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x1 = x5

x10 = -x3
x61 = -x24

...
x48 = -x5

(xi = -1,1)

2Lin(2) ∈ 2Lin(q) ≈ UniqueGames

(Actually, simplest case of UG)

Folklore wisdom: get 2Lin(2) right 
and 2Lin(q) will follow.
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Known results
Suppose val(I) = α.  Can we guarantee

a solution of value C*α?
[GW]: .878-approx algorithm
[KKMO]+[MOO]: (.878+ε)-approx UG-hard
[Håstad]+[TSSW]: 16/17 ≈ .941-approx NP-hard

seems we’re close, right?
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A different perspective...
Suppose val(I) = (1 - ε).
Can we guarantee a solution of value (1 - f(ε))?

Def: Such an algo. gives an (ε, f(ε))-approx.

Usually called “Min-2Lin(2)-Deletion”.
Let me just call this 2Lin.
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Unratio state of affairs
[easy]: (ε, ε)-approx NP-hard
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[KKMO]+[MOO]: (ε, O(ε1/2))-approx UG-hard
[GW]: (ε, O(ε1/2))-approx algorithm

asymptotically off from the truth
[Rao]: If (ε, O(f(q)*ε1/2))-approx is NP-hard for 
2Lin(q), for f(q) = Ω(1), then UG is true.
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This work
[Håstad]+[TSSW]: (ε, ⁵/₄*ε)-approx NP-hard
[Us]: (ε, 11/8*ε)-approx NP-hard (and more!)
Cons:
- Still haven’t proven UniqueGames.  😞
Pros:
- First improvement since 1997.
- Study new type of “gadget reduction”
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Proving (ε, ⁵/₄*ε)-hardness
Standard two-step plan.
[Håstad]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) ≥ (1 - ε)
- No: val(I) ≤ (½ + ε)

(In our language, (ε, ½ - ε)-approxing 3Lin is NP-hard.)

Step 2: gadget reduce 3Lin to 2Lin [TSSW]
(see also [OW12])
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Final 2Lin inst: union all the gadgets
The hope: - xi’s satisfy 3Lin eq’n ⇒ good assgn to yi’s

- xi’s don’t ⇒ no good assgn to yi’s
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Gadgets
Def: A (c, s)-gadget 
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s don’t ⇒ no assgn to yi’s beats value (1 - s)

[TSSW]: there is a 3Lin-to-2Lin (¼, ⅜)-gadget

(ε, ½ - ε)-hardess for 3Lin ⇒ - Yes case: ¼
- No case: ½ * (¼ + ⅜) 

= 5/16 = 5/4 * ¼ 
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Our strategy
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.
[Chan]: Given 3Lin instance I, NP-hard to distinguish
- Yes: val(I) = (1 - ε)
- No: no matter what assignment, the variables “appear” to 

be uniformly random 

Stronger No condition. Might help out the gadget.
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New gadgets
Def: A (c,s)-Chan-gadget 
- xi’s satisfy 3Lin eq’n ⇒ an assgn to yi’s of value (1 - c)
- xi’s random ⇒ on avg., expected best value ≤ (1 - s)

Upside: can still solve using an LP
Downside: best 3Lin-to-2Lin gadget no better 

than in ’97!
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Our strategy (revised)
Old reduction from Håstad’s 3Lin hardness result.

We now have better starting points.
[Chan]: Given “balanced pairwise independent subgroup 
predicate” instance I, NP-hard to distinguish
- Yes: val(I) = (1 - ε)
- No: no matter what assignment, the variables “appear” to 

be uniformly random 

We instantiate with BPISP = Hadk, specifically k = 3.
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One of Chan’s problems
Had3(x1, x2, x3, x1,2, x1,3, x2,3, x1,2,3) = 1 iff
- xi’s allowed to be arbitrary
- xa∙ xb∙ xa,b= 1
- xa∙ x{1,2,3}\a∙ x1,2,3 = 1 for all a ∈ {1,2,3}

Contains many simultaneous 3Lin tests. Difficult to satisfy!
(not too hard to generalize to Hadk)

[Us]: there is a (1/8, 
11/8∙ 

1/8)-Chan-gadget from Had3 to 2Lin
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Solving the LP
[TSSW]: optimal gadget only needs 27 = 128 variables
LP has to consider all possible 2128 = 3 x 1038 assignments 
to these variables: too large to be feasible!
So…….
- lots of work by hand
- lots of computer simulation (/brute force searching)
- lots more work by hand

but (spoiler alert) it all works out in the end.
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Full statement of our results
- (ε, 11/8*ε)-approx NP-hard (for 2Lin and Max-Cut)

- (1/8, 
11/8∙ 

1/8)-Chan-gadget from Had3 to 2Lin
- prove optimality of this gadget via dual solution

- can’t beat (ε, 2.54 ∙ ε)-hardness via a Chan gadget 
starting from *any* BPISP predicate
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Open problems
We give an optimal gadget reduction from Had3 to 2Lin.

We give a gadget from Hadk to 2Lin, along with a Game 
Show Conjecture which would imply (ε, 1.5 ∙ ε)-hardness.

We couldn’t say anything about the normal hardness ratio.
Maybe you can?



Thanks!


