Improved NP-inapproximability for 2-variable linear equations

Johan Håstad KTH

KTH

Sangxia Huang Rajsekar Manokaran

Ryan O'Donnell **CMU**

John Wright CMU

$$x_1 = x_5$$
 $x_{10} = -x_3$
 $x_{61} = -x_{24}$
...
 $x_{48} = -x_5$

 $(x_i = -1,1)$

2Lin(2) ∈ 2Lin(q) ≈ UniqueGames

```
\mathbf{x}_1 = \mathbf{x}_5
x_{10} = -x_3
X_{61} = -X_{24}
 X_{48} = -X_{5}
```

 $(x_i = -1,1)$

 $2Lin(2) \in 2Lin(q) \approx UniqueGames$

 $X_1 = X_5$ $x_{10} = -x_3$ (Actually, simplest case of **UG**)

 $X_{61} = -X_{24}$

 $X_{48} = -X_{5}$

 $(x_i = -1,1)$

2Lin(2) ∈ 2Lin(q) ≈ UniqueGames

 $x_1 = x_5$ $x_{10} = -x_3$

(Actually, simplest case of **UG**)

 $x_{61} = -x_{24}$

Folklore wisdom: get 2Lin(2) right and 2Lin(q) will follow.

 $X_{48} = -X_{5}$

 $(x_i = -1, 1)$

Suppose $val(I) = \alpha$. Can we guarantee a solution of value $C^*\alpha$?

Suppose $val(I) = \alpha$. Can we guarantee a solution of value $C^*\alpha$?

[GW]: .878-approx algorithm

Suppose $val(I) = \alpha$. Can we guarantee a solution of value $C^*\alpha$?

[GW]: .878-approx algorithm

[KKMO]+[MOO]: $(.878+\varepsilon)$ -approx UG-hard

Suppose $val(I) = \alpha$. Can we guarantee a solution of value $C^*\alpha$?

[GW]: .878-approx algorithm

[KKMO]+[MOO]: (.878+ε)-approx UG-hard

[Håstad]+[TSSW]: $^{16}/_{17} \approx .941$ -approx NP-hard

Suppose $val(I) = \alpha$. Can we guarantee a solution of value $C^*\alpha$?

[GW]: .878-approx algorithm

[KKMO]+[MOO]: (.878+ε)-approx UG-hard

[Håstad]+[TSSW]: $^{16}/_{17} \approx .941$ -approx NP-hard

seems we're close, right?

Suppose $val(I) = (1 - \varepsilon)$.

Can we guarantee a solution of value (1 - C*ε)?

Suppose $val(I) = (1 - \epsilon)$.

Can we guarantee a solution of value $(1 - C^*\epsilon)$?

Def: Such an algo. gives an (ε, C*ε)-approx.

Suppose $val(I) = (1 - \varepsilon)$.

Can we guarantee a solution of value $(1 - f(\epsilon))$?

Def: Such an algo. gives an $(\varepsilon, f(\varepsilon))$ -approx.

Suppose $val(I) = (1 - \epsilon)$.

Can we guarantee a solution of value $(1 - f(\epsilon))$?

Def: Such an algo. gives an $(\varepsilon, f(\varepsilon))$ -approx.

Usually called "Min-2Lin(2)-Deletion". Let me just call this **2Lin**.

[easy]: $(\varepsilon, \varepsilon)$ -approx NP-hard

[easy]: $(\varepsilon, \varepsilon)$ -approx NP-hard

[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard

[easy]: (ϵ , ϵ)-approx NP-hard [Håstad]+[TSSW]: (ϵ , $^5/_4*\epsilon$)-approx NP-hard [KKMO]+[MOO]: (ϵ , O(ϵ ^{1/2}))-approx UG-hard

```
[easy]: (\epsilon, \epsilon)-approx NP-hard
[Håstad]+[TSSW]: (\epsilon, ^5/_4*\epsilon)-approx NP-hard
[KKMO]+[MOO]: (\epsilon, O(\epsilon<sup>1/2</sup>))-approx UG-hard
[GW]: (\epsilon, O(\epsilon<sup>1/2</sup>))-approx algorithm
```

```
[easy]: (\varepsilon, \varepsilon)-approx NP-hard

[Håstad]+[TSSW]: (\varepsilon, \sqrt[5]{4}^*\varepsilon)-approx NP-hard

[KKMO]+[MOO]: (\varepsilon, O(\varepsilon^{1/2}))-approx UG-hard

[GW]: (\varepsilon, O(\varepsilon^{1/2}))-approx algorithm

asymptotically off from the truth
```

```
[easy]: (ε, ε)-approx NP-hard
[Håstad]+[TSSW]: (ε, <sup>5</sup>/<sub>4</sub>*ε)-approx NP-hard
[KKMO]+[MOO]: (\varepsilon, O(\varepsilon^{1/2}))-approx UG-hard
[GW]: (\varepsilon, O(\varepsilon^{1/2}))-approx algorithm
         asymptotically off from the truth
[Rao]: If (\varepsilon, O(f(q)^* \varepsilon^{1/2}))-approx is NP-hard for
2Lin(q), for f(q) = \Omega(1), then UG is true.
```

[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard

[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard [Us]: (ε, ¹¹/₈*ε)-approx NP-hard

[Håstad]+[TSSW]: (ϵ , 1.25* ϵ)-approx NP-hard [Us]: (ϵ , 1.375* ϵ)-approx NP-hard

[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard [Us]: (ε, ¹¹/₈*ε)-approx NP-hard

[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard [Us]: $(\varepsilon, \frac{11}{8} * \varepsilon)$ -approx NP-hard

Cons:

- Still haven't proven UniqueGames. 😞

[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard [Us]: $(\varepsilon, \frac{11}{8} * \varepsilon)$ -approx NP-hard

Cons:

- Still haven't proven UniqueGames. 😞

Pros:

- First improvement since 1997.

[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard [Us]: $(\varepsilon, \frac{11}{8} * \varepsilon)$ -approx NP-hard

Cons:

- Still haven't proven UniqueGames. 😞

Pros:

- First improvement since 1997.
- Study new type of "gadget reduction"

[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard [Us]: $(\varepsilon, \frac{11}{2} * \varepsilon)$ -approx NP-hard (and more!)

Cons:

- Still haven't proven UniqueGames. 😞

Pros:

- First improvement since 1997.
- Study new type of "gadget reduction"

Standard two-step plan.

Standard two-step plan.

[Håstad]: Given 3Lin instance I, NP-hard to distinguish

- **Yes**: val(*I*) ≥ (1 ε)
- No: val(I) ≤ ($\frac{1}{2} + \varepsilon$)

Standard two-step plan.

[Håstad]: Given 3Lin instance I, NP-hard to distinguish

- Yes: val(I) ≥ (1 ε)
- No: $val(I) \le (\frac{1}{2} + \varepsilon)$

(In our language, $(\varepsilon, \frac{1}{2} - \varepsilon)$ -approxing 3Lin is NP-hard.)

Standard two-step plan.

[Håstad]: Given 3Lin instance I, NP-hard to distinguish

- **Yes**: val(*I*) ≥ (1 ε)
- No: $val(I) \le (\frac{1}{2} + \varepsilon)$

(In our language, $(\varepsilon, \frac{1}{2} - \varepsilon)$ -approxing 3Lin is NP-hard.)

Step 2: gadget reduce 3Lin to 2Lin [TSSW]

Standard two-step plan.

[Håstad]: Given 3Lin instance I, NP-hard to distinguish

- **Yes**: val(*I*) ≥ (1 ε)
- No: $val(I) \le (\frac{1}{2} + \varepsilon)$

(In our language, $(\varepsilon, \frac{1}{2} - \varepsilon)$ -approxing 3Lin is NP-hard.)

Step 2: gadget reduce 3Lin to 2Lin [TSSW]

(see also [OW12])

$$x_1 x_3 x_5 = 1$$

 $x_{10} x_{16} x_3 = -1$

 $x_{47}^{2}x_{11}^{2}x_{98}^{2} = -1$

$$x_1 x_3 x_5 = 1$$

 $x_{10} x_{16} x_3 = -1$

 $x_{47}^{2}x_{11}^{2}x_{98}^{2} = -1$

$$x_{1}x_{3}x_{5} = 1$$
 $x_{10}x_{16}x_{3} = -1$
 $x_{3}x_{10}x_{16}x_{3} = -1$
 $x_{3}x_{10}x_{16}x_{16}x_{16}$
 $x_{47}x_{11}x_{98} = -1$

3Lin

(aux vars)

$$x_{47}^{2}x_{11}^{2}x_{98}^{2} = -1$$

3Lin

(aux vars)

$$x_{47}^{2}x_{11}^{2}x_{98}^{2} = -1$$

3Lin

 $X_{47}X_{11}X_{98}$

$$x_1 x_3 x_5 = 1$$
 $x_{10} x_{16} x_3 = -1$
...

(aux vars)

X₁₀

2Lin gadget

$$x_{10} = -x_{3}$$
 $y_{61} = -y_{24}$

$$x_{16} = -y_{5}$$

2Lin (aux vars) 3Lin gadget $X_{47}X_{11}X_{98}$

Final 2Lin inst: union all the gadgets

2Lin (aux vars) 3Lin gadget $x_{47}^{2}x_{11}^{2}x_{98}^{2} = -1$

Final 2Lin inst: union all the gadgets

The hope: - x_i 's satisfy 3Lin eq'n \Rightarrow good assgn to y_i 's

3Lin

$$x_1x_3x_5 = 1$$
 $x_{10}x_{16}x_3 = -1$
 $x_{10}x_{16}x_3 = -1$

Final 2Lin inst: union all the gadgets

The hope: - x_i 's satisfy 3Lin eq'n \Rightarrow good assgn to y_i 's

x 's don't ⇒ no good assgn to y 's

Def: A (c, s)-gadget

Def: A (c, s)-gadget

x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 - c)

Def: A (c, s)-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x_i's don't ⇒ no assgn to y_i's beats value (1 s)

Def: A (c, s)-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x_i's don't ⇒ no assgn to y_i's beats value (1 s)

Def: A (c, s)-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x 's don't ⇒ no assgn to y 's beats value (1 s)

[TSSW]: there is a 3Lin-to-2Lin (1/4, 3/8)-gadget

 $(\varepsilon, \frac{1}{2} - \varepsilon)$ -hardess for 3Lin

Def: A (c, s)-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x 's don't ⇒ no assgn to y 's beats value (1 s)

[TSSW]: there is a 3Lin-to-2Lin (1/4, 3/8)-gadget

 $(\varepsilon, \frac{1}{2} - \varepsilon)$ -hardess for 3Lin \Rightarrow - Yes case: $\frac{1}{4}$

Def: A (c, s)-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x 's don't ⇒ no assgn to y 's beats value (1 s)

```
(ε, \frac{1}{2} - ε)-hardess for 3Lin \Rightarrow - Yes case: \frac{1}{4} - No case: \frac{1}{2} * (\frac{1}{4} + \frac{3}{8})
```

Def: A (c, s)-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x 's don't ⇒ no assgn to y 's beats value (1 s)

(ε, ½ - ε)-hardess for 3Lin
$$\Rightarrow$$
 - Yes case: ½ - No case: ½ * (½ + ¾) = ${}^{5}/_{16}$

Def: A (c, s)-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x 's don't ⇒ no assgn to y 's beats value (1 s)

(ε, ½ - ε)-hardess for 3Lin
$$\Rightarrow$$
 - Yes case: ¼
- No case: ½ * (¼ + ¾)
= ${}^{5}/_{16} = {}^{5}/_{4} * {}^{1}/_{4}$

How do you find gadgets?

Gadgets are just 2Lin instances, so can just monkey around with small instances.

How do you find gadgets?

Gadgets are just 2Lin instances, so can just monkey around with small instances.

More principled: [TSSW] show that the optimal gadget can be found via linear program!

How do you find gadgets?

Gadgets are just 2Lin instances, so can just monkey around with small instances.

More principled: [TSSW] show that the optimal gadget can be found via linear program!

- key insight: one can bound # of auxiliary variables
- can certify optimality via dual LP.

How do vou find gadgets?

Gadge around

0 x₃ x₁

ances, so can just monkey s.

More can be

show ogram

- key insignt: one can bound ‡
- can certify optimality via dual

Old reduction from Håstad's 3Lin hardness result.

Old reduction from Håstad's 3Lin hardness result. We now have **better** starting points.

Old reduction from Håstad's 3Lin hardness result.

We now have **better** starting points.

[Chan]: Given 3Lin instance I, NP-hard to distinguish

Old reduction from Håstad's 3Lin hardness result.

We now have **better** starting points.

[Chan]: Given 3Lin instance I, NP-hard to distinguish

Yes: val(I) = (1 - ε)

Old reduction from Håstad's 3Lin hardness result.

We now have **better** starting points.

[Chan]: Given 3Lin instance I, NP-hard to distinguish

- Yes: $val(I) = (1 \varepsilon)$
- No: no matter what assignment, the variables "appear" to be uniformly random

Old reduction from Håstad's 3Lin hardness result.

We now have **better** starting points.

[Chan]: Given 3Lin instance I, NP-hard to distinguish

- Yes: $val(I) = (1 \varepsilon)$
- No: no matter what assignment, the variables "appear" to be uniformly random

Stronger No condition. Might help out the gadget.

Def: A (c,s)-Chan-gadget

Def: A (c,s)-Chan-gadget

x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 - c)

Def: A (c,s)-Chan-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x's random ⇒ on avg., expected best value ≤ (1 s)

Def: A (c,s)-Chan-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x's random ⇒ on avg., expected best value ≤ (1 s)

Upside: can still solve using an LP

Def: A (c,s)-Chan-gadget

- x_i's satisfy 3Lin eq'n ⇒ an assgn to y_i's of value (1 c)
- x's random ⇒ on avg., expected best value ≤ (1 s)

Upside: can still solve using an LP

Downside: best 3Lin-to-2Lin gadget no better than in '97!

Our strategy (revised)

Old reduction from Håstad's 3Lin hardness result.

We now have **better** starting points.

[Chan]: Given 3Lin instance I, NP-hard to distinguish

- Yes: $val(I) = (1 \varepsilon)$
- No: no matter what assignment, the variables "appear" to be uniformly random

Our strategy (revised)

Old reduction from Håstad's 3Lin hardness result.

We now have **better** starting points.

[Chan]: Given "balanced pairwise independent subgroup predicate" instance *I*, NP-hard to distinguish

- Yes: $val(I) = (1 \varepsilon)$
- No: no matter what assignment, the variables "appear" to be uniformly random

Our strategy (revised)

Old reduction from Håstad's 3Lin hardness result.

We now have **better** starting points.

[Chan]: Given "balanced pairwise independent subgroup predicate" instance *I*, NP-hard to distinguish

- Yes: $val(I) = (1 \varepsilon)$
- No: no matter what assignment, the variables "appear" to be uniformly random

We instantiate with **BPISP** = Had_k, specifically k = 3.

One of Chan's problems

 $Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$

One of Chan's problems

 $Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$

- x_i's allowed to be arbitrary

One of Chan's problems

 $Had_3(x_1, x_2, x_3, x_{1.2}, x_{1.3}, x_{2.3}, x_{1.2.3}) = 1 iff$

- x_i's allowed to be arbitrary
- $X_{a,b} = X_a \cdot X_b$

 $Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$

- x_i's allowed to be arbitrary
- $x_{a,b} = x_a \cdot x_b$
- $x_{1,2,3} = x_1 \cdot x_2 \cdot x_3$

$$Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$$

- x_i's allowed to be arbitrary
- $x_{a,b} = x_a \cdot x_b$
- $X_{1,2,3} = X_1 \cdot X_2 \cdot X_3 = X_{1,2} \cdot X_3$

$$Had_3(x_1, x_2, x_3, x_{1.2}, x_{1.3}, x_{2.3}, x_{1.2.3}) = 1 iff$$

- x_i's allowed to be arbitrary
- $x_{a,b} = x_a x_b$
- $X_{1,2,3} = X_1 \cdot X_2 \cdot X_3 = X_{1,2} \cdot X_3 = X_{1,3} \cdot X_2 = X_1 \cdot X_{2,3}$

$$Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$$

- x_i's allowed to be arbitrary
- $x_a \cdot x_b \cdot x_{ab} = 1$
- $x_{1,2,3} = x_1 \cdot x_2 \cdot x_3 = x_{1,2} \cdot x_3 = x_{1,3} \cdot x_2 = x_1 \cdot x_{2,3}$

 $Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$

- x_i's allowed to be arbitrary
- $x_a x_b x_{a,b} = 1$
- $x_a \cdot x_{\{1,2,3\}\setminus a} \cdot x_{1,2,3} = 1$ for all $a \in \{1,2,3\}$

$$Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$$

- x_i's allowed to be arbitrary
- $x_{a} \cdot x_{b} \cdot x_{ab} = 1$
- $x_a \cdot x_{\{1,2,3\}\setminus a} \cdot x_{1,2,3} = 1$ for all $a \in \{1,2,3\}$

Contains many simultaneous 3Lin tests. Difficult to satisfy!

$$Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$$

- x_i's allowed to be arbitrary
- $x_{a} \cdot x_{b} \cdot x_{ab} = 1$
- $x_a \cdot x_{\{1,2,3\}\setminus a} \cdot x_{1,2,3} = 1$ for all $a \in \{1,2,3\}$

Contains many simultaneous 3Lin tests. Difficult to satisfy! (not too hard to generalize to **Had**_•)

$$Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$$

- x_i's allowed to be arbitrary
- $x_a \cdot x_b \cdot x_{ab} = 1$
- $x_a \cdot x_{\{1,2,3\}\setminus a} \cdot x_{1,2,3} = 1$ for all $a \in \{1,2,3\}$

Contains many simultaneous 3Lin tests. Difficult to satisfy! (not too hard to generalize to **Had**_•)

[Us]: there is a (1/8, 11/64)-Chan-gadget from Had3 to 2Lin

$$Had_3(x_1, x_2, x_3, x_{1,2}, x_{1,3}, x_{2,3}, x_{1,2,3}) = 1 iff$$

- x_i's allowed to be arbitrary
- $x_a \cdot x_b \cdot x_{ab} = 1$
- $x_a \cdot x_{\{1,2,3\}\setminus a} \cdot x_{1,2,3} = 1$ for all $a \in \{1,2,3\}$

Contains many simultaneous 3Lin tests. Difficult to satisfy! (not too hard to generalize to **Had**_•)

[Us]: there is a $\binom{1}{8}$, $\binom{11}{8}$ · $\binom{1}{8}$ · $\binom{1}{8}$ · Ohan-gadget from \mathbf{Had}_3 to $\mathbf{2Lin}$

[TSSW]: optimal gadget only needs $2^7 = 128$ variables

[TSSW]: optimal gadget only needs $2^7 = 128$ variables

(so **no** pictures like these)

[TSSW]: optimal gadget only needs $2^7 = 128$ variables

[TSSW]: optimal gadget only needs $2^7 = 128$ variables LP has to consider **all possible** $2^{128} = 3 \times 10^{38}$ assignments to these variables: too large to be feasible!

[TSSW]: optimal gadget only needs $2^7 = 128$ variables LP has to consider **all possible** $2^{128} = 3 \times 10^{38}$ assignments to these variables: too large to be feasible!

[TSSW]: optimal gadget only needs $2^7 = 128$ variables LP has to consider **all possible** $2^{128} = 3 \times 10^{38}$ assignments to these variables: too large to be feasible! So......

lots of work by hand

[TSSW]: optimal gadget only needs $2^7 = 128$ variables LP has to consider **all possible** $2^{128} = 3 \times 10^{38}$ assignments to these variables: too large to be feasible! So......

- lots of work by hand
- lots of computer simulation (/brute force searching)

[TSSW]: optimal gadget only needs $2^7 = 128$ variables LP has to consider **all possible** $2^{128} = 3 \times 10^{38}$ assignments to these variables: too large to be feasible! So......

- lots of work by hand
- lots of computer simulation (/brute force searching)
- lots more work by hand

[TSSW]: optimal gadget only needs $2^7 = 128$ variables LP has to consider **all possible** $2^{128} = 3 \times 10^{38}$ assignments to these variables: too large to be feasible! So......

- lots of work by hand
- lots of computer simulation (/brute force searching)
- lots more work by hand

but (spoiler alert) it all works out in the end.

- (ε, ¹¹/₈*ε)-approx NP-hard (for 2Lin and Max-Cut)

- (ε, ¹¹/₈*ε)-approx **NP**-hard (for 2Lin and Max-Cut)

- (1/8, 11/8, 1/8)-Chan-gadget from **Had**3 to **2Lin**

- (ε, ¹¹/₈*ε)-approx **NP**-hard (for 2Lin and Max-Cut)

- (1/8, 11/8, 1/8)-Chan-gadget from **Had**₃ to **2Lin**
- prove optimality of this gadget via dual solution

- (ε, ¹¹/₈*ε)-approx **NP**-hard (for 2Lin and Max-Cut)

- $\binom{1}{8}$, $\binom{11}{8}$, $\binom{11}{8}$. Chan-gadget from $\mathbf{Had_3}$ to $\mathbf{2Lin}$
- prove optimality of this gadget via dual solution

can't beat (ε, 2.54 · ε)-hardness via a Chan gadget starting from *any* BPISP predicate

Open problems

We give an optimal gadget reduction from Had₃ to 2Lin.

Open problems

We give an optimal gadget reduction from Had₃ to 2Lin.

We give a gadget from Had_k to 2Lin, along with a **Game Show Conjecture** which would imply $(\varepsilon, 1.5 \cdot \varepsilon)$ -hardness.

Open problems

We give an optimal gadget reduction from Had₃ to 2Lin.

We give a gadget from Had_k to 2Lin, along with a **Game Show Conjecture** which would imply $(\varepsilon, 1.5 \cdot \varepsilon)$ -hardness.

We couldn't say anything about the normal hardness ratio.

Maybe you can?

