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APPLD: Adaptive Planner Parameter Learning
From Demonstration

Xuesu Xiao , Bo Liu , Garrett Warnell , Jonathan Fink, and Peter Stone

Abstract—Existing autonomous robot navigation systems allow
robots to move from one point to another in a collision-free manner.
However, when facing new environments, these systems generally
require re-tuning by expert roboticists with a good understanding
of the inner workings of the navigation system. In contrast, even
users who are unversed in the details of robot navigation algorithms
can generate desirable navigation behavior in new environments
via teleoperation. In this letter, we introduce APPLD, Adaptive Plan-
ner Parameter Learning from Demonstration, that allows existing
navigation systems to be successfully applied to new complex en-
vironments, given only a human-teleoperated demonstration of
desirable navigation. APPLD is verified on two robots running dif-
ferent navigation systems in different environments. Experimental
results show that APPLD can outperform navigation systems with
the default and expert-tuned parameters, and even the human
demonstrator themselves.

Index Terms—Learning from demonstration, autonomous
vehicle navigation, imitation learning.

I. INTRODUCTION

D ESIGNING autonomous robot navigation systems has
been a topic of interest to the research community for

decades. Indeed, several widely-used systems have been devel-
oped and deployed that allow a robot to move from one point to
another [1], [2], often with verifiable guarantees that the robot
will not collide with obstacles while moving.

However, while current navigation systems indeed allow
robots to autonomously navigate in known environments, they
often still require a great deal of tuning before they can be
successfully deployed in new environments. Adjusting the
high-level parameters, or hyper-parameters, of the navigation
systems can produce completely different navigation behaviors.
For example, wide open spaces and densely populated areas may
require completely different sets of parameters such as inflation
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radius, sampling rate, planner optimization coefficients, etc.
Re-tuning these parameters requires an expert who has a
good understanding of the inner workings of the navigation
system. Even Zheng’s widely-used full-stack navigation tuning
guide [3] asserts that fine-tuning such systems is not as simple
as it looks for users who are “sophomoric” about the concepts
and reasoning of the system. Moreover, tuning a single set of
parameters assumes the same set will work well on average in
different regions of a complex environment, which is often not
the case.

In contrast, it is relatively easy for humans—even those with
little to no knowledge of navigation systems—to generate desir-
able navigation behavior in new environments via teleoperation,
e.g., by using a steering wheel or joystick. It is also intuitive
for them to adapt their specific navigation strategy to different
environmental characteristics, e.g., going fast in straight lines
while slowing down for turns.

In this letter, we investigate methods for achieving au-
tonomous robot navigation that are adaptive to complex en-
vironments without the need for a human with expert-level
knowledge in robotics. In particular, we hypothesize that existing
autonomous navigation systems can be successfully applied to
complex environments given (1) access to a human teleoperated
demonstration of competent navigation, and (2) an appropriate
high-level control strategy that dynamically adjusts the existing
system’s parameters.

To this end, we introduce a novel technique called Adaptive
Planner Parameter Learning from Demonstration (APPLD) and
hypothesize that it can outperform default or even expert-tuned
navigation systems on multiple robots across a range of envi-
ronments. Specifically, we evaluate it on two different robots,
each in a different environment, and each using a different
underlying navigation system. Provided with as little as a single
teleoperated demonstration of the robot navigating competently
in its environment, APPLD segments the demonstration into
contexts based on sensor data and demonstrator behavior and
uses machine learning both to find appropriate system parame-
ters for each context and to recognize particular contexts from
sensor data alone (Fig. 1). During deployment, APPLD provides
a simple control scheme for autonomously recognizing context
and dynamically switching the underlying navigation system’s
parameters accordingly. Experimental results confirm our hy-
pothesis: APPLD can outperform the underlying system using
default parameters and parameters tuned by human experts, and
even the performance of the demonstrator.
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Fig. 1. Overview of APPLD: human demonstration is segmented into different
contexts, for each of which, a set of parameters θ∗k is learned via Behavior
Cloning. During deployment, proper parameters are selected by an online context
predictor.

II. RELATED WORK

This section summarizes related work on parameter tuning,
machine learning for robot navigation, and task demonstration
segmentation, also known as changepoint detection.

A. Parameter Tuning

Broadly speaking, APPLD seeks to tune the high-level param-
eters of existing robot navigation systems. For this task, Zheng’s
guide [3] describes the current common practice of manual pa-
rameter tuning, which involves robotics experts using intuition,
experience, or trial-and-error to arrive at a reasonable set of
parameters. As a result, some researchers have considered the
problem of automated parameter tuning for navigation systems,
e.g., dynamically finding trajectory optimization weights [4] for
a Dynamic Window Approach (DWA) planner [1], optimizing
two different sets of DWA parameters for straight-line and U-turn
scenarios [5], or designing novel systems that can leverage
gradient descent to match expert demonstrations [6]. While
such approaches do successfully perform automatic navigation
tuning, they are thus far tightly coupled to the specific system
or scenario for which they are designed and typically require
hand-engineered features. In contrast, the proposed automatic
parameter tuning work is more broadly applicable: APPLD treats
the navigation system as a black box, and it does not require
hand-engineering of features.

B. Machine Learning for Navigation

Researchers have also considered using machine learning,
especially Learning from Demonstration [7] or Imitation Learn-
ing [8], more generally in robot navigation, i.e., beyond tuning
the parameters of existing systems. One such approach is that
of using inverse reinforcement learning to estimate costs over
driving styles [9], social awareness [10]–[12], and semantic

terrain labels [13] from human demonstrations, which can then
be used to drive classical planning systems. Other work has
taken a more end-to-end approach, performing navigation by
learning functions that map directly from sensory inputs to robot
actions [14], [15]. In particular, recent work in this space from
Kahn et al. [16] used a neural network to directly assign costs to
sampled action sequences using camera images. Because these
types of approaches seek to replace more classical approaches
to navigation, they also forgo the robustness, reliability, and
generality of those systems. For example, Kahn et al. reported
the possibility of catastrophic failure (e.g., flipping over) during
training. In contrast, the work we present here builds upon tradi-
tional robot navigation approaches and uses machine learning to
improve them only through parameter tuning, which preserves
critical system properties such as safety.

C. Temporal Segmentation of Demonstrations

APPLD leverages potentially lengthy human demonstrations of
robotic navigation. In order to effectively process such demon-
strations, it is necessary to first segment these demonstrations
into smaller, cohesive components. This problem is referred to as
changepoint detection [17], and several researchers concerned
with processing task demonstrations have proposed their own
solutions [18]–[22]. Our work leverages these solutions in the
context of learning from human demonstrations of navigation
behavior. Moreover, unlike [20], we use the discovered segments
to then train a robot for—and deploy it in—a target environment.

III. APPROACH

To improve upon existing navigation systems, the problem
considered here is that of determining a parameter-selection
strategy that allows a robot to move quickly and smoothly to its
goal.

We approach this problem as one of learning from human
demonstration. Namely, we assume that a human can provide a
teleoperated demonstration of desirable navigation behavior in
the deployment environment and we seek to find a set of planner
parameters that can provide a good approximation of this behav-
ior. As we will show in Section IV, when faced with a complex
environment, a human demonstrator naturally drives differently
in each regions of the environment such that no single set of plan-
ner parameters can closely approximate the demonstration in all
states. To overcome this problem, the human demonstration is
divided into pieces that include consistent sensory observations
and navigation commands. By segmenting the demonstration in
this way, each piece—which we call a context—corresponds to
a relatively cohesive navigation behavior. Therefore, it becomes
more feasible to find a single set of planner parameters that
imitates the demonstration well for each context.

A. Problem Definition

We assume we are given a robot with an existing navigation
planner G : X ×Θ → A. Here, X is the state space of the
planner (e.g., current robot position, sensory inputs, navigation
goal, etc.),Θ is the space of free parameters forG (e.g., sampling
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density, maximum velocity, etc.), and A is the planner’s action
space (e.g., linear and angular velocity). UsingG and a particular
set of parameters θ, the robot performs navigation by repeatedly
estimating its statex and applying action a = G(x; θ) = Gθ(x).
Importantly, we treat G as a black-box, e.g., we do not assume
that it is differentiable, and we need not even understand what
each component of θ does. In addition, a human demonstra-
tion of successful navigation is recorded as time series data
D = {xD

i , aDi , tDi }Ni=1, where N is the length of the series, and
xD
i and aDi represent the robot state and demonstrated action at

time tDi . Given G and D, the particular problem we consider
is that of finding two functions: (1) a mapping M : C → Θ
that determines planner parameters for a given context c, and
(2) a parameterized context predictor Bφ : X → C that predicts
the context given the current state. Given M and Bφ, our
system then performs navigation by selecting actions according
to G(x;M(Bφ(x))). Note that since the formulation presented
here involves only changing the parameters of G, the learned
navigation strategy will still possess the benefits that many
existing navigation systems can provide, such as assurance of
safety.

B. Demonstration Segmentation

Provided with a demonstration, the first step of the proposed
approach is to segment the demonstration into pieces—each
of which corresponds to a single context only—so that fur-
ther learning can be applied for each specific context. This
general segmentation problem can be, in principle, solved by
any changepoint detection method [17]. Given D, a change-
point detection algorithm Asegment is applied to automatically
detect how many changepoints exist and where those change-
points are within the demonstration. Denote the number of
changepoints found by Asegment as K − 1 and the change-
points as τ1, τ2, . . . , τK−1 with τ0 = 0 and τK = N + 1, the
demonstration D is then segmented into K pieces {Dk =
{xD

i , aDi , tDi | τk−1 ≤ i < τk}}Kk=1.

C. Parameter Learning

Following demonstration segmentation, we then seek to
learn a suitable set of parameters θ∗k for each segment Dk =
{xD

i , aDi , tDi | τk−1 ≤ i < τk}. To find this θ∗k, we employ be-
havioral cloning (BC) [23], i.e., we seek to minimize the differ-
ence between the demonstrated actions and the actions that Gθk

would produce on {xD
i }. More specifically,

θ∗k = argmin
θ

∑

(x,a)∈Dk

||a−Gθ(x))||H , (1)

where ||v||H = vTHv is the induced norm by a diagonal ma-
trix H with positive real entries, which is used for weighting
each dimension of the action. A black-box optimization method
Ablack-box is then applied to solve Equation (1). Having found
each θ∗k, the mapping M is simply M(k) = θ∗k.

Algorithm 1: APPLD.
1: // Training
2: Input: the demonstration D = {xD

i , aDi , tDi }Ni=1,
space of possible parameters Θ, and the navigation
stack G.

3: Call Asegment on D to detect changepoints
τ1, . . . , τK−1 with τ0 = 0 and τK = N + 1.

4: Segment D into
{Dk = {xD

i , aDi , tDi | τk−1 ≤ i < τk}}Kk=1.
5: Train a classifier fφ on {xD

i , ci}Ni=1, where ci = k if
xD
i ∈ Dk.

6: for k = 1 : K do
7: Call Ablack-box with objective defined in Equation (1)

on Dk to find parameters θ∗k for context k.
8: end for
9: Form the map M(k) = θ∗k, ∀1 ≤ k ≤ K.

11: // Deployment
12: Input: the navigation stack G, the mapping M from

context to parameters, and the context predictor Bφ.
13: for t = 1 : T do
14: Identify the context ct = Bφ(xt) according to

Equation (3).
15: Navigate with G(xt;M(ct)).
16: end for

D. Online Context Prediction

At this point, we have a library of learned parameters and the
mapping M that is responsible for mapping a specific context
to its corresponding parameters. All that remains is a scheme to
dynamically infer which context the robot is in during execution.
To do so, we form a supervised dataset {xD

i , ci}Ni=1, where ci =
k if xD

i ∈ Dk. Then, a parameterized function fφ(x) is learned
via supervised learning to classify which segment xD

i comes
from, i.e.,

φ∗ = argmax
φ

N∑

i=1

log
exp

(
fφ(x

D
i )[ci]

)
∑K

c=1 exp
(
fφ(xD

i )[c]
) . (2)

Given fφ, we define our context predictor B according to

Bφ(xt) = mode

{
argmax

c
fφ(xi)[c], t− p < i ≤ t

}
. (3)

In other words, Bφ acts as a mode filter on the context predicted
by fφ over a sliding window of length p.

Taken together, the above steps constitute our proposed APPLD

approach. During training, the above three stages are applied
sequentially to learn a library of parameters {θ∗k}Kk=1 (hence
the mapping M ) and a context predictor Bφ. During execution,
Equation (3) is applied online to pick the right set of parameters
for navigation. Algorithm 1 summarizes the entire pipeline from
offline training to online execution.

IV. EXPERIMENTS

In this section, APPLD is implemented to experimentally vali-
date our hypothesis that existing autonomous navigation systems
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can be successfully applied to complex environments given (1)
access to a human demonstration from teleoperation, and (2) an
appropriate high-level control strategy that dynamically adjusts
the existing system’s parameters based on context. To perform
this validation, APPLD is applied on two different robots—a
Jackal and a BWIBot—that each operate in a different environ-
ment with different underlying navigation methods. The results
of APPLD are compared with those obtained by the underlying
navigation system using (a) its default parameters (DEFAULT)
from the robot platform manufacturer, and (b) parameters we
found using behavior cloning but without context (APPLD (NO

CONTEXT)). We also compare to the navigation system as tuned
by robotics experts in the second experiment. In all cases, we
find that APPLD outperforms the alternatives.

A. Jackal Maze Navigation

In the first experiment, a four-wheeled, differential-drive,
unmanned ground vehicle—specifically a Clearpath Jackal—is
tasked to move through a custom-built maze (Fig. 1). The Jackal
is a small and agile platform with a top speed of 2.0 m/s. To lever-
age this agility, the complex maze consists of four qualitatively
different areas: (i) a pathway with curvy walls (curve), (ii) an
obstacle field (obstacle), (iii) a narrow corridor (corridor), and
(iv) an open space (open) (Fig. 1). A Velodyne LiDAR provides
3D point cloud data, which is transformed into 2D laser scan for
2D navigation. The Jackal runs Robot Operating System (ROS)
onboard, and APPLD is applied to the local planner, DWA [1],
in the commonly-used move_base navigation stack. Other
parts of the navigation stack, e.g. global planning with Dijkstra’s
algorithm, remain intact.

Teleoperation commands are captured via an Xbox controller
from one of the authors with previous experience with video
games, who is unfamiliar with the inner workings of the DWA

planner and attempts to operate the platform to quickly traverse
the maze in a safe manner. The teleoperator follows the robot
and controls the robot from a third person view. This viewpoint,
different from the robot’s first person view, may provide the
human demonstrator with different contextual information, but
our experiments will show that the robot’s limited onboard
LiDAR input suffices for online context identification. The 52 s
demonstration is recorded using rosbag configured to record
all joystick commands and all inputs to the move_base node.

For changepoint detection (Algorithm 1, line 3), we use
CHAMP as Asegment, a state-of-the-art Bayesian segmentation
algorithm [18]. The recorded LiDAR range data statistics (mean
and standard deviation) from XD

i and the recorded demon-
strated actions aDi = (vDi , wD

i ) are provided as input to CHAMP.
CHAMP outputs a sequence of changepoints τ1, τ2, . . . , τK−1

that segment the demonstration into K segments, each with
uniform context (line 4). As expected, CHAMP determinesK = 4
segments in the demonstration, each corresponding to a different
context (line 5). fφ trained for online context prediction (line 14)
is modeled as a two-layer neural network with ReLU activation
functions.

For the purpose of finding θ∗k for each context, the recorded
input is played to a ROSmove_basenode using DWA as the local

planner with query parameters θ and the resulting output nav-
igation commands are compared to the demonstrator’s actions.
Ideally, the DWA output and the demonstrator commands would
be aligned in time, but for practical reasons (e.g., computational
delay), this is generally not the case—the output frequency of
move_base is much lower than the frequency of recorded
joystick commands. To address this discrepancy, we match each
aDi with the most recent queried output of Gθ within the past ε
seconds (default execution time per command, 0.25 s for Jackal),
and use it as the augmented navigation at time tDi . If no such
output exists, augmented navigation is set to zero since the
default behavior of Jackal is to halt if no command has been
received in the past ε seconds (Fig. 3). This condition may occur
due to insufficient onboard computation to perform sampling at
the requested density. For the metric in Equation (1), we use
mean-squared error, i.e., H is the identity matrix.

Following the action-matching procedure, we find each θ∗k
using CMA-ES [24] as our black-box optimizer (Algorithm 1,
line 7). The optimization runs on a single Dell XPS laptop
(Intel Core i9-9980HK) using 16 parallel threads. The ele-
ments of θ in our experiments are: DWA’s max_vel_x (v),
max_vel_theta (w), vx_samples (s), vtheta_samples (t), oc-
cdist_scale (o), pdist_scale (p), gdist_scale (g) and costmap’s
inflation_radius (i). We intentionally select parameters here that
directly impact navigation behavior and exclude parameters
which are robot-model-specific, e.g., physical acceleration limit
(acc_lim_x and acc_lim_theta), or unrelated to the behaviors
being studied, e.g. goal tolerance (xy_goal_tolerance). Note that
max_vel_x and max_vel_theta are not the physical velocity limit
of the robot, but rather the maximum velocity commands that
are allowed to be executed. They interact with the sampling
density parameters, vx_samples and vtheta_samples, in a way
that affects whether finding a reasonable motion command
through sampling can be performed in real time. The parameters
occdist_scale, pdist_scale, and gdist_scale, are optimization
weights for distance to obstacle, distance to path, and distance to
goal, respectively. The inflation radius, inflation_radius, speci-
fies the physical safety margin to be used around obstacles. All
parameters are initialized at the midpoint between their lower-
and upper-bound. The fully parallelizable optimization takes
approximately eight hours, but this time could be significantly
reduced with more computational resources and engineering
effort.

The action profiles of using the parameters discovered by
DEFAULT, APPLD (NO CONTEXT), and APPLD are plotted in Fig. 2,
along with the single-shot demonstration segmented into four
chunks by CHAMP. Being trained separately based on the seg-
ments discovered by CHAMP, the APPLD parameters (green) per-
form most closely to the human demonstration (black), whereas
the performance of both DEFAULT (red) and APPLD (NO CONTEXT)
(orange) significantly differs from the demonstration in most
cases (Fig. 2).

The specific parameter values learned by each technique are
given in Table I, where we show in the bottom rows the individual
parameters learned by APPLD for each context. The learned pa-
rameters relative to the default values are intuitive in many ways.
For example, APPLD found that Curve requires a larger value for

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 07,2020 at 22:06:52 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: APPLD: ADAPTIVE PLANNER PARAMETER LEARNING FROM DEMONSTRATION 4545

Fig. 2. Jackal Trajectory in Environment Shown in Fig. 1: heatmap visualization of the LiDAR inputs over time is displayed at the top and used for segmentation
by CHAMP. For each region divided by CHAMP changepoints, CMA-ES finds a set of parameters that best imitates the human demonstration. Velocity and angular
velocity profiles from DEFAULT (red), APPLD (NO CONTEXT) (orange), and APPLD (green) parameters, along with the human demonstration (black), are displayed
with respect to time. Plots are scaled to best demonstrate performance differences between different parameters.

Fig. 3. Action-Matching and Loss Metric.

TABLE I
PARAMETERS OF JACKAL EXPERIMENTS (DWA): MAX_VEL_X (V),

MAX_VEL_THETA (W), VX_SAMPLES (S), VTHETA_SAMPLES (T), OCCDIST_SCALE

(O), PDIST_SCALE (P), GDIST_SCALE (G), INFLATION_RADIUS (I)

the parameters p and g and a lower value for the parameter i,
i.e., the platform needs to place a high priority on sticking to the
straight global path so that it can avoid extraneous motion due
to the proximity of the curvy walls. It is similarly intuitive that
APPLD found that Obstacle Field requires higher sampling rates
(s and t) and more consideration given to obstacle avoidance
(higher o) in order to find feasible motion through the irregular
obstacle course. Corridor is extremely tight, and, accordingly,
APPLD found that a smaller linear velocity (v) was necessary in
order to compensate for the larger computational load associated
with the necessary higher angular velocity sampling rate (t)
required to find feasible paths. In Open, APPLD appropriately

learned that the maximum velocity (v) should be increased
in order to match the demonstrator’s behavior. In addition to
these intuitive properties, APPLD was also able to capture other,
more subtle, parameter interactions that are more difficult to
describe. At run time, APPLD’s trained context classifier selects
in which mode the navigation stack is to operate and adjusts the
parameters accordingly (Fig. 1).

Table II shows the results of evaluating the overall navigation
system using the different parameter-selection schemes along
with the demonstrator’s performance as a point of reference.
We report both the time it takes for each system navigate a pre-
specified route and also the BC loss (Equation (1)) compared to
the demonstrator. We choose to study traversal time since most
suboptimal navigation behavior will cause stop-and-go motions,
induce recovery behaviors, cause the robot to get stuck, or collide
with obstacles (termination) – each of which will result in a
higher traversal time.

For each metric, lower is better, and we compute mean and
standard deviation over 10 independent trials. For trials that end
in failure (e.g., the robot gets stuck), we add an asterisk (*) to the
reported results and use penalty time value of 60 s. The results
show that, for every context, APPLD achieves the lowest BC loss
and fastest real-world traverse time, compared to DEFAULT and
APPLD (NO CONTEXT). In fact, while APPLD is able to successfully
navigate in every trial, DEFAULT fails in 8/10 trials in the narrow
corridor due to collisions in recovery_behaviors after
getting stuck, and APPLD (NO CONTEXT) fails in 9/10, 10/10, and
10/10 trials in curve, obstacle field, and narrow corridor, respec-
tively. In open space, APPLD (NO CONTEXT) is able to navigate
quickly at first, but is not able to precisely and quickly reach
the goal due to low angular sample density (vtheta_samples).
Surprisingly, in all contexts, the navigation stack with APPLD

parameters even outperforms the human demonstration in terms
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TABLE II
LOSS AND TIME COMPARISON OF JACKAL EXPERIMENTS (DWA)

of time, and leads to qualitatively smoother motion than the
demonstration. Average overall traversal time from start to goal,
43 s, is also faster than the demonstrated 52 s. The superior per-
formance achieved by APPLD compared to DEFAULT and even the
demonstrator validates our hypothesis that given access to a tele-
operated demonstration, tuning DWA navigation parameters is
possible without a roboticist. We notice that, in some challenging
situations, even the human demonstrator suffered from subopti-
mal navigation, e.g., stop-and-go, overshoot, etc. Even in these
cases, APPLD can produce smooth, stable, and sometimes even
faster navigation due to the benefit of a properly-parameterized
autonomous planner. The fact that APPLD outperforms APPLD

(NO CONTEXT) indicates the necessity of the high-level context
switch strategy.

B. BWIBot Hallway Navigation

Whereas we designed the Jackal experiments to specifically
test all aspects of APPLD, in this section, we evaluate APPLD’s
generality to another robot in another environment running
another underlying navigation system. Specifically, we evaluate
our approach using a BWIBot (Fig. 4 left)—a custom-built robot
that navigates the GDC building at The University of Texas
at Austin every day as part of the Building Wide Intelligence
(BWI) project [25]. The BWIBot is a nonholonomic platform
built on top of a Segway RMP mobile base, and is equipped with
a Hokuyo LiDAR. A Dell Inspiron computer performs all com-
putation onboard. Similar to the Jackal, the BWIBot uses the ROS

architecture and the move_base navigation framework. How-
ever, unlike the Jackal, the BWIBot uses a local planner based
on the elastic bands technique (E-BAND) [2] instead of DWA.

As in the Jackal experiments, teleoperation is performed using
an Xbox controller from a third person view by the same author
who is unfamiliar with the inner workings of the E-BAND planner.

Fig. 4. BWIBot Navigates in GDC Hallway.

TABLE III
PARAMETERS AND RESULTS OF BWIBOT EXPERIMENTS (E-BAND):

MAX_VEL_LIN (V), MAX_VEL_TH (W), EBAND_INTERNAL_FORCE_GAIN (I),
EBAND_EXTERNAL_FORCE_GAIN (E), COSTMAP_WEIGHT (C)

The demonstration lasts 17 s and consists of navigating the robot
through a hallway, where the demonstrator seeks to move the
robot in smooth, straight lines at a speed appropriate for an office
environment. Unlike the Jackal demonstration, quick traversal
is not the goal of the demonstration.

In this setting, the APPLD training procedure is identical to
that described for the Jackal experiments. In this case, however,
CHAMP did not detect any changepoints based on the LiDAR
inputs and demonstration (Fig. 4 right), indicating the hallway
environment is relatively uniform and hence one set of parame-
ters is sufficient.

The BC phase takes about two hours with 16 threads on the
same laptop used for the Jackal experiments. The parameters
learned for the E-BAND planner are max_vel_lin (v), max_vel_th
(w), eband_internal_force_gain (i), eband_external_force_gain
(e), and costmap_weight (c). The results are shown in Table III.

The first row of Table III shows the parameters of the BWIBot
planner used in the DEFAULT system. Because CHAMP does not
discover more than a single context, APPLD and APPLD (NO CON-
TEXT) are equivalent for this experiment. Therefore, we instead
compare to a set of expert-tuned (EXPERT) parameters that is used
on the robot during everyday deployment, shown in the second
row of the table. These parameters took a group of roboticists
several days to tune by trial-and-error to make the robot navigate
in relatively straight lines. Finally, the parameters discovered by
APPLD are shown in the third row. The last column of the table
shows the BC loss induced by DEFAULT, EXPERT, and APPLD

parameters (again averaged over 10 runs). Real-world time is not
reported since a quick traversal is not the purpose of the demon-
stration in the indoor office space. The action profiles from these
three sets of parameters (queried on the demonstration trajectory
{xD

i }Ni=1) are compared with the demonstration and plotted in
Fig. 4 lower right, where the learned trajectories are the closest

Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 07,2020 at 22:06:52 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: APPLD: ADAPTIVE PLANNER PARAMETER LEARNING FROM DEMONSTRATION 4547

to the demonstration. When tested on the real robot, the APPLD

parameters achieve qualitatively superior performance, despite
the fact that the experts were also trying to make the robot
navigate in a straight line (Fig. 4 left).

The BWIBot experiments further validate our hypothesis that
parameter tuning for existing navigation systems is possible
based on a teleoperated demonstration instead of expert roboti-
cist effort. More importantly, the success on the E-BAND planner
without any modifications from the methodology developed for
DWA supports APPLD’s generality.

V. SUMMARY AND FUTURE WORK

This letter presents APPLD, a novel learning from demonstra-
tion framework that can autonomously learn suitable planner
parameters and adaptively switch them during execution in
complex environments. The first contribution of this work is to
grant non-roboticists the ability to tune navigation parameters
in new environments by simply providing a single teleoperated
demonstration. Secondly, this work allows mobile robots to
utilize existing navigation systems, but adapt them to different
contexts in complex environments by adjusting their navigation
parameters on the fly. APPLD is validated on two robots in
different environments with different navigation algorithms. We
observe superior performance of APPLD’s parameters compared
with all tested alternatives, both on the Jackal and the BWIBot.
An interesting direction for future work is to investigate methods
for speeding up learning by clustering similar contexts together.
It may also be possible to perform parameter learning and
changepoint detection jointly for better performance.
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