
Improved NP-inapproximability for
2-variable linear equations

Sangxia Huang
KTH

Ryan O’Donnell
CMU

John Wright
CMU

Johan Håstad
KTH

Rajsekar Manokaran
KTH

2Lin
x1 = x5

x10 = -x3
x61 = -x24

...
x48 = -x5

(xi = -1,1)

2Lin
x1 = x5

x10 = -x3
x61 = -x24

...
x48 = -x5

(xi = -1,1)

2Lin(2) ∈ 2Lin(q) ≈ UniqueGames

2Lin
x1 = x5

x10 = -x3
x61 = -x24

...
x48 = -x5

(xi = -1,1)

2Lin(2) ∈ 2Lin(q) ≈ UniqueGames

(Actually, simplest case of UG)

2Lin
x1 = x5

x10 = -x3
x61 = -x24

...
x48 = -x5

(xi = -1,1)

2Lin(2) ∈ 2Lin(q) ≈ UniqueGames

(Actually, simplest case of UG)

Folklore wisdom: get 2Lin(2) right
and 2Lin(q) will follow.

Known results
Suppose val(I) = α. Can we guarantee

a solution of value C*α?

Known results
Suppose val(I) = α. Can we guarantee

a solution of value C*α?
[GW]: .878-approx algorithm

Known results
Suppose val(I) = α. Can we guarantee

a solution of value C*α?
[GW]: .878-approx algorithm
[KKMO]+[MOO]: (.878+ε)-approx UG-hard

Known results
Suppose val(I) = α. Can we guarantee

a solution of value C*α?
[GW]: .878-approx algorithm
[KKMO]+[MOO]: (.878+ε)-approx UG-hard
[Håstad]+[TSSW]: 16/17 ≈ .941-approx NP-hard

Known results
Suppose val(I) = α. Can we guarantee

a solution of value C*α?
[GW]: .878-approx algorithm
[KKMO]+[MOO]: (.878+ε)-approx UG-hard
[Håstad]+[TSSW]: 16/17 ≈ .941-approx NP-hard

seems we’re close, right?

A different perspective...
Suppose val(I) = (1 - ε).
Can we guarantee a solution of value (1 - C*ε)?

A different perspective...
Suppose val(I) = (1 - ε).
Can we guarantee a solution of value (1 - C*ε)?

Def: Such an algo. gives an (ε, C*ε)-approx.

A different perspective...
Suppose val(I) = (1 - ε).
Can we guarantee a solution of value (1 - f(ε))?

Def: Such an algo. gives an (ε, f(ε))-approx.

A different perspective...
Suppose val(I) = (1 - ε).
Can we guarantee a solution of value (1 - f(ε))?

Def: Such an algo. gives an (ε, f(ε))-approx.

Usually called “Min-2Lin(2)-Deletion”.
Let me just call this 2Lin.

Unratio state of affairs
[easy]: (ε, ε)-approx NP-hard

Unratio state of affairs
[easy]: (ε, ε)-approx NP-hard
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard

Unratio state of affairs
[easy]: (ε, ε)-approx NP-hard
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[KKMO]+[MOO]: (ε, O(ε1/2))-approx UG-hard

Unratio state of affairs
[easy]: (ε, ε)-approx NP-hard
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[KKMO]+[MOO]: (ε, O(ε1/2))-approx UG-hard
[GW]: (ε, O(ε1/2))-approx algorithm

Unratio state of affairs
[easy]: (ε, ε)-approx NP-hard
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[KKMO]+[MOO]: (ε, O(ε1/2))-approx UG-hard
[GW]: (ε, O(ε1/2))-approx algorithm

asymptotically off from the truth

Unratio state of affairs
[easy]: (ε, ε)-approx NP-hard
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[KKMO]+[MOO]: (ε, O(ε1/2))-approx UG-hard
[GW]: (ε, O(ε1/2))-approx algorithm

asymptotically off from the truth
[Rao]: If (ε, O(f(q)*ε1/2))-approx is NP-hard for
2Lin(q), for f(q) = Ω(1), then UG is true.

This work
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard

This work
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[Us]: (ε, 11/8*ε)-approx NP-hard

This work
[Håstad]+[TSSW]: (ε, 1.25*ε)-approx NP-hard
[Us]: (ε, 1.375*ε)-approx NP-hard

This work
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[Us]: (ε, 11/8*ε)-approx NP-hard

This work
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[Us]: (ε, 11/8*ε)-approx NP-hard
Cons:
- Still haven’t proven UniqueGames. 😞

This work
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[Us]: (ε, 11/8*ε)-approx NP-hard
Cons:
- Still haven’t proven UniqueGames. 😞
Pros:
- First improvement since 1997.

This work
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[Us]: (ε, 11/8*ε)-approx NP-hard
Cons:
- Still haven’t proven UniqueGames. 😞
Pros:
- First improvement since 1997.
- Study new type of “gadget reduction”

This work
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[Us]: (ε, 11/8*ε)-approx NP-hard (and more!)
Cons:
- Still haven’t proven UniqueGames. 😞
Pros:
- First improvement since 1997.
- Study new type of “gadget reduction”

Proving (ε, ⁵/₄*ε)-hardness
Standard two-step plan.

Proving (ε, ⁵/₄*ε)-hardness
Standard two-step plan.
[Håstad]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) ≥ (1 - ε)
- No: val(I) ≤ (½ + ε)

Proving (ε, ⁵/₄*ε)-hardness
Standard two-step plan.
[Håstad]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) ≥ (1 - ε)
- No: val(I) ≤ (½ + ε)

(In our language, (ε, ½ - ε)-approxing 3Lin is NP-hard.)

Proving (ε, ⁵/₄*ε)-hardness
Standard two-step plan.
[Håstad]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) ≥ (1 - ε)
- No: val(I) ≤ (½ + ε)

(In our language, (ε, ½ - ε)-approxing 3Lin is NP-hard.)

Step 2: gadget reduce 3Lin to 2Lin [TSSW]

Proving (ε, ⁵/₄*ε)-hardness
Standard two-step plan.
[Håstad]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) ≥ (1 - ε)
- No: val(I) ≤ (½ + ε)

(In our language, (ε, ½ - ε)-approxing 3Lin is NP-hard.)

Step 2: gadget reduce 3Lin to 2Lin [TSSW]
(see also [OW12])

3Lin
x1x3x5 = 1

x10x16x3 = -1
...

x47x11x98 = -1

3Lin
x1x3x5 = 1

x10x16x3 = -1
...

x47x11x98 = -1

3Lin
x1x3x5 = 1

x10x16x3 = -1
...

x47x11x98 = -1

x10

x3

x16

3Lin
x1x3x5 = 1

x10x16x3 = -1
...

x47x11x98 = -1

x10

x3

x16

(aux vars)

3Lin
x1x3x5 = 1

x10x16x3 = -1
...

x47x11x98 = -1

x10

x3

x16

(aux vars)

3Lin
x1x3x5 = 1

x10x16x3 = -1
...

x47x11x98 = -1

2Lin
gadget
x10 = -x3
 y61 = -y24

...
x16 = -y5

x10

x3

x16

(aux vars)

3Lin
x1x3x5 = 1

x10x16x3 = -1
...

x47x11x98 = -1

2Lin
gadget
x10 = -x3
 y61 = -y24

...
x16 = -y5

x10

x3

x16

(aux vars)

Final 2Lin inst: union all the gadgets

3Lin
x1x3x5 = 1

x10x16x3 = -1
...

x47x11x98 = -1

2Lin
gadget
x10 = -x3
 y61 = -y24

...
x16 = -y5

x10

x3

x16

(aux vars)

Final 2Lin inst: union all the gadgets
The hope: - xi’s satisfy 3Lin eq’n ⇒ good assgn to yi’s

3Lin
x1x3x5 = 1

x10x16x3 = -1
...

x47x11x98 = -1

2Lin
gadget
x10 = -x3
 y61 = -y24

...
x16 = -y5

x10

x3

x16

(aux vars)

Final 2Lin inst: union all the gadgets
The hope: - xi’s satisfy 3Lin eq’n ⇒ good assgn to yi’s

- xi’s don’t ⇒ no good assgn to yi’s

Gadgets
Def: A (c, s)-gadget

Gadgets
Def: A (c, s)-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)

Gadgets
Def: A (c, s)-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s don’t ⇒ no assgn to yi’s beats value (1 - s)

Gadgets
Def: A (c, s)-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s don’t ⇒ no assgn to yi’s beats value (1 - s)

[TSSW]: there is a 3Lin-to-2Lin (¼, ⅜)-gadget

Gadgets
Def: A (c, s)-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s don’t ⇒ no assgn to yi’s beats value (1 - s)

[TSSW]: there is a 3Lin-to-2Lin (¼, ⅜)-gadget

(ε, ½ - ε)-hardess for 3Lin

Gadgets
Def: A (c, s)-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s don’t ⇒ no assgn to yi’s beats value (1 - s)

[TSSW]: there is a 3Lin-to-2Lin (¼, ⅜)-gadget

(ε, ½ - ε)-hardess for 3Lin ⇒ - Yes case: ¼

Gadgets
Def: A (c, s)-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s don’t ⇒ no assgn to yi’s beats value (1 - s)

[TSSW]: there is a 3Lin-to-2Lin (¼, ⅜)-gadget

(ε, ½ - ε)-hardess for 3Lin ⇒ - Yes case: ¼
- No case: ½ * (¼ + ⅜)

Gadgets
Def: A (c, s)-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s don’t ⇒ no assgn to yi’s beats value (1 - s)

[TSSW]: there is a 3Lin-to-2Lin (¼, ⅜)-gadget

(ε, ½ - ε)-hardess for 3Lin ⇒ - Yes case: ¼
- No case: ½ * (¼ + ⅜)

= 5/16

Gadgets
Def: A (c, s)-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s don’t ⇒ no assgn to yi’s beats value (1 - s)

[TSSW]: there is a 3Lin-to-2Lin (¼, ⅜)-gadget

(ε, ½ - ε)-hardess for 3Lin ⇒ - Yes case: ¼
- No case: ½ * (¼ + ⅜)

= 5/16 = 5/4 * ¼

How do you find gadgets?
Gadgets are just 2Lin instances, so can just monkey
around with small instances.

How do you find gadgets?
Gadgets are just 2Lin instances, so can just monkey
around with small instances.

More principled: [TSSW] show that the optimal gadget
can be found via linear program!

How do you find gadgets?
Gadgets are just 2Lin instances, so can just monkey
around with small instances.

More principled: [TSSW] show that the optimal gadget
can be found via linear program!
- key insight: one can bound # of auxiliary variables
- can certify optimality via dual LP.

How do you find gadgets?
Gadgets are just 2Lin instances, so can just monkey
around with small instances.

More principled: [TSSW] show that the optimal gadget
can be found via linear program!
- key insight: one can bound # of auxiliary variables
- can certify optimality via dual LP.

Our strategy
Old reduction from Håstad’s 3Lin hardness result.

Our strategy
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.

Our strategy
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.
[Chan]: Given 3Lin instance I, NP-hard to distinguish

Our strategy
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.
[Chan]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) = (1 - ε)

Our strategy
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.
[Chan]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) = (1 - ε)
- No: no matter what assignment, the variables “appear” to

be uniformly random

Our strategy
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.
[Chan]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) = (1 - ε)
- No: no matter what assignment, the variables “appear” to

be uniformly random

Stronger No condition. Might help out the gadget.

New gadgets
Def: A (c,s)-Chan-gadget

New gadgets
Def: A (c,s)-Chan-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)

New gadgets
Def: A (c,s)-Chan-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s random ⇒ on avg., expected best value ≤ (1 - s)

New gadgets
Def: A (c,s)-Chan-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s random ⇒ on avg., expected best value ≤ (1 - s)

Upside: can still solve using an LP

New gadgets
Def: A (c,s)-Chan-gadget
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s random ⇒ on avg., expected best value ≤ (1 - s)

Upside: can still solve using an LP
Downside: best 3Lin-to-2Lin gadget no better

than in ’97!

Our strategy (revised)
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.
[Chan]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) = (1 - ε)
- No: no matter what assignment, the variables “appear” to

be uniformly random

Our strategy (revised)
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.
[Chan]: Given “balanced pairwise independent subgroup
predicate” instance I, NP-hard to distinguish
- Yes: val(I) = (1 - ε)
- No: no matter what assignment, the variables “appear” to

be uniformly random

Our strategy (revised)
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.
[Chan]: Given “balanced pairwise independent subgroup
predicate” instance I, NP-hard to distinguish
- Yes: val(I) = (1 - ε)
- No: no matter what assignment, the variables “appear” to

be uniformly random

We instantiate with BPISP = Hadk, specifically k = 3.

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa,b = xa∙ xb

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa,b = xa∙ xb
- x1,2,3 = x1∙ x2∙ x3

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa,b = xa∙ xb
- x1,2,3 = x1∙ x2∙ x3 = x1,2∙ x3

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa,b = xa∙ xb
- x1,2,3 = x1∙ x2∙ x3 = x1,2∙ x3 = x1,3∙ x2 = x1∙ x2,3

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa∙ xb∙ xa,b= 1
- x1,2,3 = x1∙ x2∙ x3 = x1,2∙ x3 = x1,3∙ x2 = x1∙ x2,3

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa∙ xb∙ xa,b= 1
- xa∙ x{1,2,3}\a∙ x1,2,3 = 1 for all a ∈ {1,2,3}

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa∙ xb∙ xa,b= 1
- xa∙ x{1,2,3}\a∙ x1,2,3 = 1 for all a ∈ {1,2,3}

Contains many simultaneous 3Lin tests. Difficult to satisfy!

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa∙ xb∙ xa,b= 1
- xa∙ x{1,2,3}\a∙ x1,2,3 = 1 for all a ∈ {1,2,3}

Contains many simultaneous 3Lin tests. Difficult to satisfy!
(not too hard to generalize to Hadk)

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa∙ xb∙ xa,b= 1
- xa∙ x{1,2,3}\a∙ x1,2,3 = 1 for all a ∈ {1,2,3}

Contains many simultaneous 3Lin tests. Difficult to satisfy!
(not too hard to generalize to Hadk)

[Us]: there is a (1/8,
11/64)-Chan-gadget from Had3 to 2Lin

One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa∙ xb∙ xa,b= 1
- xa∙ x{1,2,3}\a∙ x1,2,3 = 1 for all a ∈ {1,2,3}

Contains many simultaneous 3Lin tests. Difficult to satisfy!
(not too hard to generalize to Hadk)

[Us]: there is a (1/8,
11/8∙

1/8)-Chan-gadget from Had3 to 2Lin

Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables

Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables

(so no pictures like these)

Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables

Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables
LP has to consider all possible 2128 = 3 x 1038 assignments
to these variables: too large to be feasible!

Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables
LP has to consider all possible 2128 = 3 x 1038 assignments
to these variables: too large to be feasible!
So…….

Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables
LP has to consider all possible 2128 = 3 x 1038 assignments
to these variables: too large to be feasible!
So…….
- lots of work by hand

Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables
LP has to consider all possible 2128 = 3 x 1038 assignments
to these variables: too large to be feasible!
So…….
- lots of work by hand
- lots of computer simulation (/brute force searching)

Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables
LP has to consider all possible 2128 = 3 x 1038 assignments
to these variables: too large to be feasible!
So…….
- lots of work by hand
- lots of computer simulation (/brute force searching)
- lots more work by hand

Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables
LP has to consider all possible 2128 = 3 x 1038 assignments
to these variables: too large to be feasible!
So…….
- lots of work by hand
- lots of computer simulation (/brute force searching)
- lots more work by hand

but (spoiler alert) it all works out in the end.

Full statement of our results
- (ε, 11/8*ε)-approx NP-hard (for 2Lin and Max-Cut)

Full statement of our results
- (ε, 11/8*ε)-approx NP-hard (for 2Lin and Max-Cut)

- (1/8,
11/8∙

1/8)-Chan-gadget from Had3 to 2Lin

Full statement of our results
- (ε, 11/8*ε)-approx NP-hard (for 2Lin and Max-Cut)

- (1/8,
11/8∙

1/8)-Chan-gadget from Had3 to 2Lin
- prove optimality of this gadget via dual solution

Full statement of our results
- (ε, 11/8*ε)-approx NP-hard (for 2Lin and Max-Cut)

- (1/8,
11/8∙

1/8)-Chan-gadget from Had3 to 2Lin
- prove optimality of this gadget via dual solution

- can’t beat (ε, 2.54 ∙ ε)-hardness via a Chan gadget
starting from *any* BPISP predicate

Open problems
We give an optimal gadget reduction from Had3 to 2Lin.

Open problems
We give an optimal gadget reduction from Had3 to 2Lin.

We give a gadget from Hadk to 2Lin, along with a Game
Show Conjecture which would imply (ε, 1.5 ∙ ε)-hardness.

Open problems
We give an optimal gadget reduction from Had3 to 2Lin.

We give a gadget from Hadk to 2Lin, along with a Game
Show Conjecture which would imply (ε, 1.5 ∙ ε)-hardness.

We couldn’t say anything about the normal hardness ratio.
Maybe you can?

Thanks!

