,1}°, then «(T) is a register subspace
of IF;Iqu with indicator vector D defined from C as in Definition 4.15. Thus the output of x(S) on input
(n,w, FACTOR, j, u’) is equal to the indicator vector of K(V]-%n), which is the j-th factor space of L " with
prefix u’ = x(u).

The time and randomness complexities of x(S) are the same as with the sampler S, except it takes

O(logg(n)) times longer to output the factor space indicator vectors.
U
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5 Nonlocal Games

We introduce definitions associated with nonlocal games and strategies that will be used throughout.

5.1 Games and strategies

Definition 5.1 (Two-player one-round games). A two-player one-round game & is specified by a tuple
(X/ y/ AI B/ ‘u/ D) Where

1. X and Y are finite sets (called the question alphabets),

2. A and B are finite sets (called the answer alphabets),

3. uis a probability distribution over X x ) (called the question distribution), and
4. D: X x)Y x Ax B —{0,1} is a function (called the decision predicate).

Definition 5.2 (Tensor product strategies). A tensor product strategy . foragame & = (X, Y, A, B, 1, D)
isa tuple (|¢), A, B) where

e |) is a pure quantum state in H 4 ® H p for finite dimensional complex Hilbert spaces H 4, Hp,
e Aisaset {A*} such that for every x € X, A = {AX},c4 is aPOVM over H 4, and
e Bisaset {BY} such that for every y € Y, BY = {Bj] }4cp3 is a POVM over Hp.

Definition 5.3 (Tensor product value). The tensor product value of a tensor product strategy . = (|¢), A, B)
with respect to a game & = (X, ), A, B, i, D) is defined as

val'(&,.7) = ), u(xy)D(x,y,a,b) (YA @ B |¢) .
x,y,a,b

For v € [0,1] we say that the strategy . passes (or wins) & with probability v if val*(®,.%) > v. The
tensor product value of & is defined as

val" (&) = supval*(6,.¥),
7

where the supremum is taken over all tensor product strategies . for &.

Remark 5.4. Unless specified otherwise, all strategies considered in this paper are tensor product strate-
gies, and we simply call them strategies. Similarly, we refer to val*(®) as the value of the game ®.

Definition 5.5 (Projective strategies). We say that a strategy . = (|¢), A, B) is projective if all the mea-
surements { A}, and {Bj } are projective.

Remark 5.6. A game & = (X,), A, B, U, D) is symmetric if the question and answer alphabets are
the same for both players (i.e. X = Y and A = B), the distribution y is symmetric (i.e. j(x,y) =
1(y, x)), and the decision predicate D treats both players symmetrically (i.e. forall x,y,a,b, D(x,y,a,b) =
D(y,x,b,a)). Furthermore, we call a strategy . = (|¢), A, B) symmetric if |) is a state in H @ H,
for some Hilbert space H, that is invariant under permutation of the two factors, and the measurement
operators of both players are identical. We specify symmetric games & and symmetric strategies . using
a more compact notation: we write & = (X, A, u,D) and ¥ = (|p), M) where M denotes the set of
measurement operators for both players.

45



Lemma5.7. Let & = (X, Y, A, B, u, D) be a symmetric game such that val* (&) = 1 — ¢ for some ¢ > 0.
Then there exists a symmetric and projective strategy . = (|), M) such that val*(&,.7) > 1 — 2e.

Proof. By definition there exists a strategy ./ = (|y’), A, B) such that val*(®, ') > 1 — 2¢. Enlarging
one player’s space if necessary, assume without loss of generality that [¢') € Cl ® C‘é, for some integer d
and that for every x and y, A* and BY is a projective measurement. Let

_ L

¥) 7

where [i}) is obtained from |i) by permuting the two players’ registers. Observe that |) is invariant under
permutation of AA’ and BB'. Let w € {A,B}. For any question x € X = ), let M* be the measurement
obtained by first measuring the qubit in register w and depending on the outcome, applying the measurement
A* on player w’s d-dimensional register w’ to obtain an outcome a. Using that by assumption the decision
predicate D for & is symmetric, it is not hard to verify that val*(®,.s) = val* (&, .7”). O

(10)al1)BlY") arpr + 11)al0)B ;) arpr) € (C5 ®CL) @ (ChRCE),

Definition 5.8. Let & = (X, ), A, B, u, D) be a game, and let . = (|¢), A, B) be a strategy for & such
that the spaces H 4 ~ Hp canonically. Let S C & x ) denote the support of the question distribution p,
i.e. the set of (x, 1) such that y(x,y) > 0. We say that .7 is a commuting strategy for & if for all question
pairs (x,y) € S, we have [A},B)] = Oforalla € A,b € B, where [A,B] = AB — BA denotes the
commutator.

Definition 5.9 (Consistent measurements). Let A be a finite set, let |(p) € H ® H a state, and {M, },c4 a
projective measurement on 7. We say that { M, },c 4 is consistent on |) if and only if

Vac A, M,®Ig|p) =1 M,|¢p).

Definition 5.10 (Consistent strategies). Let . = (|i), A, B) be a projective strategy with state i) €
H ® H, for some Hilbert space H, which is defined on question alphabets X and )/ and answer alphabets
A and B, respectively. We say that the strategy . is consistent if for all x € X, the measurement { A },c 4
is consistent on |¢) and if for all y € ), the measurement {Bj },cp is consistent on [¢)).

Definition 5.11. We say that a game & has a PCC strategy if it has a strategy .7 that is projective, consistent,
and commuting for &. Additionally, we say that a game & has an SPCC strategy if it has a symmetric PCC
strategy.

Definition 5.12 (Entanglement requirements of a game). For all games & and v € [0, 1], let &(®, ) denote
the minimum integer d such that there exists a finite dimensional tensor product strategy . that achieves
success probability at least v in the game & with a state i) whose Schmidt rank is at most d. If there is no
finite dimensional strategy that achieves success probability v, then define & (&, v) to be co.

5.2 Distance measures

We introduce several distance measures that are used throughout.

Definition 5.13 (Distance between states). Let {|,,) }nen and {|¢),) }nen be two families of states in the
same space H. For some function § : IN — [0, 1] we say that {|,) } and {|y},)} are d-close, denoted as
1) =5 [¢'), if |||wn) — @) || = O(8(n)). (For convenience we generally leave the dependence of the
states and 0 on the indexing parameter 7 implicit.)
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Definition 5.14 (Consistency between POVMs). Let X be a finite set and p a distribution on X. Let
|p) € Ha ® Hp be a quantum state, and for all x € X, {AX} and { B} } POVMs. We write

A;@IB >~ IA(X)B;
on state |) and distribution y if

E ) ($|A7 @ Bilyp) < O(9) -

i a#b
In this case, we say that { A} } and { B} are J-consistent on |¢).

Note that a consistent measurement according to Definition 5.9 is 0-consistent with itself, under the
singleton distribution, according to Definition 5.14 (and vice-versa).

Definition 5.15 (Distance between POVMs). Let X’ be a finite set and y a distribution on X. Let |) € H
be a quantum state, and for all x € X', {M}} and {N}} two POVM on H. We say that { M}} and {N}}
are 8-close on state | ) and under distribution p if

2
E ) (M7 = N)Ip)I" <4,
X~u a
and we write M} ~; N to denote this when the state |) and distribution y are clear from context. This

distance is referred to as the state-dependent distance.

Definition 5.16 (Distance between strategies). Let & = (X,), A, B, u, D) be a nonlocal game and let
< = (¢,A,B), s = (¢, A, B’) be partial strategies for &. For 6 € [0,1] we say that .7 is -close to
" if the following conditions hold.

1. The states |¢), |¢') are states in the same Hilbert space H 4 ® Hp and are d-close.

2. Forall x € X,y € Y, we have AY =55 (A’)X and B] ~; (B')], with the approximations holding
under the distribution y, and on either |¢) or |¢').

We record several useful facts about the consistency measure and the state-dependent distance without
proof. Readers are referred to Sections 4.4 and 4.5 in [NW19] for additional discussion and proofs.

Fact 5.17 (Fact 4.13 and Fact 4.14 in [NW19]). For POVMs { A} } and { B} }, the following hold.
1. IfAf;@IB ~5 IA®B;CZI’I€I’IA§®IB s 1A®Bg

2. IfAY ® Ig =5 In @ BY and { A}} and {B}} are projective measurements, then A} ® Ig ~s Ix ® BX.

3. If A} ® Iy =5 In ® B} and either { A}} or {B}} is a projective measurement, then AY ® Ig ™~/

In ® B;‘.
Fact 5.18 (Fact 4.20 in [NW19)]). Let A, B,C be finite sets, and let D be a distribution over question
pairs (x,y). Let { A}, } and {B; } be POVMs whose outcomes range over the product set A x B. Sup-

pose a set of operators {CZIC}, whose outcomes range over the product set A x C, satisfies the condition
ZQ,C(CZ,C)JFCZ,C < Iforally. If A}, =~; B}, on average over x sampled from the corresponding marginal
of distribution D, then Cay,CA;‘,b R~ Cg,C le‘,b on average over (x,vy) sampled from D.
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Proof. Fix questions x,y and answers a € A, b € B. We have then that

Y l[(CleAly — CLBL) ) ||” = (gl (AL, — BE) (CLo) ' (Cho) (AL, — BE) ) (30)

< (Y|(Ay, — By, (Ar, — BL,) ) (31)
= |[(AX, - Bl |)? (32)

where the inequality follows from the fact that ZC(CZ,C)JFCZ,C < Ea,C(C%C)*C%C < 1. Thus we obtain the
desired conclusion

Y [[(Cheasy — CheBI) )| < o )| < (33)

xyNDubc

O]

Fact 5.19 (Triangle inequality, Fact 4.28 in [NW19]). If A} ~;s B, and B} ~. C}, then A} =5, C,.

Fact 5.20 (Triangle inequality for “~”, Fact4.29 in [NW19]). If A} ® I ~s In ® B}, C) ® Iz ~s Io ® B},
and C;C R Ig ~5 In ® Dg, then A)ac ® Ig ~5 In ® Dz{

Fact 5.21 (Data processing, Fact 4.26 in [NW19]). Suppose A} @ Iy ~s I ® B}. Then Aff(-):b] ® Ig ~5
In @ Blg() -

The state-dependent distance is the right tool for reasoning about the closeness of measurement operators
in a strategy. The following lemma ensures that, when two families of measurements are close on a state,
changing from one family of measurement to the other only introduces a small error to the value of the
strategy.

Lemma 5.22. Let {A] }, {B; , .}, {C] .} be POVMs. Suppose {By, , } is projective, and
Ay @I =5 In® By,
Coe®Igr; In®B; ..
Then the following approximate commutation relation holds:
(A%, Ca,l ® I =5 0.
Proof. Applying Fact 5.18 to Ci . ® Ip ~5 I ® B} . and {A} | ® Ig}, we have
AL Cr o ®Ig~; Ay, @B . (34)

Similarly, applying Fact 5.18 to A} | ® Iy ~s Ix ® B} , and {Ix ® B .}, and using the fact that {B}, .} is
projective, we have

Axb®BucN5 IA®BacBab

= I,® Ba,b,c )
Combining Equations (34) and (35), we have
A pCoc®@Ip =5 In®@B, . (36)
A similar argument gives
Cg/CAZ,h®IB 5 IA@B;,IJ,C' 37
The claim follows from Equations (36) and (37). ]
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The following lemma is a slightly modified version of [NW19, Fact 4.34].

Lemma 5.23. Let k > 0 be a constant and € > 0. Let X be a finite set and y a distribution over X.
For each 1 < i < k let G; be a set of functions §; : Y — R; and for each x € X let {Gé’x}gegi be a
projective measurement. Suppose that for alli € {1,...,k}, G; satisfies the following property: for any two
gi # 8 € Gi, the probability that g;(y) = g.(y) over a uniformly random y € ) is at most e.

Let {Ax /gk} be a projective measurement with outcomes (g1, . ..,8x) € G1 X - -+ X Gy. For each

81,82/«
1 <i <k, suppose that on average over x ~ y andy € Y sampled uniformly at random,

] X IB ~s IA X Gi'x (38)

x
[evaly (-);=a; [evaly (-)=a;]

Define the POVM family {Cy g o Jor x € X, by

1,827 1

x _kx . 2,x nl,x ~2,x . okx
Cghgz,v--,gk _ng ng Gg1 ng ng :

Then on average over x ~ pandy € Y sampled uniformly at random,

AY ] & IB 2((5—}-8)1/2 IA ® CfCeValy(') (

[evaly(-):(al,az,...,ak) = alr”Zr“'/ak)] ’

(39)

Proof. The proof is identical to the one given in [NW19, Fact 4.34], with the only modification needed to
insert the dependence on x for all measurements considered. O

5.3 Self-testing

Definition 5.24 (Partial strategies). A strategy . = (|¢), A, B) is a partial strategy for a game & if A
and B only specify POVM A* and BY for a subset of the questions x, y in & (called the question set of the
strategy .5”). A strategy .7" = (|¢), A’, B') extends .7 if (A’)* = A* and (B’)Y = BY for every x, y in the
question set of .. A full strategy . for a game & is one whose question set is the entire question alphabet
of &.

Definition 5.25 (Self-testing). Let. = (|i), A, B) be a partial strategy for a game & = (X, ), A, B, u, D)
and 0 : [0,1] — R.. We say that & is a self-test for .7 with robustess 5(¢) if the following hold:

e (Completeness) There exists a (full) strategy -5y, that extends . such that val* (&, Sy ) = 1.

e (Soundness) Let .7 = (P, A, E) be a strategy that wins & with probability 1 — ¢, for some ¢ > 0.
Then there exists a local isometry ¢ = ¢4 ® ¢p and a state |AUX) such that

lp(19)) — [9)|aux) | < o(e) .
Furthermore, letting AX = ¢4 A ¢% and E’Z = ¢B BZ ¢p , we have
AZ ® IB %(5(8) (A;C ® IAUX) ® IB

on state |{)|AUX), where x is drawn from the marginal distribution of y on one of the players. A
similar relation holds for operators E‘Z and Bg.
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5.4 Normal form verifiers

We introduce a normal form for verifiers in nonlocal games. The normal form uses Turing machines to
specify the two actions performed by the verifier in a game: the generation of questions and the verification
of answers. For the generation of questions, we use the formalism of samplers introduced in Section 4.2.
The normal form for verifiers gives a uniform method to specify an infinite family of nonlocal games.

Definition 5.26 (Decider). A decider is a 5-input Turing machine D that on all inputs of the form (1, x, y, 4, b)
where 7 is an integer and x,y,a,b € {0,1}*, D halts and returns a single bit. Let TIMEp(n) denote the
time complexity of D on inputs of the form (1,...). When the decider D outputs 0 we say that it rejects,
otherwise we say that it accepts. Furthermore, we call the input # to a decider the index.

Definition 5.27. A normal form verifier is apair V = (S, D) where S is a sampler with field size q(n) = 2
and D is a decider. The description length of V is defined to be |V| = |S| 4 |D]|, the sum of the description
lengths of S and D.

Normal form verifiers specify an infinite family of nonlocal games indexed by natural numbers in the
following way.

Definition 5.28. Let V = (S, D) be a normal form verifier. For n € IN, we define the following nonlocal
game V), to be the n-th game corresponding to the verifier V. The question sets X and ) are {0, 1}RANPs (1),
The answer sets A and 3 are {0, 1}T'MED(”). The question distribution is the distribution ps , specified in
Definition 4.14. The decision predicate is the function computed by D(#, -, -, -, ), when the last four inputs
are restricted to X X ) x A x B. The value of the game is denoted by val* (V).

We note that the game V), is well-defined since for a normal form verifier the distribution s ,, is sup-
ported on {0, 1}RANDs(m) 5 10, 1}RANDs (%) and a normal form decider always halts with a single-bit output.

Definition 5.29 (Verifier with commuting strategy). Let V = (S, D) be a normal form verifier. For v :
IN — [0, 1] say that V has a value-v commuting strategy if for all n € IN, the game V), has a value-v(n)
commuting strategy.
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6 Types

We augment the definition of conditionally linear functions with a construct we call fypes. A type t is an
element of a type ser T, and a T -typed family of conditionally linear functions is a collection {L;}ie7
containing a CL function L. for each type t € 7. The utility of this definition is that it allows us to
define another object, namely conditionally linear distributions parameterized by an undirected graph G =
(T,E) on the set of types known as a rype graph. Given two T -typed families of conditionally linear
functions {L, },e7, {R\}veT, the (T, G)-typed conditionally linear distribution corresponding to them is
the distribution which samples a pair of types (u, v) uniformly at random from the edges of G (with each
endpoint having equal probability as being chosen for u or v, respectively) and then samples (x,y) from
L, R,- The output is the pair ((u, x), (v,¥)).

The normal form verifiers we present in the paper frequently use typed CL distributions to sample
their questions, rather than untyped CL distributions. Types allow us to model the parts of their question
distributions which are unstructured and unsuitable for being sampled from CL distributions. A common
use of types is to allow the verifier to use previously defined games as subroutines. Here, the type helps
indicate which subroutine the verifier selects, and an edge in the type graph between two different types
allows us to introduce a test that cross-checks the results of one subroutine with the results of another.

Finally, we show how to convert any typed CL distribution into an equivalent (in the precise sense
defined below) untyped CL distribution with two additional levels, a technique we call detyping. This
entails showing how to “simulate” the graph distribution of G = (T, E), i.e. the uniform distribution on its
edges, using an untyped CL distribution. The simulation we give is based on rejection sampling and is only
approximate: its quality degrades exponentially with the number of types in 7. As a result, we will ensure
throughout the paper that all type sets we consider are of a small, in fact generally constant, size.

This section is organized as follows. In Section 6.1 we define typed variants of CL distributions, sam-
plers, deciders, and verifiers. In Section 6.2 we define a CL distribution which samples from the graph
distribution of a given graph G = (7, E). In Section 6.3 we define a canonical way to detype typed sam-
plers, deciders, and verifiers using the graph sampler from Section 6.2. We then prove the main result of the
section, Lemma 6.18, which relates the value of the detyped normal form verifier to the value of the original
typed verifier.

6.1 Typed samplers, deciders, and verifiers

Definition 6.1 (Typed conditionally linear functions). Let 7 be a finite set and V be F" for some integer
n > 0. A T -typed family of {-level conditionally linear functions (implicitly, on V) is a collection { Lt }te1
such that, for each t € T, L is an £-level conditionally linear function on V.

Definition 6.2 (Graph distribution). Let G = (U, E) be an undirected graph with vertex set U and edge
set E. Edges in E are written as multisets {1, v} of two vertices; the case u = v represents a self-loop.
Suppose there are m edges, k of which are self-loops. Then the graph distribution ug of G is the distribution
over U x U such that for every (u,v) € U x U,

1/(2m —k) if{u,v} €E,

0 otherwise.

pe(u,v) = {

This is identical to the uniform distribution over pairs (#,v) € U x U such that {u, v} € E.

51



Definition 6.3 (Typed conditionally linear distributions). Let 7 be a type set and L = {Ly},e7,R =
{R\ }ye7 be T -typed families of conditionally linear functions on V. Let G = (T, E) be a graph with vertex
set T. The (T, G)-typed conditionally linear distribution u¢ , corresponding to (L, R) is the distribution
over pairs ((u, x), (v,y)), where (u,v) is drawn from p¢ and/(x,y) is drawn from pp g,.

Definition 6.4 (Typed conditionally linear samplers). Let g : IN — IN be an admissible field size function
and s : IN — IN be a function. Let 7 be a finite type set. A 6-input Turing machine S is a T -typed, {-level
conditionally linear sampler with field size q(n) and dimension s(n) if for all n € IN, letting ¢ = q(n) and
s = s(n), there exist T -typed families of /-level conditionally linear functions { L " };c7 and {LE"} o7
on V = IF; where t € 7,w € {A,B}, the conditionally linear function L;"" has marginal functions
{L{"Z;} and factor spaces {V;", } satisfying the conditions of Lemma 4.4, and forall t € 7, w € {A, B},
je{l,....4},andz € V:

e On input (1, DIMENSION), the sampler S returns the dimension s(n).

e Oninput (1, w, MARGINAL, j, z,t), the sampler S returns the binary representation of L{"” J (2).

e Oninput (1, w, LINEAR, j, 1,1, t), the sampler S outputs the binary representation of Lf”j”u(y),

e On input (1, w, FACTOR, j, U, t), the sampler S returns the factor space Vtw]'zl of L{"", represented as
an indicator vector in {0,1}°.

We call IFZ((Z)) the ambient space of S. We call {L"}, {L2™} the CL functions of S on index n. The time

complexity of S, denoted TIMEg(n), is the number of steps before S halts for index n. The randomness
complexity of S, denoted by RANDg(n), is defined as the quantity s(n) log g(n).

We assume that types t € T are represented using binary strings of length at most [log |7 |]; if a type
t is given as input to the sampler S and is not an element of 7, then the sampler returns 0. Furthermore,
as described in Remark 4.13 for un-typed samplers, we write typed samplers with different numbers of
arguments depending on the input.

Definition 6.5 (Distribution of a typed sampler). Let S be a T -typed sampler and G = (7T, E) be a graph.
Let LY = {L¥}; forw € {A,B} be the CL functions of S on index n. The distribution of sampler S with
graph G on index n, denoted yg ,» is the (7, G)-typed conditionally linear distribution corresponding to

(LA, LB).

Definition 6.6 (Downsizing typed CL samplers). Let S be a (7, G)-typed sampler. The downsized (7, G)-
typed sampler x(S) is defined as in Definition 4.15 with the only difference that the type t is included as
part of the input to the sampler, as in Definition 6.4. (The type set 7 and type graph G themselves are
unchanged.)

Lemma 6.7. Let S be a (T, G)-typed (-level CL sampler, for some finite set T, type graph G, and integer
¢ > 0. Let q(n) and s(n) be as in Definition 6.4. Then «(S) defined in Definition 6.6 is a (T, G)-typed
C-level CL sampler with field size 2, dimension s(n)logq(n), and randomness and time complexities

RAND,(s)(n) = RANDs(n) , TIME,s)(n) = O(TIMEs(n)logq(n)) .

Furthermore, for every integer n > 1, the CL functions of k(S) on index n are {(L{"" ) } e (B} teT> @5
defined in Definition 4.8.
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Proof. The proof is analogous to the proof of Lemma 4.16, and we omit it. O

Definition 6.8 (Typed decider). A typed decider is a 7-input Turing machine D that on all inputs of the form
(n,u,x,v,y,4a, b) where 7 is an integer and u, x, v, y,a,b € {O, 1}*, D halts and returns a single bit. When
D returns 0 we say that it rejects, otherwise we say that it accepts. We use TIMEp(n) to denote the time
complexity of D on inputs of the form (n, .. .).

Definition 6.9. Let 7 be a finite set and let G = (7T, E) be a graph. A (T, G)-typed normal form verifier
isapair V = (S, D) where S is a T -typed sampler with field size (1) = 2 and D is a typed decider.

Definition 6.10. Let V = (S, D) be a (7, G)-typed normal form verifier. For n € IN, we define the
following nonlocal game V), to be the n-th game corresponding to the verifier V. The question sets X’
and ) are T x {0,1}RANDs(")  The answer sets A and B are {0,1} T"™E»(") The question distribution
is the distribution Vg,n specified in Definition 6.5. The decision predicate is the function computed by
D(n, ey -), when the last four inputs are restricted to X x ) X A x B. The value of the game is denoted
by val* (V).

Forw € {A, B} and a question (u, x) to player w we refer to u as the question type and x as the question
content.

6.2 Graph distributions

We describe a construction of conditionally linear distributions which sample from the graph distribution
(see Definition 6.2) of a graph G = (U, E). We begin with a technical definition, followed by the definition
of the conditionally linear distribution.

Definition 6.11 (Neighbor indicator). Given a graph G = (U, E), the neighbor indicator of a vertex u € U
is the vector neigh (1) € FY in which, for all v € U,

: 1 if {u,v} €E,
neigh -~ (1), =

& G( Jo {0 otherwise.
In addition, the Fp-encoding of a vertex u € U is the vector encg(u) € Y x Y given by encg(u) =
(eu,neigh-(u)), where e, is the standard basis vector with a 1 in the u-th position and 0’s everywhere else.

Definition 6.12 (Graph sampler). Let G = (U, E) be a graph with n vertices. Then the conditionally linear
functions corresponding to G are the pair of functions L2, L(B; on linear space V; specified in Fig. 1 where
Ve = Vva @ Vna © Vys @ Vns.

These conditionally linear functions do not simulate the graph distribution in the sense of sampling
directly from it. The following proposition, however, does show a sense in which these functions simulate
the graph distribution, namely via rejection sampling.

Proposition 6.13 (Simulating the graph distribution). Let G = (U, E) be a graph with n vertices and m
edges, k of which are self-loops. Let L2, Lg be the conditionally linear functions corresponding to G (see
Figure | for the definition and associated notation). Let (x,y) ~ i LA, LB- Consider the event E¢ that there
exists u,v € U such that the following two statements are true.

(i) AxWAOWNA — encG(u) and yVVBGBVNB — enCG(v),
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Subspaces
Vva Vna 4% VNB
F3 F3 F3 F3

Conditionally linear function L‘é

1st factor subspace Vva ® Vna

1st linear function Identity function

2nd factor subspace Vvs @ VNB

2nd linear functions For all x € Vya & VNa, suppose there exists a u € U such that

x = encg(u). Then forall y € Vyp @ Vg, Lé’ 2, x Zeroes out all
entries of y except for (yVNB )u. Otherwise, Lé’ 2x = 0.

Conditionally linear function Lg

1st factor subspace Vve @ VnB

1st linear function Identity function

2nd factor subspace Vva @ Vna

2nd linear functions Similarly defined as those for Lé by swapping Vya and Vna with

Vys and Vg respectively.

Figure 1: Specification of the conditionally linear functions corresponding to G.

(ii) (xVNB)u = (yVNA)U =1.
Then
1. Pryy (&) = (2m —k) /16"
2. Conditioned on Eg, (u,v) are distributed as the graph distribution of G (see Definition 6.2).

Note that Ec occurs if and only if both xV~8 and yVNA are nonzero. In particular, if x and y are sampled
Sfrom u LA, LB and given to the respective players, then at least one of them knows when the event £ does not
occur.

Proof. Let z be drawn uniformly at random from Vya & Vna & Vyg & Vs, and let x = Lé (z) and
y = LB(z). Then with probability n*/16", there exist u,v € U such that

xVVaSWNa — encg(u) and yVVB@VNB = encg(v) .

Conditioned on this occurring, # and v are distributed as independent, uniformly random vertices in U. If
we further condition on {u,v} € E, which occurs with probability (2m — k) /n?, then by definition, (1, v)
is distributed as the graph distribution of G. But this event is exactly the event that £ holds on (x,y),
establishing the proposition. O
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6.3 Detyping typed verifiers

We give a canonical method for taking a typed normal form verifier and producing an untyped normal
form verifier which simulates it. Throughout this section, 7 denotes a finite set, G = (T, E) denotes a
graph, and L2, Lg denote the conditionally linear functions corresponding to G acting on the vector space
Ve = Vya @ Vna @ Vyp @ Vnp of dimension 4 - | 7| over Iy, as in Definition 6.12.

Definition 6.14 (Detyped CL functions). Let LA = {L2},LB = {LB} be T-typed families of ¢-level
conditionally linear functions on V. We define the detyped CL functions corresponding to (L, LB) on G to
be the pair of (¢ + 2)-level CL functions (R*, R®) = detype, (L*, LB) on linear space Vpgryer = Vo @V
as follows. For w € {A, B}, and z € LY(V(;), define the family of ¢-level CL functions {LY¥} on V' as

e Ve —
[o— 0 if z"Ne = (,
: LY  otherwise, for z"Ve = e,.
Wnw

We note that when z"N@ is nonzero, it is always the case that z"Vo = ¢, for some type t, by Definition 6.12.
Forw € {A,B}, R is the concatenation of LY and {LY'}, (cf. Lemma 4.5).

Definition 6.15 (Detyped samplers). Let S be a T-typed sampler. For each n € IN, let {L"}, {LE"} be
the CL functions of S with graph G on index n, and set (R*", R®") = detype (L*", L® ™). Then the
detyped sampler detype,(S) is the (standard) sampler whose CL functions on index 1 are R*", RB" Its
dimension function is sperype (1) = 4|7 | + s(n).

Definition 6.16 (Detyped deciders). Let D be a typed decider. We define the detyped decider detype (D)
to be the (standard) decider that behaves as follows: on input (11, x, v, a, b), it attempts to parse x = (x/, x”'),
y = (y,y") € Vg x {0,1}* (using a canonical scheme for representing pairs of strings). If it cannot, it
accepts. Otherwise, suppose that there exists {u,v} € Eg such that, using notation from Definition 6.11,

x" = (ey,meigh(u),0,ey), ¥ = (0,6, ey, neigh-(v)) € Vya @ Va @ Vyg & Vs -
Then it returns the output of D on input (1, u, x”,v,y"”,a,b). Otherwise, it accepts.

Definition 6.17 (Detyped verifiers). Let V = (S, D) be a (T, G)-typed normal form verifier. We define the
detyped verifier, denoted by detype()), to be the (standard) normal form verifier (detype(S), detype(D)).

Lemma 6.18 (Typed verifiers to detyped verifiers). Let V = (S, D) be a (T, G)-typed normal form verifier.
The detyped verifier detype(V) = (detype(S), detype (D)) satisfies the following properties: for all
n €N,

1. (Completeness) If Vy, has a value-1 PCC strategy, then detype(V), has a value-1 PCC strategy.
2. (Soundness) If val* (detype(V),) > 1 — ¢, then val*(V,) > 1 — 16|71 - &. Furthermore,

&(detype(V),,1—€) > &V, 1— 16171 ¢).

3. (Sampler parameters) If S is an (-level sampler, then detype (S) is an (£ + 2)-level sampler. The
randomness and time complexities of detype(S) satisfy the following:

RANDyetype () (1) = 4 - |T| + RANDs(n)
TIMEdetypeC(S)(n) = pOlY(‘TLTIMES(TZ))
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4. (Decider complexity) The decider detype (D) has time complexity poly(|T |, TIMEp(n)).

5. (Efficient computability) The descriptions of detype(S) and detype (D) are polynomial time
computable from the description of G and the descriptions of S and D, respectively.

Proof. Throughout this proof, we fix an index n. Let s = s(n) be the dimension of S. The ambient space
of § is V' = TF; and the ambient space of detype(S) is Vpgryer = Vg @ V. Let u,v € T For this proof,
we introduce the notation

view? (u) = (eu,neigh(u),0,ey), view® (v) = (0, ey, ¢y, neigh(v)) € Vwa @ Vxa @ Vyg @ Vg -

Supposing that players A and B receive x and y in Vperype, and supposing that (x,y) satisfies event Eg
from Proposition 6.13, then xV¢ = view” (u) and y"¢ = view®(v) for some {u,v} € E.

Completeness. Let . = (|¢), A, B) be a value-1 PCC strategy for V,. We construct a PCC strategy
SPETYPE for detype(V), with value 1. This strategy also uses the state [1)). When a player receives a
question, they perform measurements described as follows.

Player A: given x € Vpgryps the player checks if for some u € T, xV6 = view” (u). If so, they perform
the measurement
{a}

to obtain an outcome a, which they use as their answer. If not, they reply with the empty string. (This
entails performing the measurement whose POVM element corresponding to the empty string is the
identity matrix.)

Player B: given y € Vpgrype, the player checks if for some v € T, y'¢ = view® (v). If so, they perform
the measurement
{B(v,yv) }
b

to obtain an outcome b, which they use as their answer. If not, they reply with the empty string.

This strategy is projective and consistent because the only measurements it uses are those in . and “trivial”
measurements containing the identity matrix. Suppose the players receive questions x and y such that both
xVe = view” (u) and y¢ = view®(v). In this case, the questions (u, x") and (v,y") are in the support
of the question distribution of V. As a result, the players succeed with probability 1 on these questions,
and their measurements always commute. For the remaining pairs of questions, the decider detype (D)
always accepts, and the measurements always commute by virtue of the fact that at least one is trivial, i.e.
containing the identity matrix as a POVM element.

Soundness. Let.” = (|¢), A, B) be astrategy for detype()),, with value 1 — . Suppose G has m edges,
k of which are self-loops. For any (x,y) drawn from pgetype..(s),»» the decider detype (D) automatically
accepts unless (x"c, yVG) satisfies event Eg from Proposition 6.13, which occurs with probability (2m —
k)/16/71. When this happens, x" and y"c are distributed as view” (u) and view® (v), where (u,v) are
distributed as the graph distribution on G. As a result, conditioned on &g, the probability that . succeeds
on detype(V), is equal to the probability that the strategy ." = (|¢), A/, B') succeeds on V,,, where

v oA v vV iowB (V) ¥

(A/);’x _ AE(,VleW (u),x") , (B/)b,y _ B[SVIeW v).y")
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This means that

. 2m —k 2m —k N
val*(detype(V),, ) = (1 T > 107 -val*(Vy, &)
1 1 « /

Thus, .7 has value at least 1 — 16/71. €. This proves the first statement in the soundness. As for the second,
% and .’ use the same state |ip), and therefore both strategies have the same Schmidt rank, which by
definition is at least & (V,, 1 — 1671 . ¢).

Complexity. Definition 6.14 implies that detype (S) is an (£ + 2)-level sampler by Lemma 4.5 and that
Vberype has dimension 4|7 | 4+ s. From this, we conclude that

RANDdetypeC(S)(n) =4. |T| + RANDS(I’I) .

The claimed time bounds of detype (S) and detype (D) follow from the fact that these perform simple,
poly(|T)-time computations followed by running S and D as subroutines. O
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7 Classical and Quantum Low-degree Tests

In this section we introduce the classical and quantum low-degree tests. The classical low-degree test, first
introduced in [BFL91, AS98], has for almost three decades played a central role in the area of probabilis-
tically checkable proofs (PCPs) and hardness of approximation, and is used as a building block in many
MIP and MIP* protocols. The quantum low-degree test was introduced more recently in [NV18a], but it
has already led to significant improvements in the power of MIP* protocols [NV 18a, NW19]. The protocol
in this work combines both of these tests, using the quantum low-degree test for question reduction and the
classical low-degree test for answer reduction. Section 7.1 below introduces the classical low-degree test,
and Section 7.3 does the same for the quantum low-degree test. Prior to doing this, we introduce the Magic
Square game in Section 7.2, a key subroutine in the quantum low-degree test.

7.1 The classical low-degree test

We begin with a generalization of the classical low-degree test known as the “simultaneous plane-point low-
degree test”. We sometimes refer to this as the “classical low-degree test” for short. The low-degree test is
used as a subroutine in the Pauli Basis test (see Section 7.3) as well as the answer-reduction normal form
verifier (see Section 10). We describe the test as a nonlocal game in Section 7.1.1. In Section 7.1.2, we show
how to generate questions for the low-degree test using a CL distribution.

7.1.1 The game

The game B is parametrized by a tuple |dparams = (q,m,d, k) where m,d,k € IN are integers and
g € IN is an admissible field size. The test is intended to check that the players’ responses are consistent
with k functions (f1, f2, ..., f¢) such that each function f; : IF" — IFy is a total degree-d polynomial. We
sometimes write 6b%arams to emphasize the dependence of the classical low-degree test on the parameter
tuple ldparams.

Definition 7.1 (Plane encoding). The plane p in the linear space ng1 specified by the triple v = (v, v1,v2) €
(Iqu)3 is the subset
{Uo—i—/\llh—l—)\z?)z:/\l,)LQEIFq} QIF? 40)

The first entry vy of the triple is called the intercept of the plane p, and the second and third entries vy, v are
called its directions. Note that different triples (vg, v1,v2) can specify the same plane. The plane specified
by the triple v = (o, v1,v2) is denoted as p(v). The collection of planes in Fj" is denoted P1(IFy').

Definition 7.2 (Plane-point distribution). The plane-point distribution on F! is the distribution over (p, x)
where p = p(vo,v1,v2) is the plane associated with a uniformly random triple of points (vg, v1,v2) €
(') and x is chosen uniformly at random from p.

The game " is symmetric, so both players have the same question and answer alphabets. The question
alphabet is

X = ({POINT} X ]F?) U ({PLANE} X (IF;”)3) :

In other words, the questions in the game &' are pairs (t, x), where the first component t indicates the rype
of the question, and the second component x consists of the content of the question.

The distribution i, over questions ((ta, Xa), (tg, xp)) for game &P is the following. First, sample a
triple of points v = (vg, v1,v2) € (IFZ1)3 uniformly at random. Next, pick a uniformly random point # from
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the plane p(v). For each w € {A, B}, with probability 1/2 (ty, ;) is chosen to be (PLANE, v) and with
probability 1/2 it is (POINT, u).

The decision procedure D*P for the game &P is presented in Figure 2. The table at the top specifies
a parsing scheme for the questions and answers, depending on the type of question. For example, when a
player receives a question with type POINT, the question content x, a bit string of length m log g, should be
interpreted by the decision procedure and the players as an element of the vector space IF;”, as indicated in
Section 3.3.2. Similarly the answer to a question with type POINT is expected to be a bit string of length
klogg, and is interpreted as an element of IF'q‘. For questions with type PLANE, the question content is
a 3mlog g-bit string, which can be parsed as a triple v = (vg,v1,v2) € (IF?)B’ , which in turn can be
interpreted as a specification for a plane p(v) in 7. The answer is interpreted as the description of k
degree-d bivariate polynomials defined on the plane p(v). If the answers returned by the players do not fit
this format the decision procedure rejects.

Type Question Content Answer Format

POINT x € F7 Element of IF’{;

PLANE v = (0p,01,02) € (F}')?>  Bivariate polynomial f : p(v) — ]F’,; of degree
d

Input to D™P: (tA,xA,tB,xB,a A,ap). In all cases where no action is indicated, accept. For
w € {A,B},

1. (Consistency test) If ts = tp, accept iff ay = ag.

2. (Low degree test) If t;, = PLANE and t;; = POINT, parse 4, as a degree-d polynomial
fip(v) — ]Ff;, and accept iff f(xz) = ag.

Figure 2: The decision procedure D™P for the simultaneous low-degree test, parameterized by the parameter
tuple Idparams = (gq,m, d, k).

We define a special class of measurements that are relevant to the soundness properties of the low-degree
test.

Definition 7.3 (Low-degree polynomial measurements). Define PolyMeas(m,d, q) to be the set of POVM
measurements whose outcomes correspond to degree-d polynomials of 7 variables over IF;. More generally,
for an integer k and tuples m = (mq,my,...,my), d = (dy,da,...,dx) and g = (q1,92,--.,qx), we let
PolyMeas(m,d, g, k) be the set of measurements G = {Gy, ¢, ..., ¢, } suchthatfori € {1,2,...,k}, g;isa
degree-d; polynomial g; : Fg' — F,..

Quantum soundness of the classical low-degree test was established in [NV 18a] for the case of k = 1.
It was later extended to the case of general k in [NW19, Theorem 4.43] via a standard reduction. We quote
this result below, adapted to our notation.

Lemma 7.4 (Quantum soundness of the simultaneous classical low-degree test). There exists a function
Oup(e,q,m,d, k) = a(e +d(m + k)/qc)b for universal constants a > 1 and 0 < b,c < 1 such that for
every q,m,d, k, d.p is a concave function of €, and the following holds. For all € > 0 and parameter tuple
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|dparams = (g,m,d, k), for all projective strategies (, A, B) that succeed with probability at least 1 — €
in the game &\ . ¢ there exists measurements

G" € PolyMeas(m,d, q,k)
on Hy, forw € {A, B}, such that

POINT, x ~ . B
Abl/bZ/m/bk ®Ip =5, 14 ® G[eValx('):(blbe--~,hk)] /

A - POINT, x
G[evalx(')=(b1/b2/-wbk)} ®Ip >4, 1A ® BblrbZ/n-/bk ’

A N B
Ggl,gz,.‘.,gk ® Ip —Jp In® Ggl,gz,‘..,gk ’
where 8, = Oip(e,q,m,d, k), evaly(g1,82,---,8k) = (g1 (x),82(x),... ,gk(x)) and the approximation
holds under the uniform distribution over x € IFZ1.

Remark 7.5. Although the decision procedure expects questions and answers that are binary strings, for
convenience we index measurements using more structured objects such as vectors or polynomials over IF,
where we implicitly assume a consistent and canonical encoding scheme for these objects as binary strings
(as discussed in Section 3.3.2).

7.1.2 Conditionally linear functions for the plane-point distribution

We introduce CL functions LP*, LPT whose corresponding CL distribution y Lpu rpr implements the plane-
point distribution introduced in Definition 7.2. The functions are parametrized by a field size ¢, a dimension
m, and three disjoint m-dimensional register subspaces Vx, Vv, Vy, of some ambient space. The register
Vx is called the point register and Vv, Vv, are called the direction registers, respectively. We let V denote
the direct sum Vx @ Vy| & Vy,. The details of the functions are specified in Figure 3.

We explain how to interpret the figure. The first part of the specification identifies m-dimensional vector
spaces over IF, labeled Vx, V1, and Vy,. The next part of Figure 3 defines the CL functions L*" and LP"
by specifying their factor spaces as well as the associated linear maps. For example, the CL function LP"
is a 1-level CL function (i.e. a linear function) that maps every x € V to its projection x"X to subspace
Vx. The CL function LP" is a 2-level CL function that is the concatenation of the identity function on
Vy1 @ Vi, (a 1-level CL function) with a family of linear maps { LF" }, that act on the subspace Vi, indexed
by v € Vi1 @ Vy,. We use the convention that the CL functions LPT™ and LP" are implicitly defined to be 0
on subspaces that are complementary to their factor spaces.

Consider a pair (x,y) € V x V sampled from the CL distribution piyr jer. Parse x as (vo, v1,02) €

(IF;”)S’ and parse y"* as w € IFy". Observe that the joint distribution of (v, w) is different from the marginal
distribution of (xa, xp) sampled from Mip, conditioned on ty = PLANE and tg = POINT. This is because
x4 is a uniformly random triple of points (vg, v1,v2) € (IF;”)3, and xg is a uniformly random point w €
p(v0, v1,v2). On the other hand, by definition, we have that vy = Ly, (w). Nevertheless, we show in the
following lemma that this syntactic difference does not change the soundness properties of the game.

Let Idparams = (g,m,d, k) denote a parameter tuple. Let @h‘?’arams denote the classical low-degree
test where the distribution fi;;, is the following distribution over tuples (ta, xa,ts, Xg): (ta, ts) is sampled
uniformly from {POINT, PLANE} X {POINT, PLANE}. Next, sample a uniformly random vector z € V =

Vx @ Vy1 @ Vy,. Finally, forw € {A, B}, define

LP'(z) ift, = PLANE,
X =
“ LPT(z) ift, = POINT.
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Subspaces over [F,

Subspace Vx Vvi Vo

Dimension m m m

Conditionally linear function LF”

1st factor subspace %4
1st linear function Projector onto Vx

Conditionally linear function L'

1st factor subspace Vvi @ Vs

1st linear function Identity function on Vy| & Vv,

2nd factor subspace Vx

2nd linear function For allv € Vi & V7, the linear map LgL is the canonical linear

map with kernel basis {v1,v2} (see Definition 3.10), where v; is
the projection of v onto Vvy;, naturally identified with an element
of Vx using that both spaces are canonically isomorphic to IF;”.

Figure 3: Specification of the CL functions used in the plane-point sampler, parametrized by field size q and
dimension m.

Lemma 7.6. Let |dparams = (g,m,d, k) denote a parameter tuple. Then Lemma 7.4 applies to the game
IIa]?Jarams'

Proof. For notational clarity, we omit mention of Idparams. Fix ¢ > 0. Let .¥ = (¢, A, B) be a PCC
strategy for & that succeeds with probability 1 — . We show that there exists a strategy .’ = (y,C,D)
that succeeds with the same probability 1 — € in "P. Consider the following strategy for &"P: suppose
a player receives a question (PLANE, v) such that v = (vg,v1,v2) € (IF;,”)?’ . First, the player computes
U = LglL, v,(00). Tt then performs the same measurement as a player in the game G'° would when it
receives question (PLANE, u,v1,v;) and returns the outcome (which is a list of k bivariate polynomials
defined on p(u,v1,v2)). If the player receives (POINT, w) for some w € p(vg,v1,v2), it performs the
same measurement as a player in the game &"° would when it receives question (POINT, w), and returns
the outcome (which is a list of k values in Fy).

If both players receive questions of the same type (either PLANE or POINT type) in the game &P, then
the measurements performed are exactly the same as those performed in the game &'? when both players
receive the same type. This is because the marginal distributions of yp and fi;, are identical when the
question type is POINT, and the marginal distribution of PLANE-type questions in fi; p is the same as that of
piLp after the CL function LP* is applied to content of the PLANE-type question.

Suppose that in the game &' one player receives a question with type PLANE, and the other player
receives a question with type POINT. We argue that the distribution on (1, v1, v, w) obtained by sampling

((PLANE, ), (POINT, w)) from p;p, and setting u = L™, (vg) as above is the same as the CL distribution
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12 LPL [PT.
To see this, observe as we already did earlier that the marginal distribution of (v1, v, w) is uniform over

(IF;”)3. Furthermore, observe that u = LJ" (w): since w € p(vo, v1,v2) (by definition of i), we have
that

u= Llljf,vz (UO) = LE;‘,UZ (’('/U),

where the second equality follows from the fact that by construction ker(Lg" ) = span{v1, v, }. Thus the
measurements performed using strategy .’ in B'P are the same as those using the strategy . in the game
P when there is a PLANE player and a POINT player.

Thus, the success probability of ./ in B is exactly the same as the success probability of . in

B O

7.1.3 Complexity of the classical low-degree test.

The CL functions and decision procedure of the low-degree test are incorporated as subroutines in some
of the normal form verifiers constructed in subsequent sections. The next lemma establishes the time com-
plexity of these procedures as a function of the parameter tuple |dparams = (gq,m, d, k). The lemma also
establishes the time complexity of computing the description of the decision procedure D'P as a Turing
machine, given the parameter tuple Idparams as input.

The CL functions L™ and LP" are additionally parametrized by three m-dimensional register subspaces
Vx, Vv1, V2 of some larger ambient space V. We can treat the CL functions as acting on the linear space
(FF')? that decomposes into a direct sum of Vx, Vy1, followed by Vy,.

Lemma 7.7 (Complexity of the classical low-degree test). Let [dparams = (q, m, d, k) denote a parameter
tuple.

1. The time complexity of the decision procedure D" parametrized by ldparams is poly(m, d, k,1og q).

2. The time complexity of evaluating marginals of the CL functions L¥™ and L¥" at a given input point is

poly(m,logq).

3. The Turing machine description of the decision procedure D*P parametrized by ldparams can be
computed from |dparams in polylog(q,m,d, k) time.

Proof. Finite field arithmetic over IF; can be performed in time polylogg, by Lemma 3.18. The most
expensive step in D™ is to evaluate a bivariate polynomial f : p — IFI,; at a point in IF)’, which takes
time poly(m,d, k,logq). The function LFT is a projection onto Vx, which takes time poly(m,logq) to
compute. The function LP* requires computing a canonical linear map, which requires performing Gaussian
elimination and can be done in time poly(m,log ).

The Turing-machine description of the decision procedure D™P can be uniformly computed from the
integers (g, m,d, k) expressed in binary; the complexity of computing the description comes from describing
the parameter tuple Idparams, which takes time that is at most polynomial in the bit length of (g,m,d, k).

O

7.2 The Magic Square game

We recall the Magic Square game of Mermin and Peres [Mer90, Per90, Ara02]. The Magic Square game
is a simple self-test for EPR pairs (it tests for two of them). In addition, it allows one to test that a pair of
observables anticommutes. Here we use it as a building block to construct the quantum low-degree test.

62



There are several formulations of the Magic Square game; here we present it as a binary constraint
satisfaction game [CM14]. In this formulation of the game (denoted by ®yg) there are 6 linear equations
defined over 9 variables that take values in IF;. The variables correspond to the cells of a 3 x 3 grid, as
depicted in Figure 4. Five of the equations correspond to the constraint that the sum of the variables in each
row and the first two columns must be equal to 0, and the last equation requires that the sum of the variables
in the last column must be equal to 1.

X1 | X2 | X3
X4 | X5 | Xe
X7 | X8 | X9

Figure 4: The Magic Square game

The question set 7MS of the Magic Square game is the following:

TMC = {CONSTRAINT; : i =1,2,...,6},
TMV = {VARIABLE; : j = 1,2,...,9},

The questions CONSTRAINT; for i € {1,2,3} correspond to the three row constraints, the questions
CONSTRAINT4, CONSTRAINTS5 correspond to the first two column constraints, and question CONSTRAINTg
corresponds to the third column constraint.

In the Magic Square game, the verifier first samples a constraint CONSTRAINT; € 7 M€ uniformly
at random, and then samples VARIABLE;, one of the three variables in the row or column correspond-
ing to CONSTRAINT;, uniformly at random. One player is randomly assigned to be the CONSTRAINT
player, and the other is assigned to be the VARIABLE player. The CONSTRAINT player is sent the question
CONSTRAINT; and is expected to respond with three bits (Bo,, Bo,, Pos) € IF%, where (v1, v, v3) are the
indices of the three variables corresponding to CONSTRAINT;. The VARIABLE player is given question
VARIABLE; and is expected to respond with a single bit v € F,. The players win if the CONSTRAINT
player’s answers satisfy the equation associated with CONSTRAINT;, and 7y = ;. More precisely, the veri-
fier samples an edge of the type graph (see Section 6) GM® in Fig. 5, sends one endpoint to a random player,
and the other endpoint to the other player.

The following theorem records the self-testing (also known as rigidity) properties of the Magic Square
game. Although we do not explicitly refer to the theorem, its self-testing properties are crucial to the Pauli
basis test. In particular, it is used to enforce anticommutation relations between certain pairs of operators.

Theorem 7.8 (Rigidity of the Magic Square game). Let .¥ = (|¢), M) be the partial strategy where
|p) = |EPR2)®? and for all b € {0,1},

MZARIABLEl _ (75( Q1 and MZARIABLEs — U.hZ ®I,

where (Tg(, (TbZ are the X and Z Pauli projectors over qubits. Then &g is a self-test for . with robustness
O(Ve).

Proof. See [WBMSI16]. ]
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VARIABLE]

CONSTRAINT; VARIABLE)

VARIABLE3
CONSTRAINT;

VARIABLE4
CONSTRAINT3

VARIABLE5
CONSTRAINTY

VARIABLE;g
CONSTRAINT5

VARIABLEy
CONSTRAINTg

VARIABLEg

VARIABLEg

Figure 5: Type graph GMS for the Magic Square game.

We will need the following theorem, which shows that any pair of anticommuting observables can be
used to form a value-1 strategy for the Magic Square game.

Theorem 7.9. Let A = {Ap}per, and B = {By }pcp, be two-outcome projective measurements acting on
(C7)®" which are consistent on |EPR;)®", and let Oy = Ag — Ay and O = By — By be the correspond-
ing observables. Suppose that O yOp = —OpO 4. Then there exists a symmetric strategy . = (1, M) for
the Magic Square game with the following properties.

1. . is an SPCC strategy of value 1.
2. The state |1p) has the form |i) = |EPR,)®" & |[EPRy).

3. Forb € {0,1}, we have My*""*™™ = A, ® I and M,""**" = B, @ I.

Proof. The strategy . is based on the canonical two-qubit strategy for the Magic Square game as described
in, for example, [Ara02]. The state is |¢p) = |[EPR;)®" ® |EPRy). We specify the measurements of .7 in
Figure 6 as an operator solution for the Magic Square game, meant to be read as follows: each cell con-
tains a two-outcome projective measurement { Eg, E1 } on (C7)®" ® C? written as its 4-1-valued observable
Eo — E;. When Player A or B receives the question VARIABLE; for j € {1,...,9}, they measure their
share of |i) using the measurement specified by the cell corresponding to VARIABLE; and receive a single-
bit measurement. When they receive the question CONSTRAINT; for i € {1,2,...,6}, they simultaneously
perform the three measurements in the corresponding row or column on |¢) to obtain three bits. For exam-
ple, if Player A receives question VARIABLE7, they measure |{) using the measurement { Ao ® I, A1 @ I'}
corresponding to the observable O 4 ® I (where the first operator acts on ]EPRq)®” and the second acts on
|EPR3)). Similarly, on question VARIABLEs, they use the measurement { By ® I, By ® I}. This establishes
Item 3 of the theorem.

First, we show that this gives a well-defined strategy. The VARIABLE; measurements are well-defined
because each cell contains a f=1-valued observable. This is obvious for all j # 9; when j = 9, the bottom-
right cell contains O 4 Op ® 040 X. Because O 4 and Op anti-commute,

040 R 0%0% = —0,0p @ 0%0? = 004 @ 0X0? = (0,05 @ c?*)*. 41)
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O ® 1 I ® X 04 @ X

I ® ¢4 Op® 1 Op ® o4

Op ® oZ O ® oX 0,08 ® cZoX

Figure 6: Observables for Magic Square strategy

As a result, this matrix is Hermitian. In addition,

(OAOB ® O'ZU'X>2 = (OAOB (29 (TZO'X) . (OBOA X O'X(TZ) = (OAOB . OBOA) X (UZ(TX . (TXO'Z) =1,
where the first step uses Equation (41) and the final step uses the fact that O 4, Op, X, 0% are £1-valued
observables and hence square to the identity. As a result, this matrix is Hermitian and squares to the identity.
Therefore, it is a +=1-valued observable.

As for the CONSTRAINT; measurements, we must show that the three measurements in each row and
column are simultaneously measurable. This is equivalent to the three £=1-valued observables being simul-
taneously diagonalizable, which is equivalent to them being pairwise commuting. This can be easily verified
for the cases of i = 1,2,4,5 (i.e. the first two rows and columns). In the case of i = 3, commutativity of
O 4 ® 0% and Op ® o follows from Equation (41). Since these two matrices commute, they also commute
with their product (04 ® 04)(Op ® 0%) = 040p ® ¢?0X. The case of i = 6 is similar.

By construction, . is symmetric, and we have already shown that it is projective. It remains to show
that it is commuting, consistent, and value 1. To show that it is commuting, it suffices to show that the
measurement for each cell is simultaneously measurable with all three measurements in its row or column,
which was already proved above. Now we show consistency. By linearity, because A and B are consistent
on |[EPR,)®", s0 too are O 4 and Op. We claim that this implies the observable in each cell of Figure 6 is
consistent on |¢p). To see why, consider the j = 9 case:

(005 ®0“0*)a ® Iy - |[EPR,)®" ® |[EPRy) = (0405 ® 0%)a ® (I ® 0*)p - [EPR,)®" ® |EPR,)

= (
= (0405 ®1)a ® (I ® 0% 0%)p - [EPR,)®" @ |[EPR)
= (04 ®1)a® (0 ® c*0%)p - |[EPR,)“" ® |EPRy)
In ® (004 ® 0%0%)p - [EPR,)®" ® |[EPR,)
= 1A ® (0405 ® 0%0*)p - [EPR,)“" ® |EPR,).

The first two steps use the consistency of X, % on |[EPR,), the next two use the consistency of O, O 4 on
|[EPR,)®", and the last step is by Equation (41). The remaining cases of j € {1,...,8} are similar, and we
omit them.

Now, we show that the measurements in . are consistent. Let E = {Eo, E1 } be any of the measure-
ments in the cells of Figure 6. We have shown that O = Ep — Ej is consistent on |i). But for each
b€ {01}, E, = (Eo+E1 + (=1)Y(Eg — E1))/2 = (I + (—1)?O) /2, and so each Ej, is consistent
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on |ip) by the following calculation

Ey @ Igly) = 3(I+ (=1)"Op) @ Ie|p) = 3|9) + 3(~1)" O © In|9)
= 319) + 3(-1"Is @ Oplg) = 312 © (I + (=1)"O)|¢) = Ia @ Eply),
where the third equality is by the consistency of Of. As a result, the VARIABLE; measurements are con-
sistent. As for the CONSTRAINT; measurements, each such measurement {F, 4}, cc (0,1} is of the form

Fope = ELl. Ei - E2, where Eq, Ep, and E3 are VARIABLE measurements. But then consistency of F follows
from the VARIABLE consistencies:

Fope ® Iglp) = (E} - Ep - E)a @ Iglp) = (E} - Ef)a ® (E2)g|p) = (E})a ® (E2 - E})gl¢p)
=IA® (E2-E; - E)lYp) =Ia® (E; - Ep - ED)Bl¢p) = In @ Fypc

),

where the second-to-last step is because the VARIABLE; measurements in the same row or column commute.
Hence, all measurements are consistent.

Since all measurements are consistent, this implies that the answer bit of the player receiving a VARIABLE
question is always consistent with the corresponding answer bit of the player receiving the CONSTRAINT
question. Similarly, the answers of the player receiving the CONSTRAINT question always satisfy the given
constraint; observe that in all rows and the first two columns, the observables multiply to I, whereas the
observables in the last column multiply to —I. This implies that the strategy is value-1, concluding the
proof. 0

7.3 The Pauli basis test

We introduce the quantum low-degree test of [NV 18a] in the form of a slight modification to it by [NW19]
known as the Pauli basis test. Informally, the quantum low-degree test asks the players to measure a large
number of qubits and return a highly compressed version of the measurement outcome. The Pauli basis test
simply asks that the players return their uncompressed measurement outcomes, and it is designed by direct
reduction to the quantum low-degree test. In Section 7.3.1 we describe the Pauli basis test as a nonlocal
game &PAUM | as we did with the classical low-degree test in Section 7.1. In Section 7.3.2, we describe
how to generate questions for the Pauli basis test using CL functions. In Section 7.3.3 we exhibit canonical
parameters for the Pauli basis test and give bounds on the time complexity of executing the test.

7.3.1 The game

®PAULI

We start by discussing parameter settings. The game is parametrized by a tuple

gldparams = (g,m,d,h,H,T, ),

where q,m,d, h,I" € N are integers, H is a subset of IF; of size h, and 7t is a map from {1,2,...,T} to

H™. We sometimes write ngﬁ%grams to emphasize the dependence of the Pauli basis test on the parameters.

Informally, the test is meant to certify that the players share a state of the form |EPRq>®r. Its question
set includes questions that are planes and points in IFZI”, which are meant to correspond to questions in a
low-degree test, and questions of the form (PAULL, W), for W € {X,Z}. Upon receipt of a question of
the latter form, the players are expected to perform the POVM {TJ{V }”GH and report the outcome u as their
answer.
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Definition 7.10 (Admissible parameters). We say that the tuple qldparams = (gq,m,d, h, H,T, 1) is admis-
sible if q is an admissible field size, h < g, and I' < h'™.

Similarly to the game ®"P, questions in the Pauli basis game come with a “question type” part and a
“question content” part. The question types are taken from the set

TP = ({POINT, PLANE, PAULL, PAIR} x {X,Z}) UTMS U {PAIR}, 42)

where T™MS is the question type set of the Magic Square game defined in Section 7.2. The question content
has a format that depends on the type.

(PLANE, X)

/ e (PAULIL X)

(POINT, X)

VARIABLE|

CONSTRAINT; (PAIR, X)

VARIABLE;

CONSTRAINT: oA
2 VARIABLE3
(PAIR, Z)
CONSTRAINT3 VARIABLEy (POINT, Z)
,

(PAULL Z)
VARIABLE3

CONSTRAINTy

VARIABLEs  (PLANE, Z)

CONSTRAINTs5

VARIABLE;
CONSTRAINTg
VARIABLEg

VARIABLEg

Figure 7: Graph GPAU! for the Pauli basis test. Each vertex also has a self-loop which is not drawn on the
figure for clarity.

The distribution ppay; over questions ((ta,xa), (tg, xp)) in B2V is defined through the following
sampling procedure:

1. Sample a pair of types by sampling an edge (ta,tg) of the graph GPAU given in Figure 7 uniformly
at random (including the self-loops).

2. Sample the following uniformly at random:

(a) (Points) ux,uy € IF?,
(b) (Directions) vy,vy € F",

(¢) (Qubit basis for (anti-)commutation) rx, 1z € F,.
3. Forw e {A,B}and W € {X, Z},

(a) Ifty, = (POINT, W), then set x;,, = upy,
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(b) If t, = (PLANE, W), then set X, = (1,01, 02), where u = Lg*, (uw),

(c) If ty, = CONSTRAINT; for some i € {1,...,6}, then set x,, = (ux, Uz, rx,7z),
(d) If t, = VARIABLE, for some j € {1,...,9}, then set x, = (ux, uz,7x,7z),
(e) If t,, = PAIR, then set x;,, = (ux, Uz, tx,7z),

(f) Ift, = (PAIR, W), then set xy, = (ux, Uz, rx,77),

(g) If ty, = (PAULI, W), then set xy = 0.

As with the game &', the question content is a bit string that is interpreted as a vector over IF; (as described
in Section 3.3.2).

Decision procedure. The decision procedure for &PAU is presented in Figure 8. Similarly to Figure 2,
we provide a table that summarizes a parsing scheme for the questions and answers, depending on the
type of question. The answers are bit strings that are interpreted as more structured objects such as ele-
ments over IF,, vectors, or polynomials, depending on the question. In the “low-degree check”, the de-
cision procedure DAV calls the classical low-degree decision procedure D' parametrized by the tuple
Idparams = (g, m,d, 1) (defined in Section 7.1) as a subroutine.

We describe an honest, value-1 PCC strategy for the Pauli basis test.

Definition 7.11. Let qldparams = (gq,m,d, h, H,T, 7r) be a parameter tuple. Define the honest Pauli strat-
egy corresponding to qldparams as a partial strategy .7 that uses the state |EPR,7>®r and uses the
POVM {TJ{V}uE]Fg for the question (PAULI, W) for W € {X, Z}.

Lemma 7.12. The Pauli basis test &Y has a value-1 SPCC strategy.

gldparams

Proof. We begin by specifying the value-1 strategy . = (|¢), M). The state is
9) = [EPR,)°T @ [EPRy)

Now we specify the measurements. We start with measurements associated with questions of type POINT,
PLANE, and PAULI. Using notation introduced in Section 3.4, for W & { X, Z},

(POINT,W),y W

Ma = T ntr)=a) @1/
(PLANEW),p W

My = T(g, =1 © 1/

MEIPAULI,W) _ Tuw @1,

We recall Definition 7.1 for the notation p and Definition 3.28 for the bracket notation used to post-
process measurement outcomes. For example, the measurement on question (POINT, W) corresponds to
first performing the measurement {,¥ }weng’ receiving an outcome w € FY, and then outputting the value

a = Qu,x(y). Next we specify the POVMs associated with questions of type CONSTRAINT, VARIABLE, and
PAIR. Questions with these question types have a question content that is a tuple w = (ux, Uz, rx,7z) €
(IFZI")2 X IF%. Given such a tuple, consider the two IFo-valued POVMs A = { A} }ycp, and B = {B} } e,
defined as

_ X
Ab = Tag, 2(ux) r)=t] € 1/ (44)
By = Tieg. n(uz)ra)—t] © 1 - 45)
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Type

Question Content

Answer Format

(PoINT, W) RS IFZ1 Element of IF,

(PLANE, W) v = (uw,v1,02) € (Fj')? Polynomial f : p(v) — F,
PAIR (ux, uz,rx,i’z) € (IFZ1)2 X ]F% (ﬁx, le) S ]F%

(PAIR, W) (ux, uz,rx,1z) € (Fj')* x |F Element of IF,
CONSTRAINT;  (ux,Uz,rx,17) € (113;”)2 X ]F% (0o, , 0oy, ty) € TFS
VARIABLE; (ux,uz,rx,17) € (11331)2 X ]Fg Element of [F»

(PAULI, W) 0 Element of ]Fg

Table: Question and answer format of the Pauli basis game.

On input (ta, XA, t, XB, a4, g ), the decision procedure DPAUM performs the following checks
forw € {A,B}:
1. (Consistency check). If ty = tg, acceptiff ap = ag.

2. (Low-degree check). If t, = (POINT,W),tz = (PLANE, W), accept if Dij_ ..o
accepts (tw, X, tw, X@, dw, dz) With ldparams = (q,m, d, 1).

3. (Consistency check). If t;, = (POINT, W), t = (PAULIL, W), accept if g5 »(Y) = aw,
where g, r is the low-degree encoding of a7 € ]qu defined in Section 3.4.

In the remaining three cases, the decision procedure first computes the number

v = tr((indpm, (4x)7rx) - (indpm,(uz)rz)) (43)
where we recall the indy »,, ~(-) notation from Section 3.4.

4. (Commutation check). If t;, = (PAIR, W), t; = PAIR, accept if a, = Bw or y # 0.

5. (Consistency check). Ift,, = (POINT, W), t5 = (PAIR, W), accept if tr(a,rw) = am
ory # 0.

6. (Magic square check). If t;, = CONSTRAINT;, tz = VARIABLE;, accept if y =0, or
ay, satisfies constraint CONSTRAINT; and aj = dg.

7. (Consistency check). If t;, = (POINT, W),tz = VARIABLE;, accept if 7 = 0 or if
j=1,W=X,and tr(ayrx) = agorif j =5 W = Z, and tr(a,rz) = az.

Figure 8: Specification of the decision procedure Dgfa‘gg'rams.
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We would like to determine when the two observables O4 = Ap — Ay and Op = By — By commute
or anti-commute. Towards this we derive alternative expressions for these observables from which their
commutativity becomes plain from inspection. We begin by inspecting the first matrices on the right-hand
sides of Equations (44) and (45):

W — W
T[tr(g.,n(uw) rw)=b] — 2 Tw
witr(gw, 7 (uw) rw)=b

= Y v, (46)

witr((w - indgy,m, (uw) ) -rw)=b

where (46) follows by Definition 12. As a result,

4 4 _ W W
Tltr(g, m(unw) rw)=0]  Tler(g, () rw)=1] > Tw > T
witr((w - indgg 7 (uw)) 7w )=0 witr((w - indgg 7 (uw) ) -rw)=1
— Z(_l)tr((w-indH/m,ﬂ(uW))-rW)TuIi\/
=t (ind gy, (uw) 1) , (47)

where the last step uses (17). As a result, Equation (47) and Equations (44) and (45) imply that
Oy = TX(indH,m,n(uX)rX) ®I, Op= TZ(indH,m,n(uZ)rz) QI.
Now, let v = tr((indg s (1x)rx) - (indg 1 2 (147)77)) € Fy, as in Equation (43). Then by Equation (15),
0405 = (=1)70p0y4 .

As a result, 7y quantifies whether the observables O 4 and Op commute, and therefore whether the measure-
ments A and B commute. If v = 0, they commute. If v = 1, they anti-commute. We now specify the
POVMs associated with questions of type CONSTRAINT, VARIABLE, and PAIR, considering separately the
cases when vy = Qory = 1.

1. If v = 0, for each Bx, Bz € F, define

MEN%< = Ag, - Bg, 48)

MLSPAIR,X),(U _ Aa ) MLSPAIR,Z),aJ _ Ba '

The POVM associated with questions of type CONSTRAINT and VARIABLE are defined to be trivial.

In particular, we define

CONSTRAINT;, W ___ VARIABLE;, w
Mo, 0,0 =M, =1,

and the remaining POVM elements in these measurements are set to be zero.

2. If ¥ = 1, then O4 and Op anti-commute. In this case we define measurements MCONSTRAINT;, @ apq
MVYARIABLE, @ “for all § € {1,...,6} and j € {1,...,9} to be those guaranteed by Theorem 7.9.
Measurements associated with inputs of type PAIR are defined to be trivial. In particular, we define

PAIR,X), PAIR,Z),
Y Y A

and the remaining matrices in these measurements are set to be zero.
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This completes the specification of the strategy.

Now, we show that .% is a value-1 SPCC strategy. It is clearly symmetric and projective. To show
that it is consistent, we note that all measurements are Pauli basis measurements, which are consistent,
or measurements produced by Theorem 7.9, which are also consistent. The only exception is the PAIR
measurement in the ¢y = 0 case, which by Equation (48) is a product of two commuting, consistent mea-
surements, and so it is therefore also consistent. To show that it is commuting, we note that for each
W € {X,Z}, all (POINT, W), (PLANE, W), and (PAULI, W) measurements commute as they are all mea-
surements in the Pauli W basis. Next, if v = 0 then the CONSTRAINT and VARIABLE measurements
commute trivially, and for W € {X, Z}, the (POINT, W) measurement commutes with the (PAIR, W) mea-

surement, as they are both W basis measurements, and the measurement Mgimﬁ"z” =A Bx B p, commutes
. P .
with M,g AIR,W) o because A and B commute. On the other hand, if v = 0, then the PAIR measurements

commute trivially, and the CONSTRAINT and VARIABLE measurements commute by Theorem 7.9. Finally,
the (POINT, X) measurement commutes with VARIABLE; because both are X-basis measurements, and
likewise both (POINT, Z) and VARIABLEs are Z-basis measurements.

It remains to show that . is value-1. Consider first the first three tests executed by the decision proce-
dure in Figure 8. The strategy passes the consistency checks with probability 1 because it is projective and
consistent. It passes the low-degree checks because it answers those consistently with an honest strategy in
the classical low-degree test.

Next, consider the remaining four tests. Fix an w = (ux, uz,rx,rz) and y as in (43). If 4y = 0, then
the strategy passes the commutation check with probability 1 by construction. As for the consistency check
in Item 5, we can write the (POINT, W) measurement as follows:

(POINT,W),y W

(PAIR,W),w
ftr( - rw)=ag] — Cltr(g, = (y)rw) M

ZQE] ® I= ag & L
As a result, due to the consistency of the (PAIR, W) measurement, the consistency check is passed with
probability 1. On the other hand, if y # 0, then the strategy passes the Magic Square check by Theorem 7.9.
As for the consistency check in Item 7, we can write the (POINT, X) measurement as follows:
(POINT,X),y _ _X _ AqVARIABLEj, w
M[tr('TX):Hﬁ] - T[tr(g.,n(y)rx):aﬂ ®I= Maw VR I,

where the last step is by Theorem 7.9. As these measurements are consistent, this test is passed with
probability 1. O

As described in Definition 7.11, the strategy .#’"A"H is a strategy that uses qudit Pauli measurements and
maximally entangled states defined over qudits with dimension larger than 2. However, it is more convenient
for our application of the Pauli basis test to have a self-test for qubits. In particular, we use the Pauli basis test
in the “introspection game” of Section 8, where the players are commanded to sample questions according
to a sampler S of a normal form verifier. By definition of normal form verifier, S is a sampler over [F,, and
therefore it is natural to use a test for qubit Pauli observables. This motivates the definition of a binary Pauli
strategy:

Definition 7.13. Let gldparams = (q, m,d, h, H,T, ) be a parameter tuple. Define the honest binary Pauli

strategy corresponding to qldparams as the partial strategy .’ BF that uses the state |EPR2>®r 1084 and uses

the POVM {oV }yetions for the question (PAULL, W) for W € {X,Z}. Here, oV denotes the tensor
2

product of qubit Pauli projectors &); (731‘,7 .

Since we use field sizes that are powers of 2, Lemma 3.29 shows that the strategy .#"AU"! based on
qudits is isomorphic to the strategy .#’B¥ based on qubits.
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Soundness of the Pauli basis test. We now state the soundness properties of the Pauli basis test. The
following is an adaptation of the self-testing statement in [NW19, Theorem 6.4].

Theorem 7.14. There exists a function 5(e,m,d,q) = a(e +md/q°)? for universal constants a,b,c > 0
such that the following holds. Let qldparams = (q, m,d,h, H,T, 1) be an admissible parameter tuple and

let #PAUY be the honest Pauli strategy corresponding to qldparams. The game (’52@%‘”% is a self-test for

the honest binary Pauli strategy .-#’BY corresponding to qldparams with robustness 6(¢e, m, d, q).

Proof. This follows from [NW19, Theorem 6.4], which states that the game qupﬁ};glrams is a self-test for the
honest Pauli strategy .PAU! corresponding to gldparams with robustness &(e, 11,d, q), and Lemma 3.29,
which states that .”PAUM is isomorphic to the honest binary Pauli strategy .2 corresponding to gldparams.

O]

7.3.2 Conditional linear functions for the Pauli basis test

We define CL functions that allow us to specify the distribution pipay1; of the Pauli basis test as a (typed) CL
distribution. These CL functions will be used in the sampler for the introspective verifier in Section 8.
Fix a parameter tuple qldparams = (g,m,d, h, H,T, 7). Let VPAU' denote the linear space ]F‘f; for

s = 4m + 2. The space VPAUM is decomposed into a direct sum of the following register subspaces:
Vx, Vz, Vv1, Vya (which are m-dimensional), and Vg, , Vg, (Which are 1-dimensional). We define CL func-
tions Lt : VPAULL _y PAULL for every type t € T PAULL:

1. If t = (POINT, W) for some W € {X,Z}, then LPONTW is the 1-level CL function LPT (from
Section 7.1.2) parameterized by field size g, dimension m, and point register Vyy.

2. If t = (PLANE, W) for some W € {X,Z}, then LPONTW ig the 2-level CL function LP* (from
Section 7.1.2) parameterized by field size g, dimension m, point register Vyy, and direction registers
Wi, Wa.

3. If t = CONSTRAINT; fori € {1,2,...,6}, then the 1-level CL function LCONSTRAINT: jg the projector
onto Vx @ V7 P VRX & VRZ'

4. Ift = VARIABLE; forj € {1,2,...,9}, then the 1-level CL function LVARIABLE] i¢ the projection onto
Vx @ Vz ® Vry @ WR,.

5. If t = PAIR, then the 1-level CL function LPA™® is the projection onto Vx & Vz & Vi, @& VR,.
6. If t = (PAIR, W), then the 1-level CL function LPA™®" is the projection onto Vx & Vz @ Vi, @® VR,.
7. If t = (PAULI, W) for some W € {X, Z}, then the 0-level CL function LPAV""W is identically 0.

Let v denote the typed CL distribution on T PAUL x |/PAULL 5 TPAULL 5 Y/PAULL where (ta, xa, tp, XB) iS
sampled by first uniformly sampling an edge (ta,tg) from the graph GPAU™ defined in Figure 7, sampling
a uniformly random z € VPAU and then setting x,, = L' (z) forw € {A,B}.

Lemma 7.15. The distribution v is a 2-level typed CL distribution. Furthermore, let (ta,Xa,ts, Xp) be
sampled from ppayr; described in Section 7.3.1. For w &€ {A,B} let %y be the vector x;,, seen as an
element of VPAUY (i.e. the vector is padded with zeroes whenever necessary). Then the distribution of
(ta, Xa,ts, Xp) is identical to the distribution v.
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Proof. That v is 2-level is immediate from the description. To see that the distributions are identical, the
random vectors ux, Uz, 01, U2, rx, 'z sampled in the description of ppay1 correspond, in the description of
v, to the projection of the random vector z € VFAU 1o the register subspaces Vx, Vz, Vi, V2, Vry, and
VR, respectively. O

7.3.3 Canonical parameters and complexity of the Pauli basis test

We specify a canonical setting of the parameter tuple gldparams as a function of an integer ». We then
give bounds on the complexity of computing the decision procedure and CL functions of the Pauli basis test
corresponding to the parameter tuple qldparams, as a function of r.

Definition 7.16 (Canonical parameters of the Pauli basis test). Let ¢y denote the smallest of the universal
constants 4, b, ¢ specified in Theorem 7.14, and let ¢; = max{co,2}. For all integers r € IN, define the
tuple introparams(r) = (q,m,d, h, H,T, 7r) where

B Ak - - Ellogr
k=2[cilogr] +1, q="2% I'=[r/logq] +1, m= LO logr |’

and, using notation from Section 3.4.1, define H = Henonmir € Fgo b = heanonmir = |H
{1,2,...,T} — H™as

, T

77:(1) = TTlcanon,m,k,T (l -1 )

fori € {1,2,...,T'}, where eanonmir : {0,1,...,T =1} — H", andd = m(h —1).

Intuitively, this choice of parameter settings is such that the Pauli basis test certifies the presence of an
r-qubit EPR state.

Lemma 7.17. For all integers v € IN, the parameter tuple introparams(r) is admissible (see Defini-
tion 7.10), and furthermore there exist universal constants a',b’ > 0 such that the function § (e,m,d,q)
from Theorem 7.14 is at most a’ (e + %)b/.

Proof. We verify the admissibility of introparams(r) first. The field size g = 2K is admissible because k is
odd. Fix r € IN. From the definition of hicanon m kr in Section 3.4.1, we get that

h = hcanonmkf - 2[b(1")/m]

where b(T') = |log(I’ — 1) + 1]. Therefore k™ > 20() > T and

1+log(I' -1
%0.—+ ?(ifl“ ) logr < ¢plogr < logg 49)
where in the last equality we used that ¢g < cy. This proves admissibility of introparams(r). Next, we show
that md /g is at most an inverse polynomial function in . We have

md _ m’h _ m?ro _ mPro

o S S S e =TI < 2/ flog(r+2)]7 TN (50)

where the first inequality follows from the definition of d, the second inequality follows from (49), the third
inequality follows from the definition of ¢, and the fourth inequality follows from the definition of m and
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logg = k > 1. Since ¢; > 2 by definition, the right-hand side of (50) is at most ag(1/ r)bo for universal
constants ag, by.
Thus from the definition of é(¢, m, d, q) from Theorem 7.14 we get,

(e, m,d,q) < ﬂ(£+md/qco>b < a(s—i—ao(l/r)b(])b < a’(g+ }/)b,

for some universal constants a’, b’ > 0. This completes the proof of the lemma. 0

Lemma 7.18. Given an integer 1, let introparams(r) = (q,m,d, h, H,T, 1t). The following can be com-
puted in time polylog r given r, written in binary, as input:

1. The integers q,m,d, h,T.
2. Given an additional input x € g, deciding if x € H.
3. Given an additional input x € {0,1,...,T — 1}, the value 7t(x).

Proof. The first item follows from the definitions of the parameters in Definition 7.16; the second item
follows from the fact that H is defined to be the span of the first £(T', m) elements of the canonical self-dual
basis of IF,; over IF (as specified by Lemma 3.16). The last item follows from Lemma 3.23. O

Lemma 7.19. Let r be an integer, and let introparams(r) denote the parameter tuple specified by Defini-
tion 7.16.

1. The time complexity of the decision procedure DYV parameterized by introparams(r) is poly (7).

2. The time complexity of computing marginals of the CL functions L' as well as the associated factor
spaces, fort € TPAV, s polylog 7.

3. The Turing machine description of the decision procedure DA™

be computed from the binary presentation of v in polylog(r) time.

parameterized by introparams can

Proof. Finite field arithmetic over IF; can be performed in time polylog g, by Lemma 3.18. The parameters
of introparams(7), which the decision procedure DPAUM implicitly computes given 7, can be computed in
time polylog(r), by Lemma 7.18. The most expensive step in DPAUH is to evaluate the low-degree encoding
Qa,7(y) where a € ]qu and y € F, which takes time poly(m, d,T’,logq) = poly(r).

The complexity of computing the CL functions Lt for types t € T FAU is dominated by the com-
plexity of computing the CL functions LP" and LP" from the classical low-degree test, which takes time
poly(m,log q) = polylog(r).

The factor spaces of L' depend only on the question type t (of which there are only constantly many),
and outputting the length-m indicator vectors of the factor spaces takes O(m) = polylog(r) time.

Finally, the time complexity of computing the description of DAV from the binary representation
of r requires polylogr time, because the checks performed in the decision procedure DPAULL depend on
introparams which ultimately depends on 7; we assume that the decision procedure computes the parameter
tuple introparams based on r. Thus the time complexity is dominated by the time to write 7 in binary. [
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8 Introspection Games

8.1 Overview

Consider a normal form verifier V = (S, D) (see Definition 5.28). In this section we design a normal form
verifier YINTRO = (SINTRO DINTRO) (called the introspective verifier) such that in the n-th game VINTRO
(called the introspection game; see Definition 5.28 for the definition of the n-th game associated with a
normal form verifier) the verifier expects the players to sample for themselves questions x and y distributed
as their questions in the game Vy for index N = 2"—this is the “introspection” step. Note the exponen-
tial separation of the indices of the introspection game versus the original game! Our construction of the
introspection game generalizes the introspection technique of [NW19].

Recall the execution of the N-th game corresponding to the “original” verifier V (see Definition 5.28).
Letn > 1, N = 2", and suppose that the CL functions of S on index N are LA LB acting on an ambient
space V. In the game Vy, the verifier first samples z € V uniformly at random and gives each player
w € {A, B} the question x;, = L¥(z). In this context, the string z is referred to as the “seed”. The players
respond with answers a, and ag, respectively, and the verifier accepts or rejects according to the output of
D(N,xa, XB,aa,08).

In the introspection game, with some constant probability independent of 7, the verifier sends
the question pair (INTRO, A) to player w and (INTRO, B) to the other player @, where w € {A,B} and
recall that w = B if w = A and w = A otherwise. The verifier expects player w to measure their share
of the state |[EPR)y using a coarse-grained Z-basis measurement whose outcomes range over LA (V), and
similarly player @ measures the state |[EPR)y using a coarse-grained Z-basis measurement with outcomes
that range over LB (V). If the players perform these measurements honestly, then the outcomes (xa, xg) are
distributed exactly according to s, N, the question distribution of the game Vy. Players w and W are then
expected to respond with the question x;, and xz that they each sampled, together with strings a,, and az,
respectively, which are intended to be the answers for the question pair (x4, xg) in the game Vy. In other
words, the players introspectively sample the question pair (xa, xg) and then respond with the question
itself and an answer for it.

To facilitate comprehension, we call the players that interact with the introspective verifier VIO the
“introspecting players”, and the players that interact with the “original” verifier }V the “original players”.

To ensure that the introspecting players follow the above procedure honestly, the introspective verifier
VINTRO firgt uses the (binary) Pauli basis test described in Section 7.3 to force the introspecting players to
share the state [EPR ). The Pauli basis test also ensures that the players measure ¢V and report the outcome
honestly when they receive questions (PAULL, W) for W € {X,Z}. Forv € {A,B} the verifier cross-
checks the question pairs (INTRO, v) and (PAULI, Z) to enforce that the honest measurement is performed
for question (INTRO, v).

The main difficulty in the soundness analysis is to ensure that the answer of player w who received
question (INTRO,v) depends only on L?(z) and not on any other information about the string z. First
assume for simplicity that LY is a linear function. As shown below (based on Lemma 8.4), L”(z) can be
obtained by measuring a specific collection of ¢ observables; namely, the set

INTRO
Vi

{o%(u) | u € ker(L?)*}. (51)
To prevent the player from obtaining any additional information the verifier needs to enforce that the player

does not additionally measure any % (u) for u ¢ ker(L?)*. (We refer to any such o as a “prohibited”
z
)
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The introspective verifier achieves this by sometimes sending “hiding questions” (READ, v) and (HIDEy, v)
to the players. When receiving the READ questions, the players are required to also measure observables
from the set

{oX(r) | r € ker(L?)}, (52)

which (as shown in Lemma 8.5 below) commute with every Z-basis measurement in (51). On the other
hand, any prohibited ¢ () must anticommute with at least one of the ¢*(r), as otherwise u would be in
ker(L?)"L. As aresult, honestly measuring the ¢ observables of (52) has the effect of preventing the player
from measuring any of the prohibited o observables, so that the answer a can effectively only depend
on the question L?(z). (In the protocol, the verifier asks the player to measure the function (L?)~*(z) in
the X basis, rather than all of the X observables. By Lemma 8.4 the two are equivalent.) Similarly to
how questions (PAULL, Z) and (INTRO,v) are cross-checked, the questions (PAULI, X), (HIDEg, v) and
(READ, v) are cross-checked in order to ensure that the honest X-basis measurements are performed for the
hiding questions.

When the CL functions L? are ¢-level for £ > 1, the introspective verifier sends one of O(¢) different
hiding questions to the players, chosen at random; together these hiding checks ensure that each of the con-
stituent linear maps of LY are honestly measured. Intuitively, these hiding questions “interpolate” between
questions (PAULI, Z), (INTRO,v) and (PAULI, X) in a way that, for all pairs of questions asked by the
verifier, the honest measurements commute. (See Figure 11 for an overview of the honest measurements.)

A key property of the introspection game is that the distribution of questions (which include the Pauli
basis test questions as well as the introspection questions and the hiding questions) is also condition-
ally linear. This means that the introspection game can be ultimately specified by a normal form verifier
YINTRO — (GINTRO DINTRO) 'which is crucial for recursive compression of games. Moreover, while the time
complexity of the introspective verifier’s decider D™"®° remains polynomially related to that of D on index
N, the time complexity of the sampler S™T° is polylog(N) (exponentially smaller), due to the efficiency
of the Pauli basis test. Finally, S™®° only depends on V through the number of levels ¢ of S and an upper
bound on its randomness complexity, as well as upper bounds on the time complexities of S and D.

8.2 The introspective verifier

Let A, ¢ € IN. Let V = (S, D) be a normal form verifier, where S is an ¢-level sampler. We call V, S and
D the “original” verifier, sampler, and decider, respectively. We assume that for all N € IN, the original
sampler and decider satisfy

max {RANDs(N), TIMEs(N), TIMEp(N)} < (AN)* . (53)

The introspective verifier corresponding to V and parameters (A,{) is a typed normal form verifier
YINTRO — (GINTRO DINTRO) " gketched in Section 8.1 and specified in detail in the present section (see
Section 6 for the definition of typed normal form verifiers). In the following descriptions of the sampler
SNTRO and decider D™TRO, all parameters are functions of the index 1, the number of levels £ of the sampler
S, and the parameter A; we often leave this dependence implicit. We use N = 2" to denote the index of the
verifier V that is simulated by the introspective verifier VIR0 on index 7.

Let 7 = (AN)?, and let introparams(r) = (q,m,d,h,H,T, ) denote the parameter tuple specified
in Section 7.3.3. Note that introparams is implicitly a function of # (since r is a function of n). By (53),
the integer r is an upper bound on the randomness complexity RANDs(N) of the sampler S on index N.
The associated parameter tuple introparams is intended to parametrize a Pauli basis test that certifies an
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r-qubit EPR state; intuitively, the r-qubit EPR state is meant to serve as the source of randomness for the
CL functions of the original sampler S.

Recall that the players in the introspection game are referred to as “introspecting players” and the players
in the original game are referred to as “original players”. We use the following notation in order to distin-
guish between questions and answers meant for the introspecting players versus the original players. The
questions and answers of the introspecting players are denoted by hatted variables (e.g., £ and 4). Similarly,
the associated question types are denoted using hatted variables t. The questions and answers of the original
players in the original game Vy are denoted using non-hatted variables (e.g. x, a4, and so on).

Types and type graph. The type set 7 ™R for the introspective verifier VINTR is

l
TINTRO _ PAULL <({INTRO, SAMPLE, READ } U < | {HiDE, } )> X {A,B}> ,
k=1
where T PAUM is the type set of the Pauli basis test, defined in Section 7.3. The type graph G'N™r is specified
in Figure 9.

(PLANE, X)

(HIDE1, A) (HIDE, A) (HIDE,, A)

(PAULL X)

VARIABLE] (POINT, X)

CONSTRAINT] (PAIR, X) (HIDE1, B) (HIDEy, B) (HIDEy, B)

VARIABLE)

PAIR

CONSTRAINT, VARIABLE3

(PAIR,Z)  (SaMPLE,B) (INTRO,B)  (READ,B)

VARIABLE4

CONSTRAINT3 (POINT, Z)

(PAULL Z)

VARIABLEs5

CONSTRAINTy

(SAMPLE,A) (INTRO,A)  (READ,A)

VARIABLEg
CONSTRAINT5

VARIABLE7
CONSTRAINTg

VARIABLEg

VARIABLEg

Figure 9: Type graph G™N"RO for the introspection game. Each vertex also has a self-loop which is not drawn
in the figure for clarity.

Sampler. We first define a 2-level (7NTRC, GINTRO)_typed sampler S™TR0, which has field size g(n) and
dimension 4m(n) + 2, where g(n) and m(n) are specified by introparams(r). Note that the dimension is
the same as that of the ambient space of the CL functions of the Pauli basis test for r qubits, specified in

Section 7.3.2.
Fix n € IN. We specify the CL functions of S™TRC on index 7. Since the functions L?’” and Lf”" are

identical for all n and £, we omit the superscripts A and B. For types £ € 7PV the CL functions L{ are
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given by those specified in Section 7.3.2, parameterized by introparams(r). For types £ € TINTRO \ TPAULL
the associated CL functions are defined to be O-level CL functions (i.e., they are the O map). This means that
for question types such as t = (INTRO, v) or t = (SAMPLE, v) for v € {A, B} the associated question is
solely comprised of the question type label.

Finally, we define the typed sampler S™N™R to be x(S™TR°), the downsized sampler (Definition 6.6)
corresponding to S™™°, By Lemma 7.15 the typed CL functions associated with the Pauli basis test are
2-level; using Remark 4.2 and Lemma 4.9 it follows that S™TRO is a 2-level typed sampler.

The following lemma establishes the complexity of the sampler S™N™R° as well as the complexity of
computing a description of it from the parameters (A, £).

Lemma 8.1. There exists a 2-input Turing machine ComputelntroSampler that on input (A, £) outputs a
description of the sampler S™N™ in time polylog(A, £). Furthermore,

1. TIMEgimo (1) = polylog((A2M)%, ),
2. RAN DS]NTRO (n) = polylog(()\Z”))‘), and
3. SINTRO jo 4 D-level typed sampler:

Proof. Define the following 9-input Turing machine SINTRO ' that does not depend on any parameters (S0
that its description length is constant). On input (A, 4,1, x1,..., %), SINTRO computes the output of the
typed sampler S™TRO (parameterized by (A, £)) with input tapes set to (1, x1,...,Xg). In more detail, the
Turing machine S™T®° first computes introparams(r) for ¥ = (AN)* and N = 2". Using Lemma 7.18, this
computation takes time poly log(r). Next, depending on the contents of the last 7 input tapes of SINTRO the
Turing machine evaluates the dimension of S™TR (which can easily be computed from introparams(7)), or
one of the CL functions, or returns a representation of a factor space of SI™NTRO_ If the type passed as input
is £ € TPAUL then by Lemma 7.19 this takes time polylog(r). If £ € TINTRO\ TPAULL then this can be done
in O(log ¢) time (to read the input type). Overall, S™™® runs in time poly log(r, ¢).

We now define the Turing machine ComputelntroSampler: on input (A, £), it outputs the description
of SINTRO with the first two input tapes hardwired to A and /¢, respectively, yielding the sampler S™NTRO
corresponding to parameters (A, £). Computing this description takes O(log A + log ¢) time.

The time complexity of S™NTR follows from the time complexity of S™NTRO| the randomness complexity
follows from the dimension of the ambient space 4m(n) + 2 = polylog(r), and the number of levels is by
construction. O

Decider. The typed decider DR is specified in Figure 10. We explain how to interpret the figure,
including the notation. (It may also be helpful to review the description of the intended strategy for the
players in the game, described in Section 8.3.2.)

Question and answer format. The decider takes as input a tuple (1,ta, £4, t, £, 44, dp) where (T, £4)
denotes the question for introspecting player w € {A, B}, and 4, denotes their answer. As in the specifi-
cation of the Pauli basis test, in Figure 10 we include an “answer key” indicating how the players’ answers
are parsed, depending on the question type. When the question type is from 7 AU the question and an-
swer format are as described in Figure 8. When the question type is in 7™NTRO \ TPAULL the answer format
is described in the table at the top of Figure 10.>° For each such question, there is an associated variable

20There is no question format specification for the question types in 7 INTRO \ TPAULL because the question is solely comprised
of the question type label.
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Type Answer format

(INTRO, v) (y,a) € Vx{0,1}*
(SAMPLE, v) (z, a) e Vx{0,1}*

(READ, v) (y,y+,a) € VxVx{01}*
(HIDEg, v) (yy—,x) eVxVxV

In the following, whenever S or D is called, D™'R aborts and rejects if the computation takes
more than (AN)” time steps. On input (1, £, £, tg, £8, 4, 4B ), the decider DR first com-
putes the dimension s(N) of V by calling the original sampler S on input (N, DIMENSION). If
s(N) > (AN)* the decider rejects. The decider then performs an answer length check: if

max{|dal, |ag|} > 65(N) +2(AN)* 43, (54)

then the decider rejects. Otherwise, it performs the following tests for all w, v € {A, B}. (If no
test applies, the decider accepts.)

1. (IA’auli tf:st). If to,8g € TPAUM accept if Dm%;arams accepts the input
(ta, %a,tp, 2B, 4, dB).

2. (Sampling tests).
(a) Ift, = (PAULI, Z) an
(b) If t, = (INTRO, D),

and £ = (SAMPLE, v), accept if 4, = zz.
ts = (SAMPLE, v), accept if ¥, = L?(z%) and a,, = ag.
3. (Hiding tests).

~

(a) If t, = (INTRO, ), 5 = (READ, v), accept if iy, = yz and a,, = ag.
(b) If t, = (HIDE,, v), Tz = (READ, v), accept if Yy, <¢ = Y <¢» and Yz = Y.

~

(c) If t,, = (HIDEg, v), t = (HIDEg 1, v) for some k € {1,2,...,¢ — 1}, accept if
_ 1 _
Yw,<k = Yw,<k »  Yw,<k = Yo, <k 7 Xw,>k+1 = Xw,>k+1

1
and y%,k+1 = (L?lé—&-l, u) (xw,k+1) where u = Yw, <k-
(d) If &, = (PAULL X), t5 = (HIDEy,0), accept if y5 ; = (L) (a4!) and a3 =
Xw, >1-

4. (Game test). If §, = (I
(N Yw, Yw, w, aw) for N = 2".

5. (Consistency test). If o = tg, accept if and only if 45 = dg.

NTRO,A) and tz = (INTRO,B), accept if D accepts

Figure 10: The typed decider D™ for the introspective verifier, parameterized by integers A, £, on index
n. N denotes 2", V is the ambient space for S, and {L?},c (a8} the associated CL functions on index N.
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v € {A, B} that indicates to the introspecting player which original player it is supposed to impersonate in
the introspection game.

In the figure, V denotes the ambient space of the original sampler S on index N = 2". Since V
is isomorphic to IFZ(N), where s(N) is the dimension of S, the space V is identified in a canonical way
as the register subspace of IF; spanned by ey, ..., e5n) where ¢; is the i-th elementary basis vector. For
example, if £, = (READ,v), then syntactically the player’s answer is a triple (y,y~,a) in Fj x F} x
{0,1}*. We assume that the decider D computes the dimension s(N) of the subspace V by calling S on
input (N, DIMENSION), and if , yL are not presented as vectors in the subspace V, then the decider rejects.
Thus in the analysis we directly consider y, yL as vectors in V. In Figure 10, the components of the players’
answers are subscripted by the player index. For example, if player w receives question (HIDEg, v), then
their answers are denoted by (Y, Yis, X ).

The notation used in the “answer key” is meant to give an indication of the intended meaning of the
players” answers. We use i to denote a vector that is supposed to be the result of measuring a CL function
LY yL is supposed to be the result of measuring “dual” linear maps L1 (as used in Step 3 in Figure 10); x is
supposed to be the result of ¢* measurements, and z is supposed to be the result of ¢ measurements. We
use a to denote the introspected answers meant for the original decider D.

CL functions and factor spaces. For v € {A,B}, let L° = L%V denote the CL function for original
player v specified by S on index N = 2". For z € V, the decider D computes L?(z) by calling S on input
(N, v, MARGINAL, /, z).

Fory € Vandk € {1,...,/} we define register subspaces V¢ (v) by induction on k. For k = 1, V{(y)
is the first factor space’! of L? and is independent of y. Suppose V]-” (y) has been defined for all j < k. Then

we define the marginal space V?, (y) = EB;‘;ll V¢ (v), and define V{?(y) as the k-th factor space V!, of L”

with prefix u = y"=¥), the projection of y to V2 (y). We also define VZ, (y) = V2, (y), and VI, (y) to
be the complementary register subspace to V2, () within V.

The decider D™™RO computes factor spaces V]-v (y) from y € V in the following sequential manner:
first, the indicator vector for the factor space V{ is computed by calling the original sampler S on input
(N,v,FACTOR, 1,0). Let y; denote the projection of y to V. Then, for j € {2,...,¢}, the factor space
Vjv (y) is computed by calling S on input (N, v, FACTOR, j, <j—1), Where y<;_1 is the projection of y to
ngfl(y)-

We give more details on the implementation of decider D™NTRO specified in Figure 10.

1. The decider D™ first checks that the answers are not too long; the maximum length answer should
be either a tuple (y,y*,a) where y,y~ € V and a is an answer intended for the original decider D
on index N (which we assume runs in time at most (AN)"), or a tuple (y,y*,x) € V x V x V. This
check is necessary in order to ensure that the decider D™ halts in time poly(N). The bound (54)
is explained by the encoding for tuples specified in Remark 3.2.

2. If the question types for the players are both in 7 PAUM, DINTRO executes the decision procedure DPAUM
for the Pauli basis test parametrized by introparams (see Section 7.3.1 for the definition of DPAVLY),
The Pauli basis test is intended to ensure that the players share an r-qubit EPR state, where r =
(AN )/\. Since the EPR state is measured to introspectively sample questions according to the original
sampler S, it is necessary that r is at least as large as the randomness complexity of S, which is equal

2lSee Lemma 4.4 for the definitions of factor spaces of a CL function.
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to the dimension of S (since for a normal form verifier the field size is taken to be (1) = 2). This is
satisfied under the assumption stated in (53).

. In Step 2a of D'NTRO, player w € {A, B} receives question (PAULI, Z) and player T receives question
(SAMPLE, v), for some v € {A, B}. According to the answer key, player w is expected to return an
answer d,, € IF} and player W is expected to respond with a pair (Y, aw) € V x {0,1}*. Thus,
the dimension of answer d; may be larger than that of yz; this is the reason that Step 2a checks
consistency between yz and the projection of 4, to V.

. In Step 2b of DINTRO player w € {A, B} receives question (INTRO, v) and player T receives question
(SAMPLE, v). As specified by the “answer key”, player w responds with (1, a,) € V x {0,1}* and
player @ responds with (zg,az) € V x {0,1}*. The decider D™V checks that a,, = az and
Yw = L?(zw) where L? denotes the CL function for player v specified by S for index N = 2". The
CL function is computed by calling S on input (N, v, MARGINAL, £, z).

. In Step 3b, DINTRO checks that the answer of player w who received (HIDE, v) is consistent with the
answer of player @ who received (READ, v). One of the checks is that i, -y = Yz« ; these are,
respectively, the projections of y to VZ,(y) and yz to V2, (yz).

. In Steps 3c, the vectors Xy, ~ky1 and Xz, ~r+1 denote the projections of xy and xz to VI, Jrl(yw)

and V2, (yw), respectively. Similarly, y%/ x.1 denotes the projection of Yz to V2 1 (yw) and xy, k41

denotes the projection of xy, to V!, (yw)- Note that the factor spaces depend on v, and yz.

The decider also has to compute (L}, , - <k)L (X, k+1)- According to Definition 3.11, this requires

specifying a basis for ker(LY ). To compute the value, the decider performs the following

k+1, yw, <k
steps:

(a) Call S on input (N, v, FACTOR,k + 1,y,, <) to obtain a subset H = {hy,...,h,} of the

(N)

canonical basis for lF; that is a basis of the register subspace V! ; (V).

(b) Fori € {1,2,...,m} compute ¢; = S(N,v,LINEAR, k + 1, yz, <k, hi). Compute a matrix

representation M for Lz IR in the basis H, whose columns are the vectors cq,...,cy; as
rJw, <

elements of V! ; (V).

(c) Using a canonical algorithm for Gaussian elimination, compute a basis F for ker(M).

(d) Compute the canonical complement S of F, as in Definition 3.7. S is a basis for ker(Ler Ly <k)L

(e) To compute (LY )+ on input X, k+1, compute the canonical linear map with kernel basis

k+1, ym, <k
S (see Definition 3.10) on input Xy, 1.

7. In Step 3d, the player w that receives (PAULI, X) is expected to return an answer d, in IF}. Part of

this step checks that the projection of 4, to V-1 is equal to x ~1 (Which is the projection to V-1 of
the third component of the answer triple of player W that receives question (HIDEq, v)).

The following lemma establishes the complexity of the decider D'NTRO as well as the complexity of

computing a description of it from the parameters (A, £) and the description of the original verifier V =

(S, D).

Lemma 8.2. There exists a 4-input Turing machine ComputelntroDecider that on input (V, A, £) outputs

a description of the decider

DINTRO iy time poly(|V],log A, log £). Furthermore, the decider D™™° has

time complexity TIME pio (1) = poly((A2)%, £).
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Proof. Define the following 10-input Turing machine DINTRO The Turing machine does not depend on any
parameters, so its size is constant. On input

(V/ )\/ E, n,xX1,X2,.-., x6)/

DINTRO computes the output of the decider DR with input tapes set to (1, X1, . . ., Xe). In more detail, the

Turing machine D™ first computes introparams(7) forr = (AN)* and N = 2". Using Lemma 7.18, this
computation takes time polylog(r). It then executes the tests described in Figure 10. Write V = (S, D).
The complexity of performing the entire procedure is subsumed by the complexity of the following steps:

1. Running the decider DPAVM, which takes time poly(r) by Lemma 7.19;
2. Running the original decider D (on index N = 2") for at most (AN )" steps;

3. Running the original sampler S (on index N) in order to compute the dimension s(N) and the
marginal and factor spaces, and the CL functions as described in Section 8.2. S is called at most
poly(s(N), £) times; due to the timeout, each call takes time at most (AN)*.

4. Computing (LY )*(xg, ) in Step 3c. This only requires to perform Gaussian elimination and other
simple finite field manipulations that can be implemented in poly(s(N), log |F|) time.

All other tests are elementary. Thus the time complexity of D™N™® is poly(r, £). Note that the bound is
independent of V: due to the abort condition in the definition of DR, the Turing machine D™ aborts
if the runtime of S or D is larger than (AN)*.

We now define the Turing machine ComputelntroDecider: on input (V, A, £), it outputs the descrip-
tion of DINTRO with the first three input tapes hardwired to V, A, and ¢, respectively, yielding the de-
cider DINTRO corresponding to original verifier ) and parameters (A, £). Computing this description takes
poly(|V|,log A,log ¢) time. The time complexity of D™N®° follows from the time complexity of DNTRO,

O

8.3 Completeness and complexity of the introspective verifier

In this section we determine the complexity of the introspective verifier and establish the completeness
property of the introspection game: if for N = 2", Vy has a PCC strategy (see Definition 5.11) with value
1, then so does VINTRO, For this we describe the actions that are expected of the players in the introspection
game (i.e. the “honest strategy”). We first prove several preliminary lemmas that will be used in both the
completeness and soundness analysis.

8.3.1 Preliminary lemmas

The lemmas in this section are stated for general fields IF and generalized Pauli observables and projectors,
although in the application to introspection games we use F = Fp, w = —1, and qubit Pauli observables
and projectors. Furthermore, the Pauli observables TW(Z)) and projectors TXV act on CF* for some integer k
(in our application, we set k = r).

Lemma 8.3 (Fact 3.2 of [NW19]). Let V be a subspace olek. Forallv ¢ v

E wtr(lm}) =0,
u~V

where the expectation is over a uniformly random vector u from V.
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The next lemma generalizes Eq. (18).

Lemma 8.4. Let L : FX — F* be a linear map, and let W € {X,Z}. For each a in the range of L, let
u, € ¥ be such that L(u,) = a.

1. Foreachv € ker(L)",
(o) = Y @t
acTFk

al

2. For all a in the range of L,

W = E w—tr(v-uu)TW 0) .
[L()=a] v~ker(L)+ ( )

Proof. Let V denote the image of IF¥ under L. Leta € V, v € ker(L)*. For all u,u’ € L™1(a), we have
that u — u’ € ker(L) and thus tr(u - v) = tr(u’ - v). As aresult, using (17), for any v € ker(L)" it holds
that

TW(Z)) _ Z wtr(u-v)TIE/\/ _ Z Z wtf(u'U)TZ\’ — Z wtr(u”.v)ﬂf[v[\f(.):g] — Z wtl‘(ua'v)T[Iz\’(‘):a] ,

u€clFk a€V uel=1(a) acV aclpk
where in the last equality we used that for a ¢ V, the projector T[Ii‘/ (-)=a] vanishes. This shows the first item.
For the second item,
w _ w
Tiy=g = 2 T
uelL1(a)
_ Z E (w— tr(u-v) TW(Z))>
uel=1(a) o~k
— 2 E <w—tr((ua+u)~v)TW(v))
ueker(L) o~k
_ | kergLN Z << E w tr(u~v)) w—tr(11a~v)TW(v)>
|IF | velFk u~ker(L)
— E wftr(v-uu)TW(,U) ,
veker(L)+
where the second equality follows from (18) and the last uses the fact that |IF¥| = |ker(L)|| ker(L)"|, as
shown in Lemma 3.5, and Lemma 8.3 applied to the expectation over u. O

Lemma 8.5 (Commuting X and Z measurements). For all linear maps L, R : TF* — ¥ such that
ker(R)* C ker(L),
the measurements {T[{('):b] }he]Fk and {T[)I(?(-):d} }de]Fk commute.

Proof. Let b,d € FFy. If either b is not in the range of L, or 4 is not in the range of R, then at least one of
T[ZL (-)=b] OF T[)]g(' )=d] is 0, and thus the operators trivially commute. Otherwise, both b and d are in the range

of L and R, respectively. Let ag € L~1(b), co € R1(d). By Lemma 8.4,

Z = E wtr(u-ao)TZ u),
[L()=t] ueker(L)* ( )
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X _ tr(v-co) X
TR()=a1 = E w ™(v) .
[R(:)=d] veker(R)L ()
For any v € ker(R)™, by assumption v € ker(L), so for u € ker(L)" it holds that u - v = 0. Thus 7 (u)
and 7% (v) commute, and it follows that T[ZL (-)=b] and T[)I({ (-)=q] COMmMute as well. Ul

8.3.2 Complexity and completeness of the introspective verifier

The following theorem formulates the complexity and completeness properties of the introspective verifier.
Since VINTRO is a typed verifier, we use the detyping procedure described in Section 6.3 to obtain an untyped
normal form verifier.

Theorem 8.6 (Complexity and completeness of the introspective verifier). Let A, ¢/ € IN. Let V =
(S,D) be a normal form verifier such that S is an (-level sampler. Let VN0 = (SINTRO DINTRO)
be the typed introspective verifier corresponding to V and parameters (A, £). Let detype(VINTRO) =
(detype(S™TRO), detype(DNTR0)) denote the detyped verifier:

1. (Completeness) Suppose that V satisfies the assumption stated in (53). Then for all n € N and
N = 2" if VN has a projective, consistent, and commuting (PCC) strategy with value 1 then
detype(VINTRO),, also has a PCC strategy with value 1.

2. (Sampler complexity) The sampler S™N™° is a (T™WTRO GINTRO) _nype D_level sampler. Moreover, the
time and randomness complexities of detype(S™™) satisfy that for all n € N,

TIME getype(stmoy (11) = poly (Alog(AN), £) ,
RAND getype(stmoy (11) = poly (Alog(AN), £) ,
where N = 2",
3. (Decider complexity) The time complexity of the decider D™ satisfies that for all n € IN,

TIMEdetype(DINTRO) (n) = pOly (()\N)/\, 6) ,
where N = 2",

4. (Efficient computability) There is a Turing machine ComputelntroVerifier which takes as input
a tuple (V,A, L) with A,{ € IN and returns the description of the detyped introspective verifier
detype(VINTRO) = (detype(S™NTR0), detype(DNTRO)) corresponding to V and parameters (A, ()
in time poly(|V|,log A, log ¢).

Proof. We analyze the completeness and complexity properties of the typed verifier VINTRO; the correspond-
ing properties of the detyped verifier detype(VINTRO) follow from Lemma 6.18, and the fact that the type
set TINTRO hag size O(/).

Completeness. We first show completeness. Let 7 > 1 be an index for VINTRO and N = 2" be the
corresponding index for V. The assumption on the time complexity of )V ensures that DNTR® never aborts
due to a timeout. Let L? = LN denote the CL function of the original sampler S on index N corresponding
to player v € {A,B}. Letr = (AN)", and let introparams(r) = (q,m,d,h,H,T, ), as in Section 8.2.
Set Q = I'log g ; this represents the number of qubits that are certified by the Pauli basis test parameterized
by introparams(r). Let . = (|AUX), A, B) be a PCC strategy for Vyy with value 1. We first construct a
PCC strategy .7/ /NTRO for the typed verifier VN8 with value 1. We then conclude using Lemma 6.18.
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1% %3 %3 AUX

(INTRO, V) ot of, of, A*/B*
(SAMPLE, v) o? o? o’ A¥/B¥
Z X Z X 7 X x /px
(READ, v) of oL of 0L of oL A*/B
Z X Z X X
(HIDE3, v) o O o7 iy 7 I
Z X X b'e
(HIDEy, v) o Op 07 o I
(HIDE1, ) o oX oX I
1

The left-most column denotes the introspection/hiding questions that a player may receive. The
top row denotes the registers corresponding to the factor spaces of a CL function LY (we note that
the partition of the registers depends on the prefixes), as well as the register corresponding to the
state |[AUX) coming from the original PCC strategy .. We use (TLZ], as shorthand for U[ZL? ()=x]

//X<j

and similarly ¢ for ¢X . A symbol I means that the register is left unmeasured.

Ly, )t (=]

Figure 11: Summary of the honest strategy .7 NTRO for VINTRO for a 3-level sampler.

Remark 8.7. Note that by definition in VN'RO the players receive questions (x,vy) that are sampled ac-
cording to the distribution ygiﬂ;‘;‘; , associated with the downsized typed sampler x(S™NTROY - Using the
definition of the downsized typed sampler, Definition 6.6, and Lemma 4.10 the distribution is identical to the

distribution ygﬁﬁj o up 1o the bijective mapping x. This mapping can be computed by the players them-
’ . . GINTRO
selves. Therefore, we construct a strategy for players that receive questions from Sivteo and a strategy

. INTRO . .
for questions from ygmmln follows immediately.

The strategy .NTRO yses the state |[EPR,)®(Q+1) @ |aUx), where recall that |[EPR;) = %(|00> +

|11)). For all register subspaces R C ]F;2 (see Definition 4.1 for the definition of register subspace), when-
ever we refer to “register R, we mean the qubits of |EPR2>®Q corresponding to R (see Section 3.5). The
most frequent register subspace we consider is V, spanned by ey, . . ., e5(n). We write V for the complement
of V, i.e. the register subspace spanned by e5(n) 41, - - ., €q. (Note that s(N) < r < Q by assumption (53)
and the definition of Q.) Then |[EPR,)“? = |EPR)y ® |[EPR)y-.

Let.#BP be the honest binary Pauli strategy with respect to introparams defined in the proof of Lemma 7.12.
For a question of type in 7PAUM the player measures the shared state |[EPR,)®(Q*+1) using the measure-
ments specified by .#BF, and reports the measurement outcomes. When a player receives questions of type
t € TINTRO \ TPAULL they perform measurements described as follows. (Below, whenever we write a Pauli
operator 0" the register on which the operator acts should always be clear from context, and is implicit
from the space in which the outcome a ranges.) The reader may find it helpful to consult Figure 11 to see a
summary of the honest strategy ., /NTRO for the special case when £ = 3.
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(INTRO, v): The player performs the measurement

{ofioy=p} (55)

to obtain an y € V. Intuitively, the player has now introspectively sampled the question y for original
player v in game Vy. The player then measures |AUX) using player A’s measurement { A} } from .7
if v = A and using player B’s measurement {BZ} if v = B to obtain an answer a. The player replies
with (v, a).

(SAMPLE, v): The player measures their share of |[EPR)y in the Z basis to obtain z € V. Using this, they
compute the question y = L?(z). The player then uses player v’s strategy and question y to measure
|AUX) and obtain outcome a. The player replies with (z,a).

(READ, v): The player first performs all measurements as in the (INTRO,v) question for player v and
records the outcomes as y € L(V) anda € {0,1}*. Forj € {1,2,...,¢}, the player measures the
register V' (y) with the measurement

X
{9 (=1 (56)

to obtain y*+ = ylL + 4+ yj. Here L]-l is shorthand for the function (L;’ y<j)L defined in Item 6 of

the decider description in Section 8.2. (That this is simultaneously measurable with the measurement
in (55) follows from Lemma 8.5 and the fact that l<er(L]»L)L = ker(L;) by Lemma 3.5 and the

definition of L].L in Section 8.2.) The player measures |[AUX) with player v’s measurement strategy in

- for question y to obtain & and replies with (v, y*,a).

(HIDE, v): The player performs the following sequence of measurements: first measure {(T[ZLU(_)_%]} on
v(.)=
register VY to obtain y;. Then, use y; to specify the second linear function L; (+) and measure
register V7 " using {U[ZLU (~)*yz]} to obtain y,. This process continues until the (k — 1)-th linear
’ 5, ()=
map Ly | Yk (+) has been measured to obtain yx_1 in factor space Vi?_; yo LY =1ty +
-+ +yk_1. Next, for j € {1,2,...,k} the player measures

{"fifm:yﬂ }yjl ’

1L : Logas L1 1L
where L;- denotes the linear map (L;’ y<,-) as in the case (READ, v). Lety* =y +y5 + - +yi,
where each ij is a vector in the factor space Vjqu‘ Finally, the player measures register ng(y)

using {(Ték} to obtain outcome x~. Let x = x-. The player replies with (y,yL, X).

By definition, when player w performs the honest measurement for question (INTRO, A) and player @
performs the honest measurement for question (INTRO, B), the joint outcome (y, ') has distribution pg N
In this case, the players play according to strategy . and succeed with probability 1. In all other cases,
it is straightforward to verify that the players succeed in all tests performed by D™NTRO (Figure 10) with
probability 1. As a result, the value of this strategy is 1.

The strategy .™NTRO is projective by construction. It is also consistent because of the assumed con-
sistency of the strategy . as well as consistency of the honest Pauli strategy .#B¥. Furthermore, note that
SINTRO oy calls . for both players on question pairs such that both types are in {INTRO, SAMPLE, READ}.
In all these cases, . is called on a pair of questions (v, ) distributed as (L?(z), LV (z)) for v, v’ € {A, B}
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and z uniform in V. When v # v/, any such pair by definition has positive probability under s ,,, and so
by assumption the associated measurements from . commute. On the other hand, when v = ¢/, then the
players apply the same measurements from ., and because . only uses projective measurements, their
measurements commute as well. Examining all other cases, it follows by direct inspection that the strategy
commutes on all question pairs whose corresponding types appear as an edge in the graph G™N™8°_ Thus the
strategy commutes with respect to the support of the distribution p giveo .

Complexity. The complexity parameters of the typed sampler S™N™© and typed decider DN follow
from Lemmas 8.1 and 8.2. The complexity parameters of the detyped sampler and decider detype(S™NTRO)
and detype(D™N®) then follow from Lemma 6.18.

Efficient computability. The Turing machine ComputelntroVerifier does the following on input (V, £):
it first computes

SINTRO — ComputelntroSampler(A, £) ,

DINTRO — ComputelntroDecider(V, A, £) ,

using Lemmas 8.1 and 8.2, runs the detyping procedure from Definition 6.17, and then outputs the resulting
detyped verifier. This takes time poly(|V|,log A, log ¢). O

Remark 8.8. For future reference, we note that on any input (1, A, £), the Turing machine ComputelntroVerifier
always returns a normal form verifier VIN™RO = (SINTRO DINTRO) “Thig is because for any two integer A, £,

by construction ComputelntroSampler(A, £) returns a sampler with field size 2, and for any V, A and { the
decider D™ specified in Figure 10 takes 7 inputs and always halts with a single-bit output, even if S or

D themselves do not halt.

8.4 Soundness of the introspective verifier

The main result of this section is the following theorem which establishes the soundness property of the
introspective verifier.

Theorem 8.9 (Soundness of the introspective verifier). Let A, ¢ € IN. Let V = (S, D) be a normal form
verifier such that S is an {-level sampler. Let VINTRO = (SINTRO DINTRO) po the introspective verifier corre-
sponding to V and parameters (A, {), as defined in Section 8.2. Let detype(VN™R0) denote the associated
detyped verifier. There exists a function 5(g,n) = poly(e + 1/ (A2")*) (where the implicit polynomial may
depend arbitrarily on £) such that for alln > 1, N = 2", and € > 0 the following hold.

1. Ifval*(detype(VINTRO),) > 1 — ¢, then val*(Vy) > 1 —6(¢, n).

2. Let &(-) be as defined in Definition 5.12. Then

é”(detype(plmko)n, 1—¢) > max {é"(VN, 1—0d(e,n)), (1—05(e,n)) Z(AN)A} ‘

8.4.1 The Pauli twirl

A key tool in the proof of Theorem 8.9 is the Pauli twirl. In this section we introduce the Pauli twirl and
establish several of its properties. The section closely follows Sections 8 and 10 of [NW19].
To begin, we define the twirl with respect to an arbitrary distribution over unitaries.
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Definition 8.10 (Twirl). Let u be a probability distribution over a finite set of unitary matrices. Then for
any matrix A, the twirl of A with respect to yi, denoted 7, (A), is defined as

.1..
Tu(A)= E (UAU").
U~y
In the next two lemmas we consider the Pauli twirl, in which the distribution y is over subsets of Pauli

observables. First, we show how the Pauli twirl acts on Pauli matrices. Then, using this, we derive an
expression for the Pauli twirl applied to general matrices.

Lemma 8.11 (Pauli twirl of Pauli matrices). Let V be a subspace of FX, let W € {X,Z}, and let y be the
uniform distribution over {tV(w) : w € V}. Let W' # W and u € F*. Then

: W’ ' Vi,
Tu(tV (u)) = {(T) (®) ZZ Z vl

Proof. Letu € F*. Letc =1if W = Zandletc = —1if W = X. Then
Zu( () = E (T (@)™ ()" (2)")
z~V
= F (wc-tr(u-z)TW’(M)TW(Z)TW(Z)'I')
z~V

= (Z@NEV wc'tr(”'z)> ™ (u) .

The lemma now follows from Lemma 8.3 and the fact that ¢ - u € V* if and only if u € V. O

Lemma 8.12 (Pauli twirl of general matrices). Ler V = IFX, and let L : V — V be a linear map. Let { be
the uniform distribution over {t%(z) | z € V'} and x the uniform distribution over {t*(x) | x € ker(L)}.
Let M be a matrix acting on CV & Ha, where H  is a finite dimensional Hilbert space. Then there exist
matrices { MY }ye L(v) acting on H a such that the twirl of M with respect to { and X is given by

(Fyo Tr@1a) (M) = ) Tl (1= © M. (57)
yev

Moreover, if we apply (57) to each element of a POVM measurement {M,}, then for each y € V, the set
{M3} also forms a POVM measurement.

Proof. The collection {T%(x)7%(z) }».cv forms a basis for the complex linear space of matrices acting on
CV. As aresult, we can write
M Z T ® Mx Z 7

x,zeV

for matrices M, , on Ha. We now use Lemma 8.11 to compute the twirl first with respect to ¢ and then
with respect to ¢ and yx:

(Zz@I)(M) =Y FZ(t*(x))t%(z) @ Myz = Y T4(2z) ® Moz,

x,zeV zeV
(Fyo T @1a) (M) =Y. F(t“(z2)) @ Mo = Y. T%(z) ® Mo .
z€V zeker(L)+
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Forally € V, let u,, denote an arbitrary element of L~1(y) if y is in the image of L; otherwise, set uy = 0.
Expanding T4 (z) using the first part of Lemma 8.4,

Y TREOMy.= ), Zw (o2l af 1 ® Moy

zeker(L)+ zeker(L)+

e T ) on
y

z€ker(L)+

Equation (57) follows by setting MY = Y-, cyor (1)1 @ w2 My .
For the “moreover” part, note first that whenever M > 0 it holds that any twirl satisfies 0 < % (M). As
aresult, each matrix MY must be positive semi-definite due to Equation (58) and the fact that the {T[ZL(-):y} } y

matrices are orthogonal projections. Next, suppose { M, } is a POVM measurement, and write N = Y, M,
for the identity matrix. Then by linearity, for each y € V, ), MY = NY. In addition, Noo = I, and
N, . = 0 otherwise. As a result, NY = Ny = I, and so { Mj } also forms a POVM. O

In the next few lemmas we derive a sufficient condition for a measurement to be close to its own Pauli
twirl, namely that it satisfies certain commutation relations with the Pauli basis measurements.

Lemma 8.13 (Commuting with Pauli basis implies commuting with Pauli observables). Let X, A be finite
sets and D be a distribution over X. For each x € X, let Vi be a register subspace of V. = FX, and let
Ly : Vi — Vi be a linear map.

Consider a state |) = |EPR)y @ |AUX), where |[EPR)y € Ha @ Hp, for Ha, Hp = CV, is defined
in Definition 3.27 and |AUX) € H s @ Hpy is arbitrary. For each x € X, let { M} },c 4 be a measurement
onHa @ Hyr. Let W € {X, Z}. Then the following are equivalent on state |):

e On average over x ~ D,

[Mj,‘,([ Le()=y @ Ir7 ®Iy)] ®Ig =6 0.

e On average over x ~ D and v drawn uniformly from ker(Ly )",
My, (Y (0) @I @ 1y)] @ Ig ~ 0.
Proof. Forx € X,a € A, yintherange of Ly, and v € IF¥ define
[M;(,([ () ]®I ®1A/):|®IB/
Ay(0) = [M;, (TW(0) @ L@ 1) @Iz
By the second item of Lemma 8.4, for each v € ker(Lx)L,

= ) WAL,

yeVy

where for every y in the range of Ly, u,, is a fixed element in L;'(y). The expression for the closeness of
A¥ to 0 on average over x ~ D and v ~ ker(Ly)" (i.e. the second quantity of the Lemma statement), is

equal to
L 8s)

XND v~ker
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and can be expanded as

E B Y (| Y o™ (ar )IAT [y) (59)
a vy

x~D p~ker(Ly )t

If y # y', then by definition Ly(uy) # Lx(uy ), and so uy
V = ker(Ly)") thus implies that (59) equals

B D OIE(,) 85,)19) = B a5, )]

— 1y is not in ker(Ly). Lemma 8.3 (with

which is the closeness of A7, to 0 on average over x ~ D. Thus, A7 (v) = 0 on average over x and v if
and only if A;‘,y ~. 0 on average over x. O

Lemma 8.14 (Commuting implies twirl). Let X be a finite set and D a distribution on X. For each x € X,
let {M}} be a POVM on Ha, and let jiy be a distribution over unitary matrices acting on Ha. Suppose
that on average over x ~ D and U ~ uy it holds that

(ME U @I =~ 0,
where the commutator is evaluated on a state |1,U> € Ha ® Hp. Then on average over x ~ D,
M; ®Ig ~¢ T, (M) ® Ip .
Proof. Observe that

E (7.0 - M) @ Lly)|" = B X B UMLUT) @ lg)[ 60

x~D 2 Ur~px

Applying Jensen’s inequality, the right-hand side of (60) is at most

E E Ylumuensy| =g E Y |[M U]y
x~D U~px =g x~D U~px =g
using the unitary invariance of the Euclidean norm. This last quantity is O(¢), by assumption. U

Lemma 8.15 (Commuting with each implies commuting with both). Let X be a finite set and D a distri-
bution on X. For each x € X, let {M}} be a POVM on H and let 1, ix2 be two distributions over
unitary matrices acting on H . Suppose that for each i € {1,2}, on average over x ~ D and U; ~ ji,

[MZ, U] @ Ig = 0, (61)

where the expression is evaluated on some state |P) € Ha @ Hg, where Hp = Ha. Suppose further that
on average over x ~ D and Uy ~ 1y,

Wolg~ I4,oU,. (62)

(The corresponding statement for i = 1 is not needed.) Then on average over x ~ D, Uy ~ y1, and

u2 ~ Vx,Zy
[(ME, uful] @ Iy =~ 0.
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Proof. The claim follows from the following sequence of approximations:

MIUTUL @ Iy =~ MXUT @ U, (by (62))
~ Uf MY @ Uy (by (61) fori = 1)
~e U MU © I (by (62))
~ WM @ Iy, (by (61) fori = 2)

where each step also uses Fact 5.18. This is equivalent to [M;‘, ll;r U; } ® Ig =, 0, completing the proof. [
The following is a slight generalization of [NW19, Fact 4.25], and we give a similar proof.

Lemma 8.16 (Close to sub-measurement implies close to measurement). Let X, A be finite sets and D be
a distribution on X. Suppose that for each x € X, { A} },c 4 is a projective measurement and { B} ,c 4 is
a set of matrices such that each B} is positive semidefinite and }_, BY < I. Suppose {C},c 4 is a POVM
such that C; > B} for all x and a. Then if, on average over x ~ D, A} ~. By, then, on average over
x~ D, A} =an Cj.

Proof. By the triangle inequality,
IEZH (47 = CDlp)IP? <2IEZH (A7 = B)[)|* + 2 ;H(Cé‘—B;‘)IWHZ-
The first term on the right-hand side is O(¢) by assumption. For the second,
E ;H(Cé‘ ~B)IY) P =E ;@UI(C" BY)[y) < ; YI(C = Ba)ly)
L-ELWIBY) <1-ELOIERY)

where the middle inequality uses 0 < C¥ — BY < [ for all x,a. Write 1 = Ey Y, (¢|(A¥)?|¢), which holds
because A is a projective measurement. Then

E L (9I((40)° — (B))ly) = R(E L (pl(A% +B))(A7 ~ B))ly))
<E LI EWP- LA =B

where the first equality follows from the fact that A} and B] are Hermitian. For each x € X the first square
root is O(1). This allows us to move the expectation into the second square root by Jensen’s inequality. The
result is O(e!/2) by assumption. U

Now we put everything together to show the main result of this section.

Lemma 8.17. Let X', A be a finite sets and D be a distribution over X. For each x € X, let Vy be a register

subspace of V.= ¥, let U, be a register subspace of Vy, and let Ly : Uy — Uy be a linear map.
Consider a state |p) = |[EPR)y @ |AUX), where |EPR)y € Ha @ Hp, for Ha, Hp = CV, is defined

in Definition 3.27 and |AUX) € M, ® Hy is arbitrary. For each x € X, let {M ,}yeu, aca be a
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projective measurement on Hy, @ H . Suppose that on average over x ~ D the following conditions

hold.
(Consistency): (Mx ® Iy T[L )=y ® I ® IA/) ®Ig ~: 0,
(Commutation): [M;‘a ® Iy, TZ ® I-® IA/] ®QIg ~: 0,
[M]J/C,IZ®IVX’ T[)[i%() }®I ®IA/]®IB ~. 0.

Here, the projector T[% ()=] acts on the register subspace Hy;,, and U, and V, denote the complementary

register subspace of Uy and Vy, respectively, within V. Then for each x € X andy € Uy, there exists a
POVM measurement {Mjf’y}aeA on HVX\UX &® ’HA/ such that on average over x ~ D,

(My,, @ Iy) @ Ip = (T[ZLx(J:y} oMY @ IW) ©lp .

Proof. For each x € X, let £, be the uniform distribution over U, and ), be the uniform distribution
over ker(Ly). We apply Lemma 8.13 to each of the two commutation assumptions and use the fact that
ker(Li )+ = ker(L,) from Lemma 3.12. Lemma 8.13 implies that on average over x ~ X and v ~ y if
W=Zorov~ x,if W=2X,

[M;,a X IW, TW<U) &® qux(g) IA’] X IB S 0.
By Lemma 8.15, this implies that on average over x ~ D, u ~ (,, and v ~ Xy,
[M;,a ® Iy, ™ (u)t*(v) ® I @Iy] ®Ig = 0.
By Lemma 8.14 and Lemma 8.12, this implies that on average over x ~ D,
M;C’a X IVX@) Ig ~, (,%(x o %X(Mx )) & If@ Ig

= (L foen oM ) 8 ly @, (63)
Yy eVy

!
for some POVM measurement {M;C 2} on Hyu, ® Har
In the following sequence of equations, whenever an operator does not act on a subsystem it should be
assumed that it is appropriately tensored with the identity. For clarity, we explicitly indicate using a subscript
A or B whether a Pauli operator acts on H o or Hp. Then on average over x ~ D we have

M, =M, M, (M?* is projective)
R M;‘,a . (T[ZLx (.):y]) A (Consistency assumption)
~o My, ® (T[%x(‘):y])B (Paulis are self-consistent)
~ Z Xy 7z .

e (Z () @MY ) © () (Equation (63))
~) 2 T[Ll( )= ]) A® M;,’gl (Paulis are self-consistent)
y/

= (T[ZLA-):y})A My,
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where =% indicates equality with respect to the state |EPR)y ® |AUX), and we have repeatedly used
Fact 5.18. This is essentially the statement promised by the lemma, except that {ij,’g }4 does not nec-
essarily sum to identity (since we only sum over a). To remedy this, define M, ¥/ = Ey/ M;C,ya and note that

MY > M;ay, so by Lemma 8.16 and the fact that M~ is projective,
(M;C,a 02y IVX) ® Ip =72 (T[%x(,):y] ® M;"y ® va) ® I . (64)

{Mjfy } is the POVM measurement guaranteed in the lemma statement, which concludes the proof. O

8.4.2 Preliminary lemmas

We show a few simple lemmas that allow us to argue about measurements that have a decomposition across
a tensor product of two Hilbert spaces, within the space of a single player.

Lemma 8.18. Ler A, B be finite sets. Let |p) € Ha ® Hp be a state. Consider the following: for all
a€ A

1. Let Ha,a Hp,a, Har o and Hyr , be Hilbert spaces such that
Ha = /HA,,Z &® /HA’,a and Hp = HB,a X HB’,a ,

and let |Pque,a) € Ha,a @ Hp,q be a “question state” and |Paxs,a) € Har s @ Hy , be an “answer
state” such that | ) = |Pque,a) @ |Pans,a)-

2. Let Qg be projectors on Ha, 4 such that {Q, ® Iy, u} forms a projective measurement on Ha and
let { A} }pep and { B } pe g be matrices acting on H ,/ ;.

3. Let D be the distribution on A obtained by measuring |) using {Qs @ Iy,, }aca-
Then the following are equivalent:

e On average over a ~ D and with respect to state |),

(IHA,a ®AZ) ® IB %8 (I%B,a ® BZ) ® IB *

. (Qa ® AZ) ® I =~ (Qg ® Bi) ® Iy on state |1).
Proof. Expand

Z [(Qa ® A — Qa ® By) ® I - [thou,a) @ |4’ANs,a>H2
ab

=) [1Q:® (A} — By) @ I - [oue,a) ® [Pans,a) ||
ab

:

=Y 11Qu ® By [oum,a) |- || (45 = BE) @ Dy lhans, o)
a,b

’ 2

=Y 11Qu ® Inly)* - || (A5 — B}) © I, [9ans.o)
ab
2
- IEDZ H(AZ - BZ) ® I’HB/,R|1~PANS,11> ‘
anr b

= B LIl ® (A5~ B) © I - [gove,a) ® [ans,o) |
~Y b
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In going from the third to the fourth line we used the fact that

2 2
= e, 21l

2
HQa ® IHB,a’lPQUE,a> H = HQa ® I’}-LA,’H ® IB’lPQUE,u> ® ’lI)ANS,u>
Hence, the first line is O(¢) if and only if the last one is. O

Lemma 8.19. Ler A, B,C be finite sets. Let |) € Ha ® Hp be a state, and let {A, p}acApen and
{By,c }acAccc be POVMs acting on H a. Suppose further that:

1. The measurements approximately commute, i.e.
[Ag 5, Bac] @Ig =50,
where the approximation holds with respect to the state ).

2. Forall a € A, there exist Hilbert spaces Ha,a, Hpr 5o HB,a, Hp' 40 and states [Pque,a) € Ha,a @
HB,a |Pans,a) € Har o ® Hyr , such that

Ha = HA,,; & HA’,a ,
Hp = 'HB,,; ®HB/,a ,
1) = |$ans,a) @ |Poue,a) -

3. Foralla € A, there exist projectors Qq on H x1 , and matrices { Af, }pep, {B{ }cec acting on H s ,
such that {Q, ® Iy, ﬂ} is a projective measurement on Ha and

Aa,b = Qu®Aa/ Bu,c = Qa®Bg .
Then
[y, ® A}, Iy, @ Bl @ I =5 0,

on average over a ~ D where D is the distribution on A obtained by measuring |¢) using {Q, ®
IH ’ }aEA'
Al,a

Proof. The assumptions of the lemma imply that

(Qu®ARBY) ®@Ip = (Qu® Ay Qu®B:) ® Ip (Q, is a projector)
= (Agp - Bae) ® Ip (Item 3)
~5 (Bayc - Aa,b) ® I (Item 1)
= (Qu®B{-Qu® Aj) ® Ip (Item 3)
= (Qu®BlA}) ®Ip . (Q, is a projector)

We apply Lemma 8.18 as follows. The set “A” in Lemma 8.18 is the same as A here, and the set “B” is
the product set B x C here. The matrices “{ A} }” are { A7BZ} here and “{Bj }” are {BZ A} } here. We then
obtain, on average over a ~ D,

(In,, ® ApBL) @ Iy =5 (Iy,, ® BLA}) @ Ip .

This implies the conclusion of the lemma. O
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Lemma 8.20. Let ) be a finite set and for ally € Y let {AY .} be a POVM on Ha. Let {By,y,.} be a
projective measurement on Hy. Suppose that

Y (Y|AY. @By y,z|9p) > 16 (65)

XY,z
Then with respect to state |),
Ia ® Bx,y,z &) Az,z & Bx,y .
Proof. Using the fact that { By, y,z} is projective, we have By, y ; = By, B, for all x, y, z, so that (65) implies
Y. ($lAL: ® ByyBalyp) > 14

XY,z

Define A, = Zx,y Az,z ® By, and B. = Ix» ® B,. The above equation simplifies to
Y (plA:B[p) 2135,

Y,z

This implies that AZ R~ Ez as

ZH — B9 |* = (9| A%+ B2) — 2(y|AB.ly) < 25,

4

where the equality uses the fact that A, and B, commute. To conclude the proof, we have

IA ® Bx,y,z - IA ® Bx,sz &) (IA ® Bx,y) Z AZ/,Z X Bx’,y’ = Az,z ® Bx,y/

x/, y/

where the approximation follows from A, ~s B, and Fact 5.18.

8.4.3 Proof of Theorem 8.9
We analyze the soundness of the introspective verifier.

Proof of Theorem 8.9. Let V = (S, D) be a normal form verifier such that S is an /-level sampler. Recall
the definition of the introspective verifier VINTRO = (SINTRO DINTRO) orresponding to V) from Section 8.2.
Fix an index n > 1 and let N = 2". Let r = (AN)" and introparams(r) = (q,m,d, h, H,T, ), as in
Section 8.2.

As in the proof of Theorem 8.6, we make the following simplifications. First, we analyze the soundness
of the typed introspective verifier VINTR; the soundness of the detyped verifier detype(V™NR) follows
from Lemma 6.18 and the fact that the type set 7™ has size O(¢). Second, analogously to Remark 8.7
without loss of generality for notational simplicity we consider strategies for questions sampled from S™TRO
rather than the downsized sampler S™NTRO,

Suppose that val*(VINTRO) > 1 — ¢ for some 0 < ¢ < 1, and let .¥ = (¢, A, B) be a strategy for
VINTRO wyith value at least 1 — e. Since . has success probability that is strictly positive, the decider D™TRO
does not automatically reject, which means that

s(N) < (AN)!. (66)

We analyze each of the tests performed by D™'RO (see Figure 10) in sequence, and state consequences of
each test. We start with Item 1, the Pauli test.
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Lemma 8.21. There is a 61 = poly(e + 1/r) such that the following holds. Let Q = T'logq. There
is a projective strategy ' = (|¢), A, B) for VIN®O that succeeds with probability at least 1 — &, and
furthermore

’lI)>AB - |EPR2>(§A§/%/ ® ‘AUX>A//BN (67)
for some bipartite state |AUX), and for all W € {X,Z},

PAULLW __ W PAULLW _ W
Al =0, , B, =0, , (68)

where oV acts on the first s(N) qubits of player A’s share (resp. B’s share) of |[EPR,) <,

Proof. Given the definition of the type graph G'¥™°, for ((fa, £4), (fg, £5)) sampled according to ygio ,
it holds that (f, fg) € TPAUM x TPAUL with constant probability. Therefore, conditioned on the Pauli test,
Item 1, being executed, .’ must succeed in the test with probability 1 — O(e).

Observe that conditioned on the test being executed, the distribution of ((fa, £4), (fp, £8)) is, by defi-
nition, exactly the distribution of questions in the Pauli basis game with parameters gqldparams, as described
in Section 7.3.1. By Theorem 7.14 it follows that there exists a local isometry ¢ = ¢a ® ¢p and a state
|AUX) € H p» ® Hpr such that

lp(19)) — [EPR2)“ @ [aux)||* < &'(e, £,7) , (©69)

where ¢’ (¢, £, 7) is an upper bound on §(O(¢), g, m, d) that only depends on € and 7, as stated in Lemma 7.17.
In addition, defining AS = ¢4 (A%) for all questions £ and answers 4, for W € {X, Z} it holds that

AEAULI,W ® I %5’(8,4,7‘) 0';/\] ® Iz, (70)

and a similar set of equations hold for operators associated with the second player. Using Naimark’s the-
orem as formulated in [NW19, Theorem 4.2], at the cost of extending the state |[AUX) we may assume
that the measurements are projective without loss of generality. Define the strategy .’ which uses the state
|[EPR,)®“Q ® |AUX) and measurement operators { A } and { B} for all questions %, except for (PAULI, W)-
type questions where instead the Pauli measurements Ug‘/ are used. Using (69) and (70) the strategy .’
succeeds in VINTRO with probability at least 1 — &' (¢, £, ).

The claimed bound on é; follows from the bound given in Lemma 7.17. O

In the remainder of the proof we analyze the strategy .’ from Lemma 8.21. We use the following
notation conventions:

1. We use indices A and B to label each player’s Hilbert space after application of the isometry ¢ from
Lemma 8.21.

2. We write V for the register subspace of ]Fé2 spanned by ey, ..., sy and V for its complement.
(Note that by definition of introparams in Section 7.3.3 it holds that S(N ) < r < Q, where the first
inequality follows from (66).)

3. Whenever we write a Pauli operator o)V the register on which the operator acts should always be clear
from context, and is implicit from the space in which the outcome a ranges.
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4. For measurement operators in the introspection game, the variables for the measurement outcomes
follow the specification of the “answer key” in Figure 8 (for 7 A"-type questions) and Figure 10
(for all other question types). For example, the measurement operators {AEAULI’W} corresponding to
question type (PAULI, W) are indexed by vectors x € ]Ff,2 where Q = I'logg. The measurement
operators corresponding to question type (INTRO,v) for v € {A, B} are indexed by pairs (y,a) €

V x {0,1}=%.22 We often refer to marginalized measurement operators, e.g., the operator A;NTRO’U

denotes marginalizing A;Ij; RO¥ over all a. In these cases, the part of the answer that is marginalized

over will be clear from context.

5. We use the notation ¢ to denote a function which is polynomial in J7, although the exact expression
may differ from occurrence to occurrence. The polynomial itself may depend on £, but we leave this
dependence implicit; due to the use of inductive steps that involve taking the square root of the error
£ times in sequence (e.g. Lemma 8.26) the exponent generally depends on £.

The next two lemma derive conditions implied by Items 2 and 3 of the checks performed by the decider
DNTRO described in Figure 10. As these two parts are performed independently for the two possible values
of v € {A,B}, we only discuss the case where v = A. For notational simplicity, whenever possible we omit
v when referring to the measurement operators. For example L, AINT* and BSAMPLF are used as shorthand

y.a
notation for LA, A;N; RO’A, and BZS,‘;MPLE’A respectively.

Lemma 8.22 (Sampling test, Item 2 of Figure 10). Foreachk € {1,2,...,(},

In ® B?AMPLE ~5 O'ZZ ® Iy, (71)
AT Ty T OB, o

where z ranges over V and y <y ranges over L< (V). Moreover, analogous equations hold with operators
acting on the other side of the tensor product.

Proof. When ((fa, %a), (fg,%8)) is sampled according to ygimo ,,, each check in Item 2 of Figure 10 is
executed with probability Q)(1/£) (this is due to the number of types in 7 ™R and the structure of the type
graph G'NTRO) " Therefore, in each of the checks specified by Items 2a and 2b, the strategy .#’ succeeds
with probability at least 1 — O(#4), conditioned on the test being executed. Item 2a for w = A combined
with (68) implies (71). Item 2b for w = A, combined with Fact 5.21, implies (72). The lemma follows from
repeating the same argument with the tensor factors interchanged. O

Lemma 8.23 (Hiding test, Item 3 of Figure 10). Foreachk € {1,...,¢+ 1},
AINTRO ® IB ~5 IA ® BREAD (73)

Yk, a Yepsa ’
and if k < ¢,
HIDE, 7
In @ By o™ %5 01 )=y © 1o 74)
Furthermore, for all j,k € {1,...,0 — 1} such that j < k, we have
AHIDE,CL ® IB ~ AHIDEk+1 Q IB ] (75)

L
Y<jr Yz Y<jry<;

Analogous equations to (73), (74), and (75) hold with operators acting on the other side of the tensor
product.

22Technically the answer 4 may be a binary string of any length; however, if a is too long the decider rejects due to the answer
length check. Thus we assume without loss of generality that the answer 4 is a binary string of length at most 6s(N) 4 2r + 3 < 9r.
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Proof. When ((f, £a), (fg,%8)) is sampled according to ygimo ,, each check in Item 3 of Figure 10 is
executed with probability (2(1//¢). Therefore, in each of the checks specified by Items 3a, 3b, and 3c
(conditioned on the right types) the strategy .’ succeeds with probability at least 1 — O(£0).

Item 3a for w = A combined with Fact 5.21 implies (73). Combining Eqs. (71) and (72) with (73)
yields

R ~ V4
In @B 5" ms 0ff )=y © 18 - (76)

The fact that .’ is projective and succeeds in Items 3b and 3c of Figure 10 with probability 1 — O(¥4),
along with Item 1 of Fact 5.17, imply (74).

We now establish the “Furthermore” part of the lemma statement. Let 1 < j < k < ¢ —1. Item 3c,
Item 1 of Fact 5.17, and Fact 5.21 imply that

AHIDEk In ~os | BHIDEk+1 ) 77
ViV ©lp N la® ViV 77
Item 5 and Fact 5.21 imply " "
AT @ T o0 Ia @ B Uk 78
Vi v ©lp = la® Vi v (78)
This proves (75).
The lemma follows from repeating the same arguments with the tensor factors interchanged. O

We exploit the tests performed in Item 3 further to show the following lemma.
Lemma 8.24. Forallk € {1,2,...,(},

HIDE;
1
Y<kr Vi 1 X>k

In®B ~s (o ®U[}£L ()=y{] ®oy,)®Is,

[Lak(-)=y<] oy <k
and an analogous equation holds with operators acting on the other side of the tensor product.

Proof. The proof is by induction on k. We first show the case k = 1. Under the distribution y giveo ,,, the
check in Item 3d of Fig. 10 is executed with probablity ()(1/¢). That part of the check for w = A together
with Eq. (68) implies that

HIDE X X
I B T x5 (0 o
A®B U e (T, () © %

)© I . (79)

This proves the case for k = 1. Next we perform the induction step. Assume that the lemma holds for some
k€ {1,2,...,£ —1}. The check of Item 3c is executed with probablity (3(1/¢); using that .’ succeeds in
Item 3c (conditioned on the right types having been sampled) with probablity at least 1 — O(£8), we have

AP Bl >1-0() .
y yiz:x <4” Y<kr [Licl+1,y<k(‘):y;f+1]/x>k+1 ® ygk/y;f+1rx>k+1|¢> - ( )
<kr Vi1 X>k+1 =

We now apply Lemma 8.20, choosing the measurements A, B and outcomes X, y, z in the lemma as
follows:

HIDE HIDE
“A” . A k N N , “B” . B kIl ,
Y<ks [Lk+1,ygk('):yk+1]rx>k+l Y<kr Vi1, ¥>k+1

a0, [T

. [P LN 1
Xiyak, Vv, 27 (Vi Xske) -

98



Note that here A does not depend on y, so we use the same A for all values of y. Lemma 8.20 with the
above choices of parameters implies that

HIDE HIDE HIDE; 4
I ® B k+1 ~ k B +
A ySk/y}(L+1rx>k+l Y<ks [Lé+1,y<k('):yﬁ+1}fx>k+l Y<k
Z X X HIDE} 4
s (0] 1 Q0 & 0. ® B
6 ( [Lak()=y<i] [Lkl+1,y<k+1 ('):yk{%—l} X>k41 ) Y<k
~ Z Z X X
o (U—[L<k('):y<k]U—[Lik('):yﬁk] © O—[Llél,kkﬂ('):ykiﬁ ® Ux>k+1) ® I,
Z X X
~ (0 o 0. I
0 ( [Lkrr ()= <k] ®© [Lﬁ+1,y<k+1(‘):ylf+1] ® x>k+1) ® Is,

where the input to LkL+1, Yeris (+) is x4 1. The second approximation uses the induction hypothesis, Fact 5.21,
Fact 5.17, and Fact 5.18. The third approximation follows from Eq. (74) and Fact 5.18. The fourth approxi-
mation follows from the definition of CL functions. This completes the induction. O

Lemma 8.25. Forallk € {1,...,0},
READ Z X
In@B, %o (U[L<k(‘):y<k] ® U[Lki/kk(-):yki]) ®Ip . (80)

Moreover, analogous equations hold with operators acting on the other side of the tensor product.

Proof. Lemma 8.24 and Fact 5.21 imply that

HIDE ~ 7 X
Yer Vi © Iy =~ (U[L<k(‘):y<k] ® O'[Lk%y<k(.):yki]) ®Is . (81)

Since the strategy .’ succeeds in Item 3b with probability at least 1 — O(£4) it follows from Fact 5.21 that
AHIDE[J_ ® IB ~ IA ® BREAD (82)

1.
Y<t:¥<y Y<t:¥<y

An inductive argument applied to (75) of Lemma 8.23, combined with Fact 5.21, implies that for all 1 <
k < ¢ we have

HIDE, In ~ AH]DE/ I 83
y<kr]/kL ® B 0 ]/<k/ykl ® B ( )
Equations (81), (82), and (83), combined with Fact 5.21, then establishes the lemma statement. ]

Lemma 8.26. Foreachk € {1,2,...,0+ 1}, there exists a product state |ANCy) = |ANCy o) @ |ANCxp) €

oo I
HA]/( ® HB;C and, for each y i € L_(V), a projective measurement {Aygﬁf’kk} that acts on Ha & HAQ

such that the following holds. First, for all y € V, the operator A;I\;i? Y<K acts as identity on the register
subspace spanned by basis vectors for the subspace V_(y i), and as a consequence the operator

INTRO, Zo _ 7 INTRO, Y <&
Ay,a = Ol =y ® Ayzzwﬂ (84)

is well-defined. Second, let .7’ be the strategy defined as follows. The state is |[EPR,)®? ® |AUX) ®
|ANCy). The measurements are identical to those in .’ defined in Lemma 8.21, except that {A;N; RO} is

replaced with {A;N; RO, Z< } Then .7} succeeds with probability at least 1 — 6 in the game VINTRO,

Proof. The proof is by induction on k from 1 to £ 4+ 1. The case k = 1 is trivial by setting A;I;i? el =

. o I
A;N; RO forall y, a. Assume that for some k € {1,2, ..., ¢} there exists projective measurements {Aﬂgﬂ? S’

for every vy and a strategy .}’ satisfying the conditions of the lemma statement. We show the statement
of the lemma for k + 1.
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Commutation with Z-basis measurements. We first prove that on average over vy, the measurement

INTRO, . . . . . S
operator Ay_, s Y<k_which comes from the inductive assumption, commutes with the projective measure-

ment {UZZk where the outcomes zj range over the factor space Vi (yx).
To do so, we first apply Lemma 5.22 where we we choose the measurements “A”, “B”, and “C” and
outcomes “a”, “b”, and “c” in the lemma as follows:

“A” . {AIyT:T;'RO,Z<k} , “B” . {BE’[ZMPLE , “C” . {U,ZZ} ,
“a” . y<k , “b” . (yzk,ﬂ) , “C” sz

To make sense of how the “B” POVM is indexed by “a”, “b”, and “c” as described above, we use the
following relabelling: for all (z,a), identify BSAMPLF with B;ﬁﬁ“zp “E where y = L(z). Similarly, for the “C”
POVM, we identify ¢ with the operator U'yZ< .z Where y = L4(z). By applying Lemma 8.22 to ./}’ (the
strategy given by the inductive hypothesis) with “k” in Lemma 8.22 set to ¢, we have that

A]IVI:I;RO,Zd QI ~g Ix @ B;//-‘;ZMPLE (85)
where B;/ZMPLE =Y oiL(z)=y BEAMPLE Equations (71) and (85) imply that the conditions of Lemma 5.22 are

satisfied, and thus we obtain
[Apa %<, 0] @ Ig =4 0 (86)

where in the answer summation, ¥ is a deterministic function of z. We now apply Lemma 8.19, choosing
the measurements “A”, “B”, “Q” and outcomes “a”, “b”, “c” in the lemma as follows:

AT AT B0 @08} Q)

@iy, b7 (Ysea), 7z

We choose the Hilbert spaces “Ha,” and “Hp,” as the register subspace Vi(y<x), and “H,s,” and
“Hp ,” as the register subspace V> (yx) tensored with H ,» @ Hyn, the Hilbert space of the state |AUX).
Thus for every vy, the state |[EPR) QR AUX) of the strategy .7} can be decomposed into a tensor product
of a “question state” and an “answer state” as follows:

<|EPR2>V<k(y<k)>H

® <|EPR2>V2k(]/<k) ® |AUX>>

A,aHB,a HA’,aHB’,a

Let pr_, denote the distribution over outcomes i generated by performing the “Q” measurement on
the state |EPR>®Q, which is equivalent to the distribution generated by the following procedure: (1) sample

a uniformly random z € V; (2) compute y = L(z); (3) return y_x. Then, since Equation (86) and the
INTRO ,Z

inductive hypothesis about the structure of A;_, 5 satisfy the conditions of Lemma 8.19, we obtain on
average over Yy ~ UL_,
INTRO, 7
AV, oF] @ In 5 0. (87

Here, the measurement outcomes zj range over Vi (Y ).

Commutation with X-basis measurements. Next, we first prove that on average over i, the measure-

INTRO, . .
ment operator Ay_, 5 Y<k commutes with the projective measurement {(T[)Ii N

where the outcomes
k,y<k('):yL] }

yi are elements of the factor space Vi (y).
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We again apply Lemma 5.22, choosing the measurements and outcomes in the lemma as follows:

WA . INTRO/Z<k “wpY ., READ [T aitEN y4 X
AT Ay BB R T O 0= @, (e

“a” . y<k , “b” . (yzk,a) i “C” . ylﬁ_ .
Equations (73) (with “k” in Lemma 8.23 chosen to be £ + 1) and (80) imply the conditions of Lemma 5.22,
so we obtain Z
INTRO, Z Z X ~
ATt ol @k | @m0, (88)

ky <k

We then apply Lemma 8.19 with the following choice of measurements and outcomes:
3 ” ., INTRO,Z k (13 > 2N Z X 13 LRI Z
AT Ay T B =y ®‘7[Lk{y<k(.):ykl]} o QL =y}
“a” . y<k , ub” . (yzk,a) , “C” . yli_ .

The Hilbert space and state decomposition are the same as in the previous invocation of Lemma 8.19.
Equation (88) and the inductive hypothesis satisfy the conditions of Lemma 8.19, and we similarly obtain
that on average over vy ~ pr_,,
INTRO,y<k X ~
[Ayzk,a ’ O[LL (‘):ylﬂ] ®Ip ~; 0, (39)

ky <k

Applying the Pauli twirl. The last step is to apply the Pauli twirl to decompose the family of measure-
ments {A;g'f Y<K into a tensor product measurement, with the first part of the tensor product measuring
the k-th linear map of L.

Again applying Lemma 8.22 to ./, and using Facts 5.21 and 5.17, we obtain that

INTRO, Z ~ 7
Ay ®Is =, Tllo()=ya) © Iy
which is equivalent to, by the inductive hypothesis,
Z INTRO, y <k ~. L z
)=y ©An 77 O I8 So 01 ()= g OO, () @ I8 ©0)
Applying Lemma 8.18 to Equation (90), we conclude that
INTRO, y — Z
Ayk < ® IB ~é U[L<k('):y<k] ® IB / (91)

on average over Y <k ~ UL _,.
Now we apply Lemma 8.17 with the following identification:

[TP9] [T

X" iY<k s Yo Yk, “a” . (]/>k/ El) s “Lx” : Lk,y<k ’
13 . « X 9, INTRO/]/ k « X, Yss | INTRO,ygk
U™ Viyer) , “Mya" s Ayoa ™™ "M 770 Ay

The “Consistency” condition is implied by Equation (91) and the “Commutation” conditions are implied by
Equations (87) and (89). We obtain that for all y< there exists POVM measurements {A;i?,? nYsk } that
act as identity on the register subspace spanned by basis vectors for the subspace V_¢ () and, on average

over Y «x ~ HL_,, we have

INTRO, Y <k

INTRO, ¥ ~ 7
Apoa”" @I 5 <“[Lk,y<k<->:yk1®f“y>k,a )®IB~ 92)
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INTRO, Z

Using the inductive assumption on the structure of Ay, a from (84), we get
INTRO, Z o 7 INTRO, y
Ayf” - ® IB o (U[L<k(‘):]/<k} ® Ayzkra <k> ® IB (93)
I ,
~s (U[ZLgk(')=ygk] ® AVZE{I? ygk) ® IB . (94)

where the second line follows from (92) and Lemma 8.18. By (94), replacing the projective measurement
{ AT} with the POVM

7 INTRO, y<k
{U[Lgk('):ygk] Ay a

. . . o I
in the strategy .~} results in a strategy that succeeds with probability at least 1 — 6. To show that {Ayi?; <k

can furthermore be turned into a projective measurement we use Naimark’s theorem as formulated in [NW 19,
Theorem 4.2]. By inspecting the proof of Naimark’s theorem, one can see that the state |[ANC’) it pro-
duces is a product state with no entanglement. This yields a strategy .}, ; with ancilla state [ANC1) =
|ANCk)|ANC’), which establishes the induction hypothesis for k + 1. This completes the proof of Lemma 8.26.

[
Taking k = £+ 1 in Lemma 8.26 we obtain a strategy . = .7/ ; with value 1 — § in which, given
question (INTRO, A), player A performs the measurement
7 INTRO, y
{0ty © A7) (95)

for a family of measurements {A,IINTRO’y} acting on the state |[EPR)y; ® |AUX) ® |ANC) where |ANC) =
|ANCy, 1) is unentangled. An analogous argument for Player B’s measurements shows that we may addi-
tionally assume Player B responds to the question (INTRO, B) using the measurement

{0fin(y=y ©@ B Y}, (96)

. I . .
for a family of measurements {B; '’} acting on the state [EPR)y; ® |AUX) ® |ANC'), where |ANC') is
unentangled. Summarizing, the strategy .” uses the state

|0) = |[EPR)®? @ |AUX) @ |ANC) @ |ANC'),

and the measurements given by Equations (95) and (96).

To conclude the proof of the soundness part of the theorem we analyze Item 4 in Figure 10. The test
in Item 4 is executed with probability Q)(1/¢), so the strategy . succeeds with probability at least 1 — &
in that test, conditioned on the right types (here we absorb factors of O(¥) into é). Using (95) and (96),
conditioned on the test being executed the distribution of the part (y A,yB) of the players’ answers in the
test is exactly the distribution y sy associated with game Vy. As a result, the strategy which uses the state
|[EPR)y ® |AUX) ® |ANC) ® |ANC’) and measurements {A,IINTRO’y Ao ByNTROY } succeeds with probability
at least 1 — ¢ in the game Vy. Thus, val*(Vy) > 1 — 4, establishing the first item in the theorem.

To show the second item, we observe that local isometries do not change the Schmidt rank of a state.
Define |¢') = ¢(|1)) @ |ANC) ® |ANC’). Since the strategy (|¢'), {Ax Y}, {Ba™ Y1) is é-close to
(16), { AN, {B""*Y}) which has value 1 — 8, the strategy (|y'), { ANTROX} {BIN*¥1) has value
at least 1 — 29 in the game Vy, and therefore the Schmidt rank of ¢(|¢)) (and thus of |¢)) must be at
least &(Vn, 1 — 25). Here, we use the fact that ancilla states are product states and therefore have Schmidt
rank 1.
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Moreover, recall that ¢(|y)) is d-close to |[EPRy)®Q ® |AUX) whose Schmidt coefficients are all at
most 2~9/2, For any bipartite state |a) with Schmidt rank at most 7 and |b) whose Schmidt coefficients are
all at most B, it follows from the Cauchy-Schwarz inequality that |{a|b)|?> < rB?. Therefore the Schmidt
rank of ¢(|¢)) (and thus of |¢)) is at least

(1-0)2-22 > (1—6)2.20N"
where we used that Q = I'logg > r (using the canonical parameter settings of Definition 7.16) and

5> |lo(Jw)) — 0)|> = 2 — 2R(0|¢(]y)). Combining the two lower bounds on the Schmidt rank of |¢)
shows the desired lower bound on & (VINTRO 1 — ¢). O
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9 Oracularization

9.1 Overview

In this section we introduce the oracularization transformation. At a high level, the oracularization @&ORAC
of a nonlocal game & is intended to implement the following: one player (called the oracle player) is
supposed to receive questions (x,y) meant for both players in the original game &, and the other player
(called the isolated player) only receives either x or y (but not both), along with a label indicating which
player in the original game the question is associated with (we refer to such players as the original players,
e.g. “original A player” and “original B player”). The oracle player is supposed to respond with an answer
pair (a,b), and the other player is supposed to respond with an answer c. The oracle and isolated player win
the oracularized game if (x,y,4a,b) satisfies the predicate of the original game & and the isolated player’s
answer is consistent with the oracle player’s answer.

The oracularization step is needed in preparation to the next section, in which we perform answer re-
duction on the introspection game. To implement answer reduction we need at least one player to be able
to compute a proof, in the form of a PCP, that the decider of the original game would have accepted the
questions (x,y) and answers (a, b). This requires the player to have access to both questions, and be able to
compute both answers.

9.2 Oracularizing normal form verifiers

LetV = (S, D) be a normal form verifier such that S is an ¢-level sampler for some ¢ > 0. We first specify
the typed oracularized verifier VORAC = (SORAC DORAC) gqg0ciated with ) as follows.

Sampler. Define the type set 7OR¢ = {ORACLE, A, B}. (In the remainder of this section we refer to
the types in T ORAC as roles.) Define the type graph GORAC that is the complete graph on vertex set 7 ORAC
(including self-loops on all vertices). Define the 7 O**C-type sampler SORAC as follows. For a fixed index
n € N, let V be the ambient space of S and L for w € {A, B} be the pair of CL functions of S on index
n.

Define two 7 OR*C_typed families of CL functions {L¥ : V — V}, forw € {A,B} and t € TORAC, as

follows:
- {Lt ift € {A,B},

t = Id ift = ORACLE.

In other words, if a player gets the type t € {A, B}, then they get the question that original player t would
have received in the game played by V,,. If they get type t = ORACLE, then they get the entire seed z that is
used by the sampler S, from which they can compute both L*(z) and LB(z), the pair of questions sampled
for the players in game V,,.

By definition, the sampler distribution i gorac ,, has the following properties.

1. Conditioned on both players receiving the ORACLE role, both players receive z for a uniformly ran-
domz € V.

2. Conditioned on both players receiving the isolated player role, the player(s) with role A (respec-
tively, B) receives L2 (z) (respectively, LB(z)) for a uniformly random z € V.

3. Conditioned on player w € {A,B} receiving the ORACLE role and player @ receiving the isolated
player role, their question tuple is distributed according to ((ORACLE, z), (v, L?(z))) if w = A and
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((v,L?(z)), (ORACLE, z)) if w = B, where z € V is uniformly random and v indicates the role of
player w.

Decider. The typed decider DORAC is specified in Figure 12.

Input to decider DORAC: (n,ta, xa,tp, XB,aa,ap). For w € {A,B}, if t;, = ORACLE, then
parse ay, as a pair (ay,a, ay,s ). Perform the following steps sequentially.

1. (Game check). Forall w € {A,B}, if t;,, = ORACLE, then compute x;,, = L?(x,) for
v € {A,B}. If D rejects (1, Xy A, Xw B, Aw,A, dw,B ), then reject.

2. (Consistency checks).

(a) If ta = tg and ap # ag, then reject.
(b) If for some w € {A, B}, t,, = ORACLE, ty € {A,B}, and a, +, # az, then reject.

3. Accept if none of the preceding steps rejects.

Figure 12: Specification of the typed decider DORAC,

9.3 Completeness and complexity of the oracularized verifier

We determine the complexity of the oracularized verifier and establish the completeness property.

Theorem 9.1 (Completeness and complexity of the oracularized verifier). Ler V = (S, D) be a normal
form verifier. Let VORAC = (SORAC DORAC) e the corresponding typed oracularized verifier. Then the

following hold.

e (Completeness) For all n € N, if V,, has a PCC strategy of value 1, then VORC has a symmetric
PCC strategy of value 1.

e (Sampler complexity) The sampler SORC depends only on S (and not on D). Moreover;, the time and

randomness complexities of SORC satisfy

TIME gorse (1) = O (TIMEg(n)),
RAND gorse (1) = O (RANDg (1)) .

Furthermore, if S is an {-level sampler, then SO**C is a max{/, 1}-level typed sampler.
e (Decider complexity) The time complexity of DORAC satisfies

TIME porsc (1) = poly (TIMEp (1), RANDg (1)) .

o (Efficient computability) There is a Turing machine ComputeQOracleVerifier which takes as input
V = (8, D) and returns VORAC = (SORAC DORACY i time poly(|V)).

Proof. We analyze the completeness and complexity properties of the typed verifier VORAC,
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Completeness. Forn € IN, let . = (|y), A, B) be a PCC strategy for VV,, with value 1. Consider the
following symmetric strategy .7 OR*¢ = (|1), M) for VORAC, Depending on the role received, each player
performs the following:

1. Suppose the player receives role v € {A, B} and question x. Then the player performs the measure-
ment that player v would on question x according to strategy . to obtain outcome 4 (either { AX} or
{BJ}, depending on v). The player replies with a.

2. Suppose the player receives role v = ORACLE and question x. The player first computes v, = L¥(x)
forw € {A, B} where forw € {A, B}, L” is the CL functions of S corresponding to player w. Then,

the player measures using the POVM {Mf? R XY where
MQRACLE X — BIY AJY 97)

The projectors Az: and Bj° commute because (ya,yp) is distributed according to pis , (over the
choice of x) and .7 is a commuting strategy for V,,. Thus Mo 4c** is a projector. The player replies

with (aA,aB).

The strategy .7 ORAC is symmetric and projective by construction, and consistency follows from the
consistency of .. We now argue that the strategy is commuting and has value 1 in the game VORAC, We
consider all possible pairs of roles.

1. (Oracle, isolated) Suppose without loss of generality that player w = A gets the ORACLE role and
player w = B gets the isolated player B role. Then player w gets question x and player w gets
question LB(x), where x is uniformly sampled from V. The oracle player computes y, = L?(x)
for all v € {A,B}. Notice that (ya,ys) is distributed according to ys ,. The two players return
((a,ag),a) with probability

<¢|MORACLE,X ® Bay/B |l[)>
B

aa,as

= (y|Biy Ay @ B |)

= (¢l A, ® By By [y)

= Oy, af, (W A7) ® Bag ) ,

where the first equality uses the definition of M* 4" from Eq. (97), the second equality uses the
consistency of ., and the third equality uses the projectivity of .. Notice that when ag = aj, this
is exactly the probability of obtaining answers (a4, ap) when player A and player B get question
pair (ya,ys) in the game V,. Since . is value-1, the answers satisfy the decision procedure of V,
with probability 1. Thus the oracle’s answers pass the “Game check” of the oracularized decider with
certainty, and furthermore the oracle’s answers are consistent with the isolated player’s answers and

thus pass the “Consistency check” with certainty as well.

MORACLE,x

e aCLE X and ByP follows from the commutativity of . for the game V.

Commutativity of

2. (Both oracle) If both players get the ORACLE role, then both players receive the same question x € V.
Using a similar analysis as for the previous item, the players return the same answer pair (thus passing
the “Consistency check’) and pass the “Game check”. Both players’ measurements commute because
they are identical.
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3. (Both isolated) Suppose that both players receive the same isolated player role (e.g., they both receive
the isolated player role A). They then perform the same measurements, which produce the same
outcomes due to the consistency of the strategy .7, and thus they pass the “Consistency check”.
Otherwise, suppose that one player receives the A role and the other player receives the B role. Then
the decider DORAC automatically accepts. Furthermore, their measurements commute because their
questions are distributed according to ps ,, and .% is a commuting strategy with respect to ps ;.

Complexity. It is clear from the definition that SORAC depends only on S. The time and randomness
complexities of the sampler SORA¢ are dominated by those of the sampler S. The complexity of DORAC is
dominated by the complexity of D and performing consistency checks. The sampler SO*C is a max{¢,1}-

level sampler because S is an ¢-level sampler and the new CL functions for t = ORACLE are 1-level.

Efficient computability. The description of SO*C can be computed, in polynomial time, from the de-
scription of S alone. The description of DORAC can be computed in polynomial time from the descriptions
of & and D. Moreover, in each case the computation amounts to copying the description of S and D

respectively, and adding constant-sized additional instructions.
O

9.4 Soundness of the oracularized verifier

Theorem 9.2 (Soundness of the oracularized verifier). Let V = (S, D) be a normal form verifier and
YORAC — (GORAC DORACY he the corresponding typed oracularized verifier. Then there exists a function
0(e) = poly(e) such that for all n € IN the following hold.

1. Ifval*(VORAC) > 1 — ¢, thenval*(V,) > 1 — 5(e).
2. Forall e > 0, we have that
E(VORC,1—€) > E(Va, 1 - 6(¢))
where & (+) is as in Definition 5.12.

Proof. Fixn € N. Let #ORC = (]y), A, B) be a projective strategy for VPR with value 1 — ¢ for some
0 < e <1 Let(tx) € TORAC x V be a question to player w = A. In the event that t = ORACLE (which
occurs with probability 1/3), let y, = L?(x) for each v € {A, B}. From the consistency check performed
by DORAC and item 1 of Fact 5.17, we have that for all v € {A,B} and on average over x sampled by
SORAC,

AaOvRACLE,x ® IB ~, IA ® Bg;yv ) (98)

Here, we used that with probability 1/9 player w = A gets the ORACLE role and player w = B gets the
isolated player v role; conditioned on this, player B gets question ¥
Using the fact that the POVM elements { ASRAC™ 1 are projective and Fact 5.18, we get

aa,aB

ORACLE, X ~ ORACLE, x B,ys
AﬂA,ﬂB ® Iy = AﬂA,ﬂB ® BﬂB

~ ORACLE, x B,ys
~e AaA ® BaB

B, A,
%8 IA ® BﬂByBBﬂAyA

A, B,
~e In @ By, "By, "® .

99)
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Using Item 2a of the consistency check, we have that on average over a random y = L(x) € V,
ANV @ Tg ~ In 9 BYY. (100)

Define, for all x € LA (V), measurement operators { CX}, where CX = A;*. Similarly, define DX = B}*.
This defines a strategy . = (|¢), C, D) for the game V), that we now argue succeeds with high probability.
Let x € V be uniformly random. Let yo = L*(x) and yg = LB(x).

B A
AORACLE,x ® IB <3 IA ® Bﬂ};ys BuA,yA

aa,aB
~ A, ya B,ys
~e AaA ® BaB

=Ciy @Dy .

The first approximation follows from Equation (99). The second approximation follows from Equation (100)
and Fact 5.18 (where we let CZ in Fact 5.18 represent BEB’ %), The last equality follows from definition of
CZ/’: and DZE . The pair of questions (ya,ys) € V X V is distributed according to ys .

The game check part of DORAC succeeds with probability 1 — O(e), which implies that the answer pair
(aa,ap) that arises from the measurement AaOA}f?zCBLE’x ® Ig is accepted by the decider D on question pair
(ya,ys) with probability 1 — O(e). This in turn implies that the strategy . = (|¢), C, D) succeeds with
probability 1 — O(4/€) in the game V,,. As an additional consequence, the Schmidt rank of |) must be at

least &(Vp, 1 — O(V/¢)). O
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10 Answer Reduction

In this section we show how to transform a normal form verifier V = (S, D) into an “answer reduced”
normal form verifier VAR = (SAR, DAR) guch that the values of the associated nonlocal games are directly
related, yet the answer-reduced verifier’s decision runtime is only polylogarithmic in the answer length of
the original verifier (the answer-reduced verifier’s sampling runtime remains polynomially related to the
sampling runtime of S). The polylogarithmic dependence is achieved by composing a probabilistically
checkable proof (PCP) with the oracularized verifier given in Section 9. This step generalizes the answer
reduction technique of [NW 19, Part V].

Given index n € IN, the answer reduced verifier VAR simulates the oracularization VORAC of V on
index n. To do so, it first samples questions x and y using the oracularized sampler S ORAC and distributes
them to the players, who compute answers a and b. Let us suppose that the first player is assigned the
ORACLE role, and parse their question and answer as pairs x = (xa,xg) and a = (a,ag), while the
second player is an “isolated” player receiving the question x and responding with answer b. Instead of
executing the decider DORAC on the answers (a, b), the verifier VAR asks the first player to compute a PCP
IT of D(n, xa,xB,aa,a8) = 1, and the second player to compute an encoding g}, of answer b. VAR then
requests randomly chosen locations of the proof IT and the encoding g, and executes the PCP verifier on
the players’ answers. By the soundness of the PCP, VAR accepts with high probability only if the player’s
answers satisfy D(n, xa, xp,aa,a5) = 1 and b = a.

There are several challenges that arise when implementing answer reduction. One challenge, already
encountered in [NW19], is that we need to ensure the PCP IT computed by the first player can be cross-tested
against the encoding g, computed by the second player (who doesn’t know the entire structure of the PCP
IT). This was handled in [NW19] by using a special type of PCP called a probabilistically checkable proof
of proximity (PCPP), which allows one to efficiently check that a specific string x is a satisfying assignment
to a Boolean formula ¢, as opposed to simply checking that ¢ is satisfiable. In a PCPP, an encoding of
the specific string x is provided separately from the proof of satisfiability. The answer reduction scheme
of [NW19] was able to use an “off-the-shelf”” PCPP in a relatively black-box fashion to handle this.

In our answer reduction scheme, however, there is a further requirement: we need the question distri-
bution of the answer reduced verifier to be conditionally linear. This is necessary to maintain the invariant
that the verifier after each step of the compression procedure (introspection, answer reduction, parallel repe-
tition) is a normal form verifier. Unfortunately, simulating the question distributions of off-the-shelf PCPPs
with conditionally linear distributions can be quite cumbersome. Instead, we design a bespoke PCP verifier
for the protocol whose question distribution is more easily seen to be conditionally linear.

This section is organized as follows. We start with some preliminaries on formulas and encodings
in Section 10.1. In Section 10.2 we show how to use the Cook-Levin reduction to reduce the Bounded
Halting problem for deciders to a succinct satisfiability problem called Succinct-3SAT. Following this, in
Section 10.3, we reduce the Succinct-3SAT instance to an instance of a related problem called Succinct
Decoupled 5SAT, which is easier to use in our answer reduction step. Then in Section 10.4 we introduce
a PCP for Succinct Decoupled SSAT. The verifier for the PCP expects a proof consisting of the evaluation
tables of low-degree polynomials, including the low-degree encodings of the players’ answers a and b.
In Section 10.5 we provide the definition of a normal-form verifier VAR that executes the composition of
VORAC with the PCP verifier from Section 10.4. In Section 10.6 we show completeness of the construction
and analyze its complexity. In Section 10.7 we prove soundness.
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10.1 Circuit preliminaries

Recall the definitions pertaining to Turing machines from Section 3.1.

Remark 10.1 (Plugging integers into circuits). Let C be a circuit with a single input of length n. Inputs to C
are strings x € {0,1}". In this section, we will also allow C to receive inputs a € {0,1,...,2" —1}. In
doing so, we use the convention that a number a between 0 and 2" — 1 is interpreted as its n-digit binary
encoding binary, (a) (recall Definition 3.21) when provided as input to a set of n single-bit wires. In other
words, C(a) = C(x), where x = binary, (a).

More generally, if the circuit C has k different inputs of length ny, ..., ny, then we can evaluate it on
inputs a1 € {0,1,...,2" —1},...,a, € {0,1,...,2" — 1} as follows:

C(Ell,. . .,llk) = C(Xl,. . .,xk) ,
where x1 = binary, (a1),...,x, = binary, (a).

A 3SAT formula is a Boolean formula in conjunctive normal form in which at most three literals appear
in each clause. More precisely, ¢ is a 3SAT formula on N variables x1, x2, . . ., xn if it has the form /\szl C]-
and each clause C; is the disjunction of at most three literals, where a literal is either a variable x; or its
negation —x;. We use x{ to denote the literal x; if 0 = 1 and —x; if o = 0.

Definition 10.2 (Succinct description of 3SAT formulas). Let N = 2", and let ¢ be a 3SAT formula on N
variables named xo,...,xy_1. Let C be a Boolean circuit with 3 inputs of length n and three single-bit
inputs. Then C is a succinct description of ¢ if for each iy, ip,i3 € {0,1,...,N —1} and 01,0,03 € {0,1},

C(i1,i2,13,01,02,03) = 1 (101)
if and only if xfll V xfzz vV xf; is a clause in ¢. In Equation (101), we use the notation from Remark 10.1.
Definition 10.3 (Succinct-3SAT problem). The Succinct-3SAT problem is the language containing encod-
ings of circuits C in which C is a succinct description of a satisfiable 3SAT formula ¢.

10.2 A Cook-Levin theorem for bounded deciders

Definition 10.4 (Bounded Halting problem). The k-input Bounded Halting problem is the language BHj
containing the set of tuples (&, T, z1, . . ., zx) Where a is the description of a k-input Turing machine, T € IN,
z1,...,2x € {0,1}*, and M, accepts input (z1,...,zx) in at most T time steps.

We begin by defining natural encodings of a decider’s tape alphabet and set of states.

Definition 10.5 (Decider encodings). Let D be a decider with tape alphabet I' = {0,1,UU} and set of
states K. We will write encr : I' U {{J} — {0,1}? for the function which encodes the elements of T, and a
special “[J” symbol described below, as length-two binary strings in the following manner:

encr(0) =00, encr(1) =01,

10, encr(Od)=11.

encr (L)

In addition, we write encg : K — {0,1}" for some arbitrary fixed x-bit encoding of the elements of K,
where x = [log(|K])].
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Now, we give the main result of this section. It states that any decider D can be converted into a circuit C
which succinctly represents a 3SAT formula @3gaT that carries out the time T computation of D. In addition,
C is extremely small—size poly log(T) rather than poly(T).

Proposition 10.6 (Succinct representation of deciders). There is an algorithm with the following properties.
Let D be a decider, let n, T, Q, and A be integers with Q < T and |D| < A, and let x and y be strings of
length at most Q. Then on input (D,n,T,Q, A, x,Vy), the algorithm outputs a circuit C on 3m + 3 inputs
which succinctly describes a 3SAT formula @ssat on M = 2™ variables. Furthermore, @ssat has the
following property:

e Foralla,b € {0,1}?T, there exists a c € {0,1}M~4T such that w = (a, b, c) satisfies Qasat if and
only if there exist Aprefix, Dprefix € {0,1}* of lengths £,, 0, < T, respectively, such that

T—¢, _ T—¢
a = encr(aprefix, ' ") and b = encr(bprefix, " ")
and D accepts (1, X,Y, Aprefix, bprefix) in time T.
Finally, the following statements hold:

1. The parameter m controlling the number of inputs to the circuit depends only on T and A, and

m(T,A) = O(log(T) +log(A)),
2. C has atmost s(n, T,Q,A) = poly(log(n),log(T), Q, A) gates,
3. The algorithm runs in time poly(log(n),log(T), Q, A),

4. Furthermore, explicit values for m(T,A) and s(n, T, Q,A) can be computed in time polynomial in
n,log(T),Q, A.

Proposition 10.6 is essentially the standard fact that Succinct-3SAT is an NEXP-complete language,
i.e. that every nondeterministic computation which takes time 2" can be represented as a Succinct-3SAT
instance of size only poly(n). However, it has several peculiarities which requires us to prove it from
scratch rather than simply appealing to the NEXP-completeness of Succinct-3SAT. First, we require that the
coordinates of a and b embed into w not randomly but as its lexicographically first coordinates (for reasons
that are explained below in Section 10.3). Second, we need explicit bounds on how quantities such as the
size of C relate to quantities such as A, an upper bound on the description length of D in bits.

To prove Proposition 10.6, we follow the standard proof that Succinct-3SAT is NEXP-complete as pre-
sented in [Pap94]. This proof observes that the Cook-Levin reduction, which is used to show that 3SAT
is NP-complete, produces a 3SAT instance whose clauses follow such a simple pattern that they can be
described succinctly using an exponentially-smaller circuit. One key difference in our proof is that we will
apply the Cook-Levin reduction directly to the 5-input Turing machine D, which by Section 3.1 has 7 tapes;
traditional proofs such as the one in [Pap94] would first convert D to a single-tape Turing machine Dingle,
and then apply the Cook-Levin reduction for single-tape Turing machines to Dsingle. Though this adds no-
tational overhead to our proof, it allows us to more easily track of which variables in @3gaT correspond to
the strings a and b (see Proposition 10.6 to see what these refer to).

Proof of Proposition 10.6. The Cook-Levin reduction considers the execution tableau of D when run for
time T. The execution tableau contains, for each time + € {1,..., T}, variables describing the state of D
and the contents of each of its tape cells at time . More formally, it consists of the following three sets of
variables.
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1. For each time t € {1,...,T}, tape i € {1,...,7}, and tape position j € {0,1,...,T + 1}, the
tableau contains two Boolean-valued variables

crij = (Crijiscrije) € {0,1}?

which are supposed to correspond to the contents of the j-th tape cell on tape 7 at time ¢ according
to encr(-). The variables with j € {0, T + 1} do not correspond to any cell on the tape; rather, the
j = 0 variables correspond to the left-boundary of the tape, and the j = T + 1 variables correspond
to the right-boundary of the first T cells on the tape. These are expected to always contain the special
boundary symbol “[1”, i.e. ¢;;; should be equal to encr([J) whenever j € {0, T + 1}. As we will
see below, it is convenient to define these so that for each t € {1,...,T}, i € {1,...,7}, and
j€{1,...,T}, the variable Ct,i,j also has a variable to its left ¢;; ;1 and to its right ¢; ; j 1.

2. For each time t € {1,...,T}, tape i € {1,...,7}, and tape position j € {0,1,...,T + 1}, the
tableau contains Boolean-valued variables /;;; € {0, 1} which are supposed to indicate whether the
i-th tape head is in cell j at time ¢. For the boundary cells j € {0, T + 1}, we expect that /;; ; = 0 for
allt € {1,...,T}andi € {1,...,7}.

3. Foreach time f € {1,..., T}, the tableau contains x Boolean-valued variables

Sy = (St,lr - /St,K) c {O, 1}K
which are supposed to correspond to the state of D at time ¢ according to encg(-).

Finally, we let )V denote the set of all of these variables. In other words,
V= {crijkttijkUhijteijU{sektek-
In total, the number of variables in the execution tableau is given by
V| =0O(T?+ T -log(|K|)) = O(T? + T -log(|DY)) . (102)

The first term in Equation (102) corresponds to the tape cell encodings ¢y and h;; j, and the second term
corresponds to the Turing machine state encodings s¢. The second equality uses the fact that |K| < |D|.

As stated above, we expect the variables in V to correspond to some time-T execution of the decider D.
However, in general these are just arbitrary {0, 1}-valued variables. We now describe a set of constraints
placed on these variables which, if satisfied, ensure they do indeed correspond to some time-T execution
of D. These constraints will be split into two categories: (i) the constraints corresponding to the boundary,
which ensure that the t = 1 variables are initialized to a valid starting configuration and the j € {0, T + 1}
variables are set according to Items 1 and 2, and (ii) the constraints corresponding to the execution of D,
which ensure that the variables at each time (f + 1) follow from the variables at time ¢ according to the
computation of D. We start with the boundary constraints, which are simple enough to be described with a
3SAT formula.

Definition 10.7. The boundary formula @poundary is the 3SAT formula on the variables V' described as
follows. Let 0 = enck(start) € {0,1}", where start € K is the start state of D. For the t = 1 boundary,
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$Boundary contains the following set of clauses.

Indices Clauses

ie{l,...,7} h1iq (103)
ie{l,...,7}, j#1 —hy,i (104)
ke{l,...,x} si’,‘k (105)
ie{l,....,7},je{1,...,T} 21,1 V €12 (106)
ie{l,...,5}, j<je{1,..., T} —C1,ij1 V Crijia (107)
ie{6,7},je{1,..., T} C1,ij1 and 7€ j» (108)

This is meant to be read as follows: for each row, the “Indices” column specifies the range of the indices
that the clauses in the “Clauses” column are quantified over. For example, row (103) specifies that for all
i € {1,...,7}, PBoundary contains the clause h1;;. For the j € {0, T + 1} boundary, @poundary contains
the following set of clauses.

Indices Clauses
te{1,...,T},ie{1,...,7},j€ {0, T+ 1}, ke {1,2} Chijk (109)

Rows (103) and (104) ensure that at time ¢ = 1, each tape has exactly one tape head, and it is located
on cell j = 1. Row (105) ensures that at time f = 1, the state is given by the start state start. (Recall the
notation x} to denote the literal x; if 0 = 1 and —x; if 0 = 0.) For the remaining rows, we recall that under
the encoding of the tape alphabet, encr(LJ) = 10 and encr(0J) = 11. As a result, (i) row (109) ensures
that for all times and tapes, the cells j € {0, T + 1} contain the [J symbol, (ii) row (106) ensures that for
time t = 1, no cell j ¢ {0, T + 1} contains the (J symbol, and (iii) row (108) ensures that for time t = 1
and tapes 6 and 7, all cells j € {1,...,T} contain the LI symbol. Finally, row (107) says that for tapes
i € {1,...,5},if cell j contains LI, then every cell j/ > j must contain L/ as well. This means that the five
strings encoded by c11, ..., 15 each consist of a string of 0’s and 1s followed by a string of LI’s. In short,
suppose we write 1, x, , 4, and b for the prefixes of these strings with no L’s. If PBoundary 18 satisfied, then
the execution tableau correctly encodes that the tapes of D contain inputs 7, x, i, 4, and b at time t = 1.

Next, we describe the execution constraints. These are more complicated than the boundary constraints,
and so we will begin by describing them in terms of a general Boolean circuit known as the local check
circuit. For any time t € {1,...,T — 1} and tape positions ji,...,j7 € {1,..., T}, the local check circuit
can check that the execution tableau properly encodes these tape positions at time ¢ 4 1 by looking only at the
encodings of these tape positions and their neighbors (i.e. the tape positions j; = 1 foreachi € {1,...,7})
at time £.

Definition 10.8. In this definition, we will define the local check circuit Ccpeck. It has the following inputs.

e Foreachi € {1,...,7}, it has the eight inputs

CCheck,0,i,—~1 CCheck,0,i,0 CCheck,0,i1 hcheck,0i,—1  MCheck,0,i0  NCheck,0,i1 (110)
CCheck,1,i,0 hcheck,1,i,0

where the c-inputs are in {0, 1}? and the k-inputs are in {0,1}.

e It has two inputs Scheck 0, SCheck,1 € {0, 1}%.
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In addition, for each time t € {1,...,T — 1} and tape positions j1,...,j; € {1,..., T}, we will define a
circuit CChQCk,t,jle7 by associating the inputs of Ccpecx With certain variables in ). We do this by associating
the following eight inputs from )V with the corresponding variables in Equation (110):

Ctiji—1  Ctiji  Chiji+1 hiji—1 heiji Briji+
CtiLij; by,

as well as by associating s; and s;1 from V with Scheck 0 and Scheck 1, respectively.

To define the behavior of Ccpeck, it Will be more convenient to define the behavior of the circuits
CCheCk,t,h,...,ﬁ for all values of ¢, i, ..., j7. However, it will be clear that each of these is in fact the same
circuit applied to different inputs, and hence this will define Ccpeci as well. Now, the circuit CCheck,t,jlwﬁ
acts as follows.

e Suppose for each i € {1,...,7}, exactly one of the tape positions j; — 1, j;, and j; + 1 at time ¢
contains a tape head. First, CCheck,t,j],,..,jy computes the transition function of the Turing machine
applied to the contents of these 7 tape positions and the state of D at time {, which produces the state
of D and contents of these tape positions at time ¢ + 1, as well as directions to move the 7 tape heads
in. Then Ccheck t,jy,...j; checks that the variables for the tape positions ji, ..., j7 and the state of D at
time ¢ + 1 match what they should be. In addition, if a tape head is marked as moving into a tape cell
containing a [J symbol, that tape head remains in place instead.

e Suppose for each i € {1,...,7}, none of the tape positions j; — 1, j;, or j; + 1 contain a tape head
at time t. Then Ccheck t,jy,...,j, checks that the variables for the tape positions ji, ..., j7 at time ¢ + 1
match the variables at time £.

e Otherwise, Ccheckt,jy,...,j; @CCEPLS.

This defines Ccneck ¢ and therefore Ccpeck-

J1reeer7°
Definition 10.8 shows the utility of introducing the boundary variables c;;o and ¢;; 741. The circuit
Ccheck checks the contents of a cell ¢;; ; at time ¢ + 1 by looking at the cell and its neighbors ¢t ;i 1,¢t 11
at time t. However, those cells with j € {1, T} only have either a left neighbor or a right neighbor, and so
without the boundary variables we’d have to introduce two other local check circuits designed just for these
boundary cases. The boundary variables then allow us to use the same local check circuit for all cells.

Proposition 10.9. The circuit Ccneck has size at most poly(|D|) and can be computed in time poly(|D|).

Proof. The circuit has 7 - 12 + 2 - k = 84 + 2« total Boolean inputs, giving a total of 284 - 4 = O(|K|?)
possible input strings. For each possible fixed input string, Ccpeck Will check if the actual input is equal to
the fixed input, which takes O(x) gates, and then it will accept if the fixed input should be accepting. This
takes O(|K|? - k) gates. Computing Ccpeck requires looping over all possible input strings and checking
which ones are accepting or rejecting. This requires computing the transition function of D, a task which
takes time poly(|D|). The proposition follows by noting that |K| < |D|. O

Proposition 10.10. Suppose that the execution tableau satisfies ¢poundary and the circuit CCheck,t,jl,...,ﬁ’ for
eacht € {1,...,T—1} and j1,...,j7 € {1,...,T}. Then the execution tableau correctly encodes the
execution of D on input (n, x,y,a,b) when run for time T.
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Proof. To show this, we will show for each time t € {1,... T} that the variables in the execution tableau
corresponding to time ¢ correctly encode the state of D and the contents of the seven tapes at time . The
proof is by induction on f. The base case of t = 1 follows from the tableau satisfying ¢oundary-

Next we perform the induction step. Assuming the statement holds for time ¢t € {1,...,T — 1}, we
will show it holds for time t + 1 as well. Let i* € {1,...,7} be a tape, and consider a tape position
jir € {1,..., T}. We will show that the variables correctly encode the contents of this tape position at time
t + 1. Suppose one of the tape positions j;+ — 1, j;+, or j+ + 1 at time £ has a tape head. For each of the other
tapes i 7 1%, we select a tape position j; such that either j; — 1, j;, or j; + 1 has a tape head at time . (These
positions are guaranteed to exist since each tape has exactly one tape head.)

By the induction hypothesis, for each tape i € {1,...,7} the variables corresponding to tape cells j; — 1,
ji» and j; + 1 correctly encode the contents of these cells at time ¢. By assumption, CCheck,t,jl,...,j7 evaluates
to 1. In this case, it calculates the transition function of D to compute the contents of the tape cells jy, ..., j7
at time f + 1 and checks that the corresponding variables encode these contents. As a result, the tape position
ji+ on tape i* is correctly encoded. In addition, it computes the state of D at time t + 1 and checks that the
corresponding variables encode this state. This completes the induction step. The case when none of the
tape positions j;= — 1, j;+, and j;» + 1 at time t contain a tape head follows similarly. Finally, the variables
for all tape positions j € {0, T + 1} are correctly encoded due to $Boundary being satisfied. ]

Proposition 10.10 gives a set of constraints that ensure the execution tableau properly encodes the ex-
ecution of D. Our next step will be to convert these constraints into a single 3SAT formula. This entails
transforming each circuit Ccheck ¢ 4,,...i, into a 3SAT formula. We do so using the following reduction.

Proposition 10.11 (Circuit-to-3SAT). There is an algorithm which, on input a size-r circuit C on variables
x € {0,1}", runs in time poly(r) and outputs a 3SAT formula ¢ on variables x € {0,1}" and y € {0,1}"
with O(r) clauses such that for all x, C(x) = 1 if and only if there exists a y such that x and y satisfy ¢.

Proof. This is the textbook circuit-to-3SAT reduction. For each gate i € {1,...,r}, the algorithm intro-
duces a variable y; € {0, 1}, so that the total collection of variables is Viotal = {X; }ic (1,0} U i¥iticq, .-
Consider gate i € { 1,..., r}, and let z1, 2y € Vioral be the pair of variables feeding into it. If gate i is an
AND gate, then ¢ includes the constraints

(mz1 V=22 Vy), (z1VzaVay), (z1V-ozVay), (mzVz Vo). (111)

These constraints are satisfied if and only if y; = z1 A z2. The case of gate i being an OR gate follows
similarly. Finally, ¢ includes the constraint (y;- ), where i* € {1,...,r} is the output gate. It follows that
x,y satisfy ¢ if and only if C(x) = 1 and for each i € {1,...,r}, y; is the value computed by gate i in
circuit C on input x. In total, ¢ has 47 + 1 clauses and is computable in time poly(r). Ul

We now apply the algorithm from Proposition 10.11 to Ccpeck, Which by Proposition 10.9 has size r <
poly(|D]). This produces a 3SAT formula @cpeck on the variables in Copeck plus auxiliary variables aj for
k € {1,...,r} added by the reduction. Now, foreacht € {1,..., T —1}andj,...,j7r € {1,..., T}, we
define a 3SAT formula @check t,jy,...j, analogously to CCheck,t,jl,...,jy- We begin by associating those variables
in @check Which come from Ccpeck’s inputs with the variables in V as in Definition 10.8. Next, for each
k € {1,...,r}, we introduce a new variable a;; ;. x € {0,1} and associate it with the variable a. This
defines @check t,jy,...j,- In summary, the final 3SAT instance produced by the Cook-Levin reduction is

@ ‘= PBoundary A ( /\ @Check,t,jl,...,jy) . (112)
tj1eeesf7
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By Proposition 10.11, the execution tableau properly encodes the execution of D if and only if there exists
a setting to the auxiliary variables satisfying the 3SAT formula ¢. In total, ¢ contains

|V|+0O(T®) - r <O(T*+ T -log(|D|) + T® - poly(|D|)) = poly(T,|D|) (113)

variables. The second term on the left-hand side of Equation (113) corresponds to the auxiliary variables
in each of the O(T®) copies of @cCheck- The inequality follows by Equation (102) and the fact that r <
poly(|D)).

Our next is to represent the 3SAT formula ¢ succinctly. To do this, we will provide a circuit C which
succinctly describes a 3SAT formula @3gat which, while not literally equal to ¢, will be isomorphic to it.
This means that, for example, @3saT may not even have the same number of variables as ¢, but any variable
in ¢ will correspond in a clear and direct manner to a variable in @3sat, and any remaining variables in @3gaT
do not appear in any clauses. This circuit is constructed as follows.

Definition 10.12. In this definition we construct the circuit C. It has three inputs z1, zp, z3 of length m,
which we specify below in Equation (114), and three inputs 01, 02,03 € {O, 1}. Foreachv € {1, 2, 3}, each
zy 1s supposed to specify a variable in ¢ according to a format we will now specify. If z, is not properly
formatted, then it does not correspond to a variable in ¢; if any of z1, 22, z3 is not properly formatted, then C
automatically outputs 0. Below, we will often write substrings of the z,’s as though they are integers from
some specified range, i.e. a € {b,...,c}. This means that a is represented as a binary string of length
[log(c + 1)], which is to be interpreted as the binary encoding of an integer between b and c.

The input z, is formatted as a string (w, &, B1, B2, B3, B4)- The first substring w has length m — (|a| +
|B1| + - - - + | Ba|) bits and is formatted to be the all-zeroes string. Its purpose is to pad the inputs to have
the length m we specify below. Next, a is formatted as an integer « € {1,2,3,4}. The variable encoded
by z, is specified by B,, and the other three ’s should be the all-zeros string. We now specify the encoding
of B, conditioned on the value of a.

1. By is formatted as (t,1,j,k), where
ted{l,..., T}, ie{1,...,7}, je{0,1,...,T+1}, ke{l,2}.

This corresponds to the variable Ctij k-

2. By is formatted as (t,1, ), where
te{1,...,T}, ie{1,...,7}, je{0,1,...,T+1}.

This corresponds to the variable ht,i,j-

3. B is formatted as (¢, k), where
te{l,..., T}, ke{l,...,«}.

This corresponds to the variable s; .

4. By is formatted as (t,f1, ..., j7, k), where
te{l,..., T—1}, j,...,j7€{L,2,...,T}, ke{l,...,r}.

This corresponds to the variable a;j, i k.
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In total, the length of these substrings is
& + [B1] + -+ |Bs| = O(log(T) +log(x) +log(r)) = O(log(T) + log(| D)) -
As aresult, because |D| < A, the length of the “padding” w can be chosen so that each z; has length
m = O(log(T) +1og(A)) . (114)

Checking that each z, is properly formatted can be done by checking that certain substrings of z1, z, and
z3 encode integers which fall within specified ranges. This can be done using O(m) gates.

Having specified the inputs, we can now specify the execution of the circuit, and we may assume that
21, 22,23 are properly formatted. Implementing the clauses from ¢poundary is simple; we specify how to
implement the clause from Equation (103).

e Suppose for input z1, & = 2. Then By can be parsed as (t,i,j). The circuit accepts if j = 1 and
01 = 1, regardless of z; and z5. This ensures that @3saT includes x,, V x§§ V xgg for any z, z3, 02, 03,
which is equivalent to including the arity-one clause x,.

This can be implemented with O(m) gates. Similar arguments can be used to implement the clauses from
Equations (104)-(109) using O(m) gates apiece.

Implementing the clauses from the formulas @check ... j, 18 more challenging. From Equation (111),
we can see that any constraint in this formula always involves a variable of the form a;  : i for some

ke{l,...,r}.

1. First check if one of its inputs z1, zp, z3 corresponds to such a variable. This can be done with O(1)
gates simply by checking if for any of the z;’s, a = 4. If so, this specifies the values of ¢, ji, .. ., j7.

2. Each variable in @check ... j, 1S associated with a variable in ¢cpeck- The circuit checks if all the z;’s
are contained in Pcheck t,jy,... j, and then it computes which variable in @cpeck they are associated with.
We include below the example of checking whether z; is associated with the variable ccpeck,1,1,0,0-

e The circuit C first computes ¢ + 1, which takes O(m) gates. It then looks at z; and checks
if « = 1. If so, then B1 = (¥, 7,7/, k'), and so it tests the equalities ' = t+1,i' =1, = jy,
and k" = 0, each of which takes O(m) gates to test. If so, then z; is associated with Ccheck 1,1,0,0-

There are poly(|D]) variables in @check and, for each variable z;, it takes O(m) gates to determine
whether z; is associated with this variable. As a result, because |D| < A, this takes poly(A,log(T))
gates to compute.

3. Whether z1, z, and z3 share a clause in @cneck ..., depends only on which variables in @cpeck they
are associated with. As a result, after having computed these variables, the algorithm can hard-code
whether the circuit C should accept.

This completes the description of C. In total, it contains poly(A,log(T)) gates. Computing C first requires
computing @cpeck, Which takes time poly(|D|) < poly(A) by Propositions 10.9 and 10.11. After that, the
steps outlined above for construction C take time poly(A,log(T)).

The circuit C succinctly describes ¢ in the loose sense described above. Recall that ¢ accepts if and
only if it encodes the execution of D up to time T. We now modify C to (i) hard code 7, x, and i onto D’s
input tapes, and (ii) ensure that D accepts. We demonstrate how to do so by hard coding 7 as an example.
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e The input 7 is described by some string v of length £ = O(log(n)). We would like to hard-code the
string (v, UT=%) into the first tape of D. To do this, we first check if z; corresponds to the variable
Ctijk for some values of ¢,1,j, k. Then, we check if = 1, the time where the inputs appear on the
tapes, and i = 1, corresponding to the first tape. If so, we branch on whether j < ¢. If it is, then if
k = 1 the circuit accepts if 01 = 0, and if k = 2 the circuit accepts if 01 = v;. Otherwise, if j > /,
then if k = 1 the circuit accepts if 0 = 1, and if k = 2 the circuit accepts if 0 = 0. This can be done
with poly(log(n),log(T)) gates.

This modifies ¢ so that it only accepts if 7 is written on its first tape at input. We can similarly hard-code x
and y onto the second and third input tapes and hard-code the accepting state as the final state of D. In
total, this takes poly(log(n), |x|,|y|,1og(T), A), which is poly(log(n), Q,log(T), A) because x and y
have length at most Q.

It remains to ensure that the variables corresponding to the 4th and 5th at time t = 1 are the lexicographically-
first named variables in ¢. However, this is simple and can be done using poly(log(n), Q,log(T), A) gates.
This concludes the construction. O

10.3 A succinct SSAT description for deciders

Proposition 10.6 allows us to convert any decider D and inputs 7, x, y into a 3SAT formula ¢3gaT, suc-
cinctly described by a circuit C, which represents it. However, there are two undesirable properties of this
construction, which we describe below.

1. First, evaluating any clause (wfll1 Vv wZz \% w?f) of @3sat requires evaluating the same assignment w
at three separate points. While this is fine when the assignment w is provided in full to the verifier,
it can be a problem when the verifier is only able to query the points in w by interacting with a
prover. In this case, the verifier might send the prover the values iy, i, i3, who responds with three
bits by, by, by € {0,1}, purported to be the values w;,, w;,, w;, for some assignment w € {0, 1}M.
As it will turn out, in the answer reduced protocol below, the verifier will actually be able to force
the prover to reply using three different assignments. In other words, the prover will have three
assignments wy, wy, w3 € {0,1}M such that, for any i1, iy, i3 provided to it by the verifier, it will
respond with by = wy;,, by = wy;,, b3 = w3,;,. However, even given this there is no guarantee that
the three assignments are the same assignments (i.e. that wy, = wy = w3). In the work of [NW19],
this was accomplished by an additional subroutine called the inftersecting lines test, which would
enforce consistency between w1, wo, and ws. In this work, on the hand, we would like to relax the
assumption that wi, wy, and ws must be the same. This will allow us to not use the intersecting
lines test, simplifying the answer reduction protocol. (In fact, the answer reduced verifier will not be
querying the assignments directly, but rather low-degree encodings of these assignments; see Section 9
for details.)

2. Second, we are guaranteed that w = (a, b, c) satisfies @sgar if and only if D accepts (1, x,y,a,b).
However, it is inconvenient that a and b are contained as substrings of w. To see why, recall from
Section 9 that the oracularized verifier sometimes gives one prover a pair of questions (x,y) and
another prover just one of the questions—say, x. The answer reduced verifier will sample its questions
similarly; as for its answers, it might expect the first prover to respond with a string w = (a, b, ¢) that
satisfies @3sar and the second prover to respond with a string a’ such that a = a’. Verifying that
a = a’ requires the verifier to sample a uniformly random point from w, restricted to the coordinates
in a. As it turns out, generating a uniform point from a substring is extremely cumbersome, though
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not impossible, to do when the verifier’s questions are expected to be sampled from conditional linear
functions. To remove this complication, though, we would instead prefer if the provers’ answers were
formatted in a way that gave the verifier direct access to the strings a and b.

In the remainder of this section, we will show how to modify the Succinct-3SAT circuits produced by
Proposition 10.6 in order to ameliorate these two difficulties. Doing so entails modifying the @3gaT formula
from Proposition 10.6 to produce a 5SAT formula @ssat. The clauses of @ssar will be of the form

ayt v b v w vV wyh Vs,
where a, b, w1, wo, and ws are five separate assignments which are not assumed to be equal. The guarantee is
that (a, b, w1, wy, w3) satisfies Psgar if and only if D accepts (1, x,y, a, b). This addresses the two concerns
from above: each clause is totally decoupled, meaning it samples 5 variables from 5 different assignments,
and so no consistency check must be performed between the assignments. In addition, the first two strings
exactly correspond to a and b, addressing the second item.

We now formally define decoupled SSAT instances and how they succinctly represent bounded deciders.
Following that, we show how the succinct 3SAT instance @3sat produced by Proposition 10.6 can be modi-
fied to produce a succinct SSAT instance @sgat Which represents D.

Definition 10.13 (Decoupled 5SAT and its succinct descriptions). A block of variables x; is a tuple x; =
(xi0,---, xi,Ni,l). A formula ¢ on 5 blocks x1, x2, ..., x5 of variables is called a decoupled 5SAT formula
if every clause is of the form

X VX Vg Vagh Vg, (115)

for ij €{0,1,..., Nj —1}andoy,...,05 € {0,1}. (Recall from Definition 10.2 that the notation x° means
xifo=1and —~xifo =0.)

For each i € {1,2,...,5}, suppose each N; is a power of two, and write it as N; = 2". Let C be
a circuit with five inputs of length nq, 15, ..., n5 and five single-bit inputs. Then C succinctly describes
decoupled @ if, for all i; € {0,1,...,N; —1} and 0,05, ...,05 € {0,1},

C(il,iz,...,i5,01,02,...,05)Il (116)

if and only if the clause in (115) is included in ¢. As in Definition 10.2, we slightly abuse notation and
use the convention that a number a between 0 and 2" — 1 is interpreted as its binary encoding binarynl_ (a)
when provided as input to a set of #; single-bit wires.

Definition 10.14 (Succinct descriptions for bounded deciders). Let D be a decider. Fix an index n € IN
and atime T € IN. Let L = 2¢ be the smallest power of two at least as large as 2T. Let x and Yy be strings,
re Nand R =2".

Consider a circuit C with two inputs of length ¢, three inputs of length 7, and 5 single-bit inputs. Let ¢¢
be the decoupled SSAT instance with two blocks of variables of size L and three blocks of size M which C
succinctly describes. Then we say that C succinctly describes D (on inputs n, x, and y and time T) if, for
all a,b € {0,1}%, there exists wy, wp, w3 € {0,1}X such that a, b, wy, wy, ws satisfy ¢ if and only if there
eXiSt Aprefix, Uprefix € {0,1}* of lengths ¢,, ¢, < T, respectively, such that

a = encr (Aprefix , and b = encr(bprefix ,

and D accepts (11, X, Y, Aprefix bprefix) in time T.
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In this definition of succinct descriptions, the answers a and b are isolated, in that the first input of C of
length £ indexes into a and the second input of length £ indexes into b. The next proposition shows how to
construct such descriptions.

Proposition 10.15 (Explicit succinct descriptions). There is a Turing machine SuccinctDecider with the
following properties. Let D be a decider, let n, T, Q, and A be integers with Q < T and |D| < A, and
let x and y be strings of length at most Q. Then on input (D,n,T,Q, A, x,y), SuccinctDecider outputs a
circuit C with two inputs of length Lo(T), three of length ro(T, A), and five single-bit inputs which succinctly
describes D on inputs n, x, and y and time T. Moreover, the following hold.

1. 6o(T) = [log(2T)].
2. 10(T,A) = O(log(T) + log(A)),
3. C has at most so(n, T,Q,A) = poly(log(T),log(n), Q, A) gates,

4. SuccinctDecider runs in time poly(log(T),log(n), Q, A), and the parameters €y, o, so can be com-
puted fromn, T, Q, A in time poly(log(T),log(n),log(Q), A).

Proof. The Turing machine SuccinctDecider begins by running the algorithm in Proposition 10.6 on input
(D,n, T,Q, A, x,y) to produce a circuit CssaT on 3rg + 3 inputs, where rg = O(log(T) + log(A)) is the
parameter 71 from the proposition. Set £y = [log(2T)], L = 2% and R = 2". Given this, SuccinctDecider
returns the circuit C with inputs 71,7, € {0,1,...,L — 1}, i3,i4,i5 € {0,1,...,R —1}, 01,02,...,05 €
{0,1}, and

C(il,iz,. . .,i5,01,02,. . .,05) = 1,

if one of the following conditions hold.

Cssat (i3, ia, i5,03,04,05) =1,

(i1 <2T) A (i1 = i3) A (01 # 03),

(ip <2T) A (ip = i3 —2T) A (02 # 03) ,
(ip > 2T) A (ipisodd) A (01 = 1),

(i1 > 2T) A (ip iseven) A (0 = 0) ,
(ip > 2T) A (ipisodd) A (02 = 1),

(ip > 2T) A (ipiseven) A (0o = 0) ,

(i3 = ia) A (03 # 04) ,

(is = i5) A (04 # 05) .

It is not hard to verify that testing “(iy < 2T)” can be done with O({y) AND and OR gates, and testing
(iy = i3 — 2T) can be done with O(m) AND and OR gates. Using similar estimates for the remaining
sub-circuits, we compute

size(C) = size(Cssar) + O(r0 + £o) = size(Cssat) + O(10)
< poly(log(T),log(n), Q, A) + O(log(T) + log(A)) .

In addition, due to the simplicity of these modifications, we conclude that the runtime of SuccinctDecider
is dominated by the runtime of the algorithm from Proposition 10.6, which is poly(log(T),log(n), Q, A).
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Now we show that C succinctly describes D on inputs 7, x, and y and time T. To begin, we describe
the decoupled SSAT formula ¢¢. Let us first consider the constraints in ¢¢ which are implied by the final
constraint, i.e. those of the form

Ell?ll V bfzz V (w1)1033 V (wz)?f \V4 (w3)1055

whenever iy = i5 and 04 # o0s. For any fixed iy, 1y, i3, the negations 01,07, 03 can take any values, and
as a result, the first three bits in the constraint vary over all assignments in {0,1}3. This means that these
constraints are satisfied if and only if (wz)z1 vV (w3)1055 is satisfied whenever iy = i5 and 04 # 05. This, in
turn, is equivalent to the constraint ws = wy. Carrying out similar arguments for the entire circuit, we can
express the formula ¢¢ as follows.

¢c(a,b,wy, wy, w3) = @asat(wi, wo, w3) A (w11 = a1) A (w1 =by)
N (612 = (10)1‘/27]") VAN (bz = (10)L/27T) A\ (w1 = wz) VAN (ZUZ = ZU3).

Here, we write ¢35a1 (w1, Wy, w3) for the formula in which, for each constraint in @35, the first variable
is taken from w1, the second from w;, and the third from w3. In addition, we write 2 = (a1,4;), where
aq is the first 2T bits in a and 4, is the remaining L — 2T bits, and similarly for b = (b, b). We also
write wy = (w1, W12, W13), Where w1 contains the first 2T bits in wq, wj, contains the second 2T
bits, and w3 contains the remaining R — 4T bits. As a result, ¢ is satisfied only if w; = wp, = w3z =
(a1,b1,c) for some string ¢ € {0,1}R4T. In this case, calling w = (a1,by,¢), @c is satisfied only if
@3sat(w) is. By Proposition 10.6, this implies that there exists string Aprefix of length £, < T such that
a1 = encr (Aprefix, UT=4). This, in turn, implies that

a= (ﬂl, aZ) = (encr(aprefixz I—lTiga)/ (10)L72T) = encl"(aprefixz |—|L/27€ﬂ)

4

using the fact that encr(U) = 10, and similarly for b. Finally, Proposition 10.6 implies that D accepts
(11, X, Y, prefix, prefix) in time T. This completes the proof. O

As stated above, moving from 3SAT to SSAT allows us to devote the first two inputs to a and b. In
addition, we have added extra constraints into ¢¢ which enforce that w; = w, = w3, which means that we
can relax this assumption on these assignments.

We now show a simple transformation that takes in a succinct circuit C and outputs another succinct
circuit C’ whose 5 inputs are “padded” to contain more input bits. This will be helpful in the PCP proof
below, where we sometimes expect the input lengths ¢ and r to be divisible by another integer .

Proposition 10.16 (Padding). Let C be a circuit of size s with two inputs of length ¢, three inputs of length r,
and 5 single-bit inputs. Suppose C succinctly describes D on inputs n, x, and y and time T. Then there is an
algorithm which takes as input (C, ¢, r,0',v"), with €' > £ and ' > r, and in time poly(s, ', r") outputs a
circuit C' with the following properties. First, C' has two inputs of length {', three inputs of length v', and 5
single-bit inputs, and its size is s + poly(ﬁ’ ! ) Second, it succinctly describes D on inputs n, x, and y and
time T.

Proof. Write L = 2/,R = 2" and L' = 2¢,R’ = 2. The algorithm constructs the circuit C’ which on
inputs i1,ip € {0,..., L' — 1}, 1i3,i4,i5 € {0,...,R" =1}, and 01, ...,05 € {0,1}, outputs 1 if and only if
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one of the following conditions hold:

(11,12 < L) (ig,i4, i5 < R) /\C(il,iz, i3, i4, i5,01,02,03,04,05) =1 ,
(i > L)A(ipisodd) A (00 =1),
(i > L) A (ipiseven) A (01 =0),
(i > L)A (ipisodd) A (0o =1),
(i > L) A (ipiseven) A (02 =0) .

Now we show that C’ succinctly describes D on inputs #, x, and y and time T. To begin, we describe the
decoupled 5SAT formula ¢¢/. The second and third constraints imply that for each iy > L, @¢/ contains the
constraint (a;,) if i1 is odd and (—a;, ) if 1 is even. Likewise, the fourth and fifth constraints imply that for
each ip > L, ¢ contains the constraint (b;,) if i, is odd and (—a;, ) if i is even. Thus, we can express the
formula @ as follows.

per(a,b, w1, wy, w3) = @e(ay, by, w1, w1, w31) A (ay = (10)E=H/2) A (b, = (10)E =172y (117)

Here, we write a = (a1,a2) and b = (by, by), where ay, by have length L and a,, b, have length L’ — L, and
foreach i € {1,2,3}, we write w; = (w;1,w;2), where w; 1 has length R and w; ; has length R" — R.

Now, suppose there exist w1, wy, w3 such that a, b, wy, wo, w3 satisfy @¢r. Then because C succinctly
represents D, there exists dprefix, Dprefix Of lengths €4, £, < T such that D accepts (n,x,y, Aprefixs bpreﬁx). In
addition,

L/2—¢
a1 = encr (aprefixz U / a)/

and likewise for by. Equation (117) then implies that

a = (a1,a2) = (encr (aprefin, IE/> "), (10) (' -1)/2)

= (el‘lCr (apreﬁX/ I—lL/Ziga )/ enCT(I—l) (E=L) /2)
|_|L’/27€a ),

= encr(aprefix,

where the third step used the fact that encr(L/) = 10. As a similar statement holds for b, this establishes
that C’ succinctly describes D on inputs 7, x, and y and time T. O

10.4 A PCP for normal form deciders

We give a probabilistically checkable proof (PCP) for the Bounded Halting problem specialized to the case
of normal form deciders. Our PCP will use standard techniques from the algebraic, low-degree-code-based
PCP literature. In particular, we slightly modify the PCP for Succinct-3SAT described in [NW19, Section
11] (which itself is based on the proof of the PCP theorem in [Har04]) to apply it to the decoupled Succinct-
5SAT instances described in Section 10.3. We follow their treatment closely. As the PCPs constructed in
this section are only an intermediate object towards the normal form verifier introduced in the next section
we do not include standard definitions on PCPs, and refer to these references (in particular [Har04]) for
background. We begin with some preliminaries.

10.4.1 Preliminaries

A key part of the PCP will be to design a function f : [F" — IF which is zero on a subcube Hgypeype =
H; x - - - x Hy, where each H; is some subset of IF. Our next proposition shows that given such a function f,
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there is a way of writing it so that the fact that it is zero on Hgpeupe 1S self-evidently true. Doing so involves
showing that f can be written in a simple basis of polynomials which are constructed to be zero on the
subcube. This fact is standard in the literature (see, for example, [Har0O4, Proposition 5.3.5]), and we include
its proof for completeness.

Proposition 10.17 (Polynomial basis of zero functions). Let IF be a field. For eachi € {1,...,n}, let H;
be a subset of F of size h;, and let zero; : IF — IF be the function defined as zero;(x) = [yep, (x —Y).
Define Hgypeupe = Hi X - -+ X Hy. Suppose f : " — T is a degree-d polynomial such that f(x) = 0 for
all x € Hgypeube- Then there exist polynomials cq, . .., ¢y, @ " — T such that for all x € TF",

f(x) = i%ci(x) - zero; (x;) .

In addition, for eachi € {1,...,n}, c; is degree-(d — h;) if d > h;, and otherwise it is equal to the zero
polynomial.

Proof. To prove this, we first prove the following statement for each k € {0,1,...,n}: there exists a
degree-d polynomial 7 : F" — IF and polynomials ¢y, . .., cx : [F" — TF such that

™=

flx) =

ci(x) - zero;(x;) + re(x) . (118)
i=1

In addition, for each i € {1,...,k}, ¢; is degree-(d — h;) if d > h;, and otherwise it is equal to the zero
polynomial. Furthermore, for eachi € {1,...,k}, ri is degree at most l1; — 1 in x;.

The proof is by induction on k, the base case of k = 0 being trivial. Now, we perform the induction
step. Assuming that Equation (118) holds for k, we will show that it holds for k + 1 as well. Let r; be the
polynomial guaranteed by the inductive hypothesis. We now divide 7 by zerog 1 (x.1) using polynomial
division. This guarantees a polynomial ¢ 1 and a degree-d polynomial 7y 1(x) such that

(%) = crp1(x) - zerogiq (Xeq1) + g1 (x)

In addition, ci 1 is degree-(d — hyyq) if d > hi 1, and otherwise it is equal to the zero polynomial. Fur-
thermore, for eachi € {1,...,k+ 1}, rx.q is degree at most hi; — 1 in x;. Plugging this into Equation (118),

we see that
k+1

f(x) =) ci(x) - zero;(x;) + repa (x) . (119)
i=1
This completes the induction.
Applying the k = n case of Equation (118), we see that

fx) = ici(x) - zero;(x;) +r(x) , (120)

i=1

where, for each i € {1,...,n}, ris degree-(h; — 1) in x;. For each x € Hgypcupe, because f(x) and
the summation on the left-hand side of Equation (120) are zero on x, this implies that r(x) = 0 as well.
We claim that r must therefore be the zero polynomial. We prove this by showing the following statement
for every integer k € {1,...,n}: let s(xy,...,xx) be a polynomial which is zero on Hy X --- X Hj.
Furthermore, suppose that for eachi € {1,...,k}, sis degree-(h; — 1) in x;. Then s is the zero polynomial.

123



The proof is by induction on k. Consider the base case k = 1. Then s is a univariate polynomial of
degree at most iy — 1, but is zero on k7 points. Thus s must be the zero polynomial. Now we perform the
induction step. Assuming the proposition holds for some k > 1, we will show that it holds for k + 1 as
well. Assume for contradiction that s is not the zero polynomial. Let d be the minimum integer such that s
is degree d in variable xj 1. By assumption, d < iy, — 1. Write

d .
s(x1,..., Xky1) = Zx{cﬂ -&i(x1, .. k),
=

where for each j € {0,...,d}, the polynomial Sj has degree at most h; — 1 in the variable x; for i €
{1, e, k}. Because s is nonzero and d was selected to be minimal, g; cannot be the zero polynomial. In
this case, our induction hypothesis states that g;(y) # 0 for some y € Hy x --- X Hy. Then s(y, xj41) is
a degree-d nonzero univariate polynomial in x 1. Furthermore, for each xy11 € Hyy1, S(y, xx+1) = 0, by
assumption. But this is a contradiction, as any univariate polynomial of degree at most /1,1 — 1 which is
zero on every point in H; 1 must be the zero polynomial. As a result, s must be zero on Hy X - -+ X Hj,1.

Thus, 7 is the zero polynomial. Applying this fact to Equation (120), we arrive at the statement in the
proposition. O

10.4.2 The PCP

The problem. The input to the PCP verifier is a tuple (D, n, T, Q, A, x,y). Here, D is a decider, n, T, Q,
and A are integers with Q < T and |D| < A, and x and y are a pair of strings of length at most Q each. The
goal of the verifier is to check whether there exists two strings aprefix and bprefix of length at most T such
that D halts on input (1, x, y, Aprefixs bpreﬁx) in time at most T. To do that the verifier makes random queries
to a specially encoded PCP proof 11, and decides whether to accept or reject based on the parts of I1 that it
reads. We first set the parameters used in the PCP construction.

Definition 10.18 (Parameters for the PCP). For all integers 11, T, Q, A € IN such that Q < T and |D| < A
define the tuple pcpparams(n, T,Q,A) = (¢,r,s,m,d, m’,q) as follows. Let ry = ro(T,A), by = £o(T)
and s) = so(n,t,Q, A) be as in Proposition 10.15.

1. Letm = [ro/ log(ro)].

2. Let r, ¢ be the smallest integers such that r > ry and £ > £ and such that r, ¢ are multiples of m.
Note that 7 < rg+m and £ < £y + m.

3. Lets = sp.
4. Letd = 8s- (2"/™ — 1) = 8s - poly(r).
5. Letm’ =5m+5+s.

6. Let g be the smallest field size such that: g = 2* for some odd integer k; g™ > 2'; and d(m +
m')/q¢ < %, where c is the smallest of the two universal constants in Lemma 7.4 and Theorem 7.14.

Givenn, T,Q, A, pcpparams(n, T, Q, A) can be computed in time poly(log(n),log(T),log(Q), A).
Next, we define the format of a valid PCP proof, which for our construction consists of evaluation tables

of low-degree polynomials.
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Definition 10.19. Given n,T,Q,A € N and (¢,r,s,m,d,m’,q) = pcpparams(n, T,Q, A), a low-degree
PCP proof is a tuple I1 of evaluation tables of polynomials g1,..., g5 : IF;” — Fgandco, ..., cp : ]Fg1/ —
IF, with all polynomials having degree at most d. We divide the m’ input variables of ¢y, . .., ¢,y into blocks
as follows:

—
IFl]” ]F:]n ]Fg ]F;

!
]quaz:(xl,..., X5, 0 , w).

Definition 10.20. Given a low-degree PCP proof IT and a point z = (x1,...,Xx5,0,w) € ]qu/, where
X1,...,x5 EF™ o € ]F;, and w € IF;, the evaluation of T1 at z is given by

eval.(IT) = (a1,...,a5,Bo, .., Bu) € S,
where a; = g;(x;) and B; = cj(z).
Theorem 10.21. There exists a Turing machine M ar with the following properties.
1. (Input format) The input to M g consists of two parts: a “decider specification” and a “PCP view.”

(a) (Decider specification) Let D be a decider, n, T, Q, and A be integers with Q < T and |D| < A,
and let x and y be strings of length at most Q. Let ({,r,s,m,d,m’,q) = pcpparams(n, T, Q, A)
be as in Definition 10.18. Then the decider specification is the tuple (D,n,T,Q, A, q,x,y).

(b) (PCP view) Let z € ]F;”, and let B € ]F2+ml. Then the PCP view is the pair (z,Z).
The Turing machine M aR returns either 1 (accept) or 0 (reject).

For the remaining items, assume a decider specification has been fixed, so we think of M ar as a function
of the PCP view input only.

2. (Completeness): Suppose aprefix, Uprefix € {0,1}* are two strings of length £,, £y, respectively, such
that D halts in time T on input (1, X, Y, prefix, bprefix ). Setting L = 2L write

L/2—¢ L/2—¢
a = encr (Aprefix , U 2=ty and b= encr (bprefix , U 2=ty |

Then there exists a low-degree PCP proof (Definition 10.19) 1 = (g1,...,85,€0, ., Cy ) With §1 =
Qa and §» = gy, the canonical low-degree encodings of a and b with parameters m, q respectively
(see Definition 3.24), which causes M aRr to accept with probability 1 over the choice of a point z
uniformly at random:

Pr (Mar(zeval(IT)) =1) =1.

/
m
ZEIF,’

3. (Soundness): Let IT = (g1,...,85,¢0,.-.,Cn) be a low-degree PCP proof such that Mg at a
uniformly random z accepts with probability larger than pgoung = 0.9:

Pr (Mar(zeval:(IT)) = 1) > Psound -

/
m
zE]Fq

Then there exist degree-d polynomials f1, f2 : g — Fq and strings a, b € {0,1}% with the following
properties.
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(a) There exist strings Aprefix bpreﬁx € {0,1}* of length {,, Ly, respectively, such that
a = encr(Aprefix , UE/2=4)  and b = encr (Dprefix / b2ty

(b) D halts in time T on input (11, X, Y, Aprefix, Dprefix)-

(c) Foreveryi € {1,...,2°}, fi(rL(i)) = a; and fo(7 (i) = b;, where 711 is the canonical
injection map given in Definition 3.22, where n = 2% and k, m are as here.

(d) On a random x € Y, the probability that fi(x) # g1(x) is at most 0.2, and likewise for f,
and g».

4. (Efficiency): Mag runs in time poly(s,m’,2"/™,log(q), |D|). Recalling the setting of parameters
in Definition 10.18, this means that M aR runs in time at most poly(log(T),log(n), Q,log(q), | D|).

Proof of Theorem 10.21. We first give the construction of M g and then show that it satisfies the properties
claimed in the theorem. The Turing machine M sr begins by computing

Co = SuccinctDecider(D,n, T, Q, A, x,y),

(see Proposition 10.15) which succinctly describes the decoupled SSAT formula ¢¢,. The circuit Cy has
two {o-bit inputs, three ro = O(log(T) + log(A))-bit inputs, and five single-bit inputs, and contains at
most sop = poly(log(T),log(n), Q,A) AND and OR gates. (We note that Cy also has NOT gates. However,
it will not be necessary for us to keep track of the number of these gates.)

Let C be the circuit obtained from Proposition 10.16 by padding the input wires of Cy so that the variable-
length inputs of C are two inputs of length ¢ and three of length ». Henceforth we work with this padded
circuit. The circuit C is a succinct description of D; we recall what this means here. Write L := 2¢ and
R :=2". Then for all a,b € {0,1}%, there exist uy, up, uz € {0,1}R such that a, b, uy, us, us satisfy ¢c if
and only if there exist prefix, bprefiix € {0,1}* of lengths ¢,, ¢, < T, respectively, such that

T/ T—¢
a = encr (Aprefix, ' ") and b = encr(bprefix, L' ?)

and D accepts (1, x,v, Aprefixs bpreﬁx) in time T. We refer to the five strings a, b, u1, up, u3 as the witness
strings. By Propositions 10.15 and 10.16, computing C from (D,n,T,Q, A, x,y) can be done in time

poly(log(T), log(n),log(Q), A).

Encoding the proof. Recall from Definition 3.22 the canonical subspaces H;, = Hcanonm i and Hg =
Heanonmkr (Where we see Hp, as a subset of Hy in a natural way), their sizes hp := heanonmi = 2/m
and IR := BeanonmiR = 2"/ and the following two canonical injections:

L, = Tlcanon,m,k,L - {0/ 1,...,L— 1} — Hzn ’
TR = Tlcanon,m,k,R {0, 1,...,R— 1} — Hlng .

By Definition 3.22 and the setting of parameters in Definition 10.18, these are both bijections, and /iy and
hg are both at most 2"/™ = poly(r).

The PCP proof contains five functions g1,...,95 : IF;” — qu. M ar expects these to be the low-degree
encodings $a 7, , §b,7t; » Sur,mtrs Suo, rs Sus, e Of five witness strings, the first two with respect to 777, and the
last three with respect to 7tg (see Equation (12) on page 30 for the definition of low-degree encodings). In
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this case, the first two have degree m(h; — 1) = poly(r), and the last three degree m(hg — 1) = poly(r).
In addition, for all i1, € {0,1,...,L —1}

gi(me(in)) = aiy,  &2(7mL(i2)) = by,
and forall j € {3,4,5} and i; € {0,1,...,R =1},
gi(mr(ij)) = uj-a,i, - (121)
We also recall the following maps from Definition 3.25:

_ . IEm Y4
VL = Vcanon,mk,L - IFq — ]Fq ’

VR = Vcanon,m,k,R * Iqu — IF; .

By Proposition 3.26, these are degree ip — 1 and hg — 1, respectively, can be computed in poly(m, hg, k)
time, and have the property that for eachi € {0,1,...,L — 1},

vp(mrp(i)) = binary, (i) , (122)

and likewise for vg.

Encoding the formula. Next, M g modifies C to make it compatible with low-degree encodings. To
begin, it applies the Tseitin transformation (see [NW19, Section 3.8]) to C. This produces a Boolean for-
mula F with s’ < 8s AND and OR gates (where we recall that s is an upper bound on the number of AND
and OR gates in C) such that for all i1, i, € {0,1,...,L —1},13,i4,i5 € {0,1,...,R—1},and o € {0,1}°,

C(il,iz,. . .,i5,0) =1
if and only if there exists a w € {0,1}° such that
.F(il,iz,...,i5,0,w) =1.

Next, M ar arithmetizes the formula as in [NW 19, Definition 3.28] by setting Fyy, := arith,(F). This is
a function F 4, : IF%”‘O’HS“ — IF; such that

Vx € {0, 124345 Foim(x) = F(x) . (123)

By [NW19, Proposition 3.29], F,n is a degree-s’ polynomial. Computing F,y¢, involves performing
O(s") = O(s) field operations (addition, subtraction, and multiplication), a time poly(s,logq) task. Let
m' = 5m + 5+ s, and define the function g, : IF?, — [F, by

So(X1,%2,...,%5,0,Ww) = Farin (VL (x1), vL(%2), VR (x3), VR(x4), VR (X5), 0, W) . (124)

By (122) and (123), for all iy, i € {0,1,...,L — 1}, i3,is,is € {0,1,...,R — 1}, 0 € {0,1}°, and
w e {0,1}",

g(p<7TL(i1)/ 7TL<i2>/ 7TR<i3)/ nR(iél)/ nR(iS)/ o, w) = f(ill i2/ ey Z.5/ o, w) . (125)

By construction, g, has degree at most s - hig and can be computed in time poly (s, m, hg,log(q)).
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Zero on subcube. Define the function ¢ : ]F;”, — Fjas

co(x,0,w) = go(x,0,w) - (g1(x1) —01) - - - (g5(x5) — 05) .

If the g; are low-degree encodings of witness strings, then ¢g is a degree d := s" - hg + 2mh + 3mhg =
O(s - poly(r)) polynomial. Next, define the subcube

N __ 172m 3m 5+s
Hsubcube +— dlgubcube, 1 X X Hsubcube,5m+5+s - HL X HR X {011} .

Here, the first 2m Hgypeube,i are Hi, the next 3m are Hy, and the remaining are {0,1}. We would like
to evaluate ¢y on the subcube Hgypoype in the case that the g; are low-degree encodings of the witness
strings. Let (x,0, w) € Hgypeube- Then because 71y, 7g are bijections, there exist i1, ip € {0,1,...,L — 1}
and i3,14,i5 € {0,1,...,R — 1} such that x = (7. (i1), 711 (i2), tr(i3), 7R (is), TR (i5)). As a result, by
Egs. (121) and (125),

co(x,0,w) = F(in, iz, ..., i5,0,w) - (a; —01)(bi, —02)(u1,i; — 03)(Up,i, — 04)(U3,iy —05) .  (126)

Suppose F (i, ia, . ..,i5,0,w) # 0. Then C(i1,i,...,i5,0) = 1, and so aol v bo2 Vv u‘{313 v u04 V uos isa
clause in ¢¢. Buta, b, uq, uy, us satisfy ¢¢, and so one of the terms in Equatlon (126) must evaluate to 0 In
conclusion, ¢y is zero on the subcube Hgpcube-

For each i, let zero; : IF; — IF; be the function deﬁne'd. as zero;(x) = Hye Hopeubes (X — Y)- If co
evaluates to zero on the subcube Hgypoube, then by Proposition 10.17 there exist degree-d polynomials

Clye vy Cppt ]FZ” — F, such that for all z = (x,0,w) € ]Fg”,

m/

co(z) = 2c,-(z) - zero;(z;) .

The PCP proof will include these c;’s to certify that cg is zero on the subcube. From the preceding discussion,
this, in turn, certifies that a, b, u1, up, u3 are witness strings that satisfy ¢¢.

The honest PCP proof. The PCP for (D,n,T,Q, A, 4, X, y) is given by a tuple I'T consisting of truth tables
of functions ¢1,...,95 : IF’“ — Fyand cg, ..., cpy : IFq — IF,, together with associated planes tables. In
the “honest” PCP proof, the functions are expected to satisfy the following:

e g1,...,95 are the low-degree encodings of a,b € {0,1}F and uy, up, u3 € {0,1}%;

e Forevery (x,0,w) € IF?/,
co(x,0,w) = gp(x,0,w)(g1(x1) — 01)(82(x2) — 02) - - - (g5(x5) — 05) ; (127)

® Cg,...,Cy are such that

Vz = (x,0,w) € ]F?, , ch zero;(z;) = co(z) . (128)
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The PCP view. We describe how Mag decides whether to accept or reject given a view (z,E) of a
purported PCP proof. Recall that the input E € IFSJ””/ is intended to be equal to the evaluation eval, (IT)
of a low-degree PCP proof IT = (g1,...,45,¢c0,.-.,Cy) at the point z = (x,0,w) € IFZI”/. We denote
the elements of Z by & = (ay,...,a5,Bo, ..., Bw ). Given a decider specification and a PCP view (z, &),
M ar decides to accept or reject by performing the following steps sequentially.

1. (Zero test) Verify that Eq. (128) holds at z = (x,0, w), i.e. reject if 2?1:/1 Bi zero;(z;) # Bo-

2. (Formula test) Verify Eq. (127) atz = (x,0,w) € ]qu/: compute the value g, (z) of the polynomial
gy obtained from (D,n,T,x,y). As noted below Eq. (125), this value can be computed in time
poly(s, m, hg,log(q)). Reject if

Bo # 8¢(z)(a) —01) - - (a5 —05) .

3. Otherwise, accept.

This completes the description of the Turing machine M sr. It remains to show the properties claimed in
the theorem. Completeness follows by inspection of M sr and the form of the honest PCP proof. Soundness
follows from [NW 19, Proposition 11.8]. We now evaluate the running time of M ar. The zero test involves
computing m’ different zero,(z;) values, each of which is a product of at most i different terms. This takes
time poly(m’, hg,1og(q)). The formula test involves computing g,(z). As discussed below Eq. (125),
given the decider specification (D,n, T, Q, g, x,y) and the point z € F", 8¢ (z) can be computed in time
poly(s,m, hg,log(q)). Taken together, these bounds imply the claimed runtime. O

10.5 A normal form verifier for the PCP

In this section we show how to convert the PCP from Section 10.4 into a normal form verifier. This results
in an “answer reduction” scheme: a way to map a verifier }V into a new verifier VAR with a smaller answer
size.

Let V = (S, D) be a normal form verifier and (A, y,0) a tuple of integers. In the rest of this section
we define the answer-reduced verifier VAR = (SAR DAR) agsociated with )V and (A, i, o). Completeness,
complexity and soundness of the construction are shown in the following sections.

10.5.1 Parameters and notation

First, we recall the parameters set by the PCP construction from Section 10.4. Let n be an index for V. Let
T=(u2")* and Q= (on)”. (129)

Even though these are fixed as functions of n and (p, ), for clarity we generally keep T and Q as free
parameters in the analysis. The answer reduction procedure, when applied to a normal form verifier V =
(S, D) and parameters (y, o), assumes the following bounds on the complexities of the verifier V:

DI <A, Vn>1, TIMEp(n)<T(n) and TIMEg(n), RANDg(n) < Q(n).  (130)

Let (¢,7,s,m,d, m',q) = pcpparams(n, T, Q, A) be as in Definition 10.18. We note that with the choice of
T and Q in (129), each of these parameters is poly(log T, Q, ).

Let (D,n,T,Q,A,q,x,y) be a decider specification to be input to the PCP verifier M ar specified in
Theorem 10.21. Recall from Definition 10.19 that a low-degree PCP proof consists of 6 + m’ polynomials
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1,85 ¢ IF;1 — IFgand co, ..., cp : IF;”I — IF;, where the variables of cy, ..., c, are divided into
blocks z = (x1,...,x5,0,w). We frequently view the polynomial g; not as a function with domain F
but rather as a function with domain IF?, that only depends on the i-th block of m variables, x; (recall that
m' = 5m + 5 + s). This allows us to consider all the polynomials as functions over the same domain ]Fg1/.
In the “honest” case, the polynomials g1, ¢» are expected to be low-degree encodings with parameters m, g
(see Definition 3.24) of answers a,b € ]F% respectively, where L = 2¢.

Next, we recall the parameters of the typed sampler SORA€ introduced in Section 9.2. The sampler uses
ambient space VORAC over IF, with dimension (1) that is identical to the dimension of S. Recall from
Definition 4.14 the notation pg denoting the distribution over pairs of questions (x4, xg) generated by S.
We use s 4 to indicate the marginal distribution of j.s on the first question x4, and SUPP(jis) to indicate
the set of question pairs that have nonzero probability under 5.

Remark 10.22. In this section, for convenience we often identify the label A with 1 and B with 2.

10.5.2 The answer-reduced verifier

Let V = (S, D) be anormal form verifier and (A, u, ) integers. All other required parameters and notation
are introduced in Section 10.5.1.

Sampler. The sampler is SAR = SORAC x SPCP where SORAC is the typed sampler obtained by oracu-
larizing S, as defined in Section 9.2, and the sampler SYCY is an additional typed sampler associated with
the PCP that is defined below. As a typed sampler, SAR uses type set 7ORAC x TPCP and type graph
GAR = GORAC » GPCP with edge set

EAR = {{(u,v), (W',V)}: {u,u'} € EO**A{v,v'} € EPPL.

We first define the sampler SPCP with field size function g(n). The sampler SPCP is taken to be x(SPCP)
(see Definition 4.15 for the definition of downsized samplers). The typed sampler STCF is a 2-level 7P¢P-
typed sampler, where

TPCP = {POINTy, ..., POINTs } U {PLANE, ..., PLANEg} ,

and the type graph GPCP = (TPCP EPCP) yses EPCP = TPCP 5 TPCP The ambient vector space for the
sampler is

5
VPCP — (EB Vix®Vivi ® Vi,VZ) @ Vaux,x © Vaux,vi © Vaux,va , (131)
i=1
where each space V;x, V;vi,V;va is isomorphic to IF}', and Vyux x, Vaux,vi, Vaux,v2 are isomorphic to
ngJrS. In addition, define the following direct sums:

5
V6,X - (@ Vi,X) @ VAUX,X ’
i=1

5
Vevi = (@Vi,w) ® Vaux,vi ,
i=1

5
Vo,va = (@ Vi,V2) @ Vaux,v2 -
i=1
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The conditionally linear function associated to type t € 7T is a CL function on VFCP defined as follows.

e For the types t = POINT; for i € {1,...,6}, the 1-level CL function LP" is identical to the CL
function LPT defined in Figure 3, with the 1st factor subspace replaced with Vi x here.

e For the types t = PLANE; fori € {1,...,6}, the 2-level CL function L% is identical to the CL
function LP" defined in Figure 3, with the Ist factor subspace replaced by Vivi @ Vjv2 and the 2nd
factor subspace by V; x.

Decider. The decider DAR is described in Fig. 13.

10.6 Completeness and complexity of the answer-reduced verifier

The following theorem formulates the complexity and completeness properties of the answer-reduced ver-
ifier. Since VAR is defined as a typed verifier, we use the detyping procedure described in Section 6.3 to
obtain an untyped normal form verifier.

Theorem 10.23. Let A, i, 0 € IN. Let V = (S, D) be a normal form verifier such that S is an (-level sam-
pler. Let VAR = (SAR DAR) be the answer-reduced verifier corresponding to V and parameters (), i, o).
Let detype(VAR) = (detype(SAR), detype(DAR)) denote the detyped verifier. Then detype(VAR) is a
normal form verifier such that the following hold. Let T(n) and Q(n) satisfy (129).

1. (Completeness) Assume that V satisfies assumption (130). Then for all n € IN, if V,, has a projective,
consistent, and commuting (PCC) strategy of value 1, then detype(VAR)n has a symmetric PCC
strategy with value 1.

2. (Sampler complexity) detype(S*R) is a max{/¢ + 4,5}-level sampler that depends on (u, ) and S
only (not on D). Moreover, the time and randomness complexities of detype(S AR) satisfy

TIMEgetype(sar) (1) = O(TIMEgonsc (1)) + polylog(T (1)) = poly(un, (on)”),
RAND geype(sar) = RANDgorsc (1) 4 poly log(T(n)) = poly(un, (on)”) .

3. (Decider complexity) The time complexity of the decider DR satisfies
TIME getype(par) (1) = poly (log(T (1)), Q(n), |D|) = poly(un, (o), |D]) .
4. (Efficient computability) There is a Turing machine ComputeARVerifier which takes as input a tuple

(V, A, u,0), with A, u,0 € IN, and returns descriptions of detype(SAR), detype(DAR) correspond-
ingtoV = (S, D). Moreover ComputeARVerifier given such an input runs in time

poly(|V|,log(A),log(u),log(c)).

Proof. We show each of the claimed properties in turn.
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Type Question Format Answer Format

PoINT; fori =1,...,5 yielF;” a; € Fy

PLANE; fori=1,...,5 v; € (]F;”)3 hi :p(v;) — Fy

POINTg z=(y,0,w) € IF;,”' (ay,...,a5,Bo, ..., Bw) € IFZ“r6
PLANEg ve (F)° (W, b5 fo, o fur) s p(0) = FHE

Table 1: Question and answer formats for types in 7 F¢P.

On input (1,ta, XA, tg, X, aa,ap), the decider DAR parses ta, tp as (tga, trma), and
(tos, trrp) respectively in 7ORC x TFCP parses x4 and xp as (xg a, xr1,4) and (xg, X11,8)
respectively. The decider performs the following steps sequentially, for all w € {A, B}:

1. (Global consistency check): If to = tg, reject if ax # ag.

2. (Input consistency check): If tg, = ORACLE and to = v € {A, B}, and if
(triw trnw) = (POINTg, POINT,), reject if o, # af, (where A <> 1 and B <> 2, as
per Remark 10.22).

3. (Input low degree test) If tg, = tow = v € {A,B}, and if (trw, tinw)
(POINT,, PLANE,; ), execute D[P on input (POINT, Xy, PLANE, X115, Aw, 4% ),

Idparams
where Idparams = (g,m,d, 1). Rejectif D . ¢ rejects.

4. (Proof encoding checks): If t , = tow = ORACLE,

(a) (Consistency test) If (tryq, trm) = (POINT;, POINTg) for some i € {3,...,5},
reject if a; # a).

(b) (Individual low degree test) If (trrw,triw) = (POINT;, PLANE;) for some i €
{3,...,5}, execute Dh‘f)arams on input (POINT, X1y ), PLANE, X171 5, 4w, 47 ). Reject
if Db‘;arams rejects.

(c) (Simultaneous low degree test) If (tryw, triw) = (POINTs, PLANEg), exe-
cute Dh‘;arams, on input (POINT, X1y, PLANE, X115, 4w, 4 ), Where |dparams’ =
(q,m',d,m" +6). Reject if Dt};arams, rejects.

5. (Game check): If to,, = ORACLE, then for v € {A, B}, compute x4, = L%(x0.w).
If try v = POINTg, reject if Mar((D,n, T, Q,q, Xuw A, XwB), (2,4 )) rejects. Otherwise,
accept.

Figure 13: The decision procedure DAR_ Parameters T, Q,q,m, m’, d are defined in Section 10.5.1.

Completeness. We first show completeness. Let 7 > 1 be an index for VAR, Let.7 be a PCC strategy for
V,, with value 1. By Theorem 9.1 it follows that there exists a symmetric PCC strategy . = (|i), M) with
value 1 for VORAC, We define a strategy .7 for the typed verifier VAR as follows. The shared state is |¢).
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Given the index n and (A, p, o), each player can compute (¢,7,s,m,d,m’,q) = pcpparams(n,T,Q,A)
(see Definition 10.18), where T = T(n) and Q = Q(n) are as in (129).

1. On receipt of a question ((tg,trr), (xg, xr1)) a player first measures their share of |i) using the
projective measurement for .%ORAC for the typed question (to,Xx@) to obtain an outcome ag. The
player then computes an answer, depending on tp, 4 and try, X171, as follows:

(a) Suppose tg = v € {A,B} and tyi; € {POINT,, PLANE, }. Let a’Q = ag if ag has length at
most T, and let ab be the truncation of ag to its first T symbols otherwise. Let ¢, < T be the
length of ab, and set

a’Q’ = encr(a/Q, I_JL/Z_Z”).
Next, the player computes the canonical low-degree encoding 8al) of aé using the canonical

low-degree encoding from Definition 3.22, in the same way as described in Section 10.4.2. The
player then returns the restriction of 8al) to the subspace specified by xty.

(b) If to = ORACLE, for v € {A, B} the player computes questions x, = LY(x(), as in Item 1 of
DORAC, The player parses ag as a pair (aa,ag). Let ay = aa if aa has length at most T, and
let a/A be the truncation of a to its first T symbols otherwise. Let /5 < T be the length of ak,
and set

a} = encr(a)y, UF/ 2,

Define afj similarly. The player computes a PCP proof IT = (g1,...,85,C0,...,Cp) as de-
scribed in the completeness case of Theorem 10.21 for the tuple (D, n,T,xa, xB), where the
polynomials g7, g are low-degree encodings of a{ and ajj, respectively.

i. If ti; € {POINT;, PLANE;} fori € {1,...,5}, the player returns the restriction of g; to the
subspace of IFZ1 specified by xr.

ii. Iftry € {POINTg, PLANEg }, the player returns the restriction of all the polynomials g1, 85
o, - - -, Cyy to the subspace of IF;”/ specified by x7.

(c) In all other cases the player returns 0.

The strategy .”' is projective and consistent because .’ is. To show that it has value 1, we first observe that
by definition it satisfies all consistency checks. Moreover, the strategy passes all low-degree tests with cer-
tainty because it always returns restrictions of consistent polynomials. Finally, it also passes the game check
with probability 1. This follows from the completeness statement of the PCP made in Theorem 10.21 and the
fact that, if D accepts the input (1, XA, Xg, a4, ag) in time at most T then it also accepts (1, xa, X, a’y, ay)
in time at most T, where a/, and a}; are obtained from a4 and ag by truncating them to strings of length T
if their lengths exceed T.

To show that . is commuting, note that using the product structure of SAR every typed question pair
with positive probability consists of a pair of questions ((tg,a, Xg,a), (tg,B, XQ,8)) With positive probability
for SORAC together with an arbitrary pair ((trya, xr1a), (tris, xrig)). Using that .#/OR*C is commuting
and that the additional operations associated with ((tH,A,xHIA), (tHIB,xH,B)) amount to classical post-
processing it follows that . is commuting.

This establishes the existence of a symmetric PCC strategy for V/*R with value 1. By Lemma 6.18 it
follows that there exists a symmetric PCC strategy for detype(VAR)n with value 1.
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Sampler complexity. The sampler SAR depends only on SORAC, which itself depends only on S (see
Theorem 9.1). Using Theorem 9.1, SOR*C is a max{/, 1}-level typed sampler. Using Lemma 6.18 for
the detyping it follows that SOR*C is a max{/ + 2,3}-level typed sampler. Using Lemma 6.18 again,
detype(SAR) is a max{/ + 4,5 }-level sampler.

In addition to the space VORAC used by SORAC, SAR yges space of dimension O(m + s) over [F,
defined in Eq. (131), and the claim on the randomness complexity follows. Time complexity is clear as well.
The complexity of detype(SAR) follows by Lemma 6.18.

VPCP

Decider complexity. The decider DR executes subroutines D> and Mag. The runtime of D is
poly(m,d, m’,log q) by Lemma 7.7, which for our choice of parameters is poly (). The runtime of M sr
is given in Theorem 10.21; for T and Q as in (129) itis poly(un, (cn)Y, |D|). In addition to the subroutines,
DAR performs only simple field manipulations in IF;, which by Lemma 3.18 can also be implemented in
poly(un) time since 4 is polynomial. The complexity of detype(DAR) follows by Lemma 6.18.

Efficient computability. The description of SAR can be computed, in polynomial time, from the descrip-
tion of S alone. The description of DR can be computed in polynomial time from the descriptions of S, D,
as well as D"P; the latter can be computed in polynomial time by Lemma 7.7. The complexity of computing
descriptions of the detyped sampler and decider follows by Lemma 6.18. O

10.7 Soundness of the answer-reduced verifier

Theorem 10.24 (Soundness of the answer-reduced verifier). Let y,0 € IN. Let V = (S, D) be a normal
form verifier satisfying assumption (130). Let VAR = (SAR DAR) be the answer-reduced verifier corre-
sponding to V and parameters (A, u, ), as described in Section 10.5. Let detype(VAR) denote the detyped
verifier, as in Definition 6.17. There exists a 6(¢,n) = poly(e + 1/n) such that the following hold. For all
n>1,

1. Ifval*(detype(VAR),) > 1 — ¢ for some ¢ > 0 then val*(V,) > 1— 5(¢g, n).
2. Let &(-) be as defined in Definition 5.12. Then for all € > 0,

& (detype(VAR),, 1 —¢) > &V, 1 —6(g,n)) .

Proof. We first show the first item, soundness, for the typed verifier VAR, Soundness for the detyped verifier
detype(VAR) follows from Lemma 6.18, with a constant-factor loss using that the type set 7 2R for VAR
has constant size.

We proceed in two steps. Fix an index n > 1 and suppose that val*(VAR) > 1 — ¢ for some & > 0.
Observe that SORAC and SPCP both sample distributions that are invariant under permutation of the two
players; therefore, the same holds for SAR. Moreover, the decider DR treats both players symmetrically.
Therefore, the game played by VR is a symmetric game. Applying Lemma 5.7 it follows that there exists
a symmetric projective strategy . = (|), M) for VAR with value 1 — .

We use the following shorthand notation. A pair of questions to the players is ((ta, Xy ), (tg, X5 )) where
forw € {A, B}, tw = (tQuw, triw) and xg, = (X 4, X11,,)- When w is clear from context we omit it from
the subscript. Fixing a w, whenever tg = ORACLE we introduce x5 = L*(x() and xg = LB(x/Q) and
often write directly the player’s question as xg = (x4, xg). Whenever to = v € {A, B} we slightly abuse
notation and write the question as xo = (X, v), explicitly including the type to clarify which player it
points to.
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X11

We denote the measurements used by both players in strategy . by { M(xq)," }, where for the sake of
clarity we have notationally separated the two parts xg and xyy of the question and omitted explicit mention
of the associated types to and t; (we include the type and write M (xQ)f{I’x“ when it is needed for clarity).
First we show that the strategy . is close to a strategy .¥’ that performs “low-degree” measurements: upon
receipt of a typed question (t,x) = ((to,tr1), (¥, x11)) a player first performs a measurement depending
on X to obtain a tuple of low-degree polynomials, and then returns evaluations of those polynomials on the
subspaces specified by x7. This step of the argument uses the quantum soundness of the low-degree test
performed in items 3. and 4 of Figure 13. Next, we “decode” this strategy to produce a strategy . for
VYORAC with a high value. This step makes use of the classical soundness of the underlying PCP shown in
Section 10.4. The conclusion of the theorem then follows from the soundness of VORAC (Theorem 9.2). We
proceed with the details.

We start by showing a sequence of claims that establish approximations implied by the assumption that
AR succeeds with probability at least 1 — ¢ in the decision procedure implemented by the decider in
Figure 13.

Claim 10.25 (Global consistency check, Item 1). On average over questions (ta, xa) = ((tg, tr1), (xo, x11))
sampled from the marginal distribution of ygar on the first player it holds that

M(x0)" @1 ~ I ® M(xg);" . (132)

Proof. First we observe that the condition t4 = tg for the global consistency check, item 1 in Figure 13,
holds with constant probability over the choice of a pair of questions (ta, X4 ), (tB, xp ) sampled according
to ptgar. Thus . must succeed in this test with probability 1 — O(e), conditioned on the test being executed:
this is because each of SORAC and SPCP have a constant probability of returning a pair of questions of the
same type.

Moreover, observe that conditioned on ty, = tp a pair of questions ((ta,xa), (ta, X)) ~ Hgar is
such that xo = xg = L'%(z), where z is the sampler seed and L' the CL function of type ta associated
with SAR. The claim then follows directly from the test and the definition of approximate consistency
(Definition 5.14). O

Claim 10.26 (Input consistency check, Item 2). For all v € {A,B}, on average over question pairs
(xa,x8) ~ pusandz = (y1,...,Yys5,0,w) € ]F;”/ sampled uniformly at random,

M(xp, x8)EON7 @ [ 2, T® M(x0,0)pe Y (133)

where as in Remark 10.22 we made the identification 1 <+ A and 2 <+ B. Moreover, an analogous relation
holds for operators acting on opposite sides of the tensor product.

Proof. Forw = A and fixed v € {A, B} there is a constant probability that to,, = ORACLE, toz = v,
and (trw, trim) = (POINTg, POINT,). Therefore, the input consistency check in Item 2 is executed with
constant probability, and . must pass it with probability 1 — O(¢), conditioned on the test being executed.

Moreover, conditioned on to,, = ORACLE, tg = v, and (triw, trim) = (POINTe, POINT,), the
distribution of (xgw, Xow) is ((xa,XB), xy) for (xa,x) ~ ps and the distribution of (X114, Xr1w) is
(z,Yy) for a uniformly random z € lF;”/. Eq. (133) then follows directly from the specification of the test
and the definition of approximate consistency. The “moreover” part follows from the case w = B. O

Claim 10.27 (Input low degree test, Item 3). For each v € {A,B} and for each x in the support of the
marginal of iLs on player v there exists a measurement { Gy} € PolyMeas(m, d, q) such that the following
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hold for some 61 = O(6.5(O(€),q,m,d, 1)), where ., is defined in Lemma 7.4. For allv € {A,B}, on
average over x chosen from the marginal of us on player v and y, € ]FZ1 sampled uniformly at random,

POINTy, Yo
M(x,0)s"N"Y @ T~ 19 Gy, (=] * (134)
POINTy, Yo 5
[®@M(x,0), " Y Glevaly, ()=a) © 1/ (135)
Gg'” @I~ I® Gg'” , (136)

where we used the notation evaly, (8) = g(vo) for the evaluation map.

Proof. Fix v € {A,B}. For any w € {A,B} there is a constant probability that to,, = tom = v and
(triw, triw) = (POINTy, PLANE, ). Therefore, the input low degree test in Item 3 is executed with constant
probability, and . must pass it with probability 1 — O(e), conditioned on the test being executed.

Observe that by definition the distribution of (xn, A, xH,B) conditioned on tg , = tow = U, uniformly
random xo = (Xo,v), and (trrw, trw) = (POINT,, PLANE,), where w € {A,B} is uniformly ran-
dom, is exactly the distribution of questions in the game &P described in Section 7.1.1, parametrized by
ldparams = (q,m, d, 1).

For every v € {A,B} and question x = LY(z) in the support of the marginal distribution of ys on
player v let €5, be the probability that .# is accepted in Item 3, conditioned on the test being executed
and on average over w € {A,B}. Then E[ex,] = O(e), where the expectation is taken over a uniformly
random v € {A,B} and x = LY(z) for uniformly random z.

By definition it follows that the strategy SAR conditioned on the first part of the players’ questions being
tow = tow = vand xga = XQp = X is a projective strategy that succeeds with probability 1 — &, in
the low-degree test Dldparams executed in Item 3.

We may thus apply Lemma 7.4 to obtain {G'"} € PolyMeas(1,d, q) such that (134), (135) and (136)
each hold with approximation error O(d.p(ex,0,4,m,d,1)). Using that for fixed q,m,d the function & —
Sip (e, q,m,d, 1) is concave, the claim follows from Jensen’s inequality. ]

Claim 10.28 (Proof encoding checks, Item 4). For each xo = (xa, xg) in the support of s there exist
measurements {GéxA’xB)’l} € PolyMeas(m, d, q) for eachi € {3,4,5} and

{JF) e} € PolyMeas(in, d, g, +6)

such that the following hold for some
6 = O(6up(O(e), q,m,d,1) + 8.5(O(e), q,m’,d,m’ +6)) .
First, for all i € {3,4,5}, on average over (xa,xp) ~ ps and z = (y1,...,Ys5,0,w) of type POINT4

sampled uniformly at random,

POINT;,y;

I ® M(xa,XB)a, ~e M(xp,x8)5""™N" @1 (137)

Second, for all i € {3,4,5} and on average over (xa,x) ~ s and y; € Fy' sampled uniformly at
random,

M(xa, 1) @ T s 160 G[(e"vf*al’;f()) "y (138)
Gia ™ @ [ vy, T G (139)
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Third, foralli € {1,...,5} and j € {0,...,m'}, on average over (xa,xp) ~ s and z € IF;”, sampled
uniformly at random,

POINTg,z XA,X

M(xA/ XB) ;5 BoseerBt ® 1 >, I® ]e‘fal 5) =(@10ee 5,0, By )] 7 (140)
(xa,x (xa,x

i AfB5€0 . ®I_521®] AfBSCo . (141)

Moreover, analogous equations to (137), (138) and (140) hold with operators acting on opposite sides of
the tensor product.

Proof. The proof of the first item is similar to the proof of Claim 10.26, and we omit it.

The proof of the second and third items is similar to the proof of Claim 10.27, and we include more
details. Fix ani € {3,4,5}. Forany w € {A, B} there is a constant probability that to, = tqw =
ORACLE and (ty1 4, trrm) = (POINT;, PLANE;), in which case the individual low-degree test in Item 4b is
executed. Therefore, . must succeed in that part of the test with probability 1 — O(e) conditioned on the
test being executed.

Furthermore, for fixed i € {3,4,5} and uniformly random w € {A, B}, conditioned on the test being
executed for that i and w the distribution of (xy7a, X115) is exactly the distribution of questions in the game
&P described in Section 7.1.1, parametrized by ldparams = (g, m, d, 1).

For every i € {3,4,5} and x = (xa,xp) in the support of yg let €, ,; be the probability that . is
accepted in Item 4b, conditioned on the test being executed for that i and on average over w € {A,B}.
Then for each 7, [E[e, ;] = O(¢), where the expectation is taken over a uniformly random x ~ .

By definition of the individual low-degree test it follows from Lemma 7.4 that for every x = (xa, xB)
an)iy o PolyMeas(m,d, q) such that
on average over Y; € ]FZ1 of type POINT; sampled uniformly at random, Eq. (138) and (139) both hold
with approximation error O(dyp(€x,4,m,d,1)). Eq (138) and (139) follow using the concavity of d,, as a
function of e.

Finally we consider the simultaneous low-degree test, Item 4c. Here as well, using that there is a constant
probability that to,, = toz = ORACLE and (try, trim) = (POINTe, PLANEg) it follows that AR must
succeed in that part of the test with probability 1 — O(e). Using a similar argument as before it follows

from Lemma 7.4 (this time for parameters (g, m’,d, m’ 4+ 6)) that for every (xa, xg) there is a family of

measurements { J fo J;z)c(] .} € PolyMeas(m’,d,q,m" + 6) such that on average over z € IF?, sampled

uniformly at random, Eq. (140) and (141) both hold with approximation error O(é.(O(e),q,m’,d, m" +
6)). O

in the support of yg and i € {3,4,5} there is a measurement {G

The families of measurements {G;Q’i} and { ]}ClQm Forcort }, for xg in the support of ps and i €

{1,...,5}, whose existence follows from Claim 10.27 and Claim 10.28 have outcomes that are low-degree
polynomials: for the first family, degree d polynomials g : F7" — IF,, and for the second, tuples of degree

d polynomials f;, c; : Ing, — IF,. Recall that m" = 5m 4 5 + s and that an element z € IF;”, is written as
a triple (y,0,w) with x = (y1,...,y5) € ]F;m, 0 € IF;;’ and w € ]F;. The following claim, whose proof is
based on Lemma 5.23, shows that we can reduce to a situation where the polynomials fi, ..., f5 returned
by ] are such that for each i € {1,...,5}, f; only depends on the y;, and not on the entire variable z.
Claim 10.29. For all (xa, xp) in the support of us and degree d polynomials g1, ..., g5 : IF;” — IF; and
COs-vvrCppt - ]qu/ — B, define

xAxB _ xalpxp2 ~(xax8)3  ~(xaxB)5p(xaxB) ~(¥ax8)5  ~(¥aXB)3 ~xp,2 ~xa,l
A 5,C0r- Gg1 ng Gg3 Gg5 Co,---,Cm/Ggs Gg3 ng Gg1 , (142)
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where the outcomes (f1, ..., f5) of the | operator in the middle have been marginalized over. Then there is
a

5= 0 (swteantan +6)+ %))

such that
53 > max {8, 51, (52}

and on average over (Xa,Xg) ~ s and z € IF?, sampled uniformly at random,

Neval, ()=(ap)] @ T =6 T O T ()=(ap)) - (143)

Moreover, a similar equation holds with the operators acting on opposite sides of the tensor product.

Proof. We apply Lemma 5.23 with the following setting of parameters. The number of sets of functions k
is set to 6. The question set X is set to the support of ys, and the distribution y on it is the distribution ps.
The sets G; fori € {1,...,5} consist of degree d polynomials over IF;”/ that depend only on the i-th block

of m variables. The set G consists of (m’ 4 1)-tuples of degree d polynomials over ]F;”/.
We first verify the assumption on the sets of functions. Since all polynomials have degree at most d,
by Lemma 3.20 the parameter ¢ in Lemma 5.23 can be set to d/g.

The family of measurements { A, .} in Lemma 5.23 is the family of measurements {]}f“}‘;lo le}

here, where we set g; = f; fori € {1,...,5} and g6 = (co,...,Cyp). The measurements {Gé’x} in

Lemma 5.23 are {GgA’i} fori € {1,2}, {Gé(,xA’xB)’i} fori € {3,4,5}, and {]éxA’xB)} for i = 6. To ensure
that all polynomials are defined over the same range, we treat g : IF? — IF, that is an outcome of some

{Gé’x } as a polynomial g’ : IFZ1/ — IF,, where the role of the m variables of g is taken by the i-th block of
m variables of ¢’.

We verify assumption (38) in the lemma. For i € {1,2} the assumption follows by combining (133)
and (135) with (140) and Fact 5.21. For i € {3,4,5} we use (137) instead of (133) and (138) instead of
(135). Finally, for i = 6 we use (141) and Fact 5.21. In these derivations, we use Fact 5.20, the triangle
inequality for “~”.

The conclusion follows from Lemma 5.23, using also that ¢, 81,5, = O(.p (¢, q,m’,d, m’ +6)), as can
be verified from the definition of d,, given in Lemma 7.4.

O

At this point, we have constructed measurements G and A that return low-degree polynomials in a
similar way as is expected from the honest strategy in V'R, as described in the proof of Theorem 10.23.
These measurements can be used to specify a new strategy .7’ for the game V'R as follows. The shared
state remains the state |) used in .. For w € {A, B}, upon reception of a question (ty, X)) player w
performs the following. If t,, = (tQ,w, triw) is such that tg,, = ORACLE, the player measures their share
of WJ) using the measurement A*Qw defined in Claim 10.29 to obtain a tuple (gl, .o, 85,€0, .- ., Cpr) Of
polynomials. The player then answers exactly as in the strategy described in the “completeness” part of the
proof of Theorem 10.23. Similarly, if to,, = v € {A, B} the player first measures their share of |¢) using
the measurement G*2«” from Lemma 10.27 to obtain a polynomial g as outcome; the player then answers
according to the same honest strategy.

Lemma 10.30. The strategy .’ succeeds with probability 1 — O(33) in the game VAR,
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Proof. First we establish useful consistency relations. By combining Equation (143) and Equation (140)
and applying Fact 5.21 we obtain that for all i € {1,...,5}, on average over (xa,xp) ~ psand z € IF;”/
sampled uniformly at random,

M(xa, xp)PON7 @ I cvs 1@ AN (144)

[evaly(-)i=a;]

and a similar equation holds with the operators acting on opposite sides of the tensor product. Next, combin-
ing (144) together with Equation (133) and Equation (134) it follows that for each v € {A, B}, on average
over (xa,xp) ~ psandz = (y1,...,Y5,0,w) € IF?, sampled uniformly at random,

G ® 1~y T AA) . (145)

[evaly, (-)=a] [eval;(-)y=ays]

From the Schwartz-Zippel lemma (Lemma 3.20) it follows that the probability that any two distinct degree
d polynomials g, (an outcome of G**"?) and g, (an outcome of Ala¥8)) agree at a uniformly random point
Yo € F is at most d/q. It thus follows from (145) that for all v € {A, B}, on average over (xa, Xg) ~ Us

and y, € ]F,Z;/I sampled uniformly at random,

Gl @1 25 azg 1 © AGH™. (146)

We now show that .7 that is accepted by VAR with high probability. We bound the probability of succeeding
in each subtest.

First note that the strategy is accepted in item 1. For the G measurements, consistency follows from (136).
For the A measurements, note first that by (143) and (141) it follows that on average over (x, Xg) ~ US,

Aeval()=(wp) © 10 T Mol )= )] - (147)

Using that all outcomes of A¥A*B are degree d polynomials and the Schwartz-Zippel lemma (Lemma 3.20)
it follows that whenever a measurement of A*A*8 @ A*A*B returns distinct outcomes, the outcomes take a
different value at a uniformly random z with probability at least 1 — d/q. It then follows from (147) and the
fact that 63 > d /g by definition that the strategy .#” is accepted in item 1 with probability O(J3).

Next, the strategy is also accepted in the consistency check performed in item 2 due to (146), and the
consistency check in item 4(a) for the same reasons as for item 1. Finally, for the low-degree tests performed
in item 3 and items 4(b) and 4(c), the strategy succeeds due to consistency and the fact that, as long as both
players obtain the same polynomial outcomes, they pass the low-degree tests with probability 1.

It remains to analyze the strategy’s success probability in Item 5, the game check. Note that by as-
sumption the original strategy . succeeds with probability 1 — O(e) in that test. Using (143) and (140)
together with the consistency relations established at the start of the proof, it follows that . and .’ generate
outcomes dy, in Item 5 that are within total variation distance O(d3). The lemma fellows. O

We now complete the proof by a reduction to the game VORAC: from the strategy .’ we construct a
symmetric strategy . = (|1), A) for VORAC by “decoding” the low-degree measurements G and A. The
state [¢) in ." is identical to the state used in ./ (which is identical to the state used in .%’). To begin, we
define a decoding map Dec(-), which takes in a polynomial g : IFZ1 — IF; and outputs a string in IF;. This
map is computed as follows:

e First, compute 2 = Dec(g) € FF, where Decy, is the low-degree decoding of the low-degree code
defined in Section 3.4 (with S = L = 2, ¢ specified by pcpparams(n, T, Q,A), and 71 = 717 is the
canonical map from Definition 3.22).
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o If there exists an apresx € {0,1}* of length £, such that a = encr(@prefix, L=t), then Dec(g) =
Aprefix- Otherwise, Dec(g) is allowed to be arbitrary.

We can now define the “decoded” measurements { A**?} and { A*A*8 } as follows:

ABPZGEE pma gt . (148)

[Dec(-)=a] * aa,aB [Dec(-)as=(aa,a8)]
Lemma 10.31. The strategy .7 succeeds with probability 1 — O(83) in the game VORAC,

Proof. We consider the different subtests executed by DORAC (see Figure 12). We start with item 2, the
consistency checks. Success in the first check, item 2a, follows from the success of ./ in the global
consistency check, item 1 of DAR | the definition (148), and the fact that conditioned on toa = top =
ORACLE, the distribution of (xoa,Xgp) in ViR is the same as the distribution of (xa,xg) in VORAC,
conditioned on ty = tg = ORACLE. Similarly, success in the second check, item 2b, follows from success
of .#" in the input consistency check, item 2 of DAR,

Next we consider the game check of DORAC item 1. To analyze the success probability of .” we use
that ./ succeeds in the game check of DAR item 5, and the soundness of the PCP, as shown in Theo-
rem 10.21. Let pgoung be as in Theorem 10.21.

Letw € {A,B}, (xa, xg) be in the support of ygs, and IT = (g1,...,85,C0,--.,Cp) an outcome of
A*A*B gych that conditioned on that outcome being obtained by player w in the game check of DAR, Mg
accepts the pair of inputs (D, n, T, Q, g, xa, xg) and (z, a,,) with probability at least psoung Over the choice
of a uniformly random z € ]qu/ and a,, = eval,(IT).

For any such I, the soundness statement of Theorem 10.21 states that there exist as, ap € {O, 1}* such
that D(n,xa,xp,aa,a8) = 1 and degree d polynomials fa, fg : IFy' — TF, such that for v € {A,B},
Dec(f,) = a, and f, agrees with g, on at least 0.8 fraction of points z € IFZ? Since moreover g is also
a degree d polynomial, it follows from the Schwartz-Zippel lemma (Lemma 3.20) that f, = g,. (Since
03 > d/q by definition, we may assume without loss of generality that d /g < 0.2; otherwise, the statement
of the lemma is trivial.)

It follows that for any proof IT returned by {Al’ff’xB} which is accepted with probability greater than
Psound in the game check of DAR it holds that D(n, xa, xg, Dec(ga ), Dec(gp)) = 1. Using this observa-
tion we evaluate the probability g that the strategy ¥ succeeds in the game check of PORAC [ et q, be the

probability that .’ succeeds in the game check of DAR,

= E Y (plaln® @ Ilp)

(xaxp)~ps ap,ap:D(n,xa,Xp,aa,a8)=1

= E ) (WA © I1y)
(xaxp)~pis I1:D(n,xa,x5,Dec(g1),Dec(g2))=1

> E > (AT @ Ilg) - Pr [V(eval,(IT)) = 1]
(xa,xB)~Hs I1:D(n,xa,xp,Dec(g1),Dec(g2))=1 ZN]FZJW,

=q;— E )3 (A @ I]y) - Pr [V(eval,(IT)) = 1]

(xaxB)~Hs I1:D(n,xa,x5,Dec(g1),Dec(g2))=0 ZN]Ffran/

> qig - (1 - qg) " Psound -

Rearranging terms,
/ /
ps Ty Psound 1705 (149)
Psound 1- Psound
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Altogether, using Lemma 10.30 we have shown that .’ is accepted in each subtest performed by DORAC
with probability at least 1 — O(d3). Since every subtest occurs with constant probability, the lemma follows.
O

To conclude the proof of the first part of the theorem we appeal to the soundness statement for VORAC,
given in Theorem 9.2. To obtain the bound stated in the theorem, observe that by the choice of g in Defini-
tion 10.18 it holds that 63 = poly(e +1/n).

To show the second part, the bound on entanglement, we observe that the strategy . for VORAC con-
structed above uses the same entangled state |() as the strategy .7 for VAR that we started with; the claimed
bound follows. O
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11 Parallel Repetition

In each of the transformations on verifiers presented so far (introspection, oracularization, and answer re-
duction), the soundness gap of the resulting verifier is slightly degraded: while the completeness property,
i.e. the property of having a PCC strategy with success probability 1, is preserved, if the starting game V),
has value at most 1 — ¢, the resulting game V), has value at most 1 — Ce® for some universal ¢, C > 1. In
order to apply the compression procedure recursively we need a way to restore the soundness gap after a
sequence of transformations. We accomplish this using (a modification of) the technique of parallel repe-
tition. Informally, this amounts to transforming a two-player game @ into another two-player game &* in
which the verifier plays k simultaneous copies of & with the players, and accepts if and only if the players’
answers correspond to valid answers in each copy.

Intuitively, if the value of & is v < 1, then one would expect the value of &* to decay exponen-
tially with the number of repetitions k. It is not true in general that the value of &* is ¥, but exponential
decay bounds on the (tensor product) value of parallel-repeated games are known for specific classes of
games [JPY 14, DSV15, BVY17]. In particular, it was shown in [BVY17] that the class of anchored games
satisfies exponential-decay parallel repetition, and furthermore every game can be efficiently transformed
into an equivalent anchored game. Put together, this gives a general soundness amplification procedure
called “anchored parallel repetition,” which we use in our compression procedure to reset the soundness gap
to a fixed constant.

The parallel repetition theorems of [DSV15, Yuel6] are also applicable for the purpose of soundness
amplification, but are not sufficient for us. The crucial point here is that the anchored parallel repetition
result of [BVY17] allows us to relate the amount of entanglement needed to play the repeated game & to
the entanglement needed to play the original anchored game &: roughly speaking, [BVY17] show that for
v > exp(—ce® - k/A)), where c is a universal constant and A an upper bound on the length of answers
from the players in &, we have & (Qﬁk, v) > &(8,1 — ¢). On the other hand, the parallel repetition theorems
of [DSV 15, Yuel6] only imply that & (&¥,v) > log &(&,1 — ¢),>* which is not sufficient for our purposes.

11.1 The anchoring transformation

Let V = (S, D) be a normal form verifier. We present a transformation on the verifier V, called anchoring,
that produces another normal form verifier VANCH = (SANCH DANCH)

We define the anchoring VANCH of ) by first defining a typed verifier VANCH = (SANCH DANCH) “apq
then detyping VANCH using Lemma 6.18 to obtain VANCH, Define the type set 7AN" = { GAME, ANCHOR }
and type graph GAME”NC" the complete graph over 7 ANCH along with self-loops at each vertex.

The sampler SANCH is a TANCH_typed sampler, with field size g(n) = 2 and the same dimension s(n) as

that of the sampler S. Fix an integer n € IN. Let V = ]F;(") denote the ambient space of S on index n. Let
LA,LB : V — V denote the CL functions of S on index n. For w € {A,B} the associated CL functions
{LANHY of SANCH are

[ANCHw _ L® if t = GAME
t 0 if t = ANCHOR .

Intuitively, when the type t sampled for player w is GAME, then they receive a question L¥(z) as they
would according to §. Otherwise if t = ANCHOR, then their question is the zero string. Thus if LY is an

¢-level CL function, then Léif:;’ % is also an ¢-level CL function, and LQEEE’OI& is a O-level CL function.

23The reason is due to the use of the “quantum correlated sampling lemma” of [DSV15].
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The decider DANCH performs the following: on input (1,ta,xa,ts, XB,aa,ap), if either ta or tp is
equal to the type ANCHOR, then the decider accepts. Otherwise, it accepts only if D(n, xa, XB, a4, a8)
accepts.

We define the anchoring of V to be the detyped verifier VANCH = detype(VANCH),

Proposition 11.1. Let V = (S, D) be a normal form verifier where S is an {-level sampler. Let VANH =
(SANCH DANCH) pe the anchoring of V. Then the verifier VAN is a normal form verifier that satisfies the
following properties: for alln € IN,

1. (Completeness) If there is a value-1 PCC strategy for V), then there is a value-1 PCC strategy for
VnANCH'

2. (Soundness) For all ¢ > 0, if val* (VAN) > 1 — g, then val*(V,)) > 1 — (4 - 16%)e. Furthermore,
EWVINT 1 —¢) > & (Vi 1— (4-16%)¢) .
3. (Sampler complexity) The time and randomness complexities of the sampler S®NY satisfy
TIMEgasen (1) = poly(TIMEs (7)), RANDgaen (1) = RANDg (1) + O(1) .
Furthermore the number of levels of SANH s £ + 2.

4. (Decider complexity) The time complexity of the decider DNY satisfies
TIMEpaxci (1) = poly(TIMEp(n)) .

5. (Efficient computability) The descriptions of SANY and DANY can be computed in polynomial time
from the descriptions of S and D, respectively. In particular, the sampler SANY only depends on the
sampler S.

Proof. We analyze the completeness, soundness, and complexity properties of the typed verifier VANCH; the
corresponding properties of the detyped verifier VANCY follow from Lemma 6.18 and the fact that the type
set T ANCH hag size 2.

Fix an index n € IN. For the completeness property, let . be a value-1 PCC strategy for V,,. We define
a value-1 PCC strategy .ANCH for V/ANCH: whenever a player receives the ANCHOR type as a question type,
they perform the trivial measurement (i.e. measure the identity operator). Otherwise, the player performs
the same measurement as in .. This is clearly value-1 and PCC. Item 1 follows from this and Lemma 6.18.

For the soundness property, we observe that if a strategy .N" has value 1 — € in VANCH, then

I—e=1-9+9p

where p is the value of .#”AN in the game V,;, and 7y = 1/4 is the probability that neither player receives the

question type ANCHOR; this follows from the distribution associated with the typed sampler SANH. Thus

FANCH hag value 1 — &/ in V,, and thus val” (Vi) > 1 — 4e. Item 2 follows from this and Lemma 6.18.
Items 3, 4, and 5 are straightforward and also follow from Lemma 6.18. O

11.2 Parallel repetition of anchored games

We present a second transformation on normal form verifiers that amounts to performing parallel repetition.
Fix a functionk : N — IN, and let V = (S, D) be a normal form verifier where S is an ¢-level sampler with
dimension s(n). Let K denote a 1-input Turing machine that computes a function k : IN — IN (i.e. the inputs
and outputs are interpreted as positive integers). The K-fold parallel repeated verifier VR®? = (SREP, DREP)
is defined as follows.
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Sampler. The sampler SRE? is an /-level sampler. On index 7, it has field size (1) = 2 and dimension
sREP (1) = k(n)s(n). We treat the ambient space VRE? of SREP on index 7 as the k(1)-fold direct sum of
the ambient space V of S on index n. For all integers n € IN, w € {A, B}, we define the CL functions
LREP @, REP _y YREP 45 follows:

k(n)
LREP,w — @ Lw ,
i=1

where LA, LB : V — V are the CL functions of the sampler S on index 1. The CL functions LR*"% are
(-level, the j-th factor spaces leifp’w of LREP@ are defined as

k(n)
REP,w __ w
Vj,u - @ V]', Uj
i=1

forallu = (uy,..., uk(n)) where V]-f”ui is the j-th factor space of L” with prefix u; € V. In other words, the
sampler SR is a k(n)-fold product of the sampler S.

Decider. The decider DRF? is defined as follows: on input (12, x,y, a,b) where x,y,a, b are k(n)-tuples of
questions and answers, respectively, accept if and only if D(n, x;, y;, a;, b;) accepts foralli € {1,...,k(n)}.

Theorem 11.2 (Anchored parallel repetition [BVY17]). There exists a universal constant ¢ > 0 such that
the following holds. Let ¥V = (S, D) be a normal form verifier where S is an (-level sampler. Let V=
(S’ , 75) denote the anchoring of V. Let k : N — IN be a function computed by a Turing machine K. Then
the IC-fold repeated verifier VREP (cqlled the K-fold anchored repetition of V) is a normal form verifier that
satisfies the following properties: for alln € N,

1. (Completeness) If V,, has a value-1 PCC strategy, then VREP has a value-1 PCC strategy.

2. (Soundness) For all ¢ > 0, for all

if val*(VREP) > v then val*(V,) > 1 — e and furthermore

E(VRE? 1) > £(Vy,1—¢) .

3. (Sampler complexity) The time and randomness complexities of SR¥® satisfy

TIME grer (1) = O(TIMEc () + k(1) - TIMEs (1)),
RAND grer (1) = O(k(n) - RAND (1)) .

Furthermore, the number of levels of sampler SR is ¢ + 2.

4. (Decider complexity) The time complexity of DRE? satisfies

TIME prer (1) = O(TIMEc (1) 4 k(1) - TIMEp () .
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5. (Efficient computability) There exists a 2-input Turing machine ComputeRepeatedVerifier that on in-
put (V,K), where V = (S, D) is a normal form verifier and K is a Turing machine, outputs a normal
form verifier VRE? = (SRE? DREP) that is the K-fold anchored repetition of V. The time complexity
of ComputeRepeatedVerifier is poly(|V|,|K|). Furthermore, the description of the sampler SR
only depends on the sampler S and K.

Proof. Ttem 1 follows from the following straightforward observation: if ./ = (1, A, B) is a value-1 PCC
strategy for V), then the strategy where the players share k(1) copies of |i), and for the i-th instance of
the game V., the players use strategy . on the i-th copy of |¢) (and performing the identity measurement
whenever they receive the ANCHOR type). It is straightforward to check that this strategy has value 1 and is
PCC.

To show Item 2 we apply [BVY 17, Theorem 17]. The exponential decay bound on the value of 17,'1‘ pre-
sented in [BVY17] depends on the answer length of the players in the original game V,,. By Definition 5.28,
this answer length is restricted to {0, 1}T'MED(”), so the claimed bound follows.

Item 3 follows from the fact that computing the direct sum of k(n) CL functions and factor spaces
of the “single-copy” sampler S requires k(n) times the complexity of the “single-copy” sampler, and the
complexity of S follows from Proposition 11.1. The dependence on the complexity of K comes from the
sampler SR¥P having to compute the function k(n). Since the CL functions of the sampler S are (£ + 2)-
level (by Proposition 11.1), and taking the direct sum of CL functions does not increase the number of levels
(by Lemma 4.6), the CL functions LRE" % are (£ + 2)-level.

Item 4 follows from the repeated decider having to run k(n) instances of the decider DANCH, and the
complexity of DANCH follows from Proposition 11.1. which in turn runs an instance of the original decider
D.

Item 5 follows from the fact that (a) the description of the repeated sampler only depends on the the
description of the sampler S and the description of the Turing machine /C, and (b) the description of the
repeated decider only depends on D and K. O
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12 Gap-preserving Compression

We combine the transformations from the previous sections (the introspection games, oracularization, an-
swer reduction, and parallel repetition) to obtain our main technical result, a gap-preserving compression
theorem for normal form verifiers.

We give a high level explanation of the compression theorem. The theorem is parametrized by an integer
A which controls upper bounds on the following quantities: the randomness and time complexities of the
verifier V) to be compressed (i.e. the “input verifier”’) and the description length of the verifier V. The upper
bounds specified by A are encapsulated in the following definition.

Definition 12.1. Let A be an integer, and let VV = (S, D) be a normal form verifier. We say that the verifier
V is A-bounded if

e The number of levels of S is at most 8,

e The description length of V, denoted by || and equal to the sum of the description lengths of S and
D, is at most A, and

e Foralln € N, RANDg(n), TIMEg(n) and TIMEp(n) are all at most (An)*.

The compression theorem states the existence of an efficient “compression procedure” Compress that
achieves the following. Given as input a A-bounded verifier 1, the procedure returns a “compressed verifier”
VYCOMPR guich that the 1-th game VSOMPR simulates the N-th game Vy for N = 2", and furthermore the time
and randomness complexities of V$OMPR are exponentially smaller than that of Vy.

Theorem 12.2 (Gap-preserving compression of normal form verifiers). There is a universal constant 7y such
that the following holds. For all A € IN there exist

e A Turing machine Compress that, when given a normal form verifier V as input, has time complexity
poly(|V|,logA). Furthermore, the description of Compress is computable from the binary represen-
tation of A in time polylog(A).

o A 8-level sampler SCOM*R with randomness complexity RAND gcove (1) = poly(n, A), time complex-
ity TIME gcow (1) = poly (1, A), and description length |SC°M™®| = polylog(A). Furthermore, the
description of SCOM™R is computable from the binary representation of A in time polylog(\).

For normal form verifiers V, the Turing machine Compress on input V always returns the description of a
normal form verifier YVCOMPR = (SCOMPR DCOMPRY gy that the decider DCOM™ has description length
|DCOMPR| = poly(|V|, logA) and time complexity TIMEpcow (1) = poly(n, |V|,A). Furthermore,
supposing that V' is a A-bounded normal form verifier; then for all n > y and N = 2", the verifier VCOMPR
satisfies the following.

1. (Completeness) If VN has a value-1 PCC strategy, then VSM™® has a value-1 PCC strategy.

2. (Soundness) If val*(Vy) < 3, then val*(VFOMPR) < 1

3. (Entanglement lower bound) & (VEOM™, 1) > max {g(VN, .3 2(AN)* }
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12.1 Proof of Theorem 12.2

Recall the following Turing machines.

1. ComputelntroVerifier takes as input a tuple (), A, £) and returns a description of the (detyped) intro-
spective verifier VINTRO corresponding to the verifier MV and parameters (A, £) (see Item 4 of Theo-
rem 8.6).

2. ComputeARVerifier takes input (VINTRO, A, u,0) and returns a description of the answer reduced
verifier VAR corresponding to V™NTRO and parameters (A, 11, o) (see Item 4 of Theorem 10.23).

3. ComputeRepeatedVerifier takes input (V, K) and returns the K-fold repeated verifier VR¥? corre-
sponding to V), where K is a 1-input Turing machine computing a function k() (see Item 5 of Theo-
rem 11.2).

We specify the Turing machine Compress in Figure 14. The Turing machine depends on the parameter
A as well as universal constants Ciyrro and crgp Which are specified in the proof of Theorem 12.2.

Input: the description of a normal form verifier ).
1. Compute y) = ComputelntroVerifier(V, A, £) where ¢ = 8.

2. Compute V@) = ComputeARVerifier(V(l),/\INTRO,y, o) where 4 = 0 = Arro =

©
EliTRa /\ INTRO _

3. Compute V®) = ComputeRepeatedVerifier(V?), ) where K is a 1-input Turing ma-
chine computing the function k(1) = crgp (A - 1)Rer,

4. Return YCOMPR — 1)(3)

Figure 14: The Turing machine Compress, parameterized by integer A.

Lemma 12.3. The time complexity of the Turing machine Compress parameterized by A on input V is
poly(|V|,logA). The description of Compress is computable from the binary description of A in time
polylog(A). In particular, the description length of Compress is polylog(A).

Proof. By Theorem 8.6, Theorem 10.23 and Theorem 11.2 respectively it follows that the time complexity
of each of the three steps of Figure 14 is poly(|V|,logA). For the first step, this uses that / = 8 is a
constant, and for the third step, that the Turing machine K can be specified using poly log(A) bits.

The description of the Turing machine Compress consists of the descriptions of the Turing machines
ComputelntroVerifier, ComputeARVerifier, ComputeRepeatedVerifier, and KC, along with the computation
of the parameters y, 0, and the simulation of these Turing machines. The first three Turing machines are
fixed, universal objects, while the Turing machine X and the parameters y, o depend on the binary repre-
sentation of A. In particular, one can take X to be a Turing machine that performs repeated squaring and
multiplication of its input 7 to compute k(1); the complexity of this is polylog(#, A). Aside from the bi-
nary description of A, the Turing machine K is some fixed Turing machine that doesn’t depend on any other
parameters. Thus || < polylog A.

Therefore the description of Compress can be computed efficiently in polynomial time from the binary
description of A. The bound on the description length follows. O
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Lemma 12.4. Let A € IN, and let Compress be the Turing machine parameterized by A specified in Fig-
ure 14. For all verifier V, the output of Compress (V) is a normal form verifier VCOMPR = (SCOMPR HCOMPR)
such that SCOMPR does not depend on V' but only on the parameter A.

Proof. The verifier VCOMPR = 1) g a normal form verifier because ComputelntroVerifier always returns
a normal form verifier (even if the input verifier is not; See Remark 8.8), and by Theorem 10.23 and The-
orem 11.2 the remaining two steps preserve normal form. The introspected verifier computed in Step 1
of Figure 14 has a sampler S™T that only depends on the parameter A, as implied by Lemma 8.1. The
samplers of the subsequent verifiers (the answer reduced verifier from Step 2 and the repeated verifier from
Step 3) only depend on S™™RC and A; for SAR this is stated in Item 2 of Theorem 10.23, and for SRE? it is
stated in Item 5 of Theorem 11.2. O

Proof of Theorem 12.2. Fix an integer A € IN and let Compress be the Turing machine specified in Fig-
ure 14 parametrized by A. We evaluate the parameters of the verifiers generated in each step of the Compress
procedure.

Input verifier. Let) = (S, D) denote the “input verifier” to be compressed. We specify its properties in
terms of the index N (which should be thought of as N = 2").

- |S|
Description lengths D)
TIMEs(N) (AN)?
RANDs(N) (AN)A
TIMEp(N) (AN)?
Sampler levels <8
Completeness Vn has a value-1 PCC strategy
Soundness val*(Vy) < 1
Entanglement EWn, 3)

Figure 15: Parameters and properties of the input verifier ).

All bounds in the table in Figure 15 (except for the description length bounds) follow from the as-
sumptions on the input verifier in Theorem 12.2. Specifically, the bounds on TIMEgs(N), RANDg(N),
TIMEp(N), and the number of sampler levels express the assumption that ) is A-bounded. The “Complete-
ness” entry indicates that in the “Completeness” analysis of the compressed verifier VMR we assume the
game Vy has a value-1 PCC strategy. The “Soundness” entry of the table indicates that in the “Soundness’
analysis of the compressed verifier, we assume the value of Vy is at most 1/2. The “Entanglement” entry of
the table indicates the assumed lower bound on the Schmidt rank of the entangled state used by any strategy
that succeeds with probability greater than % in the game Vy.

Introspection. The verifier V(1) = (S ), D(l)) is the introspective verifier corresponding to V. We state
its parameters and properties in Figure 16 in terms of an index n € IN.
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|SW] < poly(logA)

Description lengths

DM < poly(|V],logA)

TIMEgq (1) polylog ((AN)%)

RAND 0 (1) polylog ((AN)%)

TIME ) (n) poly ((AN)*)

Sampler levels 4

Completeness Vy has value-1 PCC strategy = V,Sl) has value-1 PCC strat-
cgy

Soundness Val*(V,gl)) >1—¢ =val"(Vy) >1—61(e1,n)

Entanglement é"(V,(ll), 1—¢1) > max {é"(VN, 1-461),(1— 51)2()‘N)A}

for 51 = (51 (81,1’1)

Figure 16: Parameters and properties of the introspective verifier Y,

The bounds on description length come from the following: by Lemma 8.1 since here £ = 8 the sampler
s only depends on the parameter A and has description length poly log(A). The decider D) depends on
the binary representation of A, as well as the descriptions of the sampler S and decider D. The description
length DO follows from Item 4 in Theorem 8.6. The number of levels, time and randomness complexities
of the sampler and decider are specified by Theorem 8.6 as well. As expressed in the statement of The-
orem 12.2, these bounds do not depend on any assumption about the input verifier V; instead, they only
depend on the index 7 and the parameter A.

The statements in the remaining rows of the table assume that the input verifier V is A-bounded. The
statement in the “Completeness” entry follows from Theorem 8.6; the “Soundness” and “Entanglement”
entries follow from Theorem 8.9, from which it follows that it suffices to choose a function é1(e1,n) =

b
M (sl + ﬁ) ' for some ay, by > 0 that depend on the number of levels of the input sampler S, which

by the A-bounded assumption is at most 8.
We now specify the universal constant cixtro > 0. Let it be such that the following inequalities hold for
all n, A € IN, under the assumption that V is A-bounded: letting Ainrro = Cintro * A CINTRO,

/\NTRO
max {TIMEgu) (1), RANDgu) (1)} < (Anrron) ™,
TlMED(l)(Tl) < ()\INTRO N)AINTRO ’
DY < Ao -

Answer reduction. Let V(?) = (S ), D(z)) denote the answer reduced verifier corresponding to V(!) and
parameters A = Aytro and 0 = p = Anrro. The table in Figure 17 gives the properties of Y@,
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|S?)| < polylog(A)

Description lengths
PRI D@ < poly (V)] log 1)

TIME ) (1) polylog ((AN)")

RAND ) (1) polylog ((AN)")

TIME ) (1) poly (log ((AN)*), |D])

Sampler levels 6

Completeness Vr(,l) has value-1 PCC strategy = V,SZ) has value-1 PCC strategy
Soundness val* (V) > 1 — &5 = val* (W) > 1 — 6, (en, 1)
Entanglement EVP 1 —e5) > WM 1= 6y(ea,m))

Figure 17: Parameters and properties of the answer reduced verifier V@),

The statements and bounds in Figure 17 only depend on the bounds stated for verifier V1) in Figure 16
but not on the A-bounded property of the input verifier V. Note that by the choice of cyrro made above
the complexity bounds on v satisfy assumption (130). The bounds on the description lengths then follow
from Item 4 in Theorem 10.23, together with Item 2 to justify that S@ only depends on A and SV but not
on D) (and hence not on D).

The bounds on the number of sampler levels and the time and randomness complexities follow from
Items 2 and 3 of Theorem 10.23.

The statement in the “Completeness” entry follows from Theorem 10.23 and assumption (130). The
“Soundness” and “Entanglement” entries follow from Theorem 10.24 and assumption (130). It follows from

b .
Theorem 10.24 that one can choose & (82, n) =ap (82 + %) ? for some universal constants a, b, > 0.

Parallel repetition. Let Y6 = (S (3), D(3)) denote the K-fold anchored repetition (see Section 11.2) of
V@) where K is a 1-input Turing machine computing the function k(1) = cgep (A - 1), As already
argued in the proof of Lemma 12.3, there is an explicit choice for K such that || < polylog A.

We state the parameters and properties of V) in Figure 18.

|S®)| < polylog(A)
DO < P01Y(\V| log A)

Description lengths

TIME 43 (1) poly (k(n),log ((AN)"))

RAND g (1) poly (k(n),log ((AN)))

TIMEp (1) poly (k(n),log (AN)*), D)

Sampler levels 8

Completeness V,SZ) has value-1 PCC strategy = V,S3) has value-1 PCC strategy
Soundness Val*(V,SB)) >1—¢3 = Val*(V,(lz)) >1—03(e3)
Entanglement @‘"(V,SS), 1—¢3) > éD(V,SZ), 1—63(e3))

Figure 18: Parameters and properties of the parallel repeated verifier V),
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The statements and bounds in Figure 18 only depend on the bounds stated for verifier V@ in Figure 17,
and again do not depend on whether the input verifier V is A-bounded.

The bounds on description length follow from Item 5 of Theorem 11.2, the description length bounds
of V@ stated in Figure 17, and the aforementioned bound on the description length of . The time and
randomness complexities of S (3) and DO follow from Items 3 and 4 of Theorem 11.2 and the complexity
upper bounds on S ) and D@ specified in Figure 17. The statement in the “completeness” entry fol-
lows from Item 1 of Theorem 11.2. The “soundness” and “entanglement” entries follow from Item 2 of

Theorem 11.2 for some 1/8
a3 TIME ) (1) log 125

(150)
for some universal constant az > 0.

Putting everything together. The verifier VCOMPR is () We now put together the bounds and parame-
ters from Figures 15, 16, 17, and 18 to obtain the stated conclusions of Theorem 12.2.

The universal constants crgp and 7y are specified in (153) and (154) respectively. The claimed time
complexity and computability of the Turing machine Compress follow from Lemma 12.3. The claimed
number of levels, time and randomness complexity of the sampler SC°MFR follows from the complexity
bounds in Figures 16, 17, and 18, which in turn only depend on the parameter A. The description length of
SCOMPR follows from the description length bound on S(®). In particular the sampler SCO¥PR is independent
of the input verifier }, as shown in Lemma 12.4. Finally, the claimed time complexity to compute the
description of SCOMPR follows from the fact that we can simply run Compress on the verifier defined by two
fixed Turing machines S’ and D’ (e.g., these could be trivial Turing machines that halt immediately), and
again by the independence property described in Lemma 12.4, the first Turing machine it outputs will be
SCOMPR By LLemma 12.3, this takes time polylog(A).

The claimed time complexity of DCOM™R in the theorem statement follows from our setting of k(n) =
crep (A11)Re" into the bound on TIMEp) (). The description length of DCOMPR follows from the descrip-
tion length bound on D®).

We now establish the completeness, soundness, and entanglement properties of V MR Assume that the
input verifier V is A-bounded and fix an index # € IN. The completeness property (Item 1 in Theorem 12.2)
follows from chaining together the completeness properties of v,$3), V,SZ), V,Sl), and the assumption that Vy
has a value-1 PCC strategy.

We now establish the soundness property (Item 2 in Theorem 12.2). Assume for now that we have set
the universal constants 7y and crgp so that for all integers A, n such that n > <y the following inequality

holds:
51(252(253@), n), n) < % . (151)

Suppose for contradiction that 1 > v, the verifier  is A-bounded, and val*(Vy) < 3, but val* (V,SB)) > 1.

By chaining together the soundness guarantees of the three verifiers V,S3), V,Sz), and V,Sl), we obtain

val' (V) > 1~ 1 (2622635 n), 1) > 1

a contradiction.2*

2Due to the strict inequality vs. non-strict inequality distinction in the soundness statements, in order to do the chaining, we
need that d;(e) < 20;(e) for non-zero e and j € {1,2,3}, which holds in our case.
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It remains to show that there is a suitable choice for the constants 7y and crgp. We work backwards and

first identify a number B; such that 81(B1,n) = a1(B1 + ﬁ)bl < . Setting B = %(4171)1/171, we get
that for alln > B 1
1 by 1 1
) =+ k) <o+ 2 man <
1(B1,n) =m 131""(/\2;1) _ﬂl(ﬁ1+n) < a1(2B1) <5
where we used that A > 1 in the first inequality. Similarly, by setting
1, B1\1/m,
;32 - 2 (4112)
we get that 20, (B2, 1) < By foralln > B 1 Let s > 0 be a universal constant such that
TIMEp (1) < ca (log(AN)* - |D])“. (152)

The existence of ¢4 follows from the upper bound on TIMEp« (1) shown earlier in the proof. Using
moreover that V) is A-bounded, and thus that |D| < A, the right-hand side of (152) is at most ¢4 (A? -
(n+1logA))®. We specify the constant cggp used in the description of the Turing machine Compress in
Figure 14. Let crgp be the minimum integer such that for all n, A € IN,

(B2/2)78 az-cy- (A% (n+logA))* < crpp(A - 1)Rer (153)

For this choice of crgp, using that k(#) is defined as cgrep(A - 12)R** we have that the function d3 defined
in (150) satisfies 263(%) < Bo. Let

v =max{p; ', B;'}. (154)

For this choice of +, the inequality in (151) holds for all n > <. This establishes Item 2.
Finally we show the entanglement lower bound. For all n > -,

WP ,1/2) > & (V,S”,l — /32)

zg(n,l—ﬁﬂ
)

> max{ (Vn, = 1

AN}
v

This establishes Item 3 in Theorem 12.2, and concludes the proof of the theorem. 0

12.2 The Kleene-Rogers fixed point theorem

A fundamental result in computability theory is the Kleene-Rogers fixed point theorem, which states that for
every Turing machine J that halts on every input, there exists a Turing machine M that is a fixed point of
F in the sense that given some description of M, the Turing machine F computes another Turing machine
that computes the same function as M. Surprisingly, such a fixed point can be efficiently computed from
the description of F itself! This Theorem is attributed to Rogers [Rog87], who proved a simpler version of
a recursion theorem due to Kleene [Kle54].

In computability theory, the Kleene-Rogers fixed point theorem is commonly used to argue that a Turing
machine M that can call other Turing machines A on an input that is a description of M is a well-defined
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notion. In other words, the Turing machine M can “print its own source code.” We use the Kleene-Rogers
fixed point theorem in Section 12.3 to show the existence of a decider D that calls the compression procedure
Compress on itself.

Since the theorem statement and its proof involve Turing machines acting on descriptions of Turing
machines and then outputting a description of yet another Turing machine, to aid comprehension we use
the following notation (used only in this subsection) to distinguish between Turing machines and their
descriptions. We use calligraphic letters such as M to denote a Turing machine, which is formally a tuple
of parameters that specify the Turing machine’s alphabet, transition rules, and so on. We use the notation M
to denote a binary string that encodes some Turing machine M. We assume an encoding where the states,
the transition rules, and the number of input tapes of M can be efficiently computed given the description
M. Conversely, for every k > 1, every binary string x € {0,1}* can be interpreted as the description of a
k-input Turing machine, and we use [x]; to denote this Turing machine. If M is a k-input Turing machine,

we have [M]; = M.

Theorem 12.5 (Kleene’s recursion theorem/Roger’s fixed-point theorem). For all k € IN, for all 1-input
Turing machines J computing a total function, there exists a k-input Turing machine M (called a fixed
point of F) that computes the same (partial) function as computed by the k-input Turing machine described

by F(M).

_ Furthermore, there exists a 1-input Turing machine ComputeFixedPoint; that given input a description
F, outputs a description M of a fixed point M in time poly(|F|) where | F| denotes the length of F. The
time complexity of the fixed point M on input x = (x1,...,Xy) is at most

poly(|F], TIME £ 17, TIME[F(H)]M) ,
where we recall the TIME notation from Section 3.1.
We include an elementary proof of this theorem.

Proof. Consider the description S of a 1-input Turing machine S given in Figure 19.

Input: description C of a 1-input Turing machine.

Output: the description of a k-input Turing machine D; that, on input x, does the following:
1. Run C with input tape initialized to C. Let £ denote its output (if it halts).
2. Run F on input £, and let £ denote its output.

3. Run &’ on input x and return the output (if it halts).

Figure 19: The Turing machine S.

We mention some important properties of S. First, S never actually runs C or F; it only performs a
computation based on the descriptions C and F. Next, the description S is computable from the descrip-
tion F, and the length of the description S is poly(|F|). Finally, the running time of S on input C is
poly(|C|, | F|). This is the time it takes to construct the description of the Turing machine Dg.
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Thus, for all Turing machines C, S(C) is the description of a Turing machine D¢ such that for all inputs

De(x) = [F(C(C))], (x) .

provided that C halts when given C as input. Here, we use the fact that F is a total function, so the Turing
machine [F(C(C))], is well defined.

X,

k

Input: description F of a 1-input Turing machine.
Output:
1. Compute the description S from F.

2. Output S(S).

Figure 20: The Turing machine ComputeFixedPoint;.

Next, consider the Turing machine ComputeFixedPoint; defined in Figure 20. Let M denote the output
of ComputeFixedPoint; on input . Note that M = Dg, and is a k-input Turing machine by construction.
By definition, S halts on every input as well, hence it halts when given & as input. Thus for all inputs x,

M(x) = D5(x) = [F(8(5))], (x) = [F(M)] (x)

where again the Turing machines in brackets are well-defined because JF is a total function.

This demonstrates that a fixed point M of F can be computed from F. The time complexity of
ComputeFixedPoint; on input F is poly(\? ), based on the description and time complexity of S. The
time complexity of M (equivalently, Dz) on input x is equal to some polynomial function of

1. The time complexity of running S on input S.
2. The time complexity of running F on input M.

3. The time complexity of running [F (M )] on input x. O

12.3 An MIP* protocol for the Halting problem

We use the Kleene-Rogers fixed point theorem to construct, for every Turing machine M, a verifier for a
game that decides whether M halts or not.
First, for every Turing machine M and integers A, A € IN in Figure 21 we define a Turing machine F.

154



Input: description D of a 5-input Turing machine.

Output: the description D’ of a 5-input Turing machine that performs the following on input
(n,x,y,a,b): run the following steps for at most (An)” time steps (if it has not halted by that
time, then reject):

1. Run M on the empty tape for n steps. If M halts, then accept. Otherwise, if M hasn’t
halted yet, then proceed to the next step.

2. Compute VCOMPR — Compress(V), where V = (SCOMPR D) and Compress given in
Theorem 12.2 depends on the parameter A. Let YCOMPR —= (GCOMPR DCOMPR)

3. Accept iff DOMPR (1, x, v, a,b) accepts.

Figure 21: The Turing machine F, parameterized by integers A, A and the Turing machine M.

Lemma 12.6. For all Turing machines M, integers A,A € IN, the corresponding Turing machine F
satisfies the following properties:

e F computes a total function.

e The description of F can be computed in polynomial time given the description of M and the binary
representation of A, A.

Proof. The first item follows by inspection (the Turing machine F halts on every input). The second
item follows because the description of F depends on descriptions of Turing machines M, Compress,
and SCOMPR (the last two of which depend on the parameter A), and the integer A. The descriptions of
Compress and SC°MPR can be computed in polynomial time from the binary representation of A, as shown
in Lemma 12.3. O

Since F computes a total function, by applying the Kleene-Rogers fixed point theorem (Theorem 12.5)
with k = 5, there exists a 5-input Turing machine DHALT computing the same function as F (DHALT), and
the description of DHAM is polynomial-time computable from the description of F.

Let VHALT — (GHALT DHALT) “\where SHALT is defined to be the sampler SC°MPR from Theorem 12.2
corresponding to parameter A. Since F and SHAM are polynomial-time computable from M, A, and A, the
description of the verifier VHAIT is also computable from these parameters.

From the definition of DHAM as a fixed point of F, we get the following properties.

Lemma 12.7. Let M be a Turing machine and A, A integer. Then the verifier VA has the following
properties.

1. For any integer n, if M halts in n steps then val* (VI = 1. Furthermore, there is a value-1 PCC
strategy for the game VAT,

2. For any integer n, if M does not halt in n steps then VX'*'" has a value-1 PCC strategy if and only if
(VHALTYCOMPR does. Furthermore, under the same assumption it holds that for any « € [0,1],

g(VrII—IALTI“> — g((vHALT)SOMPR,a) )
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Proof. By definition, DHALT computes the same function as F(D"AT). Suppose M halts in 7 steps. Then
from the definition of JF, it follows that J (DHAT) accepts on input (1, x, y, 4, b) for all x, y, a, b, and hence
val*(VHALT) = 1. If M does not halt in 7 steps, then again from the definition of F, it follows that
JF (DHALT) accepts on input (1, x,y,a,b) if and only if (DHALT)COMPR aecepts on (1, x,y, 4, b). O

We now argue that the parameters A, A can be chosen so that VHALT

conditions of Theorem 12.2.

is A-bounded, thus satisfying the

Lemma 12.8. For all Turing machines M and integers A, A € IN, the description of the corresponding
verifier VIA can be computed in polynomial time from the description of M and the binary representation
of A, A. Furthermore, VI is a normal form verifier satisfying

1. |SHALT| | DHALT| < poly(log A, [M],log A)
2. RANDguair (1) < poly(n,A)

3. TIMEguax(n) < poly(n,A)

4. TIMEpuasr () < poly((An)?,log A, | M|)

Proof. Lemma 12.6 implies that F can be computed in polynomial time from (M, A, A); Theorem 12.5
then implies that DHALT can be computed in polynomial time from (M, A, A). Second, combining Lem-
mas 12.3 and 12.4 shows that SHAT = SCOMPR (corresponding to parameter A) can be computed in poly-
nomial time from the binary representation of A.

We now establish the complexity bounds on VHAMT | Since SHALT , the description length, ran-
domness and time complexities of SHAMT are determined by Theorem 12.2. To analyze the time complexity
of the decider DHALT we observe that

— SCompr

e The description length | F| = poly(log A, | M|,log A), because A is written in binary in the descrip-
tion of F, and the dependence on the parameter A come from the description length of the compression
procedure Compress. All other steps have constant-size descriptions.

e By Theorem 12.5, the description length | DHALT| is bounded by poly(|F|).

e The time complexity of F on input DHALT is at most poly(log A, | M|, |[DHALT|, log A), because it
simply writes out the description of the Turing machine D’ described in Figure 21.

e The time complexity of the Turing machine described by F (DHALT) on any input (1, x,y, 4, b) is, by
construction, at most (An)A.

Putting everything together, Theorem 12.5 implies that the time complexity of DHALT on inputs (12, x, v, a, b)
is at most poly((An)?,log A, |IM]). O

Lemma 12.9 (Self-consistent compression parameters). For all Turing machines M, there exist integers

A, A € N and corresponding Turing machines F, DHAYT such that the corresponding verifier VAT =

(SHALT DHALT) s \-bounded (see Definition 12.1), and the Turing machine F (DHAY) on input (n, x, vy, a,b)
does not reject due to exceeding the time limit An®. Furthermore, integers A, A satisfying these conditions

are polynomial-time computable from the description of M.

156



Proof. The time complexity of the three steps of the Turing machine described by JF(DHAT) on input
(n,x,y,a,b) is bounded by

poly(n, | M) + poly(|S™*|, | D"*"|, log A) + poly(n, A, S|, | DHATY) . (155)

/

Step 1 Step 2 Step 3

Step 1 comes from simulating the Turing machine M, Step 2 comes from the complexity of running the
Compress procedure, and Step 3 is the complexity of the decider that is output by the Compress procedure,
given by Theorem 12.2. Note that we obtain the bound for Step 3 without assuming that the verifier YVHALT
is A-bounded—this is precisely the statement we are trying to prove! Substituting upper bounds on the
description lengths of SHALT and DHA(as given by Theorem 12.2 and Lemma 12.8), we get that (155) is
at most poly(n, A, log A, [M]).

Let C € IN be a universal constant such that the polynomials on the right hand side of Items 1 through 4
of Lemma 12.8 as well as the polynomial upper bound on (155) all satisfy poly(ay, ..., ax) < C(ay - - - a;)©
for all integers ay, ..., ax € IN, where a4, . . ., ai represent possible values for the argument of each polyno-
mial (e.g. 1, A, etc.). To prove the lemma it suffices to identify integers A, A such that for all n € IN,

1. C(logA-logA-|M|)C <A

2. C(n-A)€ < (An)

3. C((An)® -log A - IM|)E < (An)?
4. C(n-A-logA-|M))E < (An)?

The first three items are to establish the A-bounded property of VHAMT (the first is so that the description
length of |DHALT| is at most A, and the next two are to bound the time and randomness complexities of
SHALT DHALT) ‘The fourth item is used to argue that DHALT does not reject due to exceeding the “time-out”
limit of (An)A.

We choose A = 128 - C?- |[M] and A = A?C. To see that these satisfy the inequalities, we note that
the power 7 is raised to on the left-hand sides of the inequalities is always less than the power it’s raised to
on the right-hand sides. As a result, it is sufficient to check that these satisfy satisfying the inequalities for
n = 1, which they do. These integers are clearly computable in polynomial-time from the description of

M. O
Putting things together we obtain the following result.
Theorem 12.10. For all Turing machines M, there exists a game & such that
1. If M halts on the empty tape, then val* (&) = 1.
2. If M does not halt on the empty tape, then val*(®) < %
Furthermore, the game & is polynomial-time computable from the description of M.

Proof. Fixa = % Fix a Turing machine M. Let A, A, F, and DHALT be as promised by Lemma 12.9 for this
choice of M. In particular, the parameters A, A are polynomial-time computable from the description of M,
and therefore by Lemma 12.8 VHAM is polynomial-time computable from M. Furthermore, Lemma 12.9
ensures that VHAMT is A-bounded.
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Let ng = <, where 7 is the universal constant specified in Theorem 12.2. For all n > ng, let &,
denote the game corresponding to the verifier VIAMT, and let &SOMPR denote the game corresponding to
the compressed verifier 1, where V' = Compress(VHALT), where the Compress procedure depends on the
parameter A. Finally, let & = &,,.

Suppose that M halts on the empty tape; let T be the minimum number of time steps required for M
to halt on the empty tape. Observe that for all # > T, by Lemma 12.7 it holds that &,, has a value-1 PCC

strategy. We will use this to show inductively that &,, also has a value-1 PCC strategy, for all ng < n < T.

Claim 12.11. Let ny < n < T. Suppose that &, has a value 1 PCC strategy for all m > n. Then &,, also
has a value 1 PCC strategy.

Proof. Since by assumption M does not halt in n steps, by Lemma 12.7 it holds that &,, has a value 1 PCC
strategy if ®SOMPR does. Since VHALT is A-bounded and 1 > ng, by Theorem 12.2 it follows that &$OMPR
has a value 1 PCC strategy if &, does. Since 2" > n, this is true by the hypothesis of the claim. Thus, &,
has a value 1 PCC strategy as claimed. O

By Claim 12.11 and downwards induction on #n (with the base case n = T), we have that &, has a
value-1 PCC strategy for all n > ng. In particular, we have val* (&) = val*(&,,) = 1. This shows the first
item in the theorem statement.

Now suppose that M does not halt on the empty tape. We have that for all n € IN:

E(&,,a) = E(BIMR 1) > &(By,a),

where the equality follows from Lemma 12.7 and the inequality follows from Theorem 12.2 (again using
the A-bounded property of VHALT). By induction, we get that for all k € N,

Aok A
g(@,ﬂé) = g(ﬁno,ﬂé) > (ga(@g(k)(no),[x) = é"(@jgc(%l\g;g)/“) > a2 (81 (no)) ,
where ¢ (-) is the k-fold composition of the function g(1) = 2" and the second inequality follows from
Theorem 12.2 again. Since g(-) is a monotonically increasing function and by definition & > 0, this implies
that there is no finite upper bound on & (®, «), and therefore every finite dimensional strategy for the game
® must have success probability at most & = % O

Recall the definition of the complexity class RE, which stands for the set of recursively enumerable
languages (also called Turing-recognizable languages). Precisely, a language L C {0,1}* is in RE if
and only if there exists a Turing machine M such that if x € L, then M (x) halts and outputs 1, and if
x ¢ L, then either M (x) outputs O or it does not halt. The Halting Problem is the language that contains
descriptions of Turing machines that halt on the empty input tape. The following well-known lemma shows
that the Halting Problem is complete for RE. We include the simple proof for convenience.

Lemma 12.12. The Halting Problem is complete for RE.

Proof. To see that the Halting Problem is in RE, define M to take as input an x that represents a Turing
machine N = [x], and runs the universal Turing machine to simulate A/ on the empty tape; if A halts with
a 1 then so does M.

To show that the Halting problem is complete for RE, let L. € RE and M a Turing machine such that if
x € L, then M (x) halts and outputs 1. For an input x, let N be the following Turing machine. Ny first
runs M on input x. If M accepts, then Ny accepts. On all other outcomes, N, goes into an infinite loop.
Thus N halts if and only if x € L. O
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Corollary 12.13. MIP* = RE.

Proof. Since the Halting Problem is complete for RE, and by Theorem 12.10 is contained in MIP*, we
have the inclusion RE C MIP*. The reverse inclusion MIP* C RE follows from the following observation.
Let L € MIP* . From the definition of MIP* (see e.g. [VW16, Section 6.1], from which we borrow
the notation used here) it follows that there exists a polynomial-time Turing machine R such that for all
x € {0,1}*, R(x) is the description of an m-turn verifier V, interacting with k provers, where m and k are
both polynomial functions of |x| and such that

val*(Vy) >2/3  ifxel
val*(Vy) <1/3 ifx¢L

Consider the following Turing machine 4: on input x, it computes Vy = R(x), and then exhaustively
searches over tensor-product strategies of increasing dimension and increasing accuracy to evaluate a lower
bound on val® (V). If val* (Vy) > 2/3, then for arbitrarily small J there exists a finite dimensional tensor-
product strategy for the players that achieves value 2/3 — 6 > 1/3. When the Turing machine A identifies
such a strategy it terminates, outputting 1. If there is no such strategy, then A never halts. This implies that
L € RE. O]

12.4 An explicit separation

As discussed in Section 1.3, Theorem 12.10 implies that Cg,, the set of approximately finite-dimensional
correlations, is a strict subset of ch, the set of commuting-operator correlations. This is because if an =
Cgc. then there exists an algorithm to approximate the entangled value of a given nonlocal game & to
arbitrary accuracy. On the other hand, Theorem 12.10 shows that deciding whether a game has entangled
value 1 or at most 1/2, promised that one is the case, is undecidable. Therefore the correlation sets must be
different.

In fact, Theorem 12.10 implies that there is an infinite family .# of Turing machines that do not halt on
an empty input tape such that for all M € .#, the corresponding game & 5 has val* (& () < val®®(& ),
where recall that val® (& ) denotes the commuting-operator value of & 4, which is supremum of success
probabilities over all commuting-operator strategies for & ».>> However, it is not immediately clear, given
a specific non-halting Turing machine M, whether the associated game &, separates the commuting-
operator model from the tensor product model of strategies. While Theorem 12.10 implies that val* (& ) <
3, it could also be the case that val®®(® ) = val*(® ) in that particular instance. We conjecture that
val®(& ) = 1 for all non-halting Turing machines M, but it appears to be difficult to identify an explicit
value-1 commuting operator strategy that demonstrates this.

In this section we identify an explicit game & that separates the tensor product model from the commuting-
operator model; we show that val*(&) < 3 but val®(®) = 1. Interestingly, the proof does not exhibit an
explicit value-1 commuting-operator strategy for &.

We construct the separating game in a similar manner to the games constructed in Section 12.3. Let
A denote the following 1-input Turing machine: it takes as input a description of a nonlocal game & and
runs the semidefinite programming hierarchy of [NPAOS, DLTWO08] to compute a non-increasing sequence

2 To see why this holds, observe that if it were the case that val*(& ) = val®®(& ) for all but finitely many non-halting
M then we could construct an algorithm A to decide the Halting problem as follows. On input M, A first checks if M is one
of the finitely many Turing machines for which val* (& ) < val®(® x4); if so, then it outputs a hard-coded answer for whether
M halts on the empty tape or not. Otherwise, .A computes the nonlocal game & » and executes the aforementioned algorithm for
approximating the entangled value of games assuming that Cgq = Cy.
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a1, &, . .. of upper bounds on val®(®) such that limy,_,c &, = val®(®). The Turing machine A halts if
it obtains a bound &, < 1. Thus this algorithm eventually halts whenever val®® (&) < 1, and otherwise it
runs forever.

Consider the Turing machine R in Figure 22, parameterized by integers A, A. The only difference
between the Turing machine described in Figure 22 and the one described in Figure 21 is that the decider
D' returned by R(D) runs the algorithm A on some fixed nonlocal game corresponding to the verifier

Y = (SCOMPR’D)_

Input: description D of a 5-input Turing machine.

Output: the description D’ of a 5-input Turing machine: on input (1,x,y,a,b), D’ runs the
following steps for at most (An)® time steps (if it has not halted by that time, then reject).

1. Let V = (SCOMPR D). Compute an explicit description of the nonlocal game & = V,,,,
where 1y = 7y and <y is the universal constant from Theorem 12.2.

2. Run A on input & for n steps. If A halts, then accept. Otherwise, if A hasn’t halted yet,
then proceed to the next step.

3. Compute VEOMPR = Compress()V), where V = (S€OMPR D) and Compress is given by
Theorem 12.2 which depends on the parameter A. Let DCOMPR be the decider of VEOMPR,

4. Accept iff DCOMPR (1, x,y,a,b) accepts.

Figure 22: The Turing machine R, parameterized by integers A, A.

We follow the same steps as in Section 12.3. By applying the Kleene-Rogers fixed point theorem to R,
we obtain a decider DS®F that is a fixed point of R. Let VSE? = (SSEP, DSEP) where SSEP = SCOMPR,
A similar argument to that of Lemmas 12.8 and 12.9 shows that there exist choices of A, A (computable
from the description of A) such that VS is A-bounded. Fix such parameters A, A and let VSF* be the
verifier corresponding to these parameters. Define the game &5S%° = V,ff" for ny = -y, where 7 is the
universal constant from Theorem 12.2. Note that since DSE” computes the same function as R (D) and
the description of the game @& computed by the decider DS in Step 1 of Figure 22 only depends on the
predicate computed by D (rather than the details of how the predicate is computed), it follows that & is
identical to &SP,

Theorem 12.14. For the game &5 = V3E¥ it holds that val* (&5) < 1 and val®®(&S*) = 1.

Proof. Suppose that val®®(®SF) = 1. The invocation of the Turing machine .A on input &S never halts,
and therefore the decider D" never accepts in Step 2 of Figure 22. Applying Theorem 12.2, we get that
EWSE, Ly > £(V5E, 1) and

1 1 n\A
(o(d(VSEP, E) > E2)\(2 )

for all n > ng. An inductive argument implies that there is no finite upper bound on & (V3FF, %), and thus
val*(65%) = val*(VSF) < 2, which implies the theorem.

On the other hand, suppose that val®(&5") < 1. Then there exists some m > ng such that A
halts on input &SF” after m steps, so V3E® has a value-1 PCC strategy for all n > m (i.e. the players
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do not respond with any answers). Thus by the completeness statement of Theorem 12.2 and an induction
argument, we have that V5" has a value-1 PCC strategy for all > 1, which implies that val* (&5") = 1,
a contradiction because of val® (&5E) < val®(&S5E?). This completes the theorem. O
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