
DynaBARN: Benchmarking Metric Ground
Navigation in Dynamic Environments

Anirudh Nair1, Fulin Jiang1, Kang Hou1, Zifan Xu1, Shuozhe Li1, Xuesu Xiao1, and Peter Stone1,2

Abstract— Safely avoiding dynamic obstacles while moving
toward a goal is a fundamental capability of autonomous mobile
robots. Current benchmarks for dynamic obstacle avoidance
do not provide a way to alter how obstacles move and instead
use only a single method to uniquely determine the movement
of obstacles, e.g., constant velocity, the social force model,
or Optimal Reciprocal Collision Avoidance (ORCA). Using a
single method in this way restricts the variety of scenarios in
which the robot navigation system is trained and/or evaluated,
thus limiting its robustness to dynamic obstacles of different
speeds, trajectory smoothness, acceleration/deceleration, etc.,
which we call motion profiles. In this paper, we present a
simulation testbed, DynaBARN, to evaluate a robot navigation
system’s ability to navigate in environments with obstacles with
different motion profiles, which are systematically generated
by a set of difficulty metrics. Additionally, we provide a
demonstration collection pipeline that records robot navigation
trials controlled by human users to compare with autonomous
navigation performance and to develop navigation systems using
learning from demonstration. Finally, we provide results of four
classical and learning-based navigation systems in DynaBARN,
which can serve as baselines for future studies. We release Dyn-
aBARN open source as a standardized benchmark for future
autonomous navigation research in environments with different
dynamic obstacles. The code and environments are released at
https://github.com/aninair1905/DynaBARN.

I. INTRODUCTION

With autonomous mobile robots being deployed in the real
world, such as for package delivery on crowded sidewalks,
autonomous driving in dense traffic, and intelligent ware-
houses with hundreds of moving objects, safely avoiding dy-
namic obstacles in the environment while efficiently reaching
their goal is now a fundamental robot capability. Navigation
among dynamic obstacles has been studied for decades,
especially in the domain of multi-agent path planning [1],
[2] and autonomous driving [3], [4]. More recently, machine
learning techniques for dynamic obstacle avoidance have
been applied to multi-robot systems [5], [6] and social
navigation [7]–[9].

Despite the abundance of research in navigation with
dynamic obstacle avoidance, there is no generally accepted

1 The Department of Computer Science, The University of Texas at
Austin, Austin, TX 78712 {zfxu, ani.nair, fj3279, kevinhou,
shuozhe.li}@utexas.edu, {xiao, pstone}@cs.utexas.edu 2The
Computational and Information Sciences Directorate, Army Research Laboratory
2Sony AI

This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by NSF
(CPS-1739964, IIS-1724157, NRI-1925082), ONR (N00014-18-2243), FLI
(RFP2-000), ARO (W911NF-19-2-0333), DARPA, Lockheed Martin, GM,
and Bosch. Peter Stone serves as the Executive Director of Sony AI
America and receives financial compensation for this work. The terms of
this arrangement have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity in research.

metric by which to compare methods against each other.
While difficulty in navigating in a static environment is
relatively easy to quantify [10], there are more factors to
consider with dynamic obstacles such as obstacles’ speed,
direction, acceleration/deceleration, smoothness, etc. How-
ever, existing simulation environments to develop and test
dynamic obstacle avoidance methods typically only contain
obstacles that move using a single method, such as constant
velocity, the social force model [11], or Optimal Reciprocal
Collision Avoidance (ORCA) [12]. As a result, the obstacles
in such simulation environments have similar motion profiles
(i.e., speed, direction, acceleration/deceleration, smoothness,
etc.) and only the navigation system’s ability to avoid such
obstacles is tested, ignoring its robustness to obstacles with
other motion profiles. Considering that dynamic obstacles in
the real world do not necessarily always follow one single
motion profile (e.g., a pedestrian and a scooter may move
differently on a sidewalk around a delivery robot), a good
dynamic obstacle avoidance method should be able to avoid
obstacles with different motion profiles.

To address the lack of a standardized method to compare
and test mobile robot navigation in dynamic environments
containing obstacles with varying motion profiles, we intro-
duce DynaBARN. DynaBARN is an extension to the Bench-
mark Autonomous Robot Navigation (BARN) dataset of 300
simulated, static, highly constrained navigation environments
[10] with 300 environments containing dynamic obstacles
with different motion profiles. These environments are gen-
erated to cover a wide variety of obstacle motion profiles
of different navigation difficulties, which are systematically
quantified by a set of difficulty metrics. We develop a data
collection pipeline that records navigation trials performed
by human teleoperators, to provide a reference of human
performance at dynamic obstacle avoidance. The resulting
training data may also be useful for developing learning-
based navigation systems. Finally, we provide results of
four classical and learning-based navigation systems in Dyn-
aBARN, including Dynamic Window Approach (DWA) [13],
Timed Elastic Band (TEB) [14], a reinforcement learning
approach [15], and a vanilla behavioral cloning method
using human demonstrations collected from the pipeline we
provide [16], which can serve as baselines for future studies.
In summary, this paper makes the following three main
contributions.

• A benchmark dataset (DynaBARN) of 60 pre-generated
dynamic environments in simulation for metric ground
navigation, along with an environment generation pro-

https://github.com/aninair1905/DynaBARN


cedure to generate new dynamic environments,
• A data collection pipeline to collect human-

demonstrated navigation trials in the simulated
environments,

• Baseline results from a set of existing navigation sys-
tems in DynaBARN.

II. RELATED WORK

In this section, we discuss existing navigation methods
in dynamic environments as well as testbeds for dynamic
obstacle avoidance.

A. Navigaiton in Dynamic Environments

Robotics researchers have investigated methods for dy-
namic obstacle avoidance for decades. The social force
model [17] determines a pedestrian’s motion influenced by
the motion of other pedestrians as well as social groups. In
contrast, ORCA [12] and RVO [18] are reactive methods for
crowded navigation where each agent takes a share of the
responsibility for avoiding pairwise collisions and assumes
the other agents will reciprocate.

More recently, learning based approaches for dynamic
obstacle avoidance have emerged [19]. CADRL [20] uses
Deep Reinforcement Learning (DRL) for collision avoid-
ance; it has been extended to include socially-aware collision
avoidance [21] by inducing social norms such as passing
on the right, overtaking, and crossing. Moreover, DRL
dynamic obstacle avoidance methods have been used with
conventional waypoint generators so they can be used in
conventional navigation systems [22]. The ability to guide
or follow a human has also been incorporated into dynamic
obstacle avoidance methods for assistive robotics [23]. In
addition to DRL methods, inverse reinforcement learning has
also been used for socially compliant robot navigation among
pedestrians by modeling human behaviors in terms of a
mixture distribution that captures both the discrete navigation
decisions, such as going left or right, as well as the natural
variance of human trajectories [24].

B. Testbeds for Dynamic Obstacle Avoidance

While testbeds for navigation and obstacle avoidance [10],
[25], [26] in static environments [27]–[34] have been used
to benchmark research progress, simulation testbeds for
dynamic obstacle avoidance have recently been of interest
in the research community, concurrent with the interest in
developing dynamic obstacle avoidance and social navigation
methods.

For social navigation around humans, Pedsim [35] sim-
ulates crowds of pedestrians and incorporates methods of
individual and group behaviors into an environment. Pedsim
does not incorporate social scenarios into its model. As a
result, many subsequent simulation testbeds, such as SEAN
2.0 [36], Arena-Bench [37], and SocNavBench [38], use
the social forces model along with Pedsim to simulate
social scenarios and interactions. However, all pedestrians
(obstacles) in the aforementioned simulators have similar
motion profiles. For instance, in Arena-Bench, the obstacle

speeds are set to a constant 0.3m/s, and in SEAN 2.0
when the pedestrians do move they move at a constant
1.4m/s. These testbeds do not incorporate obstacles that have
different motion profiles, whereas in reality, a robot must
be able to avoid colliding with dynamic obstacles moving
at different speeds and with path irregularities. Consider
the fact that slowly walking pedestrians and fast swerving
scooters may appear at the same time on a sidewalk; or at a
busy intersection, cars, motorcycles, bicycles, pedestrians, or
pets may move in completely different manners. DynaBARN
contains obstacles moving not only at different speeds, but
also changing speeds between waypoints to test a navigation
system’s robustness to erratic changes. These changes in
speed and trajectory are tunable based on a set of intuitive
difficulty metrics.

Multi-agent path planning testbeds are also used for
CADRL [20] and its socially aware counterpart [21]. How-
ever, these testbeds aim at testing multi-agent systems in
which each agent learns to navigate while avoiding colli-
sions with the other agents: the agents’ policies are trained
together in the same simulation to create one shared policy.
DynaBARN does not feature multi-agent path planning, in
the sense that dynamic obstacles are not treated as agents,
which will react to the robot and other obstacles. Instead,
the obstacles’ motions are predetermined by waypoints and
it is the navigation system’s responsibility to robustly avoid
collisions with obstacles of a variety of motion profiles.

III. APPROACH

In this section, we describe our method of creating
the DynaBARN environments. In Sec. III-A, we describe
the way the obstacle trajectories are generated from user-
specified metrics. In Sec. III-B, we describe how to create
environments from the generated obstacle trajectories. In Sec.
III-C, we introduce a method to quantify the difficulty of an
environment in DynaBARN. In Sec. III-D, we describe the
human demonstration collection pipeline.

A. Obstacle Trajectory Generation

Motion profiles for the obstacles are the trajectories repre-
sented by multiple using multiple waypoints, each of which
contains two values: the position and timestamp of the
obstacle. Formally, we define a trajectory for an obstacle as a
sequence of waypoints ⟨ci⟩Ni=0 with ci = ((xi, yi), ti), where
(xi, yi) is the coordinate point and ti is the timestamp of the
obstacle at that coordinate point. We assume all obstacles are
cylindrical with the base parallel to the ground and therefore
ignore their orientation for simplicity. In this work, the envi-
ronment is a 20× 20 meter grid world. The trajectories are
generated using a polynomial function that is fit to randomly
sampled points within the grid. The number of randomly
sampled points depends on the order of the polynomial. More
specifically, n + 1 randomly sampled points determine the
equation of a polynomial of degree n. Thus, from a range
of orders given by the user, ordermin and ordermax as the
minimum and the maximum orders respectively, the method
samples a random order n and randomly samples n+1 points



from the [−10, 10] × [−10, 10] grid. A trajectory generated
by a lower degree polynomial will be smoother resembling
a straighter line than a trajectory made from a higher degree
polynomial, which will look less smooth and more erratic.
Once the polynomial is fit to the randomly-sampled points,
the method then calculates the (xi, yi) coordinate points at
every integer x-value in [−10, 10] using the polynomial and
then puts them into an array c. The method then takes the
coordinate points where the polynomial intersects the edges
of the 20 × 20 grid and appends them to the array c. Any
points in c outside of the 20 × 20 grid as a result of the
polynomial fitting are removed. The array c is then, with
equal probabilities, sorted either descendingly or ascendingly
with respect to the x-values. This random sorting avoids the
bias towards environments that only have obstacles move
in one direction. We use a straight line to approximate
the movement between two points. Examples of trajectories
using 1-degree and 3-degree polynomials are shown in Fig.
1.

Next, the method creates the timestamp at which the
obstacle reaches each waypoint. The first point in c is
assigned the time 0 seconds since it is the starting waypoint.
For each subsequent coordinate point in c, the distance d
between the current point ci and the previous coordinate
point ci−1 is calculated. The method then samples the
speed (meters per second) s ∼ N (avg speed, avg std2) from
ci−1 to ci, where avg speed ∼ U{speedmin, speedmax} and
avg std ∼ U{stdmin, stdmax}. N is a normal distribution
parameterized by mean avg speed and variance avg std2,
and U is a continuous uniform distribution. The parameters
speedmin, speedmax, stdmax, and stdmin are all given by the
user. A trajectory with a high standard deviation will cause
less predictable changes in speed from waypoint to waypoint.
Additionally, the speed is limited below by speedmin and
above by speedmax. Once s is sampled, the time taken by
an obstacle to travel from ci−1 to ci can be computed as
∆ti =

d
s . The timestamp of the next waypoint can, therefore,

be computed recursively by ti = ti−1+∆ti to get the overall
time at which the obstacles will reach (xi, yi). We can then
create a trajectory for an obstacle that is composed of a
sequence of waypoints ⟨ci⟩Ni=0 in which each waypoint has
a position and a timestamp which the obstacle reaches said
position. The obstacle trajectory generation process is shown
in Alg. 1

B. Environment Generation

To generate an environment in DynaBARN, the user inputs
obstaclesmax and obstaclesmin which are the maximum and
minimum numbers of obstacles, respectively, for the environ-
ment. Then for each obstacle, a trajectory of waypoints is
created using the method described in Sec. III-A. The result
is a list of trajectories, one for each obstacle.

C. Difficulty

a) Motion Profile Difficulty: We provide a method to
quantify the difficulty of each environment in DynaBARN.
There are 6 parameters that can be set for each obstacle

Algorithm 1 Obstacle Trajectory Generation

Require: speedmax, speedmin, ordermax, ordermin,
stdmax, stdmin

1: norder ∼ U{ordermin, ordermax}
2: Generate norder + 1 points in [−10, 10]× [−10, 10]
3: Fit polynomial p with norder + 1 points
4: Calculate the (xi, yi) coordinate points at every integer

x-value in [−10, 10] using p
5: Calculate where the p intersects the edges of the

[−10, 10]× [−10, 10] grid and append them to ⟨ci⟩Ni=0

6: Sort c from either highest to lowest or lowest to highest
x-value

7: t0 = 0 seconds
8: for ci starting at i = 1 do
9: d← distance from (xi−1, yi−1) to (xi, yi)

10: avg speed ∼ U{speedmin, speedmax}
11: avg std ∼ U{stdmax, stdmin}
12: s ∼ N (avg speed, avg std2)
13: ti ← d

s + ti−1

14: end for
15: return ⟨ci⟩Ni=0

Algorithm 2 Environment Generation

Require: obstacle numbermax, obstacle numbermin

1: obstacle number ∼ U{obstaclesmin, obstaclesmax}
2: for obstacle in obstacle number do
3: Create trajectory with Alg. 1
4: end for
5: return List of trajectories

in DynaBARN as described in Sec. III-A: the maximum
and minimum for each of speed (speedmax and speedmin),
standard deviation of speed between waypoints (stdmax and
stdmin), and order (ordermax and ordermin). An obstacle with
a higher average speed will be more difficult for a robot
to react to compared to one with a lower average speed.
Similarly, it is more difficult for a navigation system to avoid
colliding with an obstacle with a larger standard deviation
rather than one with a smaller one. For instance, with a
high standard deviation, an obstacle can change between
high and low speeds from waypoint to waypoint, making
its motion relatively unpredictable for a robot navigation
system. Moreover, a trajectory based on a higher order
polynomial will have a less straightforward path and will also
be less predictable to a robot navigation system. Using these
parameters, we can select ranges that divide an obstacle’s
motion profiles into two categories: easy and hard. Based
on the Jackal robot which we use to conduct navigation
tasks (see Sec. IV for specifications), a categorization of the
motion profiles of the obstacles can be designed as follows:

Of course these motion profiles can be changed based on
the user’s preferences.

b) Overall Environment Difficulty: The amount of ob-
stacles in an environment can also affect difficulty, as shown



Fig. 1: An example of the process of creating coordinate points and trajectories. In the top row, 4 points are randomly
sampled from the graph. Using these 4 points, the 3-degree polynomial is fit, and we get the remaining waypoints at every
whole number x-values from [−10, 10], as shown by the blue points in the graph 2nd from the left. Notice in the bottom
right graph for x-values in between -5 and -2.5, the corresponding coordinate points for the polynomial lie outside the
[−10, 10]× [−10, 10] grid and are ignored, so the trajectory between these two points remains a straight line. In the graph
3rd from the left, we see the trajectory of the obstacle, shown in blue, will travel from (10,0) to (-10,-10). More trajectories
are generated in a similar fashion, and the last graph on the right displays all the trajectories for that environment.

TABLE I: Easy and Hard Obstacle Motion Profiles

Easy Hard

[ordermin, ordermax] [1, 2] [3, 4]
[speedmin, speedmax] [0.5, 1.0] [1.0, 2.0]

[stdmin, stdmax] [0.01, 0.1] [0.1, 0.2]]

in [37]. An increased number of obstacles will naturally
make the environment more difficult to navigate, and an
environment with many obstacles that have a hard motion
profile will be even more difficult. To determine difficulty, we
first choose the number of obstacles for an environment and
then choose the motion profiles for the obstacles. A lower
number of obstacles with easy motion profiles will result in
easy difficulty while a lower number of obstacles but hard
motion profiles will result in medium difficulty. Similarly,
an environment with a high number of obstacles with easy
motion profiles will also result in medium difficulty, but an
environment with both high number of obstacles and hard
motion profiles will result in a hard environment difficulty.
Fig 2 shows a tree-diagram for determining the difficulty.

Fig. 2: Diagram for Determining Environment Difficulty

D. Human Demonstration Collection

We develop a human demonstration data collection
pipeline for future researchers to collect human demonstra-

tions of navigation behaviors in dynamic obstacle environ-
ments.1 Our open-sourced data collection pipeline automati-
cally sets up the ROS environment and installs the required
packages for running a simulated unmanned ground vehicle,
a Clearpath Jackal, in Gazebo simulation. After finishing
the setup, users will be prompted to choose an environment
number to open the corresponding dynamic environment.
After the selection, Gazebo will be launched and a Jackal will
be spawned at (0.0, 11.0), while the navigation goal is set
to (0.0, -9). The user will need to drive through the moving
obstacles (red cylinders in Fig 3) and try to reach the goal
(the green dot in Fig 3) using a joystick. When the Jackal
reaches the goal, Gazebo will stop and exit. The human
demonstration data is recorded as ROS bag files [39] saved
in the local folder. In the ROS bag file, all topics relevant
to navigation have been recorded, including front/scan,
cmd vel, and other move base related topics, which can
be used to train an imitation learning policy. The human
demonstration pipeline can be extended to any Gazebo world,
such as the static BARN environments [10], as long as the
world has a goal object. While future researchers can use our
pipeline to collect navigation demonstration data collection
from a wider variety of human experts, for the ease of use,
we collect 60 demonstration trials for DynaBARN from two
co-authors of the paper.

IV. EXPERIMENTS AND RESULTS

In this section, we implement and benchmark four
commonly-used baselines for dynamic obstacle avoidance
tasks using DynaBARN. We sample 60 environments out
of the 300 generated worlds in DynaBARN to use for
our baselines: 20 easy, 20 medium, and 20 hard. The
four baselines are (1) Dynamic Window Approach (DWA)
[13]; (2) Timed Elastic Band (TEB) [14]; (3) end-to-end

1Link to the Human Demonstration Collection pipeline repository
is at https://github.com/kevinhou912/ROS-Jackal-Data_
Collection-Local.git

https://github.com/kevinhou912/ROS-Jackal-Data_Collection-Local.git
https://github.com/kevinhou912/ROS-Jackal-Data_Collection-Local.git


Fig. 3: An example of a world in DynaBARN. The Jackal
robot has a dimension of 500 x 430 x 250 mm (L x W x
H) and a maximum speed of 2 m/s while the radius of our
cylinder obstacles is 0.5 m. Jackal spawns at the bottom of
the figure and is given the goal at the top shown by the
green point. The objective is to reach the goal point while
not colliding into the red obstacles. The green lines indicate
the trajectory of the of the obstacles to their next respective
waypoint.

Reinforcement learning (RL) [15]; and Behavior Cloning
(BC) [16]. The implementation details of the baselines are
as follows:

a) Two Classical Local Planners: We employ two
classical local planners: Dynamic Window Approach
(DWA) [13] and Timed Elastic Band (TEB) [14]. These local
planners are commonly used by the community due to their
reliability in most navigation scenarios with open-sourced
implementations that are integrated with the move base
navigation stack [40]. The hyper-parameters of the two local
planners are manually tuned to improve their performances
in the hard environments. Then, the hyper-parameters are
fixed for all the experiments.

b) Behavior Cloning: The demonstration data is com-
posed of 60 trajectories, with each collected from sixty
dynamic environments, and another 60 trajectories collected
from randomly sampled 300 BARN environments [10]. We
learn a policy π := S → A to perform local motion planning.
Here, S is the state space with each state s ∈ S represented
by a tuple (l, gx, gy), where l is the 720-dim laser scan and
(gx, gy) are the x-y coordinates of the local goal location
provided by Dijkstra’s global planner; A is the action space
with each action a = (v, w) ∈ A, where v ∈ [−0.5, 2] and
w ∈ [−3.14, 3.14] encode the linear and angular velocities of
the robot respectively. The ranges of v and w are limited by
the physical property of the Jackal robot. We represent such
a policy by a multi-layer perceptron (MLP) neural network.
The architecture of the neural network is shown in Fig. 4.
More specifically, the 722-dimensional input is fed into a
feature extraction network composed of three fully-connected
layers with 512, 256, and 128 hidden units respectively.
Then, the 128-dim feature embedding is fed into an actor
network that connects a 64-hidden-unit layer and a 32-
hidden-unit layer sequentially, and outputs a two-dimensional
vector as the action. All the hidden layers are followed by

the Tanh activation [41]. We collect one human-demonstrated
trajectory from each of the 60 dynamic environments in
DynaBARN and another one from each of the 60 randomly
selected static environments in BARN [10].

c) Reinforcement Learning (RL): we also include a
navigation policy learned from self-supervised reinforcement
learning. More specifically, we employ Twin-delayed Deep
Deterministic Policy Gradient (TD3) [15]. As one of the
state-of-the-art off-policy RL algorithms, TD3 is relatively
sample efficient and handles continuous actions by design.
We use the same neural network (NN) architecture as the
BC policy to represent the policy of the TD3 agent. As
seen in Fig. 4 (bottom), to represent the critic network
in the actor-critic framework, only the final layer of the
actor network is modified to output the value prediction. To
facilitate training, we also implement a parallelized training
scheme that distributes multiple actors to a computing cluster
to speed up the data collection process [30]. We train one
navigation policy for 20 million time steps for each difficulty
level with 20 training environments, and test them in the
same environments they are trained on.

72
0

2

La
se

r s
ca

n
G

oa
l l

oc
at

io
n

51
2

25
6

12
8

64 32
 

64 32
 

Li
ne

ar
ve

lo
ci

ty
An

gu
la

r
ve

lo
ci

ty
Va

lu
e

Actor network

Critic network

Fig. 4: The Architectures of the Actor and Critic Network

To benchmark the performances of the baselines, in each
environment set with different difficulty levels (see Sec. III-
C), we compare the average success rates of navigating
in the environments. Since we care about the autonomous
robot’s capability to navigate in a completely collision-free
manner, the success rate is the only metric we reported.
Further metrics including traversal time and smoothness can
be added for future research when the navigation systems
are able to achieve very high success rates. The baselines
are deployed in each environment 10 times to compute an
average success rate. The average success rates in each
environment set are reported in Fig. 5. The RL algorithm
achieves the best overall performance, which is only slightly
worse than DWA in the easy environments. This result
is understandable since the RL agent has seen the largest
amount of data points (20M) compared to other baselines.
Between the classical local planners, DWA performs much
better than TEB with about twice the success rates of TEB in
easy and medium environments. Also, in hard environments,



the success rate of TEB drops to almost zero, while DWA
still maintains about 17%. Lastly, behavior cloning has the
worst performance in all three difficulty levels, which reflects
the difficulty of learning high-accuracy collision-avoidance
behaviors from limited data.

Fig. 5: Success rate of four baselines: DWA, TEB, TD3, and
BC evaluated on easy, medium, and hard environments.

V. CONCLUSIONS

We present DynaBARN, a benchmark for autonomous
robot navigation in dynamic environments where obstacles
move according to a variety of different motion profiles.
In order to test the robustness of autonomous navigation
systems against different obstacle movement, we develop
a systematic way to generate obstacle motion profiles and
dynamic environments of different difficulties. We also pro-
vide a human demonstration data collection pipeline and four
different navigation systems as baselines, whose performance
is benchmarked in DynaBARN. DynaBARN is developed
to encourage further research on robust navigation in the
presence of moving obstacles, including, and especially,
the development of new, more robust algorithms than the
baselines.

One limitation of the current version of DynaBARN is
that all obstacles are cylindrical, which limits the navigation
system’s robustness to obstacles with different shapes. One
interesting extension to DynaBARN is to add randomized
obstacle shapes. Another limitation is the lack of interaction
between the obstacles and the robot: obstacles in the real
world may or may not react to the obstacles, and if they do,
they may react in different ways, e.g. yielding to the robot
earlier or later. Another future extension to DynaBARN is
to add a variety of interaction types to the obstacles.

REFERENCES

[1] J. Yu and S. M. LaValle, “Multi-agent path planning and network
flow,” in Algorithmic foundations of robotics X. Springer, 2013, pp.
157–173.

[2] A. Gorbenko and V. Popov, “Multi-agent path planning,” Applied
Mathematical Sciences, vol. 6, no. 135, pp. 6733–6737, 2012.

[3] D. Ferguson, M. Darms, C. Urmson, and S. Kolski, “Detection, pre-
diction, and avoidance of dynamic obstacles in urban environments,”
in 2008 IEEE intelligent vehicles Symposium. IEEE, 2008, pp. 1149–
1154.

[4] H.-U. Kobialka and V. Becanovic, “Speed-dependent obstacle avoid-
ance by dynamic active regions,” in Robot Soccer World Cup.
Springer, 2003, pp. 534–542.

[5] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 6252–6259.

[6] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 3052–3059.

[7] G. Monaci, M. Aractingi, and T. Silander, “DiPCAN: Distilling priv-
ileged information for crowd-aware navigation,” in Robotics: Science
and Systems (RSS) XVIII, 2022.

[8] H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand):
A large-scale dataset of demonstrations for social navigation,” arXiv
preprint arXiv:2203.15041, 2022.

[9] R. Mirsky, X. Xiao, J. Hart, and P. Stone, “Prevention and res-
olution of conflicts in social navigation–a survey,” arXiv preprint
arXiv:2106.12113, 2021.

[10] D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” in 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). IEEE, 2020, pp. 116–121.

[11] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[12] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Optimal
reciprocal collision avoidance for multi-agent navigation,” in Proc.
of the IEEE International Conference on Robotics and Automation,
Anchorage (AK), USA, 2010.

[13] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[14] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Tra-
jectory modification considering dynamic constraints of autonomous
robots,” in ROBOTIK 2012; 7th German Conference on Robotics.
VDE, 2012, pp. 1–6.

[15] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018.

[16] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Advances in neural information processing systems, vol. 1,
1988.

[17] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[18] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE international
conference on robotics and automation. Ieee, 2008, pp. 1928–1935.

[19] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, pp. 1–29, 2022.

[20] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE international conference on robotics
and automation (ICRA). IEEE, 2017, pp. 285–292.

[21] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343–1350.

[22] L. Kästner, X. Zhao, T. Buiyan, J. Li, Z. Shen, J. Lambrecht,
and C. Marx, “Connecting deep-reinforcement-learning-based obstacle
avoidance with conventional global planners using waypoint gen-
erators,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021, pp. 1213–1220.

[23] L. Kästner, B. Fatloun, Z. Shen, D. Gawrisch, and J. Lambrecht,
“Human-following and-guiding in crowded environments using se-
mantic deep-reinforcement-learning for mobile service robots,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 833–839.

[24] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 11, pp.
1289–1307, 2016.

[25] E. Heiden, L. Palmieri, L. Bruns, K. O. Arras, G. S. Sukhatme, and
S. Koenig, “Bench-mr: A motion planning benchmark for wheeled
mobile robots,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 4536–4543, 2021.



[26] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[27] X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541–4547, 2020.

[28] Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone, “APPLI:
Adaptive planner parameter learning from interventions,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021.

[29] Z. Wang, X. Xiao, G. Warnell, and P. Stone, “APPLE: Adaptive plan-
ner parameter learning from evaluative feedback,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

[30] Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang,
and P. Stone, “APPLR: Adaptive planner parameter learning from
reinforcement,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021.

[31] X. Xiao, Z. Wang, Z. Xu, B. Liu, G. Warnell, G. Dhamankar, A. Nair,
and P. Stone, “Appl: Adaptive planner parameter learning,” Robotics
and Autonomous Systems, vol. 154, p. 104132, 2022.

[32] X. Xiao, B. Liu, G. Warnell, and P. Stone, “Toward agile maneuvers
in highly constrained spaces: Learning from hallucination,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1503–1510, 2021.

[33] X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallu-
cinated learning and sober deployment,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021.

[34] Z. Wang, X. Xiao, A. J. Nettekoven, K. Umasankar, A. Singh,
S. Bommakanti, U. Topcu, and P. Stone, “From agile ground to aerial
navigation: Learning from learned hallucination,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

[35] C. Gloor, “Pedsim: Pedestrian crowd simulation,” URL http://pedsim.
silmaril. org, vol. 5, no. 1, 2016.

[36] N. Tsoi, A. Xiang, P. Yu, S. S. Sohn, G. Schwartz, S. Ramesh,
M. Hussein, A. W. Gupta, M. Kapadia, and M. Vázquez, “Sean 2.0:
Formalizing and generating social situations for robot navigation,”
IEEE Robotics and Automation Letters, pp. 1–8, 2022.

[37] L. Kastner, T. Bhuiyan, T. A. Le, E. Treis, J. Cox, B. Meinardus,
J. Kmiecik, R. Carstens, D. Pichel, B. Fatloun, N. Khorsandi, and
J. Lambrecht, “Arena-bench: A benchmarking suite for obstacle avoid-
ance approaches in highly dynamic environments,” IEEE Robotics and
Automation Letters, pp. 1–8, 2022.

[38] A. Biswas, A. Wang, G. Silvera, A. Steinfeld, and H. Admoni, “Soc-
navbench: A grounded simulation testing framework for evaluating
social navigation,” ACM Transactions on Human-Robot Interaction
(THRI), vol. 11, no. 3, pp. 1–24, 2022.

[39] OSRF, “Ros wiki bags,” http://wiki.ros.org/Bags, 2018.
[40] “Ros wiki move base,” http://wiki.ros.org/move base, 2018.
[41] B. Karlik and A. V. Olgac, “Performance analysis of various activation

functions in generalized mlp architectures of neural networks,” Inter-
national Journal of Artificial Intelligence and Expert Systems, vol. 1,
no. 4, pp. 111–122, 2011.

http://wiki.ros.org/Bags
http://wiki.ros.org/move_base

	INTRODUCTION
	RELATED WORK
	Navigaiton in Dynamic Environments
	Testbeds for Dynamic Obstacle Avoidance

	APPROACH
	Obstacle Trajectory Generation
	Environment Generation
	Difficulty
	Human Demonstration Collection

	EXPERIMENTS AND RESULTS
	CONCLUSIONS
	References

