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Camera-IMU Extrinsic Calibration Quality
Monitoring for Autonomous Ground Vehicles

Xuesu Xiao ", Yulin Zhang

Abstract—Highly accurate sensor extrinsic calibration is critical
for data fusion from multiple sensors, such as camera and Inertial
Measurement Unit (IMU) sensor suit. A pre-calibrated extrinsics,
however, may no longer be accurate due to external disturbances,
e.g., vehicle vibration, which will lead to significant performance
deterioration of autonomous vehicles. Existing approaches rely on
online recalibration at a fixed frequency regardless of whether the
extrinsics have actually been changed or recalibration is needed,
which is computationally inefficient. In this letter, we present an
approach to monitor extrinsic calibration quality for camera-IMU
sensor suite to determine when recalibration is actually necessary.
We propose an efficient algorithm to detect robust road image
features, utilize IMU data to capture the mismatches of those
features, and quantify extrinsic calibration error through three
commonly-used error metrics. Our algorithm is demonstrated to
be effective using both simulated and real-world data.

Index Terms—Calibration and identification, sensor fusion,
SLAM.

I. INTRODUCTION

ETEROGENEOUS sensors with complementary charac-
H teristics, such as camera [1]-[5] and Inertial Measurement
Unit (IMU) [6], [7], are often used in autonomous vehicles or
mobile robots [8]. Their data is usually fused to reduce individual
sensor noise and to provide robust vehicle state estimation. For
example, camera images contain rich semantic information, but
are sensitive to illumination conditions [1]; IMUs stream inertia-
based high-frequency ego-motion estimates, which suffer from
long-term positional drift [9]. Fusing aforementioned sensor
readings efficiently avoids the shortcomings of different sensor
modalities [10]. However, the data from different sensors may
have distinct coordinate systems, formats, resolutions, etc. To
facilitate information fusion from heterogeneous sensors, it is
critical to transform the data from one sensor’s perspective to
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the other’s. Such relative transformation between two sensors
needs to be accurately acquired through a process commonly
referred as extrinsic sensor calibration.

Classical extrinsic sensor calibration approaches calibrate the
sensors only once (e.g., in factory) since they assume that the
extrinsic parameters between different sensors are static dur-
ing runtime. For systems which are subject to vibrations, part
replacements, or accidents, the sensor-to-sensor transformation
can change from time to time. For example, as shown in Fig. 1,
attime ¢t = 1-2 s, the camera image and IMU data correspond as
pre-calibrated in factory setting. However, such correspondence
does not hold anymore since ¢ = 3 s due to environmental dis-
turbances to the vehicle. As a consequence, the transformations,
indicated by the colored triangles, may change dynamically.
On the other hand, systems such as [11]-[13] perform online
calibration to recalibrate the system in the estimation pipeline
regardless of whether recalibration is actually necessary, which
is time-consuming and computationally inefficient.

To avoid unnecessary online sensor recalibration, this letter
focuses on monitoring sensor calibration quality for a sensor
suite including a camera and an IMU. To the best of our knowl-
edge, this is the first of its kind that can efficiently monitor the
necessity of sensor recalibration without performing the “real”
estimation task. Instead of measuring errors in the physical
space, we characterize sensor calibration quality in terms of
mismatches between corresponding features in the image space
by fusing IMU data. By doing so, it avoids the intensive image-
world reconstruction cost. One of the key challenges is that not
all feature points capture the calibration quality appropriately:
the feature points from moving objects introduce significant
depth error from the camera, which is hard to be distinguished
from the sensor calibration error. As a consequence, we narrow
down the set of feature points to the static ones on the road,
and develop a polynomial algorithm leveraging geometric
properties to identify the mismatches through different error
metrics. Experimental results, using both simulated data and the
real-world KITTI dataset [14] on challenging scenarios, show
that our algorithm is robust to identify poor sensor calibration
quality in terms of three well-known error metrics, i.e., Sampson
error, residual error, and symmetric epipolar distance.

II. RELATED WORK

Light-weight, low-cost, visual-inertial systems allow accurate
state estimation in GPS-denied environments and provide crit-
ical environment awareness for autonomous driving [15], [16].
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Fig. 1. An autonomous vehicle is on road when fusing both camera images

and IMU data. The transformation between camera and IMU, as denoted by the
colored triangles, changes under external disturbances from the environment.

Accurate camera-to-IMU extrinsic calibration is an important
factor to maintain system performance.

A. Offline Calibration

Among different approaches, offline calibration requires sta-
tionary calibration targets before runtime, and moves the sensing
suites around to collect IMU measurements and camera images
for calibration. Rehder er al. [17] have considered individual
accelerometer axes and modals for camera measurements to
account for motion blur and defocus, which has improved the
precision for camera-IMU calibration. Rehder et al. [18] have
further derived an approach to calibrate a sensor suite comprising
one or multiple IMUs and one or more exteroceptive sensors
in a single estimator. Fu et al. [19] propose to utilize multiple
cameras to perform calibration with IMU sensor to achieve
smaller lower bound on the covariance of the estimated extrinsic
parameters. Furgale et al. [20] present a jointly estimation of
temporal offset and spatial displacements of different sensors
with respect to each other through continuous-time batch es-
timation. Voges et al. [21] present a method for IMU-camera
system by determining an interval that is guaranteed to con-
tain the timestamp offset between sensors with bounded error.
Different offline calibration approaches conduct calibration be-
fore runtime and assumes the pre-calibrated extrinsics remain
unchanged during vehicle runtime. However, such assumption
does not always hold, because the pre-calibrated displacement
between sensors can change due to external disturbances from
the environment when the vehicle is moving (see Fig. 1).

B. Online Calibration

To address the aforementioned problem, online calibration
methods have been developed to constantly calibrate the extrin-
sics between sensors during runtime to account for unexpected
runtime displacement. Most online approaches employ the ob-
servations of naturally occurring point features, in conjunction
with the inertial measurements for estimating the camera-IMU
transformation, while others use hand-eye calibration [22], [23].
Fleps et al. [24] model the IMU-camera calibration problem in
a nonlinear optimization framework by modeling the sensors’
trajectory. Li ef al. [25] have proposed a methodology that is
able to initialize velocity, gravity, visual scale, and camera-IMU
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extrinsic calibration on the fly. Leutenegger ef al. [12] have com-
bined inertial terms and reprojection error from camera image
in a single cost function and marginalized old states to bound
the algorithm complexity. Geneva et al. [26] have introduced
the visual processing frontend, full visual-inertial simulator, and
modular on-manifold EKF SLAM framework including camera-
to-IMU calibration. Although those methods are effective to
obtain the camera-to-IMU extrinsics, none of them have an ef-
fective monitoring system to quantify the sensor extrinsic quality
and identify when recalibration is necessary. Ling et al. [27]
propose to perform an edge alignment and IMU-aided external
check to address the problem of tracking aggressive motions
with real-time state estimates and camera-IMU extrinsic cali-
bration. Huang et al. [28] apply geometric constraints among
stereo cameras and IMU sensor to estimate extrinsic parameters
through a three-step process in a coarse-to-fine manner. Wal-
ters et al. [22] and Heng et al. [23] do not use naturally occurring
point features, but seek help from manually engineered features,
such as hand-eye calibration. Although online calibration meth-
ods can assure precise extrinsic calibration during runtime, they
usually blindly re-calibrate sensor extrinsics at a fixed and (in
most cases) high frequency to recover the system from perturbed
extrinsics and incur very high onboard computation burden. Our
proposed system, however, reduces such constant re-calibration
computation burden by monitoring the sensor extrinsics with an
online low-cost light-weight algorithm, and only triggering the
high-computation online calibration process when necessary.

III. PROBLEM DEFINITION

The vehicle is equipped with a frontal view camera and an
IMU. We have the following assumptions,

a.l The camera is pre-calibrated, and the nonlinear distortion

of images has been removed.

a.2 IMU accelerometer and gyroscope measurement noise

and random work noise are known.

a.3 All sensor readings are hardware-synchronized.

a.4 The initial coordinate system transformations between

camera and IMU are known by prior calibration.

All coordinate systems are right hand system, they are shown

in Figure 1, and formally defined as follows,

e {C} defines the camera coordinate system with x-axis
pointing to the right of the vehicle lateral direction and
z-axis pointing forward coinciding with the front-view
camera’s principal axis. Define py, ; = [u v]T to be the j-th
feature position in image Ij, where (u,v) is the image
coordinate, and k refers to the k-th image keyframe.

e {7} defines the IMU coordinate system with z-axis point-
ing in the vehicle forward direction, y-axis pointing to the
left, and z-axis pointing upward'. Define wy,; and ay ; to
be the ¢-th IMU gyroscope and accelerometer measure-
ments between the keyframe Ij, and Iy, respectively.
Here,7 = 0,1,.. ., c,and cis the IMU data number between
consecutive keyimages.

! Alignment of {C} and {Z} with vehicle axes may vary over time, which is
the motivation of the proposed online monitoring system.
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Fig. 2.

e {N'} defines the navigation coordinate system which over-
laps with {Z} at the vehicle starting position.
e YR denotes the rotation matrix from the frame {X'} to

{V}-

e 2t denotes translation vector from frame {X'} to {)}.
e X = [XT,1]7 denotes the homogeneous vector, where X
denotes the inhomogeneous counterpart of X.
We also have K as the front-view camera intrinsic matrix.
Denote the pre-calibrated camera-IMU extrinsic transformation

by Z T. z T is the rigid body transformation from frame {C} to

{7},

g _ [ iR G
¢ 013 1

Denote the ground-truth rotation matrix and translation vector
for camera w.r.t. IMU to begR = AgR %R andgt =If + Agt,
respectively, where Z R and Lt are the pre-calibrated camera-to-
IMU extrinsics before runtime, and A%R and Agt are caused
by runtime sensor displacement.

Condition 1: The camera-IMU extrinsics are considered to be
accurate when |[Z(AZR)| < A6 -1 and |AZt| < At -1, where
|Z(+)| converts rotation matrices to absolute Euler angle rep-
resentation, Af and At are pre-defined threshold variables,
1 presents 3 x 1 vector of ones, and < denotes the vector
component-wise less than operator such that u(l) < v(l) (Vi €
{1,2,...,n}) for vector u and v.

With the assumptions and notations defined, our problem is
defined as follows,

Problem 1: Given camera image I;.;, gyroscope measure-
ment Wik 1:c, accelerometer measurement a1k, 1:c and pre-
calibrated camera-to-IMU extrinsic matrix 2T, monitor AZR
and Agt and report when Condition 1 is not satisfied.

IV. METHODOLOGY

When an autonomous vehicle is driving on a street, it receives
images from the front-view ego camera and IMU measurements
with higher frequency. We employ an extended Kalman filter
(EKF) based estimator to track the pose of IMU-affixed frame
{Z} with respect to the world coordinate {A'}, and obtain
the fundamental matrix for neighboring image keyframes [29].

System diagram: Each block is explained in detail in the corresponding subsection in Section IV with explicit reference back to this diagram.

The IMU measurements are processed immediately as they be-
come available to propagate EKF state and covariance. We then
perform a two-step approach to obtain features from keyframes
on the road: we first utilize Chi-squared hypothesis testing
to select road features through epipolar constraints; we then
compare the road normal vector to refine the road feature set
by utilizing the fundamental matrix computed from the IMU
EKEF estimator. Finally, due to the lack of ground truth during
vehicle runtime (gR and %t), we use a set of error metrics to
approximate the degree to which Condition 1 is violated. (see
Fig. 2).

A. Fundamental Matrix Construction From IMU Data

We start with obtaining the fundamental matrix by estimating
the relative rotation matrix and translation vector between two
neighboring keyframes through an IMU EKF estimator (see box
1 of Fig. 2). Recall wy, ; and a;, ; are the i-th IMU gyroscope
and accelerometer measurements between the keyframe I, and
Iy 1, respectively. The IMU state is described by the vector,

z N T T NAT T
Vii ba pLlT

j , ey

T T
Xk,i = L\"qk,i b,

where 7.q, ; is the unit quaternion describing the rotation from
navigation frame {\'} to IMU frame {Z},Vpj; and Vv, ; are
the IMU position and velocity with respect to {N'}, and by
and b, are 3x1 vectors that describe the biases affecting the
gyroscope and accelerometer measurements, respectively. The
IMU biases are modeled as random walk processes, driven by
the white Gaussian noise n,,, and n,,,, respectively. Let R ()
be the rotation matrix operator from a quaternion, and we have,

'wii = R((Qk,i) ' Wi,i + by + 1y,

N
fag; = R(Lqr,:) (" ar, —“'g) + by + ng, 2)
where Vg is the gravity vector in frame {\/}, and n, and n,, are
zero-mean Gaussian noise process to model the measurement
noise, respectively. Considering linearization of error-state is
small and remains accurate than the nominal state, we deploy
the IMU error-state to be [30],
Ig, . — LIéT BT NGT
ki VY Li g ki

bI “Pr.IT. 3)
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where fé,l , represents a small angle rotation, and we utilize (~)
to present the error in the estimate of a quantity. We have the
error-state kinematics for IMU to be,

T%4i = A %y + Gn, (4)

wheren = [n] nj,, nJ nJ,, |Tisthe system noise. Through (4),
we obtain the nominal state of IMU through integration [30].
Define I5 to be the 3 x 3 identify matrix, O to be the 3 x 3 zero
matrix, and || to be the skew symmetric matrix operator of a
vector. We also have the following,

—| W]« -Is O 0 0
0 0 O 0
A=|-RTC@)lal. 0 0 -RTEE o, ©
0 0 O 0 0
0 0 I3 0 0
and
-I3 0 0 0
0 I3 0 0
G=|0 0 -R'(q) O], (6)
0 O 0 I3
0 O 0 0

where 7.q = [%iélzll]T, W ="Twg,; — Bg, and & = "a;,; — by,.
Here, - is the estimation of a variable. The EKF measurement
model is,

Lz1: =H™%y,; +n,, (7

where’zy, ; = [LO] 'V ;|7 through from IMU reading postpro-

cessing [30], [31], 1. is the white zero-mean Gaussian noise,

and
I 0O 0 0 O
H:[‘? 1

8
0 0I 00 ®

With the error estimator Zx in (3), the true state are Y =
Ok, ® Ak, and Vpy; =Py ; + "Dy, Where ® is the
quaternion multiplication. From (4) and (7), we obtain the
relative rotation matrix through discrete-time integration, and
have the quaternion %,qy o and translation vector “'py o at the
time index when I}, is taken. We then obtain the relative rotation
matrix and translation vector for IMU,

R, = R7(Lqr-1,0) R(axo)

Ty, = IRII:A(NPIC,O —“Pr_1.0) )

k-1 =
(see box 2 of Fig. 2). Recall we have the pre-calibrated camera-
to-IMU rotation matrix ZR and translation vector Zt. We then
have the relative rotation and translation for keyframe Ij,_; w.r.t.
I}, through (9) by,
CRk S Ink ST
Ri . = gR Ikal gR )
Cik Cpk I} S Ik z
i = —“Ri_ b+ Rt +E t (10)

With the relative camera pose estimated, we construct the
fundamental matrix between two keyframes. Recall that K is
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the camera intrinsic matrix. Through (10), we construct the
fundamental matrix F for keyframe I;_; and I, to be [32],

F=(K™" [ )« R, K, (11)

which helps us establish relation for features between image
I;_1 and Iy, (see box 3 of Fig. 2). We still need to extract features
from image I, and Iy, to quantify the camera-to-IMU extrinsic
matrix quality.

B. Two-Step Road Feature Selection in Camera Image

In urban environment, the features extracted from the road
(concrete or asphalt) usually have relative smaller parallax and
more regular pattern comparing with features located on moving
objects, which makes them a better fit to capture the camera-to-
IMU calibration quality. To filter out the features that are not
located on the road, we propose a two-step approach: we first
apply chi-square test to remove features against our hypothesis,
and then utilize road normal vector to further select features
through the fundamental matrix in (11) (see boxes 4 and 5 of
Fig. 2).

1) Step I: Recall that py ; is the j-th feature position in
image I, at time k. Let py_; ; be in the image I),_; and the
corresponding matched feature position for the point py, ;. We
testif px_1,; and py; are road features through the Chi-squared
test [33]:

® Hy: pix—1,; and py, ; are road feature points.

e H,: Otherwise.

Let p;; ; be the closest point on the epipolar line Fpy_; ; to
the feature py, ;j, namely

p,; = argmin|[pl_, ; F pryl, stpl ., F oy, =0,

Therefore the Euclidean distance of the feature point py ; to
the corresponding epipolar line is d;(pg, ;) = ||p;j —Pijll,
where || - || is the vector Euclidean norm. Let o; be the variance
of the distance of road features to its corresponding epipolar
line ( we manually tuned the variance value and empirically
found out that o; = 1 works best for our algorithm). We have
x* = d;(pr,;)?/o; and we reject Ho if x> > x7 5, with 2
DoF, where [ is the significance level. We then have the road
feature set

Pk = {(pk—l,j’ pk,j)‘k = ].7 2, .o .,nk,j = ].7 2, .. .,nj}.
(12)
for feature pairs that pass our testing.

2) Step 2: We then use the road normal vector /¥ n to further
help select the road features in the set Py. The road normal vector
Nnis aligned with the IMU z-axis at time k& = 12. We then have
the road normal vector at time & — 1 as,

IT
‘np1 =R R(ar-1,0) A'n,

N

13)

expresssed in the camera coordinate.
Here, we derive Cﬁk_l, the road normal vector in the camera
coordinate when the keyframe I, is taken, if we triangulate the

2We assume for autonomous ground vehicles the road surface is mostly even
and the flat road surface is approximately perpendicular to the IMU z-axis.
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Fig. 3. Road feature selection using epipolar geometry.

road features from P}, and perform road plan fitting in camera
coordinate {C}. Due to the skew matrix property [34], we have

|[F ' %Ay 1] = |F|FT ‘A1) F, (14)
where | - | is the determinant of a matrix. Then we obtain
(Fpr1.)T ‘g 1]« Fpr1; =0, as)

by taking feature pj_1 ; into (14) on both sides (see Fig. 3).
Let1 = Fp;_1 ; be the epipolar line on image I, and I’ be the
corresponding epipolar line of 1 on image Ij_;, and k' is any
line not passing through the epipole e of the image I_;. We
further relate 1 and I by 1 = F |k’ | 1. We reorganize (15), and
have

Ax (F K] )" %a =0, (16)

which helps us obtain the normal vector Chy_, through three
lines, and the aforementioned lines can be constructed through
image features extracted from keyframe I, and Ij.

We utilize three noncollinear feature points in Ix_; to build
the lines k, 1, and 1 in (16). Define py—_1,4, { = 1,2,3, to be
non-collinear normalized coordinates of points sampled from
the set P, in (12), and py, ; be the corresponding feature points in
image Ij,. We have the unit vector “fa;,_; by solving the following
through singular value decomposition (SVD), eq 17 is shown at
the bottom of this page

To segment road features, we define the label function
C(“ng_1,A_1) for feature pairs py_1,; and py; to be,

C (an—lacﬁkfl) = {

We claim that py, 1,1, Pr—1,2, and py_1 3 are road features when
C(°ny_1,%ny_1) is equal to 1; otherwise, at least one of the
three points are not located on the road. Here, € is a threshold
variable that facilitate road feature selection, and | - | is the vector
absolute-value norm. We further refine the matched feature set
Py, in (12) by comparing the normal vector nj,_; with ‘fy,_;
in (17), shown at the bottom of this page, and obtain a updated
features located on the road as Q) (see Fig. (4)).

1 if |C1’1k,1 X Cflk,1| < €,

(18)

0 otherwise.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 4.
in color.

Road features after the two-step selection (see red points). Best viewed

C. Camera-to-IMU Calibration Quantification

In reality, Condition 1 is hard to measure due to the lack
of camera-IMU extrinsics ground truth (gR and gt) when the
vehicle is on road. Thus we utilize road features to facilitate
online camera-IMU extrinsic calibration monitoring. For now,
we have road feature pj, 1 j inimage I;,_; and the corresponding
matched feature py, ; in image Ij,. We also have the fundamental
matrix F through IMU propagation. To quantify calibration error
utilizing the matched feature points, we apply three different
commonly-used metrics:

® Sampson error:

1 Qx| 1 9
=150 — (Bl Fbeg) (19
|Qk| ]z::() w; k—1,j J

where  w; = (Fpp-1,5)7 + (Fbr-1,7)3 + (FTPy;)7 +
(FTpk;)i, and (-),, denotes the m-th component of a
vector.

® Symmetric epipolar distance:

Qx|
1 _
Hd = ] Zd(pk,j, Pr-1,) +d (Pr,js Pro1,;)
j=0

(20)
assuming the image point measurement satisfies Gaussian
distribution, and py,; and 15/]671, ;to be the true correspon-
dences that satisfy pg_Lij’kJ = 0. Here, d(p, q) repre-
sents the Euclidean distance between the inhomogeneous
points represented by p and q.

® Residual error:

|Qr|
1 § .
e = 1o > d(Pr; Fpr1;) +d(Pr15, FTPrj),
i=0

2
between image I,_1 and image I,. The error is the squared
distance between a point’s epipolar line and the matching
point in the other image (computed for both points of the

((Pr1 X Pr3) X (FPr-1,1 X Pr-1,2)x (Br-1,1 X Pr-1,3))" €
((Pr,2 X Pr,3) X (F[Pr-1,3 X Pr-1,1)x(Pr-1,2 X Pr-1,3))"

((Pr,1 X Pr,2) X (FPr-1,3 X Pr-1,2]x (Pr-1,1 X Pr-1,2))7

ng ;=0
ng ;=0
ng ;=0

; A7)
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match), averaged over all |Q;| matches. Here, d(p,1) is
the distance of a point p to the line 1.

We apply an averaging filter of n,, frame sliding window
(ny = 101inour experiments) to filter out high-frequency noises.
If the filtered error values are larger than the predetermined
threshold value, we will report the camera-to-IMU extrinsic ma-
trix is expected to be recalibrated. Here, 1142 = 0 F, 1 (1 — a),
where F,,, denotes the cumulative x? distribution under n,,
DoF and ov = 0.05 is the significance level.

V. ALGORITHM

We utilize a KD-tree to store the road feature set Pj,. We iterate
the tree and select a set of closest points for a feature to check
if they are road feature points. It takes O(| Py|) to check all the
feature points in the worst case. However, we use them as seeds
to help verify other unchecked features to speed up the process,
once a set of three non-collinear road feature points are located.
It takes linear time to check the remaining feature points. We
then remove paired features in set P that do not satisfy (18).
We summarize our online camera-to-IMU extrinsic calibration
quality monitoring algorithm in Algorithm 1. The computational
complexity of our algorithm is,

Lemma 1: Our online camera-to-IMU extrinsic calibration
quality monitoring algorithm runs in O(|Qy|log |Qk|).

Comparing with running online camera-to-IMU recalibration
algorithm [35]-[37] at a fixed frequency, our light-weight and
memory efficient approach simply monitors the camera-IMU
extrinsics and triggers the recalibration process only when nec-
essary.

VI. EXPERIMENTS

We implement our algorithm and perform experiments us-
ing simulation and the KITTI dataset [14]. The purpose of the
experiments is to show that our method can (1) detect when
displacement between camera and IMU when occurs, and (2)
report the magnitude of such displacement.

A. Simulated Experiments

Our simulation experiments aim to show that our method can
detect when displacement between camera and IMU occurs and
when such displacement disappears. We use a monocular camera
of 1024 <720 resolution and 680 pixels focal length. An IMU
sensor is right below the camera with a fixed pose relative to
the camera. The camera runs at 20 Hz and the IMU outputs
100 Hz high-resolution sensor measurement (see Table I for
detailed parameters settings, whose units are aligned with the
work in [20]).

We manually inject constant camera-IMU displacement to the
originally fixed extrinsics for two separate periods of time and
enable the system running in a rectangular city block environ-
ment. One short segment appears at frames 70-80, and the other
at frame 130-150. We inject displacement of 0.09° for angular
error and 0.9 cm for translation error. Fig. 5 illustrates how the
three error metrics change in response to the artificially injected
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Algorithm 1: Camera-IMU Extrinsic Quality Monitoring.

Input: Il:ki IWI:k,l:c» Ialzk,lzcy gri‘
Output: ZT should be recalibrated or not

V=0, Q=0,and i = 1; O(1)
for k € {2,3,...,t} do O(k)
Obtain ZRF_, and Tt} _, using (4) and (7); O(c)
Get F in (11) throguh (9) and (10); O(1)
Generate Q)i through the two-step approach;  O(|Qx|)
Select (Pr—1,1, Pk,i) pairs from Qx; O(log |Qx|)
while (pi—1,1,Pr1) ¢V and i <|Qy| do O(1Qkl)
Obtain “ny_ according to (13); O(1)
Compute i1 (17) by pr_1,; and px,;; o(1)
if C(“ng_1,%0)_1) = 1 then
U= {(Pr-11,Pr)|l =1,2,3}; o(1)
Break; O(1)
V< VU{(Pr—1,, Pl = 1,2,3}; Oo(1)
Qk < Qk \ (Pr—1.1, Pk,1): o(1)
Select px—1, and px,; pairs from Qx; O(log|Qk|)
| i+ i+ 1 o(1)
i1 o(1)
if U # () then
for (pr—1,1,Pr,) € Qi \U do
Check (18) using pr—1,; and pg,i; O(1)
if C(“ng_1,%0y_1) # 0 then
L UUU{(Pr—1,1:Pk,1)|1=1,2,3}] O(l)
if U # () then
L Obtain error metrics g (ps/palpr); o(1)
Use an average filter to computer mean fi; o(1)
if [ > M then
Report “Recalibration is required”; o(1)
| Break; o(1)
else
if continue monitoring then
| Continue; o(1)
else
Report “Extrinsics are Accurate”; O(1)
Exit; o(1)
TABLE I
SIMULATION SETTINGS
A At Nywa Nywg ng ng
01 1072 1072 107* 0.1 001
1.5
g
m
2
£ 0. A
5 N !
2
0 50 100 150 200
Frame

Fig. 5. Camera-IMU error quantification: All three metrics are able to reflect
the sensor displacement error (best viewed in color).

camera-to-IMU displacement. All three error metrics signifi-
cantly increase when camera-IMU displacement is injected and
immediately return to normal when the displacement is removed
(see the two peaks in Fig. 5). In most cases, Sampson error (blue)
is almost indistinguishable from the residual error (yellow). Both
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Real-world driving scenario from the KITTI dataset. Figure labels correspond Table II from the top to the bottom. (a) Road with curbs. (b) Strong sunlight

on road. (c) Shadows on roads. (d) Intersections and vehicles with low speed. (e) Parked vehicles. (f) Crowded vehicles with high speed.

TABLE I
EXPERIMENTS ON KITTI DATASET: SAMPSON ERROR (i s, SYMMETRIC EPIPOLAR DISTANCE /14, AND RESIDUAL ERROR (i,

Seq. Duration Length Hs Hd o

Zero  Small Large Zero  Small Large Zero  Small Large
(a) 2011_09_26_drive_0002 8s 81.74m 0470 0.674 0951 0482 0820 1.121 0.239 0481 0.571
(b) 2011_09_26_drive_0005 16 s 6943 m 0322 0412 0503 0.114 0533 0.835 0054 0.121 0.361
(c) 2011_09_26_drive_0056 30 s 41995 m 0493 0.659 0.732  0.132 0582 0.652 0.122 0.327 0.470
(d) 2011_09_26_drive_0104 3ls 246,75 m  0.159 0353 0559 0.109 0325 0501 0.081 0.115 0.227
(e) 2011_09_26_drive_0106 23 s 11433 m 0306 0429 0982 0.196 0353 0943 0.196 0.237 0.351
(f) 2011_09_29_drive_0004 34 s 25498 m  0.781 0.811 1.031 0413 0589 0.749 0356 0.466 0.501

have noticeably smaller magnitude than the symmetric epipolar
distance (orange), but all three are able to properly reflect the
injected extrinsic error.

B. Experiments on the KITTI Dataset

We also use the KITTI dataset [14], which contains camera
images and IMU readings with a variety of street scenes captured
from a vehicle driving around the city of Karlsruhe (Fig. 6),
to evaluate the performance of our camera-to-IMU extrinsic
monitoring algorithm in a real-world setting.

We utilize six different sequences of two categories from KITTI
dataset, including city trail and road data. Because the KITTI
dataset uses relatively accurate camera-to-IMU pre-calibration
and does not contain significant displacement between the sen-
sors during data collection, we artificially introduce displace-
ment to the pre-calibrated extrinsics to simulate the scenario
where camera-IMU displacement occurs after pre-calibration.
We test our system’s performance under “zero,” “small,” and
“large” displacement to the pre-calibrated extrinsics to show
that the magnitude of the three error metrics is proportional to
that of the displacement. In Table II, “zero” means we directly
utilize the highly accurate pre-calibrated camera-IMU extrin-
sics (Euler angles and translation vector) from KITTI (which
remain precise during runtime), while we artificially introduce
“small” or “large” displacement to the pre-calibration as if the
true extrinsics are changed right after pre-calibration. Here, the
magnitude of displacement is measured in terms of Euler angles
and translation vectors: we randomly sample a constant Euler
angle error from [0.1°,0.4°) and a constant translation error
from [0.01m, 0.03m) as “small” displacement, and [0.4°, 0.8°)

-200 -100 o 100 200 -300  -200  -100 [ 100 200 300
x x

(a) 2011_09_30_drive_0018 (b) 2011_10_03_drive_0027

Fig. 7. Camera trajectory on two KITTI trials. Here, the blue curves are the
camera ground-truth trajectory, the red ones are the camera trajectory with fixed
pose error of extrinsics, and the green ones are the camera trajectory generated
from the VIO system with extrinsics re-calibration triggered by our approach
(best viewed in color).

for Euler angles and [0.03m,0.06m) for translation vector as
“large” displacement. As shown in Table II, all three error met-
rics directly reflect the magnitude of the artificially introduced
camera-IMU displacement, regardless of the sequence duration
and length.

We incorporate our online monitoring approach into a full
SLAM system [38] and perform testing on two different KITTI
trials using the Sampson error (Fig. 7). Similarly, we artificially
introduce displacement to the pre-calibrated extrinsics. Our
monitoring system continuously outputs high Sampson error
value and immediately triggers at the beginning of the SLAM
stage on both cases to alert the system to re-calibrate the camera-
IMU extrinsic. To simulate re-calibration, the displacement is
gradually decreased to 0 within 80 keyframes (totally 1371
keyframes) for KITTI sequence 2011_09_30_drive_0018
until extrinsics are fully re-calibrated, and kept close to zero for
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the rest of the SLAM process. The same occurs for KITTI se-
quence 2011_10_03_drive_0027. Comparing with cam-
era trajectory with constant “large” displacement, our approach
helps generate trajectories that are closer to the ground-truth
given initial calibration errors. We also find out that in our
experiments all three metrics achieve equivalent status moni-
toring performance. Due to space limit, we only present camera
trajectories of applying Sampson error in Fig. 7. In all cases, our
approach can quickly catch the abnormalities of camera-IMU
extrinsics, trigger re-calibration process, and monitor metric
changes to determine extrinsic parameter accuracy status.

VII. CONCLUSION AND FUTURE WORK

In this letter, we introduce an online method to monitor the
camera-IMU extrinsic calibration quality to determine when
recalibration is necessary. We develop an efficient algorithm to
identify the set of feature points on the road using geometric
properties. We further characterize sensor calibration error in
terms of mismatches of road features in the image space. The
effectiveness of our approach is demonstrated in both simulated
and real-world dataset under three commonly-used error met-
rics. Our future work includes extending the algorithm to other
types of sensors such as LiDAR-to-camera, and deploying our
algorithm on real vehicles.
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