
Autonomous Ground Navigation in Highly Constrained Spaces:
Lessons learned from The BARN Challenge at ICRA 2022

Competition Organizers: Xuesu Xiao1,2,3, Zifan Xu3, Zizhao Wang3, Yunlong Song4,
Garrett Warnell3,5, Peter Stone3,6, Tingnan Zhang7,

Finals Participants: Shravan Ravi3, Gary Wang3, Haresh Karnan3, Joydeep Biswas3,
Nicholas Mohammad8, Lauren Bramblett8, Rahul Peddi8, Nicola Bezzo8,

Zhanteng Xie9, and Philip Dames9

Abstract— The BARN (Benchmark Autonomous Robot Nav-
igation) Challenge took place at the 2022 IEEE International
Conference on Robotics and Automation (ICRA 2022) in
Philadelphia, PA. The aim of the challenge was to evaluate state-
of-the-art autonomous ground navigation systems for moving
robots through highly constrained environments in a safe
and efficient manner. Specifically, the task was to navigate a
standardized, differential-drive ground robot from a predefined
start location to a goal location as quickly as possible without
colliding with any obstacles, both in simulation and in the
real world. Five teams from all over the world participated
in the qualifying simulation competition, three of which were
invited to compete with each other at a set of physical
obstacle courses at the conference center in Philadelphia. The
competition results suggest that autonomous ground navigation
in highly constrained spaces, despite seeming ostensibly simple
even for experienced roboticists, is actually far from being a
solved problem. In this article, we discuss the challenge, the
approaches used by the top three winning teams, and lessons
learned to direct future research.

I. THE BARN CHALLENGE OVERVIEW

Designing autonomous robot navigation systems has been
a topic of interest to the robotics community for decades [1]–
[5]. Indeed, there currently exist many such systems that
allow robots to move from one point to another in a collision-
free manner (e.g., open-source implementations in the Robot
Operating System (ROS) [4]–[6] with extensions to different
vehicle types [7]), which may create the perception that
autonomous ground navigation is a solved problem. This
perception may be reinforced by the fact that many mobile
robot researchers have moved on to orthogonal navigation
problems [8] beyond the traditional metric (geometric) for-
mulation that only focuses on path optimality and obsta-
cle avoidance. These orthogonal problems include, among
others, learning navigation systems in a data-driven man-
ner [9]–[12], navigating in off-road [13]–[15] and social
contexts [16]–[18], and multi-robot navigation [19], [20].

However, autonomous mobile robots still struggle in many
ostensibly simple scenarios, especially during real-world de-
ployment [21]–[24]. For example, even when the problem is
simply formulated as traditional metric navigation so that the
only requirement is to avoid obstacles on the way to the goal,

1George Mason University 2Everyday Robots 3The University of Texas
at Austin 4University of Zurich 5Army Research Laboratory 6Sony AI
7Robotics@Google 8University of Virginia 9Temple University

robots still often get stuck or collide with obstacles when try-
ing to navigate in naturally cluttered daily households [21],
in constrained outdoor structures including narrow walkways
and ramps [23], [24], and in congested social spaces like
classrooms, offices, and cafeterias [22]. In such scenarios,
extensive engineering effort is typically required in order to
deploy existing approaches, and this requirement presents
a challenge for large-scale, unsupervised, real-world robot
deployment. Overcoming this challenge requires systems that
can both successfully and efficiently navigate a wide variety
of environments with confidence.

The Benchmark Autonomous Robot Navigation (BARN)
Challenge [25] was a competition at the 2022 IEEE Interna-
tional Conference on Robotics and Automation (ICRA 2022)
in Philadelphia, PA that aimed to evaluate the capability
of state-of-the-art navigation systems to solve the above-
mentioned challenge, especially in highly-constrained envi-
ronments, where robots need to squeeze between obstacles
to navigate to the goal. To compete in The BARN Challenge,
each participating team needed to develop an entire software
stack for navigation for a standardized and provided mobile
robot. In particular, the competition provided a Clearpath
Jackal [26] with a 2D 270°-field-of-view Hokuyo LiDAR
for perception and a differential drive system with 2m/s
maximum speed for actuation. The aim of each team was to
develop navigation software stack needed to autonomously
drive the robot from a given starting location through a dense
obstacle filed and to a given goal, and to accomplish this task
without any collisions with obstacles or any human interven-
tions. The team whose system could best accomplish this task
within the least amount of time would win the competition.
The BARN Challenge had two phases: a qualifying phase
evaluated in simulation, and a final phase evaluated in a
set of physical obstacle courses. The qualifying phase took
place before the ICRA 2022 conference using the BARN
dataset [27], which is composed of 300 obstacle courses in
Gazebo simulation randomly generated by cellular automata.
The top three teams from the simulation phase were then
invited to compete in three different physical obstacle courses
set up by the organizers at ICRA 2022 in the Philadelphia
Convention Center.

In this article, we report on the simulation qualifier and
physical finals of The BARN Challenge at ICRA 2022,

present the approaches used by the top three teams, and
discuss lessons learned from the challenge that point out fu-
ture research directions to solve the problem of autonomous
ground navigation in highly constrained spaces.

II. SIMULATION QUALIFIER

The BARN Challenge started on March 29th, 2022, two
months before the ICRA 2022 conference, with a stan-
dardized simulation qualifier. The qualifier used the BARN
dataset [27], which consists of 300 5m × 5m obstacle
environments randomly generated by cellular automata (see
examples in Fig. 1), each with a predefined start and goal.
These obstacle environments range from relatively open
spaces, where the robot barely needs to turn, to highly
dense fields, where the robot needs to squeeze between
obstacles with minimal clearance. The BARN environments
are open to the public, and were intended to be used by
the participating teams to develop their navigation stack.
Another 50 unseen environments, which are not available
to the public, were generated to evaluate the teams’ systems.
A random BARN environment generator was also provided
to teams so that they could generate their own unseen test
environments.1

In addition to the 300 BARN environments, six baseline
approaches were also provided for the participants’ reference,
ranging from classical sampling-based [5] and optimization-
based navigation systems [4], to end-to-end machine learning
methods [28], [29], and hybrid approaches [30]. All baselines
were implementations of different local planners used in
conjunction with Dijkstra’s search as the global planner in
the ROS move base navigation stack [31]. To facilitate
participation, a training pipeline capable of running the
standardized Jackal robot in the Gazebo simulator with
ROS Melodic (in Ubuntu 18.04), with the option of being
containerized in Docker or Singularity containers for fast and
standardized setup and evaluation, was also provided.2

A. Rules

Each participating team was required to submit their devel-
oped navigation system as a (collection of) launchable ROS
node(s). The challenge utilized a standardized evaluation
pipeline3 to run each team’s navigation system and compute
a standardized performance metric that considered navigation
success rate (collision or not reaching the goal count as
failure), actual traversal time, and environment difficulty
(measured by optimal traversal time). Specially, the score
s for navigating each environment i was computed as

si = 1success
i × OTi

clip(ATi, 4OTi, 8OTi)
,

where the indicator function 1success evaluates to 1 if the
robot reaches the navigation goal without any collisions, and
evaluates to 0 otherwise. AT denotes the actual traversal
time, while OT denotes the optimal traversal time, as an

1https://github.com/dperille/jackal-map-creation
2https://github.com/Daffan/ros_jackal
3https://github.com/Daffan/nav-competition-icra2022

indicator of the environment difficulty and measured by the
shortest traversal time assuming the robot always travels at
its maximum speed (2m/s):

OTi =
Path Lengthi

Maximal Speed
.

The Path Length is provided by the BARN dataset based
on Dijkstra’s search from the given start to goal. The clip
function clips AT within 4OT and 8OT, in order to assure
navigating extremely quickly or slowly in easy or difficult
environments respectively won’t disproportionally scale the
score. The overall score of each team is the score averaged
over all 50 unseen test BARN environments, with 10 trials in
each environment. Higher scores indicate better navigation
performance. The six baselines score between 0.1627 and
0.2334. The maximum possible score based on our metric is
0.25.

B. Results

The simulation qualifier started on March 29th, 2022 and
lasted through May 22th, 2022. In total, five teams from
all over the world submitted their navigation systems. The
performance of each submission was evaluated by a standard
evaluation pipeline, and the results are shown in Tab. I.

TABLE I: Simulation Results

Rank. Team/Method (University) Score

1 TRAIL (Temple University) 0.2415
2 LfLH (Baseline [29]) 0.2334
3 AMRL (UT Austin) 0.2310
4 AMR (UVA) 0.2200
5 E-Band (Baseline [4]) 0.2053
6 End-to-End (Baseline [9]) 0.2042
7 APPLR-DWA (Baseline [30]) 0.1979
8 Yiyuiii (Nanjing University) 0.1969
9 NavBot (Indian Institute of Science) 0.1733

10 Fast (2.0m/s) DWA (Baseline [5]) 0.1709
11 Default (0.5m/s) DWA (Baseline [5]) 0.1627

All methods outperformed the baseline Dynamic Window
Approach (DWA) [5], with both 2.0m/s and 0.5m/s max
speed, the latter of which is the default local planner for
the Jackal robot. However, only one approach (from Temple
University) outperformed all baselines. The top three teams
from the simulation qualifier, i.e., Temple Robotics and
Artificial Intelligence Lab (TRAIL) from Temple University,
Autonomous Mobile Robotics Laboratory from The Univer-
sity of Texas at Austin (AMRL UT Austin), and Autonomous
Mobile Robots Lab from The University of Virginia (AMR
UVA), were invited to the physical finals at ICRA 2022.

III. PHYSICAL FINALS

The physical finals took place at ICRA 2022 in the
Philadelphia Convention Center on May 25th and May 26th,
2022. Two physical Jackal robots with the same sensors
and actuators were provided by the competition sponsor,
Clearpath Robotics.

https://github.com/dperille/jackal-map-creation
https://github.com/Daffan/ros_jackal
https://github.com/Daffan/nav-competition-icra2022

Fig. 1: Four Example BARN Environments in the Gazebo Simulator (ordered by ascending relative difficulty level)
.

Fig. 2: One (Out of Three) Physical Obstacle Courses during
the Finals

A. Rules

Physical obstacle courses were set up using approximately
200 cardboard boxes in the convention center (Fig. 2).
Because the goal of the challenge was to test a navigation
system’s ability to perform local planning, all three physical
obstacle courses have an obvious passage that connects
the start and goal locations (i.e., the robot shouldn’t be
confused by global planing at all), but the overall obstacle
clearance when traversing this passage was designed to be
very constrained, e.g., a few centimeters around the robot.

While it was the organizers’ original intention to run
exactly the same navigation systems submitted by the three
top teams and use the same scoring metric in the simulation
qualifiers in the physical finals, these systems suffered from
(surprisingly) poor navigation performance in the real world
(not even being able to finish one single trial without any
collisions). Therefore, the organizers decided to change the
rules by giving each team 30 minutes before competing
in each of the three physical obstacle courses in order to
fine-tune their navigation systems. After all three teams had
this chance to set up for a particular obstacle course, the
actual physical finals started as a 30-minute timed session
for each team. In each 30-minute session, a team tested their
navigation system in the obstacle course and notified the
organizers when they were ready to time a competition trial.
Each team had the opportunity to run five timed trials (after
notifying the organizers). The fastest three out of the five

timed trials were counted, and the team that had the most
successful trials (reaching the goal without any collision)
was the winner. In the case of a tie, the team with the fasted
average traversal time would be declared the winner.

B. Results

The physical finals took place on May 25th and May 26th,
2022 (see the final award ceremony in Fig. 3). The three
teams’ navigation performance is shown in Tab. II. Since all
navigation systems navigated at roughly the same speed, the
final results were determined solely by the success rate of the
best three out of five timed trials for each team. Surprisingly,
the best system in simulation by Temple University exhibited
the lowest success rate, while UT Austin’s system enjoyed
the highest rate of success.

Fig. 3: From Left to Right: Competition Sponsor (Clearpath
Robotics), Competition Organizers, the Temple, UVA, and
UT Austin teams

TABLE II: Physical Results

Rank. Team/Method (University) Success / Total Trials

1 AMRL (UT Austin) 8/9
2 AMR (UVA) 4/9
3 TRAIL (Temple University) 2/9

IV. TOP THREE TEAMS AND APPROACHES

In this section, we report the approaches used by the three
winning teams.

A. The University of Texas at Austin

To enable robust, repeatable, and safe navigation in
constrained spaces frequently found in BARN, the UT

Austin team from AMRL4 utilized state-of-the-art classical
approaches to handle localization, planning, and control
along with an automated pipeline to visualize and debug
continuous integration. To plan feasible paths to reach the
goal location while avoiding obstacles, a medium-horizon
kinematic planner from ROS move base [31] was used,
combined with a discrete path rollout greedy planner for
local kinodynamic planning from AMRL’s graph navigation
stack [32]. This two-stage hierarchical planning generated
safe motion plans for the robot to make progress towards
the goal while reactively avoiding obstacles along its path
using the LiDAR scans. Additionally, since the environment
contains tight spaces that are challenging to navigate through,
it was observed that accurate motion estimation of the robot
was crucial to deploying a planning-based navigation con-
troller in an unmapped environment. When executing sharp
turns in constrained environments, poor estimates of the
robot’s motion negatively interfered with costmap updates
in move base and often prevented the mid-level planner
from discovering any feasible path to the goal.

Towards addressing this problem, Episodic non-Markov
Localization (EnML) [33] was utilized, which fuses the
LiDAR range scans with wheel odometry through non-
markov bayesian updates. Combining EnML with two-stage
hierarchical planning proved to be useful in safely handling
constrained spaces. Additionally, the UT Austin team devel-
oped custom automated tools to generate visualizations for
debugging that helped identify failure cases easily, perform
manual hyperparameter tuning and accelerate bug fixes dur-
ing the competition.

While classical approaches helped solve a majority of
environments in the BARN challenge, significant challenges
still remain for navigation in extremely constrained spaces.
For example, the two-stage hierarchical planning module
does not explore unobserved regions of the environment
before committing to a kinematically feasible path. This
sometimes leads to suboptimal paths causing longer time
taken to reach the goal. We posit that a learnable mid-level
planner with the ability to actively explore the environment
appropriately to plan the optimal path may be a promising
future direction of research to improve autonomous naviga-
tion in constrained spaces.

B. University of Virginia

In order to quickly and robustly navigate through the
unknown, cluttered BARN challenge environments, the UVA
AMR team5 developed a mapless, “follow-the-gap” planning
scheme which (a) detects open gaps for the robot to follow
to reach a final goal and (b) plans local goals in order to
reach these open gaps without colliding with intermediate
obstacles. The framework expands upon the UVA AMR
lab’s previous work [34]. Fig. 4(a) illustrates the framework
displaying the laser scan point-cloud of a world from the
BARN dataset along with the detected intermediate gaps

4https://amrl.cs.utexas.edu/
5https://www.bezzorobotics.com/

g1, g2, and g3, vehicle position xr ∈ R2, and final goal
position x∗ ∈ R2. Fig. 4(b) shows the local planner,
which provides course corrections in order for the robot
to avoid obstacles while reaching a selected gap goal. The

(a) (b)

Fig. 4: (UVA Team) Examples of (a) Detected Gaps in
a Simulated BARN Environment and (b) Local Planner
Obstacle Avoidance

approach takes advantage of the fact that gaps start or
end at discontinuities in the laser scan and leverages this
principle to find intermediate gap goals for navigation [35].
Let pi, pi+1 ∈ R2 be adjacent points in the laser scan and
R denote the maximum sensing range of the LiDAR. The
first discontinuity, referred to as Type 1, occurs when the
distance between the adjacent readings is larger than the
circumscribed diameter dr of the robot: ||pi − pi+1||2 > dr.
The second discontinuity, Type 2, occurs when one of the two
readings is outside the LiDAR’s sensing range: ||pi−xr||2 ≥
R⊕ ||pi+1−xr||2 ≥ R . If ||pi+1−xr||2 > ||pi−xr||2, the
discontinuity is referred to as rising, otherwise it is falling.
Below we describe how to leverage these discontinuities to
identify gaps.

The first step in gap detection is to perform a forward pass
from p0 to pn−1 in the laser point-cloud scan for rising type
1 and type 2 discontinuities. Let pi denote the location of
the first rising discontinuity and L+ = {i + 1, . . . , n − 1}.
This point becomes the beginning of the gap. To determine
the end, we find the point pj closest to pi such that j ∈ L+.
That is,

pj = arg min
j∈L+

||pi − pj ||2 (1)

The process continues starting from pj+1. Once the for-
ward pass is complete, a mirrored backward pass from pn−1

to p0 is done to find gaps via falling discontinuities. Each
detected gap, defined as gi = (ai, bi), a tuple of the start and
end points, are added to a quadtree Tg which keeps track of
where all previously identified and visited gaps are located.
If any gap already exists in the tree, it is ignored.

Once Tg is updated, a gap g∗ ∈ Tg is selected to be the
intermediate goal if it is determined that the final goal x∗ is
not admissible. In this context, admissibility is determined by
checking if a given goal is navigable; that is, from the laser
scan data, a path is known to exist from the robot position to

https://amrl.cs.utexas.edu/
https://www.bezzorobotics.com/

the goal. The check is done by using a similar algorithm as
discussed by Minguez and Montano [36], which, given any
start point xa and end point xb, ensures no inflated obstacles
block the robot along the line connecting the two points.

The process to select the gap goal from Tg when x∗ is
inadmissible is outlined in Algorithm 1. At each iteration, the
algorithm finds the closest gap g∗ to the final goal x∗. If g∗

is inadmissible from the robot’s current position, properties
of quadtree queries are utilized to find all gaps G′ ⊆ Tg
which must be passed as the robot drives from xr to g∗.
The algorithm then iteratively finds the closest admissible
gap g ∈ G′ to the robot which is also admissible to g∗.
Meaning, the robot knows that a feasible path from xr to g
and from g to g∗ exists. If no g satisfy this constraint for
the given g∗, the process repeats with g∗ as the next closest
gap to x∗ and terminates once an admissible gap is found.
For clarity, Fig. 4(a) shows an example of the goal selection
process. The final goal x∗ is not admissible, nor is the closest
gap to it, g1. However, xr to g2 is admissible as well as g2
to g1. Thus, g2 is selected as the intermediate goal and the
selection process repeats once the robot reaches g2.

Algorithm 1 (UVA Team) Find Gap Goal

1: Input: quadtree Tg , robot position xr, final goal x∗

2: Output: gap goal g∗

3: while Tg ̸= ∅ & !isAdmissible(xr, g
∗) do

4: g∗ ← argming∗∈Tg
||x∗ − g∗||2

5: Tg ← Tg \ {g∗}
6: # Returns children in descending order of dist. to xr

7: G′ ← getChildren(g∗, xr, Tg)
8: for g ∈ G′ do
9: if isAdmissible(xr, g) & isAdmissible(g, g∗) then

10: g∗ = g
11: end if
12: end for
13: end while
14: return g∗

Even though the selected gap goal is admissible, a direct
path to it may not be feasible given the configuration of
the obstacles within an environment. For example, a robot
navigating directly to g in Fig. 4(b) will collide with the ob-
stacles shown by the laser scan data. In order to prevent such
issues from arising, local planner is utilized which re-plans
the mobile robot’s trajectory at every timestep if collision
is imminent. The direct path to the goal is formulated as a
region D, which accounts for the relative heading to the goal,
θg and the diameter dr of the robot. The region D is checked
against the laser scan points for any obstacles; let p represent
all obstacle coordinates within region D. If no obstacles are
in D, that is p = ∅, the robot is sent directly to the gap goal,
g. If there are multiple obstacles within D, the one closest
to the robot is selected; let do represent the distance to the
closest obstacle and θo represent the direction of the obstacle
with respect to the robot’s heading. The new desired heading
is then computed by accounting the offset between goal and

obstacle to the gap goal: θdes = θg+(θg−θo), and the local
goal is placed at a distance of do in this desired direction
(shown in teal in Fig. 4(b)).

The inputs to the robot are angular and linear velocities,
and are determined using proportional controllers:{

ω = min(kt(θdes − θr), ωmax),

v = kvvmax(1− α |ω|
ωmax

)
(2)

where kt, kv , and α are constant proportional gains, θr is
the current heading of the robot, and ωmax and vmax are the
maximum angular and linear velocities respectively.

C. Temple University

The team at Temple6 used a deep reinforcement learning
(DRL) based control policy, called DRL-VO [37], originally
designed for safe and efficient navigation through crowded
dynamic environments. The system architecture of the DRL-
VO control policy, shown in Fig. 5, is divided into two
modules: preprocessing and DRL network.

1) Preprocessing Module: Instead of directly feeding the
raw sensor data into deep neural networks like other works
[9], [19], [38], [39], the DRL-VO control policy utilizes
preprocessed data as the network input. There are three types
of inputs that capture different aspects of the scene.

1) Pedestrians: To track pedestrians, the raw RGB image
data and point cloud data from a ZED camera are fed
into the YOLOv3 [40] object detector to get pedestrian
detections. These detections are passed into a multiple
hypothesis tracker (MHT) [41] to estimate the number
of pedestrians and their kinematics (i.e., position and
velocity). These pedestrian kinematics are encoded into
two 80× 80 occupancy grid-style maps.

2) Scene Geometry: To track the geometry, the past 10
scans (0.5 s) of LiDAR data are collected. Each LiDAR
scan is downsampled using a combination of minimum
pooling and average pooling, and these downsampled
LiDAR data are then reshaped and stacked to create
an 80× 80 LiDAR map.

3) Goal Location: To inform the robot where to go, the
final goal point and its corresponding nominal path are
fed into the pure pursuit algorithm [42] to extract the
sub-goal point, which is fed into the DRL-VO network.

This novel preprocessed data representation is one key idea
of the DRL-VO control policy, allowing it to bridge the sim-
to-real gap and generalize to new scenarios better than other
end-to-end policies.

2) DRL Network Module: The DRL-VO control policy
uses an early fusion network architecture to combine the
pedestrian and LiDAR data at the input layer in order to
obtain high-level abstract feature maps. This early fusion ar-
chitecture facilitates the design of small networks with fewer
parameters than late fusion works [43], [44], which is the key
deploying them on resource-constrained robots. These high-
level feature maps are combined with the sub-goal point and

6https://sites.temple.edu/trail/

https://sites.temple.edu/trail/

Lidar Historical Map: 80 x 80

Pedestrian Kinematic Maps: 2 x 80 x 80

gx

gy

Sub-goal Point: 2 x 1

YOLOv3 & MHT

Min & Avg Pooling

Pure Pursuit Algorithm

 Preprocessing Module

 F
C

, C
=2

56

 F
C

, C
=2 Vx

 Wz

Action:
2 x 1

FC
, C

=2
56

Actor

 F
C

, C
=1

V(s)

Value:
1 x 1

FC
, C

=1
28

Critic

 Feature Extractor

 3
x3

 M
ax

P
oo

l2
d,

C
=6

4

3x
3

C
on

v2
d,

C
=6

4

B
ot

tle
ne

ck

B
lo

ck
s:

C
=6

4,
S

=1

B
ot

tle
ne

ck
 B

lo
ck

s:
C

=1
28

,S
=2

B
ot

tle
ne

ck
 B

lo
ck

s:
C

=2
56

,S
=2

1x
1

A
da

pt
iv

eA
vg

P
oo

l2
d

Hokuyo Lidar

ZED Camera

Goal Point

 DRL Network Module: early fusion architecture

Fig. 5: (Temple Team) The system architecture of the DRL-VO control policy. Raw sensor data from the ZED camera and
Hokuyo LiDAR, as well as the goal point, are fed into a preprocessing module to create intermediate data representations.
These low-level intermediate features are fused in a feature extractor network to obtain high-level abstract features. The actor
network uses these abstract features to generate steering commands to control the robot, while the critic network outputs
the state value for training the policy.

fed into the actor and critic networks to generate suitable
control inputs and a state value, respectively.

3) Training: To ensure that the DRL-VO policy leads
the robot to navigate safely and efficiently, the team at
Temple developed a new multi-objective reward function
that rewards travel towards the goal, avoiding collisions with
static objects, having a smooth path, and actively avoiding
future collisions with pedestrians. This final term, which
utilizes the concept of velocity obstacles (VO) [45], [46],
is key to the success of the DRL-VO control policy. With
this reward function, the DRL-VO policy is trained via
the proximal policy optimization (PPO) algorithm [47] in
a 3D lobby Gazebo simulation environment with 34 moving
pedestrians using a Turtlebot2 robot with a ZED camera and
a 2D Hokuyo LiDAR.

4) Deployment: The Temple team directly deployed the
DRL-VO policy trained on a Turtlebot2 in The BARN
Challenge without any model fine-tuning. To achieve this,
the team had to account for three key differences:

1) Unknown Map: During development, the DRL-VO
policy used a known occupancy grid map of the static
environment for localization, which is not available in
the BARN challenge. To account for this, the localiza-
tion module (amcl) was removed from the software
stack and replaced with a laser odometry module.

2) Static Environment: The DRL-VO policy was de-
signed to function in dynamic environments. To ac-
count for the fact that the environments in the BARN
Challenge were all static and highly constrained, the
pedestrian map was set to all zeros.

3) Different Robot Model: The DRL-VO policy was
trained on a Turtlebot2, which has a different max-
imum speed and footprint compared to the Jackal
platform. In the BARN Challenge, the maximum speed
of the robot was modified based on its proximity to

obstacles. This led to the robot moving slowly (0.5 m/s,
same speed as the Turtlebot2) when near obstacles and
quickly (up to 2 m/s, maximum speed of the Jackal)
when in an open area.

V. DISCUSSIONS

Based on each team’s approach and the navigation per-
formance observed during the competition, we now discuss
lessons learned from The BARN Challenge and point out
promising future research directions to push the boundaries
of efficient mobile robot navigation in highly constrained
spaces.

A. Generalizability of Learning Based Systems

One surprising discrepancy between the simulation qual-
ifier and the physical finals is the contrasting performance
of the DRL-VO approach by Temple University, which out-
performed all baselines and other participants in simulation,
but suffers from frequent collision with obstacles in the
real world. Despite the fact that the organizers modified the
rules during the physical finals to allow the teams to make
last-minute modifications to their navigation systems, DRL-
VO still did not perform well in all three physical obstacle
courses. The TRAIL team believes this is due to two types
of gap between the simulator and the real world: 1) the
real world environments were all highly constrained, whereas
the simulator environments contained both constrained and
unconstrained environments, and 2) the DRL-VO policy was
learned on a Turtlebot2 model (which has a smaller physical
footprint than a Jackal). Most of the collisions during the
hardware tests were light grazes on the side, so a robot with
a smaller size may have remained collision-free.

The stark performance contrast between simulation and
the real world suggests a generalizability gap for the re-
inforcement learning approach. It was not practical for the
team to re-train a new system on site during the competition,

given the impractically massive amount of training data
required for reinforcement learning. How to address this
generalizability gap and to make a navigation policy trained
in simulation generalizable to the real world and different
robot/sensor configurations remains to be investigated, even
for such a simple, static obstacle avoidance problem.

Another potential way to address such inevitable gener-
alizability gaps is to seek help from a secondary classical
planner that identifies out-of-distribution scenarios in the real
world and recovers from them through rule-based heuristics.
In fact, for the last two physical courses, the Temple team
tried to implement just such a “recovery planner” as a backup
for DRL-VO: when a potential collision is detected (i.e., the
robot faces an obstacle that is too close), the robot rotates
in place to head towards an empty space in an attempt
to better match the real-world distribution to that in the
simulation during training. Although such a recovery planner
did help in some scenarios, it is difficult for it to cover every
difficult scenario and navigate through the entire obstacle
course. Indeed, the Temple team spent time during the 30-
minute timed sessions to fine tune the parameters of the
recovery planner, but found it difficult to find a single set of
parameters to recover the robot from all out-of-distribution
scenarios while not to accidentally drive the robot into such
scenarios throughout the entire course. On one hand, the
simple nature of the recovery planner designed onsite during
the competition contributed to the failure. On the other hand,
tuning parameters of a planner to cover as many scenarios as
possible remains a difficult problem, and will be discussed
further below.

B. Tunability of Classical Systems

Similar to Temple’s rule-based recovery planner, UT
Austin team’s entire navigation system relies on classi-
cal methods: EnML localization, medium-horizon kinematic
planner, and local rollout-based kinodynamic planner. In-
evitably, these classical approaches have numerous tuning
parameters, which need to be correctly tuned to cover as
many scenarios as possible. A natural disadvantage of relying
on a single set of parameters to cover all different difficult
scenarios in the BARN Challenge (e.g., dense obstacle fields,
narrow curving hallways, relatively open spaces) is the
inevitable tradeoff or compromise to sacrifice performance
in some scenarios in order to succeed in others or to
decrease speed for better safety. Indeed, the UT Austin
team’s strategy in the physical finals is to spend the first
20 minutes in the 30-minute timed session to fine tune the
system parameters until a good set of parameters that allow
successful navigation through the entire obstacle course is
found, then finish three successful “safety trials” first, and
finally re-tune the system to enable faster, more aggressive,
but riskier navigation behaviors to reduce average traversal
time. Although most such “speed trials” failed, luckily for
the UT Austin team, other teams’ inability to safely finish
three collision-free trials to the goal make them the winner
of the BARN Challenge only with a higher success rate (not
faster navigation).

Two orthogonal future research directions can potentially
help with the tunability of navigation systems: (1) developing
planners free of tunable parameters onsite during deploy-
ment, such as end-to-end learning approaches, but, as men-
tioned above, with significantly better sim-to-real transfer
and generalizability; (2) enabling more intelligent parameter
tuning of classical systems, rather than laborious manual
tuning, for example, through automatic tuning [48] or even
dynamic parameter policies [49] learned from teleoperated
demonstration [50], corrective interventions [51], evaluative
feedback [52], or reinforcement learning [30].

C. Getting “Unstuck”

Although most of the failure trials during the physical
finals were due to collision with obstacles, there were also
many trials that did not succeed because the robot got stuck
in some densely populated obstacle areas. In those places,
the robot kept repeating the same behaviors multiple times,
e.g., detecting imminent collision with obstacles, rotating
in place, backing up, resuming navigation, detecting the
same imminent collision again, and so on. Such behavior
sometimes led to collision with an obstacle, sometimes
got the robot stuck forever, and may also succeed in rare
occasions. All three teams have experienced such behaviors,
with the UT Austin and UVA teams being able to fix it
by tuning parameters and the Temple team changing the
threshold between DRL-VO and the recovery planner.

Similarly, in real-world autonomous robot navigation, how
to get “unstuck” safely remains a common and challenging
problem. No matter how intelligent an autonomous mobile
robot is, it may still make mistakes in the real world, e.g.,
when facing scenarios out of the training distribution, corner
cases not considered by the system developer, or situations
where the current parameter set is not appropriate. It is very
likely that the robot will repeat the same mistake over and
over, e.g., getting stuck at the same place, which needs
to be avoided. Future research should investigate ways to
identify such “stuck” situations, balance the tradeoff between
exploitation and exploration (i.e., when to keep trying the
previous way vs. when to try out new ways to get unstuck),
utilize previous successful exploratory experiences in future
similar scenarios to not get stuck again [53], or leverage
offline computation to correct such failure cases in the
future [54].

D. Tradeoff between Safety and Speed

While The BARN Challenge was originally designed
to test existing navigation system’s speed of maneuvering
through highly constrained obstacle environments, given the
safety constraint of being collision-free, it ended up being a
competition about safety alone. The UT Austin team won
the competition simply by safely navigating eight out of
nine physical trials, not by doing so with the fastest speed.
All the teams, except the UT Austin team after they figured
out an effective set of parameters for each physical obstacle
course, struggled with simply reaching the goal without any

collision. The challenge organizers also deployed the widely-
used DWA planner [5] in the ROS move base navigation
stack in the physical obstacle courses, only to find out that,
despite being relatively safe compared to the participating
teams’ methods, it struggled with many narrow spaces and
got stuck in those places very often. Such a fact shows that
the current autonomous mobile robot navigation capability
still lags farther behind than one may expect.

E. Latency Compensation for High Speed

Only the UT Austin team attempted to pursue higher
speed navigation (> 0.5 m/s), doing so after an appropriate
parameter set was found for the particular physical course
and three successful “safety trials” have been achieved. How-
ever, most “speed trials” ended in collision. One contributing
factor to such failure was improper latency compensation
for various high speeds. The UT Austin team was the only
team that explicitly considered latency compensation in their
AMRL stack [32], through a latency parameter. During high-
speed maneuvers, the robot inevitably needs to aggressively
change its navigation speed to swerve through obstacles
and to accelerate in open spaces. System latency caused
by sensing, processing, computation, communication, and
actuation will likely invalidate previously feasible plans.
While simply tuning the latency parameter value can help
to certain extent, a more intelligent and adaptive way to
calculate and compensate system latency is necessary for the
robot to take full advantage of its computing power before
executing aggressive maneuvers.

F. Navigation is More Than Planning

To plan agile navigation maneuvers through highly con-
strained obstacle environments, the robot first needs to
accurately perceive its configuration with respect to the
obstacles. Inaccurate localization or odometry during fast
maneuvers with significant angular velocity usually produces
significant drift, causing previously valid plans become in-
feasible. While all three teams’ local planners rely on raw
perception to minimize such adverse effect, e.g., using high
frequency laser scans and directly planning with respect
to these raw features, their global planner usually depends
on the results of localization or odometry techniques. For
example, the Temple team used the Dijkstra’s global planner
in move base. An erroneous localization will cause an
erroneous global plan, which in turn will affect the quality
of the local plan. Such adverse effect will diminish when the
navigation speed is low, because localization techniques may
recover from drift over time. During high-speed navigation,
however, the planner needs to quickly plan actions regardless
of whether the drift has been fixed or not. As mentioned
above, latency will start to play a role as well, because a good
latency compensation technique will depend on an accurate
localization and odometry model of the robot, i.e., being able
to predict where the robot will be based on where the robot
is and what action will be executed. Techniques for better
odometry, localization [33], and kinodynamic models [15],
[55], [56] during high-speed navigation will be necessary to

allow mobile robots to move both fast and accurately at the
same time.

VI. CONCLUSIONS

The results of The BARN Challenge at ICRA 2022
suggest that, contrary to the perception of many in the field,
autonomous metric ground robot navigation can not yet be
considered a solved problem. Indeed, even the competition
organizers had initially assumed that obstacle avoidance
alone was too simple a goal, and therefore emphasized
navigation speed before the physical competition. However,
each of the finalist teams experienced difficulty performing
collision-free navigation, and this ultimately led the orga-
nizers to modify the competition rules to focus more on
collision avoidance. This result suggests that state-of-the-art
navigation systems still suffer from suboptimal performance
due to potentially many aspects of the full navigation system
(discussed in Section V). Therefore, while it is worthwhile
to extend navigation research in directions orthogonal to
metric navigation (e.g., purely vision-based, off-road, and
social navigation), the community should also not overlook
the problems that still remain in this space, especially when
robots are expected to be extensively and reliably deployed
in the real world.

REFERENCES

[1] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Tra-
jectory modification considering dynamic constraints of autonomous
robots,” in ROBOTIK 2012; 7th German Conference on Robotics.
VDE, 2012, pp. 1–6.

[2] ——, “Efficient trajectory optimization using a sparse model,” in 2013
European Conference on Mobile Robots. IEEE, 2013, pp. 138–143.

[3] C. Rösmann, F. Hoffmann, and T. Bertram, “Planning of multiple robot
trajectories in distinctive topologies,” in 2015 European Conference on
Mobile Robots (ECMR). IEEE, 2015, pp. 1–6.

[4] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in [1993] Proceedings IEEE International Conference
on Robotics and Automation. IEEE, 1993, pp. 802–807.

[5] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[6] C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajec-
tory planning and optimization in distinctive topologies,” Robotics and
Autonomous Systems, vol. 88, pp. 142–153, 2017.

[7] ——, “Kinodynamic trajectory optimization and control for car-like
robots,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 5681–5686.

[8] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, pp. 1–29, 2022.

[9] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” in 2017 ieee
international conference on robotics and automation (icra). IEEE,
2017, pp. 1527–1533.

[10] H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning
navigation behaviors end-to-end with autorl,” IEEE Robotics and
Automation Letters, vol. 4, no. 2, pp. 2007–2014, 2019.

[11] H. Karnan, G. Warnell, X. Xiao, and P. Stone, “Voila: Visual-
observation-only imitation learning for autonomous navigation,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 2497–2503.

[12] P. Atreya, H. Karnan, K. S. Sikand, X. Xiao, G. Warnell, S. Rabiee,
P. Stone, and J. Biswas, “High-speed accurate robot control using
learned forward kinodynamics and non-linear least squares optimiza-
tion,” in To Appear in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2022.

[13] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou,
and B. Boots, “Imitation learning for agile autonomous driving,” The
International Journal of Robotics Research, vol. 39, no. 2-3, pp. 286–
302, 2020.

[14] G. Kahn, P. Abbeel, and S. Levine, “Badgr: An autonomous self-
supervised learning-based navigation system,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 1312–1319, 2021.

[15] H. Karnan, K. S. Sikand, P. Atreya, S. Rabiee, X. Xiao, G. Warnell,
P. Stone, and J. Biswas, “Vi-ikd: High-speed accurate off-road naviga-
tion using learned visual-inertial inverse kinodynamics,” in To Appear
in 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022.

[16] R. Mirsky, X. Xiao, J. Hart, and P. Stone, “Prevention and res-
olution of conflicts in social navigation–a survey,” arXiv preprint
arXiv:2106.12113, 2021.

[17] C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Stein-
feld, and J. Oh, “Core challenges of social robot navigation: A survey,”
arXiv preprint arXiv:2103.05668, 2021.

[18] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand):
A large-scale dataset of demonstrations for social navigation,” IEEE
Robotics and Automation Letters, 2022.

[19] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 6252–6259.

[20] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE international conference on robotics
and automation (ICRA). IEEE, 2017, pp. 285–292.

[21] “irobot – robot vacuum and mop,” https://www.irobot.com/, accessed:
2022-07-20.

[22] “Home – everyday robots,” https://everydayrobots.com/, accessed:
2022-07-20.

[23] “Meet scout,” https://www.aboutamazon.com/news/transportation/
meet-scout, accessed: 2022-07-20.

[24] “Starship,” https://www.starship.xyz/, accessed: 2022-07-20.
[25] “The barn challenge,” https://people.cs.gmu.edu/∼xxiao2/Research/

BARN Challenge/BARN Challenge.html, accessed: 2022-08-20.
[26] “Jackal ugv - small weatherproof robot - clearpath,” https:

//clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/, ac-
cessed: 2022-07-21.

[27] D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” in 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). IEEE, 2020, pp. 116–121.

[28] Z. Xu, B. Liu, X. Xiao, A. Nair, and P. Stone, “Benchmarking
reinforcement learning techniques for autonomous navigation.”

[29] Z. Wang, X. Xiao, A. J. Nettekoven, K. Umasankar, A. Singh,
S. Bommakanti, U. Topcu, and P. Stone, “From agile ground to aerial
navigation: Learning from learned hallucination,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 148–153.

[30] Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang,
and P. Stone, “Applr: Adaptive planner parameter learning from
reinforcement,” in 2021 IEEE international conference on robotics
and automation (ICRA). IEEE, 2021, pp. 6086–6092.

[31] “ROS movebase navigation stack,” http://wiki.ros.org/move base, ac-
cessed: 2021-09-9.

[32] J. Biswas, “Amrl autonomy stack,” https://github.com/ut-amrl/graph
navigation, 2013.

[33] “ROS movebase navigation stack,” http://wiki.ros.org/move base, ac-
cessed: 2021-09-9.

[34] N. Mohammad and N. Bezzo, “A robust and fast occlusion-based
frontier method for autonomous navigation in unknown cluttered envi-
ronments,” in To Appear in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2022.

[35] M. Mujahad, D. Fischer, B. Mertsching, and H. Jaddu, “Closest
gap based (cg) reactive obstacle avoidance navigation for highly
cluttered environments,” in 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2010, pp. 1805–1812.

[36] J. Minguez and L. Montano, “Nearness diagram (nd) navigation:
collision avoidance in troublesome scenarios,” IEEE Transactions on
Robotics and Automation, vol. 20, no. 1, pp. 45–59, 2004.

[37] Z. Xie and P. Dames, “Drl-vo: Using velocity obstacles to learn safe

navigation policies for crowded dynamic scenes,” IEEE Transactions
on Robotics, 2022, under review.

[38] T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios,” The International Journal of Robotics Research, vol. 39,
no. 7, pp. 856–892, 2020.

[39] R. Guldenring, M. Görner, N. Hendrich, N. J. Jacobsen, and J. Zhang,
“Learning local planners for human-aware navigation in indoor envi-
ronments,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 6053–6060.

[40] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[41] K. Yoon, Y.-m. Song, and M. Jeon, “Multiple hypothesis tracking
algorithm for multi-target multi-camera tracking with disjoint views,”
IET Image Processing, vol. 12, no. 7, pp. 1175–1184, 2018.

[42] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,
Tech. Rep., 1992.

[43] A. J. Sathyamoorthy, J. Liang, U. Patel, T. Guan, R. Chandra, and
D. Manocha, “Densecavoid: Real-time navigation in dense crowds
using anticipatory behaviors,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 11 345–11 352.

[44] X. Huang, H. Deng, W. Zhang, R. Song, and Y. Li, “Towards multi-
modal perception-based navigation: A deep reinforcement learning
method,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
4986–4993, 2021.

[45] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[46] D. Wilkie, J. Van Den Berg, and D. Manocha, “Generalized velocity
obstacles,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2009, pp. 5573–5578.

[47] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[48] H. Ma, J. S. Smith, and P. A. Vela, “Navtuner: Learning a scene-
sensitive family of navigation policies,” in 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2021, pp. 492–499.

[49] X. Xiao, Z. Wang, Z. Xu, B. Liu, G. Warnell, G. Dhamankar, A. Nair,
and P. Stone, “Appl: Adaptive planner parameter learning,” Robotics
and Autonomous Systems, vol. 154, p. 104132, 2022.

[50] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[51] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone, “Appli: Adaptive
planner parameter learning from interventions,” in 2021 IEEE interna-
tional conference on robotics and automation (ICRA). IEEE, 2021,
pp. 6079–6085.

[52] Z. Wang, X. Xiao, G. Warnell, and P. Stone, “Apple: Adaptive planner
parameter learning from evaluative feedback,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 7744–7749, 2021.

[53] B. Liu, X. Xiao, and P. Stone, “A lifelong learning approach to mobile
robot navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 1090–1096, 2021.

[54] Z. Xu, A. Nair, X. Xiao, and P. Stone, “Learning real-world au-
tonomous navigation by self-supervised environment synthesis.”

[55] X. Xiao, J. Biswas, and P. Stone, “Learning inverse kinodynamics for
accurate high-speed off-road navigation on unstructured terrain,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 6054–6060, 2021.

[56] P. Atreya, H. Karnan, K. S. Sikand, X. Xiao, G. Warnell, S. Rabiee,
P. Stone, and J. Biswas, “High-speed accurate robot control using
learned forward kinodynamics and non-linear least squares opti-
mization,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022.

https://www.irobot.com/
https://everydayrobots.com/
https://www.aboutamazon.com/news/transportation/meet-scout
https://www.aboutamazon.com/news/transportation/meet-scout
https://www.starship.xyz/
https://people.cs.gmu.edu/~xxiao2/Research/BARN_Challenge/BARN_Challenge.html
https://people.cs.gmu.edu/~xxiao2/Research/BARN_Challenge/BARN_Challenge.html
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
http://wiki.ros.org/move_base
https://github.com/ut-amrl/graph_navigation
https://github.com/ut-amrl/graph_navigation
http://wiki.ros.org/move_base

	The BARN Challenge Overview
	Simulation Qualifier
	Rules
	Results

	Physical Finals
	Rules
	Results

	Top Three Teams and Approaches
	The University of Texas at Austin
	University of Virginia
	Temple University
	Preprocessing Module
	DRL Network Module
	Training
	Deployment

	Discussions
	Generalizability of Learning Based Systems
	Tunability of Classical Systems
	Getting ``Unstuck''
	Tradeoff between Safety and Speed
	Latency Compensation for High Speed
	Navigation is More Than Planning

	CONCLUSIONS
	References

