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Abstract

We give an introduction to the statistics of quantum states, with a focus on recent results
giving tight bounds for the problems of learning and testing identity of mixed states. Along the
way, we survey the sometimes surprising connections between this area and topics as diverse
as classical distribution testing, longest increasing subsequences and the RSK algorithm, and
representation theory of the symmetric and general linear groups.

1 Spanish cryptograms

Suppose you encounter a cryptogram (substitution cipher) written in Spanish. To decipher it, you’ll
probably want to know the frequency of letters in Spanish text. So you download Don Quizote [Cerl5]
and pick out a sample of 500 letters, drawn randomly with replacement; say, z, v, s, 7, 0, ..., .
The resulting histogram of 32 rows might look like this:
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What can you infer from this sample? It’s reasonable for you to estimate that the true frequency
pq of the letter a in Spanish is approximately p, = % = 12.8%. Similarly, you might estimate
P = =55 = 0.2%, Db = o5 = 1%, Pe = o = 3.8%, DPa = 25 = 5.6%, Pe = oo = 13.2%, etc.!
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!Gaines’s cryptanalysis book [Gail4] reports p, = 12.7%, p» = 1.4%, pe = 3.9%, pa = 5.6%, p. = 13.2%, ...



Of course, the finite sample size n = 500 means there will be some statistical error; for example,
with p, = pe ~ 13%, the true frequency of a and e might plausibly be anywhere between 10%
and 16%. So on the basis of this sample, you would be unwise to confidently declare that e is the
most probable letter in Spanish. On the other hand, it would be reasonable for you to conclude
that the most frequent letter has frequency ~ % = 13.2%.

This question — What is the frequency of the most frequent letter? — is an example of a
letter-permutation-invariant statistic. That is, it doesn’t depend on the names of the letters: it
would be the same if you applied any of the 32! possible permutations to these names (as is done
in a cryptogram). Other letter-permutation-invariant statistics include: the entropy of the letter
frequencies; the total probability of the top-10 most frequent letters; the number of letters with
frequency at least 1%; and so forth. In any long Spanish cryptogram, these statistics would be
approximately the same. Indeed, knowing them would give you a good way to test whether a new
cryptogram is in Spanish or some other language.

As in the Don Quixote example, suppose we form a random “word” w € {a, ..., z}" by sampling
n letters independently; say, w1 = z, we = v, wg = s, ..., w, = ¢. On the basis of this,
we might wish to estimate some letter-permutation-invariant statistic (e.g., entropy, frequency of
the most frequent letter, etc.). It’s important to note that there are two symmetries at play.
The first symmetry is the position-permutation-invariance of the sample; i.e., the action of the
symmetric group S,. Since the n draws are independent, it doesn’t matter that z was the 1st,
107th, and 251st letter, or that v was the 48th, 133rd, 338th, and 350th; it only matters that
z occurred 3 times, v occurred 4 times, etc. This is why we immediately simplified to the histogram
in our example. The second symmetry is the letter-permutation-invariance; i.e., the action of the
symmetric group Sy, where d = 32 is the number of letters. This symmetry says that the names
of the letter outcomes don’t matter; in other words, the statistic only depends on the (multi)set of
probabilities {pg, pp, - - -, p»}. Given this, we can simplify our histogram further by eliminating the
letter labels, and then sorting the rows. This produces a sorted histogram like the following;:
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In this sorted histogram v = SortedHistogram(w), the first row has length v = 66, indicating
that the most frequent letter in the sample had frequency 66; the second row has length v9 = 64,
indicating that the 2nd most frequent letter had frequency 64; etc. By virtue of the two symmetries
in our problem — invariance to permuting the n = 500 positions, and invariance to permuting the
d = 32 letter names — the sorted histogram v encodes all the information we need to estimate



any letter-permutation-invariant statistic, such as entropy, or the probability of the most probable
letter. Indeed, if we define p;, = v;/n, it would be reasonable to estimate these two quantities by

Z?Zl p, log(1/p;) and p,, respectively.?

2 Quantum contraptions

We will now introduce the “quantum” version of the “classical” statistics problem described in the
previous section. Suppose you wander into a quantum computing laboratory and find a contraption
with a button on the side. Every time you press the button, 5 qubits pop out of the contraption.
If a 5-qubit system is in a “pure state”, you can represent it as

@1]00000) + @|00001) + &@3]00010) + - - - + d32|11111),

where the numbers @;’s are complex “amplitudes” satisfying >_.|@;|?> = 1. In other words, a 5-qubit
pure state can be represented by a unit vector @ € €32. (More generally, a system of ¢ qubits has
dimension d = 29, and systems with non-qubit particles may have dimensions that are not powers
of 2.)

Actually, the contraption might have some probabilistic components inside it; for example,
flipping coins, or internal quantum measurement devices. As a consequence, when you press the
button, you may get some some kind of randomly distributed pure state vector — in other words,
a quantum mized state. In principle, the contraption might produce any probability distribution
over any set of unit vectors in €32, However (see Section 8) it is a basic fact of quantum mechanics
that we may assume, without loss of generality, that the contraption produces a discrete proba-
bility distribution over some basis of 32 orthonormal vectors @, 5, ¢, ... € €32, Following quantum
notation, let’s write these unit vectors as [1),]2),...,|32) € €32, and write p1,po, ..., p32 for the
associated probabilities. In other words, every time you press the button, the contraption spits out
|i) with probability p; (i = 1...32). Although we’ve numbered them 1...32, we may still refer to
the vectors as letters.

Since you’ve never encountered the contraption before, both the probabilities p; and the or-
thonormal vectors |i) are unknown to you. Not only that, you can’t just “look at” the output
vectors to tell what they are; quantum mechanics only allows you to choose a “measurement” to
perform on them (discussed further in Section 8), and this measurement itself produces a proba-
bilistic outcome.? These difficulties notwithstanding, you may press the button n times, and we’ll
assume that the resulting outputs are independent and unentangled. For example, if you press the
button n = 6 times, the contraption might spit out the sequence

7), [12), [4), [20), |7), [31);

this would occur with probability p7 - p12 - P4 - P20 - p7 - p31. At this point, you can perform any
measurement you like on the particles. Quantum tomography refers to the task of using the samples
to estimate the mixed state of the contraption’s output. In the general d-dimensional case, this
(roughly speaking) means estimating the probabilities p1, ..., ps and the vectors [1), ..., |d).

2This strategy of estimating a statistic of p by computing the statistic for the empirical distribution p is known as
the plug-in estimator. Though a good baseline estimate, it is often suboptimal; see, for example, [WY16, JVHW17]
for optimal entropy estimators which outperform the plug-in estimator.

3 Although, if a “little birdie” told you the vectors [1),...,|d), you could “measure in this basis” and thereby
exactly “look at” the output vectors. This would reduce you to a classical scenario like that of sampling from
unknown Spanish letter frequencies, p1, ..., ps2.



As in the preceding discussion of Spanish cryptograms, for the moment we’ll only concern our-
selves with estimating statistics of the (multi)set of probabilities {p1,...,ps}. Most such statistics
have a natural physical meaning; for example, the largest probability gives a measure of how “pure”
the contraption’s output is, and the entropy Zle pilog(1/p;) is called the von Neumann entropy
of the mixed quantum state. In this case, we again have two symmetries at play. First, we have the
same position-permutation-invariance as before; i.e., the action of the symmetric group S,,. This
is because the n button presses are assumed to produce independent and unentangled outcomes.
Second, since we only care about statistics depending on {p1,...,pq} and we don’t care about the
identity of the orthonormal basis [1),...,|d) of €% we have the symmetry of the unitary group
U(d) acting as “rotations/reflections” on bases.

When estimating properties of the set {pg,...,p.} of Spanish letter frequencies, we “factored
out” the S, and S; symmetries when we reduced our sample to its sorted histogram of n boxes
and d rows. As it turns out (see Section 11) there is a similar way to “factor out” the S,, and
U(d) symmetries when trying to estimate properties of the probabilities {p1,...,pq} associated
to the quantum contraption. In Section 4, we’ll state an Optimal Measurement Theorem, which
describes a certain quantum “measurement” that may be performed without loss of generality when
estimating statistics of {p1,...,pq}. Surprisingly, the possible measurement outcomes will be sorted
histograms of n boxes and d rows! The reason for this has to do with the representation theory of
the groups S, and U(d), which is intimately connected with sorted histograms — also known as
Young diagrams.

The later sections of this survey will explain a little representation theory to justify why the
Optimal Measurement Theorem is true. Before that, though, we will spend some time analyzing the
probability distribution on Young diagrams that arises from the Optimal Measurement Theorem.
As we’ll see, this distribution is unfortunately not as simple as “draw an n-letter word w from the
probability distribution {p1,...,pq} and form its sorted histogram”. Rather, it has to do with an
interesting combinatorial property of w: the lengths of its longest increasing subsequences.

3 Longest increasing subsequences: Robinson, Schensted, Knuth
Let w be a length-n word over the ordered alphabet {a, b, ¢, d}; for example, suppose n = 10 and
w = dbbedbaabe.

We define LIS(w) to be the length of the longest increasing subsequence of w. (Throughout, “in-
creasing” will mean “nondecreasing”; in other words, in alphabetical order.) How can we easily
determine this length? For our example w = dbbcdbaabe, a little trial and error will convince you
that the underlined subsequence bbbbc is maximal, so LIS(w) = 5. For longer words, we’ll need to
be more systematic.

There is a natural dynamic program for computing LIS(w) known as patience sorting that
involves processing the letters of w one-by-one (see [AD99] for a survey on this topic). As we do
this, we maintain a growing array L in which

L[j] = the “alphabetically smallest” letter that can end a length-j increasing subsequence.

For example, after processing w = dbbcdbaabe, our array will look like

L=lala|b[b]c]



This corresponds to the following five increasing subsequences:

L[1] = a, because of dbbcdbaabc;
L[2] = a, because of dbbcdbaabc;
L[3] =b, because of dbbedbaabc;
L[4] = b, because of dbbedbaabc;
L[5] = ¢, because of dbbedbaabe,

and it can be checked that there are no subsequences of length six or greater. The overall longest
increasing subsequence (of the word processed so far) is simply the length of the array; and, when a
new letter is processed, it’s not hard to update the entries of the array. To test your understanding,
you might confirm that if an 11th letter were to “arrive” at the end of our w, the four possibilities
would be:

lalalblblc|+a=[alalalb]c] lalalblblc|+b=|alalb]b]b]
lalalblblc]+e=lalalalblc]c]  [alalblb]c|+d=]alalblb]c]|d]

The algorithm to update the diagram (array) can be thought of as follows:

(1)

Insertion: To process a new letter, ‘’, find the rightmost position in which it can be placed so
as to maintain alphabetical order. If this position is already occupied by some letter, then bump
that letter out of the diagram. Otherwise, place ¢ at the end of the diagram, in a new box.

This rightmost position, say j, corresponds to the first entry L[] which is strictly larger than i.
The update L[j] := i therefore works because the subsequence ending in L[j — 1] can be appended
with 7 to form a subsequence of length j; those letters to the left of L[j] stay the same because
they are already less than or equal to i, and those letters to the right stay the same because there
is no increasing subsequence of length j + 1 or greater ending in i. Considering the four examples
in (1), we see that inserting a new ‘a’ causes the ‘b’ in the third box to be bumped; inserting a new
‘b’ causes the ‘¢’ in the fifth box to be bumped; inserting a ‘c’ creates a new box at the end; and
inserting a ‘d’ also creates a new box at the end. The value of LIS(w) increases precisely when a
new box is created.

When a letter is “bumped” during the insertion process, it seems a shame to just throw it in the
trash. Following an idea of Robinson [Rob38], Schensted [Sch61], and Knuth [Knu70] (“RSK”),
let’s instead recursively “insert” the bumped letter into a subsequent row of the diagram. When this
RSK algorithm is applied to the word w = dbbedbaabe, we get the following growing sequence of
filled Young diagrams:
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It is not too hard to check that the RSK algorithm, when applied to any word w of length n,
produces what is known as a semistandard Young tableau of size n: a filled n-box Young diagram
in which the rows have increasing entries and the columns have strictly increasing entries. Because
of the second property, the number of rows will never be more than the number of letters in the
alphabet.

Given a semistandard Young tableau (SSYT), its shape is the Young diagram (sorted histogram)
produced by deleting the entries. We’ll write A = RSKshape(w) for the shape of the SSYT produced
by applying the RSK algorithm to word w; thus, e.g.,

RSKshape(dbbedbaabe) = | ] (3)

As we’ve seen, the top row of the diagram graphically encodes the dynamic program for determining
the length of the longest increasing subsequence. Thus if A = RSKshape(w), then A\; = LIS(w). Is
there any meaning to the lengths of the subsequent rows of A? Greene’s Theorem [Gre74] implies
that there is:

Greene’s Theorem: If A = RSKshape(w), then:

A1 is the length of the longest increasing subsequence in w;
A1 + Ao is the length of the longest union of 2 increasing subsequences in w;
A1+ A2 + A3 is the length of the longest union of 3 increasing subsequences in w;

A1+ A2 + A3 + Mg is the length of the longest union of 4 increasing subsequences in w;  etc.

For example, in our word w = dbbcdbaabe, Greene’s Theorem and (3) tell us that w should
have 2 disjoint increasing subsequences of total length 5 + 3 = 8, and indeed here they are, under-
lined /overlined: dbbcdbaabe. (It’s a coincidence that they’re both contiguous.)

4 Symmetric properties of probabilities: classical vs. quantum

Now let’s return to quantum contraptions. Suppose — as we were discussing — that we have a quan-
tum contraption that outputs a d-dimensional mixed state with unknown probabilities p1, ..., ps2
for an unknown orthonormal basis [1),...,|d) of C%. (In our example, d was 32.) And suppose we
want to estimate some statistic only depending on the multiset {p1,...,pq}; for example, the maxi-
mum p; (which we recall is one way of quantifying how “pure” the contraption’s output is). We press
the button n times, obtain n independent unentangled outputs, and now must make some kind of
quantum measurement. As mentioned in Section 2, it is possible without loss of generality to “factor
out” the S,, and U(d) symmetries, yielding the following (see [CHW07, MW16, OW15, BOW17]):

Optimal Measurement Theorem: The optimal' quantum measurement when one only cares
about {p1,...,pa} has the following property: It reports an n-box, d-row Young diagram X, and
the probability distribution of X (over both the outcome of the contraption and the measurement’s
randomness) is ezactly the same as that of RSKshape(w) for w ~ p®™, meaning that w is a random
length-n word in which each letter is i € {1,...,d} independently with probability p;.

4Vis-a-vis either of these two cases: (i) Discriminating between two classes of multisets, as in Property Testing.
(ii) Estimating a statistic with minimal variance (quadratic risk).



This should be compared to the problem of estimating a letter-permutation-invariant statistic
of an unknown probability distribution like the frequencies of the d = 32 Spanish letters. In that
“classical” scenario, an optimal algorithm also gets an n-box, d-row random Young diagram v;
however, this v is simply distributed as the sorted histogram of a random word w.

Let’s make a closer comparison between the classical and quantum scenarios. In both cases, we
want to use n samples to estimate a permutation-invariant property of the probability distribution
p = (p1,...,p4). In both cases, we can imagine that a random word w € {1,...,d}" is chosen
from the product probability distribution p®”?. In the classical case, we get to see the Young
diagram v = SortedHistogram(w); in the quantum case, we get to see the “LIS information”
A = RSKshape(w). For example, if w = dbbcdbaabe, then

A = RSKshape(dbbedbaabe) = | ] v = SortedHistogram(dbbcdbaabc) = | ]

(4)

A first immediate observation is that the quantum case is at least as hard as the classical case.
One way to see this is that v contains all the information you could ever want, whereas A doesn’t;
another way is via Footnote 3.

A second observation is that the LIS information A will always be more “top-heavy” than the
sorted histogram v. More precisely, we will always have that A majorizes v, written A > v,
meaning that Ay +---4+ A > v+ -4+ vg for all 1 <k < d, with equality for kK = d. This follows
directly from Greene’s Theorem, since one can always find k increasing subsequences in w whose
union has length at least v1 + - - - + vy, simply by taking all of the most frequently occurring letter
as one subsequence, all of the 2nd-most frequently occurring letter as a 2nd subsequence, ..., all
of the kth-most frequently occurring letter as the kth subsequence.

A third observation concerns symmetry with respect to permuting {1,...,d}. So far we've
assumed we’re only interested in properties of the multiset {pi,...,pq}, such as the maximum p;,
or the entropy of p. This is why we could reduce to the sorted histogram v in the classical case,
and why (according to the Optimal Measurement Theorem) we can reduce to the RSK output A in
the quantum case. Now it’s very clear that the distribution of the sorted histogram v is invariant
to permuting p1,...,pg, but it’s far from clear that this is true of the RSK output A. In fact, it
may seem almost definitely false! The very nature of the RSK algorithm, and the phrase “longest
increasing subsequence”, are both intimately tied up with the ordering on the d-letter alphabet.
But nevertheless, the following surprising fact is true: The distribution on A (that is, RSKshape(w)
for w ~ p®") is unchanged no matter how the probabilities py,...,ps are permuted. The reason
for this will be mentioned in Section 5, but for now you might think about the case d = 2, wherein
A is fully determined by the length of its first row, LIS(w). Thus the fact says that the length
of the longest increasing subsequence in a random word with 60% 1’s and 40% 2’s has the same
distribution as in a random word with 40% 1’s and 60% 2’s. ..

Because of this symmetry property, we will sometimes assume — without loss of generality —
that p; > p2 > - -+ > pg. In this case, we can combine the previous observations to get an interesting
inequality. As mentioned, A always majorizes the sorted histogram v of w. In turn, the sorted
histogram always majorizes the unsorted histogram of v, call it . Taking expectations of the
statement A > n yields

(EX],E[X2], ..., E[N]) = (pin,pan, ..., pan), (5)

a statement we will use several times later. These inequalities help us understand lower bounds on
the A;’s; we’d like to get some comparable upper bounds so as to really nail down the distribution



on A. This issue will be taken up in Section 7, but first we digress to describe a few more properties
of the RSK algorithm.

5 The RSK bijection and Schur symmetric polynomials

In fact, we have so far described only half of the RSK algorithm. In addition to the semistandard
tableau described in Section 3, known as the insertion tableau, the full RSK algorithm applied to
a word w also maintains a second tableau known as the recording tableau. This tableau is updated
in parallel with the insertion tableau: when the ¢th new box is added to the insertion tableau, a
new box is added to the recording tableau in the same position, filled with “timestamp” ¢. In (2)
we illustrated how the insertion tableau grows on the example word w = dbbedbaabe; the full
insertion/recording tableau output of RSK on w = dbbedbaabe would be:

alblblc|
bld

3[4]5]10]
8]9

RSK(w) =

(6)

9
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For general w, the usual notation is RSK(w) = (P, @), where P is the insertion tableau and @ is the
recording tableau. Since the tableaus® always grow down-and-to-the-right, Q is always a standard
tableau. This means that both its rows and columns are strictly increasing, and that it contains
exactly the numbers 1 through n, where n is the length of word w.

When combined with the insertion tableau, the recording tableau gives all the additional infor-
mation needed to reverse the steps of the RSK algorithm and thereby invert the RSK mapping.
For example, given just the output tableaus in (6), we could recover w = dbbcdbaabe as follows:
First, the recording tableau tells us that the 10th and final box was created in position 5 of the
first row. This can only happen if ¢ was the final letter inserted into the first row; hence wig = ¢
and

alblb]
bld

3[4]5]
8]9

RSK(w1w2 s ’LUg) =

Y

‘&‘Q S Q
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At this step, the recording tableau tells us that the box in position 3 of the second row was the final
box created. As a result, d must have been inserted into the second row in the final step, and this
could only have happened if it was previously bumped down by b in the first row. In conclusion,
wg = b and

albld] [1]3]4]5]

8

RSK(’U)l tee wg) =

1
2
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7

BREE

Continuing in this manner allows us to recover the entire string w.

Remarkably, this argument shows that any pair of tableaus (P, Q)) can be inverted into a word w
so long as P is semistandard, @) is standard, and P and ) have the same shape. Hence, the RSK
algorithm gives a bijection between words and pairs of tableaus, one standard and one semistandard,
which we state formally below.

Before doing so, we have yet to touch on the most basic application of the RSK algorithm,
which is to permutations rather than words. Given a permutation m € S,, if we write it as

®Sometimes spelled ‘tableaux’.



m = (m(1),...,m(n)), then we can view it as an n-letter word on the alphabet {1,...,n} which just
happens to have no repetitions. As a result, if RSK(7) = (P, Q), then P has n boxes, contains each
integer in {1,...,n} exactly once, and is semistandard; this implies that it is in fact standard, like Q.
Conversely, any pair of standard tableaus (P, Q) of the same shape inverts to a permutation 7. As
a result, the RSK algorithm also gives a bijection between permutations and pairs of standard
tableaus. These two bijections are formalized as follows.

Theorem 5.1 (RSK correspondence). Given an integer n and an n-box Young diagram \, let
SYT(A) be the set of standard Young tableaus with shape X. Then the RSK algorithm witnesses the
bijection
meS, % (P,Q)e | SYT(A) x SYT(\). (7)
n-box A
Further, for d < n, let SSYT4(\) be the set of semistandard Young tableaus with shape A and
entries in {1,...,d}. Then the RSK algorithm witnesses the bijection

we {l,...,d" 5 (P.Q) e |J SSYT4(\) x SYT(N). (8)
n-box A\

It’s customary to write dim A = |SYT(A)| for the number of standard tableaus of shape A.
Taking cardinalities of both sides of (7), we see that

nl= Y (dim)) (9)

n-box A

(The notation dim A comes from the representation theory of the symmetric group, as we’ll see
in Section 11. In this context, (9) is also a consequence of the decomposition of the regular
representation of S, into irreducible representations.) A conclusion is that if a permutation 7 ~ S,
is drawn uniformly at random, then Pr[RSKshape(w) = \] = (dim A\)?/n!. Incidentally, there is a
famous explicit formula for dim A\, the Hook Length formula [FRT54]:

n!

dimA\ = =—————, where hl(0O) = #{boxes in A due east and south of [J, including [I}.
e h(0) )
10

Analogously to (9), suppose we “count” both sides of (8) according to the product measure p®”
on words formed by a probability distribution p = (p1,...,pq) on letters. The conclusion is that

Pr [RSKshape(w) = A] = sx(p) - dim A, (11)

w~p®n

where sy denotes the Schur polynomial indexed by A, defined by

sx(@1,...,xq) = Z H @), where T'(0) is the entry of tableau 7" in box [J.
TEeSSYTy(N) DT

It is a surprising and non-obvious fact that the Schur polynomials are in fact symmetric in the vari-
ables z1,...,x,. (Hint for the proof: it suffices to show that they are invariant under interchanging
x; and x;41; for this, there’s a relatively simple bijection of tableaus...) Indeed, when ranging over
n-box diagrams A, they form a linear basis for the set of all d-variable degree-n symmetric poly-
nomials. (We will encounter another, more familiar, such basis later in Section 10: the power sum



symmetric polynomials.) Finally, we mention an alternative, more compact formula for the Schur
polynomials, which can be proven using some classical combinatorics (see, e.g., [Sta99, Ch. 7]):

\j+d—j
det( x,’ )
sx(z1,...,xq) = ( ‘ )” )
Hz‘<j (zi — x5)
Swapping any two variables x4, x in the above formula simply creates a negative sign in the numer-

ator and the denominator; thus this formula gives another testament that the Schur polynomials
are symmetric.

(12)

6 Two majorization theorems for the RSK algorithm

In Section 4 we described a “majorization” result about the RSK algorithm that is an imme-
diate consequence of Greene’s Theorem: If w is any word with A = RSKshape(w) and v =
SortedHistogram(w), then A > v, meaning that Zle A > Zle v; for all k. In this section
we mention two additonal, newly proven [OW16, OW17] majorization results concerning RSK.

The first result is highly intuitive. Suppose that p; > ps > .-+ > pg is a sorted probability
distribution on {1,...,d}, and ¢ is another. Further, suppose that ¢ > p; roughly speaking, this
means that a word w drawn randomly from ¢®" tends to have more letters from “earlier in the
alphabet” than if it is drawn from p®™. In either case, the sortedness of p and ¢ ensures that the
smaller letters of w tend to collect up higher in the Young diagram produced by RSK(w), whereas
the larger letters, outnumbered by the smaller letters, will be bumped into the lower rows. As a
result, we might expect RSKshape(w) to be more “top-heavy” for w ~ ¢®" than for w ~ p®".
This is exactly what the first majorization theorem says:

Coupling Majorization Theorem [OW16]: Let p, q be sorted probability distributions on
{1,...,d} with ¢ = p. Let A = RSKshape(w) for w ~ p®", and let p = RSKshape(z) for
z ~ ¢®". Then there is a probabilistic coupling (X, p) such that p = X always. (As a consequence,
Bl + -+ ) = B[ + -+ + Ae] for all k.)

Here, a probabilistic coupling (A, ) refers to a probability distribution on pairs of Young diagrams
such that the first diagram has marginal A and the second diagram has marginal . Although this
theorem is rather intuitive, a fairly intricate bijective proof was required.

The second majorization theorem we present is concerned with the “lower rows” of the Young
diagrams produced by RSK. For A = RSKshape(w), Greene’s Theorem tells us an excellent inter-
pretation for the length of the first row, A\;: it’s equal to LIS(w). The lengths of the lower rows,
though, are a little harder to interpret. Let’s say we want to understand the shape of rows k and
below when RSK is applied to word w. We’'ll take the example of £k = 2 and our favorite word
w = dbbedbaabe, whose growing insertion tableau was shown in (2). We want to focus on the
Young diagram formed by rows 2 and below, so we sit next to the entrance of row 2 and watch
as letters come in (after being bumped from row 1). In the example (2), we see a letter d come
in at “time” 2, a letter c at time 6, a letter b at time 7, another letter b at time 8, and a letter d
at time 9. Let’s annotate the original string w with superscripts, indicating these “times of being
inserted into row 2”:

w = d*b"b*cCdbaabe.

(To emphasize: the first d has superscript 2 because it was bumped at time 2 whereas the second d
has superscript 9 because it was bumped at time 9.) In our example it’s a coincidence that all
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letters that made it to row 2 are from the first half of w. In any case, let’s write wP*™P for dcbbd,
the letters that entered into row 2 in the order they entered; i.e., sorted according to the subscripts
above. Then by definition of the RSK algorithm, the insertion tableau of RSK(w) at rows 2 and
below will equal the insertion tableau of RSK(wP ™P)

CIENCEE
K

b L b[d]|= RSK(w"™P).

‘Q.‘O <>
‘&.‘O <>

On the other hand, let’s write w°'& for dbbcd, the letters that entered into row 2 in the order they
originally appear in w. We could imagine applying RSK to this subsequence of w, although it’s
sort of counterfactual:

S @ S b % [b]p] & [vlble] S [b]blc]d]=RSK(w™).
d d] d

Comparing the shapes of the Young diagrams produced, we have

RSKshape(w°") = (T = [ ]= RSKshape(w""™®).

The second majorization theorem we present says that this is a general phenomenon:

Lower-Row Majorization Theorem [OW17]: Letw € {1,...,d}" be a word and let 1 < k < d.
When applying RSK to w, some of its letters enter into the kth row. Let wP"™P denote the sequence

of these letters in the order they enter, and let w*''® denote the sequence in the order they originally
appear in w. Then RSKshape(w®'8) = RSKshape(wP™™P).

The proof of this theorem required a rather complicated analysis of a geometric interpretation
of the RSK algorithm known as Viennot’s construction [Vie81]. Unlike the Coupling Majorization
Theorem, we admit to not having great intuition for the Lower-Row Majorization Theorem. (In-
deed, when recalling it, we often forget whether the conclusion should have > or < !) However, it
seems to be an invaluable tool for reasoning about the lower rows produced by the RSK algorithm.

7 Probabilistic combinatorics of longest increasing subsequences
Let’s return to the problem of understanding the shape of A = RSKshape(w) when w ~ p®m.0
Throughout this section we will assume that p; > ps > - -+ > pg, which is without loss of generality
as we have discussed. For concreteness, consider the following example A when n = 1000 and
p=(0.5,0.2,0.2,0.1):

503
215
181
101

>
0 N
[ (I

\ Aq =

Interestingly, it appears that A;/n ~ p; for each 1 < i < 4, albeit with somewhat large error
for po = p3. If this were typically true in general, then the normalized Young diagram X/n =

5Let us mention the distinct but related topic of understanding the shape of A = RSKshape(w) when 7 ~ S,
is a random permutation, in which case A is said to have Plancherel distribution. The Plancherel distribution is
extremely well-studied; see [I002] for an excellent overview of this area.
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(A1/n,,...,Ag/n) would provide us with a good estimate (p1,...,p,) of the sorted probability
distribution (p1, . ..,pq). In turn, this would let us estimate any statistic of the multiset {p1, ..., pq}
So how might we show that A; ~ p;n for large n?

Let’s start with the ¢ = 1 case. As described in Section 3, A; = LIS(w), so we’d like to show
that the longest increasing subsequence in w ~ p®" has length roughly pin. The lower bound is
simple: indeed, we already determined (see (5)) that E[A;] > pin. This is because LIS(w) is always
at least the number of 1’s in w, a quantity with mean pin.

Let’s now heuristically reason about an upper bound for A; = LIS(w). The longest increasing
subsequence in w can always be determined as follows: First, take some partition of the positions
(1,...,n) into d contiguous blocks, By, ..., Bg. Next, form an increasing sequence in w by taking
all of the letter-1’s in block Bj, all of the letter-2’s in block Bs, and so forth. Finally, maximize this
procedure over all partitions into blocks. Now for any partition, the number of letters ¢ that w has in
block B; will be tightly concentrated around p;|B;|. Thus the length of the increasing subsequence
of w formed from the partition should be not much more than pi|Bi| + pa2|Ba| + - -+ + pa|Bal-
But p; < p; for all ¢, so this is at most pi(|B1| + -+ + |B4|) = pin. Indeed, one can formalize
this argument using the Chernoff bound and get that LIS(w) < pin + O(dy/nlogn) with high
probability. We will later see a noticeably tighter upper bound.

The fact that indeed A; ~ p;n for all i € [d] was first shown by Vershik and Kerov [VK81]. Since
then, several works have determined that in the limit as n — oo, the deviation of the normalized
Young diagram A/n from the probability vector p is distributed like a random vector arising from the
spectrum of certain random matriz ensembles; specifically, it has a partly Gaussian, partly Tracy—
Widom limiting distribution; this was first shown for the case of uniform p;’s by [Ker03, TWO01,
Joh01] and generalized to the case of nonuniform p;’s by [[TW01, HX13, Mi2]. Unfortunately, these
limiting results don’t necessarily give us concrete error bounds on the deviations of A; from p;n:
they heavily rely on considering p fixed and then taking n — oco. In particular, the error bounds
can have an uncontrolled dependence on quantities like d and min,, ;. (pi — pj)_l.

Still, it is very useful to rely on these results for intuition. Most useful has been the following
ansatz, which is suggested by these limiting results.

Ansatz: \; = p;n £ 2+/p;d;n.

Here d; is the number of occurrences of p; in (p1,...,pq).

One of the main goals in [OW16, OW17] is to prove sharp, explicit bounds on the closeness of
the normalized Young diagram A/n to the sorted probability vector p. For instance, in Section 12,
we sketch a proof of the ¢5-bound

d
E[|[A/n —p|3] < —
B[IA/n -~ pl] < 2,
which is indeed consistent with the ansatz. Going beyond this single global error bound, [OW17] was
able to show some per-row error bounds, which help in analyzing the Hellinger distance and y?-
divergence of A/n from p. The easiest to state such bound is the following:

pin — 2y/Tin < E[X\;] < pin + 2y/7in, (13)

where 7; = min{1, p;d}. We note that this is suggested by the ansatz, as p;d; < 7; always. In the
remainder of this section, we will sketch the proof of the upper bound in (13).

Our starting point is the fact that much stronger asymptotics can be obtained in case the
largest probability p; is noticeably larger than the second-largest probability ps. For example, in a
long sequence of random English letters, the longest increasing subsequence will almost surely be
essentially the same as the number of e’s; thus its distribution will be very close to having mean p.n
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and standard deviation /pe(1 — pe)n. On the other hand, in Spanish, where p, ~ pe, the longest
increasing subsequence may involve a mix of a’s and e’s, and its length has a greater chance of
deviating noticeably above p,n & pen.

To make this observation more formal, let w(®) = wijwsws - -+ be an infinite random word
with each w; ~ p independently, and set w™ = w; - w, to be its length-n prefix. Consider the
(indefinite) process of performing RSK on w(*), and let A = RSKshape(w™) be the “snapshot”
of the RSK shape at time n. Then Its, Tracy, and Widom [ITWO01] showed that

n n—00 Di
EAM] —pin 2% YT . (14)
i1 b1 — P

The limiting quantity on the right is finite if and only if p1 > ps strictly. Supposing that p; —ps > 9,
its value is at most Z;‘i:g B <1/6. So at an intuitive level, (14) tells us that in a random length-n
word with letter probabilities satisfying p; > ps + 6, the expected length of the longest increasing
subsequence is just an additive 1/§ larger than the expected length pin of the all-1’s subsequence.

Unfortunately, (14) is merely a limiting statement; it could be true that E[)\gn)] — pin only
becomes smaller than, say, 2/5 once n > 2¢.2Y/9 — or even worse. Indeed, the proof of (14)
in [ITWO01] involves asymptotic hacking on the explicit formula (11) (using formulas (10) and (12))
and it heavily relies on d and miny,,. (p; — p;j)~! being treated as “constant” while n — oo.
However, the combinatorial RSK perspective allows us a nice trick which lets us convert these
heavily asymptotic statements to perfectly concrete ones.

The trick is to show that

E[/\gn)] — pin is an increasing function of n; ie., E[/\gnﬂ) - )\gn)] > 1. (15)

To show this, let st — )\gnﬂ) — )\gn)' By definition, 51 s the 0 /1 indicator random variable
for the event that, in the infinite RSK process, inserting letter w, 1 creates a new box in the first
row. Thus E[(S(”‘H)] is the probability of this event, and we need to show the probability is at
least p;.

To show this, we recall that the RSK output distribution depends only on the multiset {p1,...,p4q},
and not on the ordering of the letters; hence, we can “reverse the alphabet” to 1 >2 > --- > d
without changing the distribution of A for any t. But upon doing this, it becomes evident that
the probability that the (n 4+ 1)th box is in the first row is at least p;. This is because we get a
new box in the first row whenever w41 = 1 (which is now the last letter “in alphabetical order”).

Thus we have established (15). But now we have an increasing sequence, E[Agn)] — pin, and

we know its limiting value thanks to (14). This means that the limiting value must be an upper
bound for all n! That is,

E)\(n) —pn < Di
[ ! ] ;pl_Pi

, for all n. (16)

This already gives the upper bound we desire for (13) in the case when p; > po + % However
it can become arbitrarily bad when py gets close to p;, and it gives nothing at all when p; = po.
To get around this, we would like to slightly “shift” some probability mass of p onto p; so that:
(i) the expected LIS is not changed too much; and, (ii) there is a decent separation between
p1 and po. Formally, let § = ﬁ, and construct a sorted probability distribution ¢ = (g1, ..., qq)
with ¢1 = p1 + 0, ¢2 < po, and g > p. (This ¢ can be constructed by simply moving the bottom
0-mass of p onto p;. We note ¢ cannot be constructed if p; > 1 — 4, but in this case our desired
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bound is trivially true.) We can now apply the Coupling Majorization Theorem from Section 6
(indeed, just the last statement in it, with & = 1.) Using the notation from that theorem, we have

i 1
EX] <E[pu] <qn+ Z o Ci 0 <qn++n= <p1 + \/ﬁ> n+v/n = pin + 2y/n, (17)
i>1 !

as stated in (13).
Next, we would like to generalize this to get a similar upper bound on E[Xy] for any row
1 < k < d. For this we use the Lower-Row Majorization Theorem. For w ~ p®", it tells us that

A, = RSKshape(w);, = RSKshape(w”™); < RSKshape(w®8); = LIS(w""#).

Analyzing w°' directly still seems difficult, because it still requires understanding which letters
are bumped to the kth row. However, all the letters bumped into the kth row are at least k.
Hence w°"® is a subsequence of w=*, the subsequence of w formed by removing all letters less
than k. Because adding letters cannot decrease the longest increasing subsequence, we have that
LIS(w°8) < LIS(w=*). But w=F is simple to analyze: it’s distributed exactly as pZ7*, where

m ~ Binomial(n, py + - - - + pg) and p>j is the probability distribution
can conclude that

m&%---,pd)- So we

E[Ax] < E[LIS(w™")] < E[(p>r)1m +2vm] < pyn + 2/(p + -+ + pa)n,
where the second inequality uses (17) and Jensen’s inequality. As pp + -+ + pg < 7%, we get the
claimed upper bound in (13).

8 Mechanics of quantum mechanics

We have not yet given any justification for the Optimal Measurement Theorem, which concerns a
certain quantum measurement that outputs Young diagrams. Now is the time to delve into the
mathematics of quantum states and measurements.

In the physical world, a “quantum measurement” is a device that takes in a quantum particle
system (of some fixed dimension D) and outputs some classical information. Its output should
always be considered a random variable. Even when the input is a deterministic pure state vector
v € CP, the output will be randomly distributed (in a well-defined way, based on the device
itself and the input state v). And on top of this, we will consider measuring quantum contraption
outputs, which themselves are randomized.

Speaking of quantum contraptions, we imagined a scenario where, at the push of a button, the
contraption outputs a d-dimensional state which is one of the orthonormal vectors [1), ..., |d) € C¢
with probabilities p,...,pq. In an effort to learn about these vectors and probabilities, we have
considered pushing the button n times. Suppose d = 32, n = 6, and the output is the sequence

2

U1, V2, U3, V4, U5, Vg.

Here each vy is one of |1),...,|32) € €32 — although we don’t yet know these basis vectors. One
thing we might do is build some cleverly chosen measuring device M that accepts 32-dimensional
inputs and reads out some classical information. We could then apply it to each of vy,...,v5. A
more sophisticated thing to do is build 6 different measuring devices, M, ..., Mg, each taking a
32-dimensional input, and apply M; to v+, t = 1...6. An even more sophisticated strategy might
involve adaptivity — we could build and apply different 32-dimensional measuring devices based
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on the outcomes of previous measurements. However the most sophisticated thing we could do is
build a single measurement device M that takes as input all 6 samples simultaneously.

If you think of a single v; € €32 as the state of 5 qubits, then collectively v, ..., v represent
the state of 5 x 6 = 30 qubits. This in turn is defined by some 230 = (2%)5-dimensional vector. In
general, if we have n “unentangled” d-dimensional systems with pure states vy, ..., v, € C¢, then

their state is defined by a vector of dimension D = d". Specifically, it is the vector v1 QU ®- - -®vy, €
(C4)®", This situation is least complicated when each vector vy is one of d orthonormal possibilities
I1),...,|d), as we have been considering. In that case, (C%)®" should be thought of as the vector
space spanned by d" vectors that, by fiat, are orthonormal and are named

i1) @ |ig) @ -+ @ |in), 4t € {1,...,d}.

For typographical simplicity, we usually write these vectors simply as |iiia - - - ip), Wwhere i1i9 - iy
ranges over all “words” in {1,...,d}". Soif, e.g., we have a contraption with 4-dimensional outputs
11),]2),13),]4) € ©%, and we press its button twice, the possible outputs are 42 orthonormal vectors
in (C*)®? named

111), |12), [13), |14), |21), |22), |23), |24), |31), |32), |33), |34), |41), |42), |43), |44).

Let’s return to the notion of measurement devices for a D-dimensional particle system. One of
the most general kind of measurement devices works as follows. Let f be an ordered orthonormal
basis (“frame”) |f1),...,|fp) for CP. Then we can build a measurement device My that, on input
a pure state |[v) € CP, produces the following classical read-outs:

“j” with probability [(f;[v)[* = (f;lvi)vilf;), 7=1...D.

Here we are using the “bra-ket” notation in which |f;) and |v) denote column vectors, and (f;|
denotes the (complex conjugate-)transposed row vector of |f;). So (f;|v) = (f;||v) is just the usual
inner-product of |f;) and |v), the number |(f;[v)]* = (filv) (f;[v) = (fjlvi)vilf;) is its squared
magnitude, and the fact that these quantities sum to 1 is a consequence of the Pythagorean theorem
(and that all the vectors involved have unit length).

We have described what happens when a “pure state” |v) is fed into M;. What happens if
we feed in a randomly chosen pure state? Specifically, say we have a “mixed state” R, meaning
a probability distribution over some pure states |v1),...,|v,), in which outcome |v;) occurs with
probability ¢;. Here the |v;)’s are arbitrary unit vectors in C”, and r might be more or less than D.
If we make a draw from R, feed the result into the measurement device My, and observe the
outcome, what do we see?” We get

“§7 with probability > qi|(fjlvi)l* = ai{filvi)wilf;) = (£l (Z qi\wxvil) |f5)- (18)
=1 =1

i=1

Notice that these probabilities only depend on the D x D matrix
T
o= glvi)vi. (19)
i=1

This matrix o is called the density matriz for the mixed state R, and we see that two mixed
states R and R’ with the same density matrix produce identical measurement outcomes, and thus
cannot be distinguished by any measurement devices My! Accordingly, two such mixed states are
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considered physically identical, and they’re mathematically represented by the same object, the
density matrix o.
As an example, let D = 2 and define the unit vectors

o=l wefl e e[

Now if we define the mixed state R = “la) or |b) with probability 1 each” and the mixed state
R’ = “|dy or |V/) with probablhty each”, they both have the same density matrix, namely

R R e [ B I B
20

where 1 denotes the identity matrix. In particular, suppose an engineer designs and builds a
quantum contraption with 1-qubit (D = 2) output given by R. Then a statistician wanders into
the lab, presses the contraption’s button several times, and estimates its output as R’. At first it
might look like the statistician estimated the probabilities p; = ps = % perfectly but the vectors
la), |b) poorly, since |a’), [b') look quite different. But in fact the statistician should be given full
points for a 100% correct estimate! It only makes sense to try to estimate the density matrix o of
an unknown mixed state, and the quality of an estimate matrix & should be measured in terms of
some matrix-distance between o and .

Let’s summarize some properties of a D-dimensional density matrix o, all of which follow
from (19). First, o is positive-semidefinite, meaning that it is Hermitian (equal to its complex
conjugate transpose of) and that (glo|g) > 0 for all vectors |g) € CP. Second, o has trace
tr(o) equal to 1, where the trace is the sum of p’s diagonal entries. An easy way to see this
is to use the linearity of trace, tr(cA + B) = ctr(A) + tr(B), and the cyclic property of trace,

tr(AB) = tr(BA) = ij:l A;jBji. Applying these to (19) gives

r r r
U) :tr<ZQi|Ui><vi’> Z%tr |Uz Uz| Z(htr Uz|'Uz :ZQitr([l]) :ZQi:L
=1 =1 =1

Since ¢ is positive-semidefinite, it will always have an orthonormal basis of eigenvectors, call them
|1),...,|D), with associated nonnegative eigenvalues, call them py,...,pp > 0. Further, the trace
of a matrix equals the sum of its eigenvalues.” Thus p; + --- + pp = 1, we can view the p;’s
as a probability distribution over the eigenvectors |i), and o = Zi 1 pili)i]. In particular, every
positive-semidefinite matrix of trace 1 corresponds to a mixed state over d orthonormal pure state
outcomes, justifying a claim made in Section 2.

Please note that for a given density matrix o, its spectrum — i.e., the multiset of eigenvalues
{p1,...,pp} — is uniquely determined, but it doesn’t have an inherent ordering. Furthermore,
corresponding orthonormal eigenvectors |1),...,|D) are not uniquely determined. Taking the ex-
ample from (20), we see that the 2-dimensional density matrix o = 11 has eigenvalues (3, 3), but
for associated eigenvectors we can choose literally any pair of orthonormal vectors in €2. The
D-dimensional analogue of this state, o = %]l, is called the maximally mized state; it is the unique
state with spectrum corresponding to the uniform probability distribution (%, ceey %)

Let’s make a final observation of relevance for quantum contraptions. Suppose a quantum
contraption outputs [1),...,|d) with probabilities pi,...,ps, and hence has density matrix p =

"This follows because trace is unitarily invariant: tr(UoU") = tr(cU'U) = tr(c1) = tr(o) for any unitary U.
Choosing U to be a unitary matrix that moves the orthonormal basis |1),...,|D) to the standard basis of C”, we
get that UoU' is a diagonal matrix with p1,...,pp on the diagonal, and the claim follows.
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S pili)i|. If we hit its button n times and view the output collectively, we get |w) € (C%)&"
with probability Pr,en[w], where w runs over all words iyip---i, € {1,...,d}". This probability
distribution on pure states has density matrix

Z (Hm) (@\% > ((X) ul) = é(ipilixi!) = é)p =p", (21)

i1yeeeyin=1 t=1

where ® also denotes the matrix Kronecker product. Thus quantum tomography problems can be
thought of as estimating properties of a density matriz p given the ability to measure p®"

9 Noncommutative probability

Before thinking about measurements of the bigger state p®", let’s first discuss measuring a single
density matrix p € C%*?. Measurement can be thought of as a way of generating classical random
outcomes from a “base source” of quantum randomness, namely a positive d X d matrix p with
trace 1. In this section we’ll consistently make an analogy to a similar situation in classical proba-
bility: generating classical random outcomes from a “base source” of classical randomness, namely
a probability distribution p € R¢ (which is a vector of positive numbers adding to 1). Indeed, if
you restrict attention to diagonal density matrices p, the two situations become identical.

So far we have seen that, given p, you can generate d classical random outcomes with an My
measurement, where f = (|f1),...,|fs)) is an orthonormal basis of C¢. Let’s write the resulting
outcome probabilities from (18) in a slightly different way, using the cyclic property of trace (and
the fact that the trace of a single number is itself):

measuring p with My yields outcome “j” with probability (f;|p|f;) = tr({f;|plf;)) = tr(p|fi)f;il)-

Writing E; = |f;)f;| (the matrix which projects onto f;), the above is tr(pE;), which also equals
tr(pTEj) because p! = p. Now the trace of a matrix product XY is the same as the entrywise
dot-product between matrices X and Y:

d
tr(XTY) = Z )ijYji = Z = (X,Y),
ij=1 ij=1

where we use the (-, ) notation for matrix dot-product. Thus we can further write:
measuring p with My yields outcome “j” with probability (p, E;), E; = |f;)f;l-

This can be compared with the simplest way of generating classical outcomes given a classical base
source of randomness p € R%: namely, simply drawing from p and reporting the outcome. If we do
this, the probability of outcome j is (p, e;), where e; = (0,...,0,1,0,...,0) with the 1 in the jth
coordinate.

So far we have only used our base sources of randomness (p or p) to generate outcomes from
the set {1,...,d}. In the classical case, we could generate outcomes in some other set Q as follows:
First, draw j from p. Next, add some additional coin flips . Then form a final outcome w € € via
some deterministic function h of 7 and @. A similar thing is possible in the quantum case: First,
draw |v) from p. Next, add some additional qubits initialized to, say, |0), thereby increasing the
dimension to D. Next, perform a measurement Mp using some D-dimensional frame F', producing
an outcome J € {1,...,D}. Lastly, form a final outcome w € Q by applying a deterministic
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function h : {1,...,D} — Q to J. This whole process — call it M — can be viewed as a
“generalized measurement” of p, with outcomes in 2. And it turns out that this is the most general
kind of measurement allowed by the laws of quantum mechanics. As an example, the measurement
described in the Optimal Measurement Theorem can be thought of as a general measurement of p®"
with outcome set 2 equal to the collection of all n-box, d-row Young diagrams.

There is a relatively simple way to mathematically describe any such general measurement M
(which, in quantum lingo, is called a “POVM”). A little calculation shows that, corresponding to
any M, there exist positive-semidefinite matrices Ey, Fa, ..., Ejq| € ©4*4 satistying Yowea FPu =1,
such that

measuring p with M yields outcome w with probability (p, E,,).

In case M is of the basic type My, the matrices E,, are just |f;)(f;], 1 < j < d. Again, we can com-
pare these general measurements to the classical case. If we let ey, ea,...,€|g be any nonnegative
vectors in R¢ with > weatw = (1,1,...,1), then we can use a base probability distribution p € R
to generate outcome w with probability (p,e,). In both scenarios, we have a useful special case:
a two-outcome measurement, or equivalently, a probabilistic event. In the classical case, if e € R?
satisfies 0 < e < (1,...,1), we can think of it as an “event” that occurs with probability (p,e).
Similarly, in the quantum case, if £ € C%*? satisfies 0 < E < 1 (in the positive-semidefinite
ordering), we can think of F as an “event” that occurs with probability (p, F) (arising from the
two-outcome measurement with outcomes {0, 1} and matrices Fy = E, Ey = 1 — E).

We can also describe the quantum analogue of real-valued random variables, called observables.
If x = (21,...,24) € R?, we can form a classical real random variable @ from a probability
distribution p € R? by taking = to have value x; with probability p;. The expectation of this
random variable is (p,z). In the quantum case, suppose we associate the real values z1,..., 24
to the outcomes of a basic measurement My with frame |f1),...,|fs). This yields a real random

variable @ in which value z; occurs with probability <,0, | fiX f]|> The expectation of this random
variable is

d d d
Z<07 \fj><fj|>ﬂ?j = <pvzx]'|fj><fj|> = (p,X), where X = ;| f;X ;-
i=1 i=1

j=1

Here the “observable” X is a d x d Hermitian matrix, with eigenvalue/vector pairs x;,|f;); con-
versely, to any Hermitian X we can associate a real-valued random variable using its eigen-
value/vector pairs. Notice also that if we square all the values x;, we get the eigenvalue/vectors of
the Hermitian matrix X?2. In other words, the expected value of x2 is {p, X?). Given these obser-
vations, it’s natural to introduce — for any Hermitian (“observable”) X € €C?*? — the notations

E,[X] = (p,X),  Var,[X]|=E,X? —E,[X]?, stddev,[X]=/Var,[X].

Some familiar properties hold: for example, E[cX + Y| = cE[X]| + E[Y], and E[1] = 1, and
Var,[X] > 0. The main thing to watch out for is that observables need not commute! In fact,
XY = Y X occurs if and only if the product XY is itself an observable (i.e., Hermitian); thus
E,[XY] = E,[Y X] holds whenever it is “well-defined”. As a general substitute for XY, one can
sometimes use the always-Hermitian matrix %(X Y + Y X). Incidentally, though it’s irrelevant for

this survey, you might try proving as an exercise the famous Heisenberg uncertainty principle (in
Robertson’s form [Rob29]): for all observables X,Y,

stddev,[X] - stddev,[Y] > |E,[4(XY — Y X)]|.
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10 Testing for the uniform distribution/maximally mixed state

Let’s return to the problem of estimating properties of an unknown quantum contraption; in other
words, estimating properties of an unknown density matrix p € C4*? given the ability to measure
n samples, o = p®™. As in classical statistical testing, we focus on finding tests with good error
guarantees while keeping n as small as possible. Recalling Section 2 we may think of p as a mixed
state, outputting one of |1),...,|d) with probabilities p1,...,ps, where |1),...,|d) is an unknown
orthonormal basis of C?, and the probabilities p; are also unknown.

To begin, we’ll focus on testing whether p is the mazimally mized state, é]l, mentioned near
the end of Section 8; in other words, testing whether p’s spectrum, the multiset {pi,...,pq}, is
{é, ceey %} This is the quantum analogue of the classical problem of testing whether an unknown
probability distribution is the uniform distribution (see, e.g., [GR00, Pan08]).

The basic idea behind testing whether a probability distribution is uniform is to estimate the
degree-2 power sum symmetric polynomial, pows(p) = Zlep?.g This expression is called the
purity of p in the quantum case, and the collision probability of p in the classical case. The latter
term refers to the fact that powy(p) = Pry,.,e2[w1 = ws], the probability that two independent
draws from p yield the same letter. This quantity is minimized when p is the uniform distribution,

1

with minimal value 3. (Also, it has maximal value 1 when p is “pure”; i.e., p; = 1 for some i.)

Furthermore, powy(p) is close to minimal if and only if p is close to uniform: specifically,

powy(p)— 4 = 0p, where 0, = Hp—é]lH% is the £3-distance between p and the uniform distribution.

(22)

Let’s work our way up to the quantum case by first studying the classical case. A natural way

to estimate pow,(p) in the classical case is simply to draw an n-letter word w ~ p®™ and compute
the random variable

c@) = avg {l[ws=w]}, which has E[c(y)]| = avg{Pr[ws = w;]} = pow,(p).
1<s#t<n sF#t

In statistics parlance, ¢ is an unbiased estimator of pows (p), and hence c2) — é is an unbiased
estimate of d,. It’s only a small chore to explicitly compute E[cé)] and hence Var[cy)] in terms of
pow,(p) and pows(p) (the latter being the probability that 3 letters drawn from p are all equal):

Varcg) = (i)<powQ<p> ~pows?) + 272 (hows (p) — pows(p)?) (23)
2

where the inequality used (22), some arithmetic, and 3, v < (33, 72)%/2. If we fix a threshold 6 < 1
and set n = K max{#~'d~/2,0~/2} with K a large constant, then Var|c(y)] <.0001 max{ég, 62},
Of course, Var|c(y)] is also the variance of ¢(g) — é, whose mean is d,. Summarizing:

Theorem 10.1. With n = O(max{6~'d='/2 6=1/2}) samples, the estimator c(2) — 5 has mean
equal to 8, (the (3-distance of p from uniform), and standard deviation at most .01 max{d,,0};
hence by Chebyshev we can use it to decide (with high confidence) whether 6, < .90 or 6, > 0.

8The usual notation for this is py(z); however, this clashes with our notation pi,...,ps for probabilities. The
works [OW16, OW17, BOW17] evade this clash by writing a1, ..., aq for probabilities.
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In the language of Property Testing, this gives a (.96, 0)-tolerant testing algorithm for p being
¢2-close to the uniform distribution. Noting that \/@ is an upper bound on the total variation
distance of p from uniformity (by Cauchy-Schwarz), we can set § = €2/d and immediately derive
an algorithm which tests whether p is the uniform distribution or has total variation distance at
least € from it, using n = O(v/d/€?). Such a result was first obtained by in [CDVV14, VV14], and
it was later obtained using the collision tester in [DGPP16].

In a very similar way, we can estimate how close a quantum contraption’s density matrix
p € €™ is to the maximally mixed state %IL, in /2-distance (also known as squared Frobenius, or
Hilbert—Schmidt, distance). We remark that this distance is again

(0= 4L, p—31) = {(p,p) = Ftr(p) + g = tr(p?) = § = X p} — § = pows(p) — § = ).

Again, we’d like a small-variance unbiased estimator for pow,(p), but now it must be an observable.
Let’s warm up by considering the case n = 2, writing 0 = p®2. We are looking for an observable
Hermitian operator X, acting on (€9)2, such that E,[X] = (0, X) = powy(p). In the classical
case with n = 2, the random variable ¢(y) involved drawing w ~ p®? and checking if w; = wo.
Another way to view this is checking whether wow; = wiws; i.e., whether swapping the two letters
produces the same word. This suggests letting X be the operator on (C?)®? that “swaps the two
tensor components”: X(|u) ® |v)) = |v) @ |u). Let’s denote X by P(;2), for reasons we'll see in
Section 11. Note that this swapping operator is Hermitian, and it can be defined independently
of any basis for €C¢ (which is good, because a contraption-tester doesn’t have any fixed basis in
mind). That said, it’s advantageous for analysis to consider P(;9) in the natural tensor basis of
p’s eigenvalues |1),...,|d): it becomes a d? x d? permutation matrix, and it maps |i1is) to |igiy)
for any 1 < 41,49 < d. In other words, P19 = Zil,ig‘iﬂlxili?" Recalling (21), we also have
p®2 = > irip PirPislini2)(iniz|. Thus in the d? x d* matrix dot-product (p®2,P(14)), we only get
contributions when ¢; = i5. Specifically,

d
Ep®2 [P(l 2)] = <P®277)(1 2)> = szz = powy(p). (24)
i=1

Thus the observable Py 9) is an “unbiased estimator” for the quantum purity. As for its variance,
E, o2 [73(21 2)] = E e2[1] = 1, so the variance is P(; ) is 1 — powy(p)?, which is not very small. But of
course we have only used n = 2 so far.

As with the definition of the estimator c(,), we can drive down the variance by taking larger n
and averaging over all possible (g) transpositions. So let’s define an observable on (C%)®" by

Co) = avg {P(sy)}, where P4y acts on (CH®" by swapping the sth and tth tensor components.
1<s#t<n

Although each P(;4) here is defined on (CH®™ rather than (C?)®2, the expectation computa-
tion (24) still holds. E,en[P( ] equals the probability that a random word w ~ p®™ satisfies
wt? = w, where w®? denotes the word w with its sth and ¢th letters swapped, and this is
indeed powy(p). Thus E,en[C(2)] = pows(p).

As for the computation of E en [Cé)] and hence Var,en[C(9)], it’s nearly identical to that of
E[cé)]. We will do it in some detail in Section 11, but to be brief, here: Upon squaring C(y), we
get three kinds of contributions, arising from the three cycle-types that can arise from the product
(st)(s't') of two transpositions: either the identity, a 3-cycle, or the product of disjoint 2-cycles.
When we compute expectations, these contributions yield 1, pows(p), and pows(p)?, respectively.
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The only difference from the classical case comes when {s,t} = {s’, '}, wherein we have 77(28 n=1
in comparison with the classical 1[ws = wy]? = 1[ws = wy]. In the end, very similarly to (23), we

get
2(n—2)

(5)

The fact that this is a bit worse (larger) than in the classical case actually makes the parameters
simpler; in the expression following (23) the first two terms get replaced by O(-), and it suffices
to bound the second two terms by O(%’); thus Var[c)] < O(:5 + 2). Then taking n = K/6

Var(Cip)] = (i)u — powy(p)2) + (pows(p) — pows(0)?). (25)

2

n2
617
= O(z
with K a large constant we get Var[cy) — 51] = Var[c)] < .0001 max{02,6%} again. And once
again, /dd, is an upper bound on the matrix ¢;-distance (or trace distance) between p and the

maximally mixed state, by a matrix form of Cauchy—Schwarz. We can therefore obtain tolerant
testers for whether p is close to the maximally mixed state:

Theorem 10.2. Given n = O(1/6) samples of p € C*?, we can decide (with high confidence)
whether 6, < .90 or §, > 6. As a consequence, given n = O(d/€®) samples, we can decide (with
high confidence) whether p is the mazimally mized state %1]1 or has trace distance at least € from it.

Theorem 10.2 was first obtained in [OW15], but the viewpoints described in this section are
from [BOW17]. The sample complexity n = O(d/€?) in the theorem is tight: [OW15] proved that
even distinguishing “p = é]l” from “p has eigenvalues %, %, %, %, e %, % ” requires
Q(d/e?) samples. (Previously, [CHWO07] had shown this statement, and therefore an Q(d) lower
bound, when ¢ = 1.) Elaborating on the techniques used to prove Theorem 10.2, [BOW17] also
showed tight results for testing identity of p to any fixed density matrix, with respect to “infidelity”

and other distance measures.

11 Representation theory gives a nice basis for observables

Let’s go over the variance computation for the quantum purity estimator C(z) in a more expansive
fashion. We defined C(9) as the average of P( ) over all transpositions (st) € Sy, where P4 acts
on (C%)®" by transposing the sth and tth tensor components. More generally, for any permutation
m € S, we could define the operator P, that acts by permuting the n tensor components according
to 7. We have PPy = Prp; in other words, P is a representation’ of the symmetric group S,, on
the vector space (C4)®". We may then define, for any “cycle type” s of permutations in S,,

C. = avg {Pr}.

7 of cycle type k

For example, if x is the cycle type (4,3), then C, is the average of all operators P, where 7 is
the product of a 4-cycle and a (disjoint) 3-cycle. Incidentally, when we speak of cycle types, we
generally don’t write cycles of length 1; strictly speaking we should, in which case the cycle type
(4,3) would be more properly written as (4,3,1,1,...,1), with the number of 1’s being n—7. When
all 1’s are included and the parts are sorted, a cycle type is nothing more than a partition of n; i.e.,
a Young diagram. We also mention that the cycle types are in correspondence with the conjugacy
classes of the symmetric group .S5,.

Now for a density matrix p € C?? with spectrum pi,...,pq, we saw that the expectation
E en [P(St)] equals the probability that a random word w ~ p®™ is invariant to transposing the sth

°Tt would be more common to see the notation P(m)P(n') = P(nr’), but we used subscripts instead to avoid
writing things like P((st)).
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and th letters — i.e., that it satisfies w = w(®*). This is just Pr{w, = w;] = Z?Zl p? = powy(p).
Since this is the same for every transposition (st), we of course also have E,en[C(2)] = pows(p).
More generally, let x be a cycle type for S, and define the generalized power sum symmetric
polynomial
Pow . (p) = Pow,,, (p) - pow ., (p) - POW,;, (p) - -

(Note that it doesn’t matter whether or not we include the 1-cycles in the cycle type k, since

pow; (p) = 1 anyway.) Now if 7 € S,, has cycle type &, it is not hard to see that!’
E en[Px] = wfp{@n [w = w"] = pow,(p); hence E en[Cy] = pow,(p). (26)

Here w™ is the word formed from w by permuting its n positions according to 7. To illustrate this
with an example, let’s take x = (4, 3) again. Suppose 7 is of this cycle type, say 7 = (1234)(56 7).
Then w = w™ if and only if the first 4 letters of w are the same and also the 5th, 6th, and 7th
letters are the same. These two (independent) events occur with probability Zle pi = powy(p)
and Zle p3 = pows(p), respectively, and hence the probability both occur is indeed POW (4, 3)(P)-

To compute the variance of the purity estimator C(,), we needed to first compute E on [0(22)],
where

622 = avg {P(st)P(s’t’)}'
@) (st),(s"t")

The product of two uniformly random transpositions in S,, is either the identity (probability 1/ (g)),
a 3-cycle (probability 2(n — 2)/(})), or of cycle type (2,2) (probability (";2) /(5)). Hence

C(22) = ﬁ -1+ 2(?71_)2) 'C(g) + (é)) -C(g,g). (27)

Therefore

1 2(n—2)
T Ty
G G
from which (25) follows (note that pow , 5y (p) = pows(p)?).

Let’s look more closely at these “cycle type observables” C.. One thing to note is that they
commute: C.Cp = C/Cy for any two cycle types; in fact, it’s not hard to show that C, commutes
with every Pr. (Indeed the collection {Cy} is a basis for the “center of the group algebra CS,,”.)
Let’s define

E, on [C(Zz)] = pows(p) +

A = {real linear combinations of the observables Cy };

the right-hand side of (27) is an example element of A. This A is not only a (real) vector space
of dimension equal to the number of cycle types (conjugacy classes) of S,,, it has a (compatible)
commutative multiplication operation. Thus it is a commutative algebra over the reals.

It’s not a coincidence that the observable C(;) we used to estimate the quantum purity > p? is

C9>4 and we’ve come

a member of A. Suppose we have a quantum contraption with output p €
up with some observable X on (C%)®" with a certain expectation y = E on[X]. (E.g., we might
be trying to estimate a statistic p of p’s eigenvalues p; or, perhaps we are trying to decide if the

multiset p has a certain property, and X'’s eigenvalues are all 0 or 1 corresponding to “no” and “yes”

10T what follows, we allow ourselves the liberty of writing “E,on [Px]” even though P is not usually Hermitian
and therefore not an “observable”. (It’s only Hermitian when = = 7~ *.) Nevertheless, the expression (p®", X) makes
sense for any operator X on (C%)®" and the final operator C, that we care about is Hermitian. That’s because Cs
is a real linear combination of Hermitian operators of the form %(797r +7P,-1), since m and 7' always have the same
cycle type.
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outcomes.) Since we are indifferent to the eigenvectors [1), ..., |d) of p, we may as well “average X
over all unitary transformations of C%”; i.e., replace it with avgy {U®"X (U 1)®"}, where U is a
uniformly random element of the unitary group U(d). It is not hard to show that this can only
decrease the variance of X (which is good), and the resulting X has the property that it is a linear
combination of the permutation operators P,. (The latter fact is nontrivial; it is a consequence of
the Schur-Weyl duality theorem from representation theory.) Furthermore, since the n outputs of
the contraption p are independent, we may as well “average X over all permutations in S,,”; i.e.,
replace the new X with avg, g {PrXP; 11, Again, this can only decrease the variance, and the
resulting X is now in A. Thus we have shown that we may as well only consider observables in A.
This will be the justification for the Optimal Measurement Theorem, as we will shortly see.

What’s convenient about the observables Cy is that they have a straightforward definition and
a nice formula for their expectation: E,en[Cx] = pow,(p). What’s inconvenient about the Cy’s is
multiplying them; even the simple computation of C(QQ) in (27) was a little tiresome. One thing that
would be nice would be to have a different, “orthogonal” basis (II)), for A, meaning one with the
property that

I, if A= )\/, . s . . d\®@n
Iy - 11y = _ i.e., the IIy’s are orthogonal projections on (C%)“".
0 ifXN#£N

(The fact that we chose the letter A to index the basis is not accidental. ..) Then linear combinations
of these basis elements would be very easy to multiply.

There is another bonus of finding such a nice basis of orthogonal projections: we can build a
general quantum measurement (“POVM”) from it, taking the “E” matrices to be the orthogonal
projections II. Since every element of the algebra A is a linear combination of the II’s, we can
construct any observable we may have wanted by first performing this measurement — thereby
getting some random A — and then deterministically post-processing .

By the end of this section, we will see an orthogonal basis (IIy), for A in which the \’s range
over all n-box, d-row Young diagrams, and

Pr(X = A\ = (p®",11,) = dim()) - sx(p). (28)

pE™
As described in equation (11) from Section 5, this is precisely the probability distribution on Young
diagrams that arises from RSKshape(w) when w ~ p®™. Thus we see the full justification for the
Optimal Measurement Theorem.
Let’s now look for the desired “nice orthogonal basis” (IIy)y. When n = 2, things are very

simple: there are only two cycle types in Sy, and A is just the span of 1 (the identity operator on
(C4®2?) and P(12) (the swapping operator). The nice basis we're looking for is

Haym = 5 - 1+ 3P 2), Iy =3 -1—3Pa2.
For n = 3, we have three cycle types, and the desired nice basis for A is

Hsym = avg {Pﬂ}7 [T = avg {Sgn(ﬂ-) ’ P?T}) Hga = %(2 -1 - P(123) - P(132))'
TES3 TES3

For n = 4...well, the pattern isn’t easy to spot. You might not be surprised to learn, though,
that it has something to do with the representation theory of the symmetric group. Specifically,
in the general-n case, the basis for A we're looking for has one member II for each n-box Young
diagram A. (This is the correct count of basis members, since it also equals the number of cycle
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types in S,.) These Young diagrams index the irreducible representations of S, and as such they
also index the (normalized) characters of S,, which are certain functions X : S, — @Q with the
property that X»(7) only depends on the cycle type of m. (Because of this, we’ll sometimes write
Xx(k), where £ is the cycle type of w.) The “orthogonal basis” of A we are looking for turns out
to be o

Iy = 922N (1) - P, (29)

TESR

(recall dim A = #SYT(X)). To see that IIy € A, you can observe that the coefficient on P in its
definition only depends on 7’s cycle type. To see that the II)’s are “orthogonal” requires some
representation theory; basically, you expand the product II,II/, use the fact that each character is
the trace of the associated representation, and then use the fact that different matrix elements of
representations are orthogonal.

You might want an explicit formula for the normalized group character X,(w) for S,, but
unfortunately you can’t expect a very good one — computing symmetric group characters is #P-
complete [Hep94]! In the next section we’ll see that computing X () is efficient when the cycle type
of 7 is considered to be of “constant” size (with 1-cycles ignored). For now, we’ll take the following
implicit definition of the character values X (k), sometimes called the Murnaghan—Nakayama rule.
It says that the characters essentially express how to write the Schur basis of symmetric functions
in terms of the power sum basis.

pow, (1, .., 7g) = »_ Xalk) dim(A) - sx(z1, ..., 7). (30)
A

Given this definition, the formula (28) follows immediately by applying E,e.[] to (29) and us-
ing (26). Thus we have now fully explained the justification for the Optimal Measurement Theo-
rem.

12 Symmetric group characters on small conjugacy classes

It may look like we’ve made some backward progress in terms of estimating statistics of the spectrum
{p1,...,pa} of p. Initially we considered the simple observables C,, which have expectation pow,.(p).
Now we’ve justified the Optimal Measurement Theorem which tells us we may instead measure
using the II)’s and thereby obtain a Young diagram X distributed as RSKshape(w) for w ~ p®™.
But given such a A, how would we recover an estimator for, say, pows(p)? The answer lies in the
combination of formulas (29) and (30): to get an estimator with mean pow,(p), we need to output
XA (k).

Happily, there is a “good” (efficient) formula for computing the (normalized) character X (k)
when the cycle type x has “constant” size (see [VK81, KO94, 0096, Oko08]). To describe it, it’s
helpful to introduce some notation. First, let k be a partition of the integer k£ (with k£ < n) and
let m € S, be of cycle type k. We think of 7 as fixed and A = (Aq,...,Ag) as variable. It’s more
elegant to work with the following “shifted” parameters Li,...,Lg, where L; = \; — (i — 1/2).
(These expressions have a natural pictorial meaning; L; is the displacement from the main diagonal
of the right edge of the ith row in A. See the figure below for an example with A = (5,3,1,1).)
Next, introduce the notation X.(A\) =n(n—1)---(n —k+ 1) - Xa(7). (The prefactor here is the
number of ways of “embedding” an element of Sy into S,,.) Finally, the symmetric group characters
are specified by the fact that X, () is the unique polynomial of the form

pow,. (L) + {lower—degree power sum polynomials of L}
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such that ¥, (\) = 0 whenever A has fewer than k boxes.

} % Li=X\—-05= 4.5
Ly=MX—15= 1.5
'\\\ L3=X3—25=-1.5

| Ly=X—35=-25

To take the simplest example, suppose k = (2), so k = 2; in other words, we are interested in
characters’ values on transpositions. We are told that

3(2)(A) = powy(L) + a - pow; (L) +b

for some constants a,b, and that ¥)(A) = 0 whenever A has fewer than two boxes — i.e., when
A=(1,0,...,0) or (0,0,...,0). The two constraints let us solve for the two unknowns and we find
that a =0, b= — Z?Zl(i —1/2)2. We can therefore finally conclude,

d
for 7 a transposition, Xx(w) = (Z M — Z (20 — I)Ai>. (31)
1=1

With this formula in hand, we can show a sample-efficient method for learning the complete
spectrum {p1,...,pq} of an unknown p: the Empirical Young Diagram (EYD) method, first pro-
posed by [ARS88, KWO01]. Without loss of generality, assume p; > py > -+ > pg. The EYD
method obtains A from p®” as in the Optimal Measurement Theorem and then simply outputs the
estimates p; = A;/n. Following [OW16], let’s see that this method has the guarantee

254 g d

Ey[||p— p|?] < === < 2 32
Al - i) < 2=t (32)
(The latter inequality is because py = ps = --- = pq = 1/d yields the largest value of ), ip; when

subject to p1 > pa > -+ > pg.) A consequence of (32) is that n = O(d/e) samples suffice to
estimate the sorted spectrum p to 3-accuracy e (with high probability), and hence n = O(d?/e?)
samples suffice to estimate it to total variation distance €, by Cauchy—Schwarz (improving on the
previous bound of n = O(d?/€* - log(d/¢)) samples due to [HM02, CMO6]).

To obtain (32), we begin with

d
EA[|Ip - pl}] = Z( i/n— ] ZV] - prz il + pows (p)
1 [ d -
= B |n(n— DRAR) + Y (2 - 1>AZ-] 23 pEA] +pows(p)  (by (31)
=1 =1
d
= (2= 1/mpows(p) + — S (20— 1 — 2pn)EIA (33)

where in the last line we used that E[Yx(2)] = pow,(p). We now use the majorization statement (5)
from Section 4, namely that (E[X;]); = (p;n);.- Since the sequence (2i — 1 — 2p;n); is increasing
in 4, and the sequence (E[\;]); is decreasing in i, a basic rearrangement inequality tells us that the
inner product 2?11(22' — 1 —2p;n)E[\;] only increases if we replace (E[\;]); with a sequence that
it majorizes. Thus we get the following bound, implying (32):

23 ipi <1+p0W2(p))_

d
1
(33) < (2= 1/n)powy(p) + — Z (2i = 1 = 2pin)pin + pows(p) = == -
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Elaborations of this method for bounding the sample-complexity of learning p’s spectrum appear
in [OW16, OW17]; results include learning just the k largest eigenvalues with sample complexity
depending only on k, and learning with respect to Hellinger, KL-, and y?-divergence error.

13 Further results and reading

In the previous section we described how n = O(d?/e?) samples suffice to estimate suffice to esti-
mate the spectrum of p to total variation distance e. In fact, it has been shown [OW16] that this
many samples also suffice to estimate all of p itself to trace distance e, and further that n = Q(d?/e?)
is necessary [HHJ'16]. (Similar results for learning p with respect to infidelity and other measures
appear in [HHJ ™16, OW17].) Describing the estimation algorithm — due to Keyl [Key06] — and its
analysis [OW16] would take us too far afield, but suffice it to say it involves further analysis of Schur
polynomials, representation theory of the unitary group, the Harish-Chandra—Itzykson—Zuber for-
mula, Gelfand—Tsetlin patterns, the theory of random matrices, and other interesting topics. For
further reading on the topics discussed in this survey, recommendations include Canonne’s survey on
(classical) distribution testing [Canl15], Romik’s book on longest increasing subsequences [Rom14],
Fulton’s book on Young tableaus [Ful97], and Méliot’s book on representation theory of the sym-
metric group [Mél17]. For applications of Schur-Weyl duality to quantum computing in addition
to state estimation, we recommend the theses of Harrow [Har05] and Christandl [Chr06]. The IIy
measurement from above is known as weak Schur sampling and can be implemented efficiently on a
quantum computer [MW16]. Some applications require a generalization known as the strong Schur
transform, which can also be computed efficiently on a quantum computer [BCHO05, Har05].
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