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Abstract— While many recent successes have been reported
from applying deep Reinforcement Learning (RL) for au-
tonomous robot navigation, limitations still exist that prevent
real-world use of RL-based navigation systems. For example,
most learning approaches lack safety guarantees; learned navi-
gation systems may not generalize well to unseen environments.
Despite a variety of recent learning techniques to tackle these
challenges in general, a lack of an open-source benchmark
and reproducible learning methods specifically for autonomous
navigation makes it difficult for roboticists to choose what
RL algorithm to use for their mobile robots and for learning
researchers to identify current shortcomings of general learning
methods for autonomous navigation. In this paper, we identify
four major desiderata of applying deep RL approaches for
autonomous navigation: (D1) reasoning under uncertainty of
partially observed sensory inputs, (D2) safety, (D3) learning
from limited trial-and-error data, and (D4) generalization to
diverse and novel environments. We explore four major classes
of learning techniques with the purpose of achieving one or
more of the four desiderata: memory-based neural network
architectures (D1), safe RL (D2), model-based RL (D2, D3), and
domain randomization (D4). By deploying these learning tech-
niques in a new open-source large-scale navigation benchmark,
we perform a comprehensive study of to what extent can these
techniques achieve these desiderata for RL-based navigation
systems. Our codebase, datasets, and experiment configurations
are available at https://github.com/Daffan/ros_jackal.

I. Introduction

Autonomous robot navigation has been studied by the
robotics community for decades. Informally, the problem of
navigation can be defined as follows (See Sec. IV-A for a
formal definition):

Definition 1 (Robot Navigation Problem (Informal)):
The problem of autonomous robot navigation is to create
a program to move a robot efficiently from a given start
location to a goal location without colliding with any
obstacle.

Through extensive engineering, various classical naviga-
tion systems [1], [2] can successfully solve such navigation
problem in many real-world scenarios, e.g., handling noisy,
partially observable sensory input but still providing verifi-
able collision-free safety guarantees.
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Recently, data-driven approaches have also been used to
tackle the navigation problem [3] thanks to advances in the
machine learning community. In particular, Reinforcement
Learning (RL), i.e., learning from self-supervised trial-and-
error data, has achieved tremendous progress on multiple
fronts, including safety [4]–[6], generalizability [7]–[10],
sample efficiency [11], [12], and addressing temporal data
[13]–[15]. For the problem of navigation, learned navigation
systems from RL [16] have the potential to relieve roboti-
cists from extensive engineering efforts [17]–[21] spent on
developing and fine-tuning classical systems.

Despite these progresses in the learning community,
learning-based navigation systems are far from finding their
way into real-world robotics use cases, which currently still
heavily rely on their classical counterparts. Such reluctance
in adopting learning-based systems in the real-world stems
from a series of fundamental limitations of learning methods,
e.g., lack of safety, explainability, and generalizability. It has
been reported that most learning-based navigation systems
still underperform their classical counterparts [3].

To make things even worse, a lack of well-established
comparison metrics and reproducible learning methods fur-
ther obfuscates a general understanding regarding the effect
of different learning approaches on navigation across both
the robotics and learning community, making it even more
difficult to assess the state-of-the-art and therefore to adopt
learned navigation systems in the real-world.

To facilitate research in developing RL-based navigation
systems with the goal of deploying them in real-world
scenarios, we introduce a new open-source large-scale nav-
igation benchmark with a variety of challenging, highly
constrained obstacle courses to evaluate different learning
approaches, along with the implementation of several state-
of-the-art RL algorithms. We identify four major desiderata
that ought to be fulfilled by any learning-based system that is
to be deployed: (D1) reasoning under uncertainty of partially
observed sensory inputs, (D2) safety, (D3) learning from lim-
ited trial-and-error data, and (D4) generalization to diverse
and novel environments. By deploying four major classes of
learning technique: memory-based neural network architec-
tures, safe RL, model-based RL, and domain randomization,
we perform extensive experiments and empirically compare
a large range of RL-based methods based on the degree to
which they achieve each of these desiderata. Each trial of the
method runs for about 8 hours and uses 100 CPU cores for
distributed training of the RL agents. The whole experiments
include 120 independent trials which count for about 100000
hours of CPU time in total.
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In our study, the major findings are: (1) memory-based
architectures are only necessary when catastrophic failures
may happen by making the wrong long-term decisions;
(2) safe RL increases the chances of an agent reaching
the goal location without collisions; (3) a model-based
model predictive control (MPC) method achieves superior
navigation performance, but tends to perform safely and
conservatively when deployed in unseen test environments;
(4) By increasing the number of training environments, the
performance gap between training and test environments
gradually shrinks, and finally saturates with about 100 train-
ing environments.

II. Desiderata for Learning-based Autonomous Navigation

In this section, we introduce four desiderata for learning-
based autonomous navigation systems.

(D1) reasoning under uncertainty of partially observed
sensory inputs. Autonomous navigation without explicit
mapping and localization is usually formalized as a Partially
Observable Markov Decision Process (POMDP), where the
agent produces the motion of the robot only based on limited
sensory inputs that are usually not sufficient to recover the
full state of the navigation environment. Most RL approaches
solve POMDPs by maintaining a history of past observations
and actions [13], [14]. Then, neural network architectures
like Recurrent Neural Networks (RNNs) that process se-
quential data are employed to encode history and address
partial observability. In this study, we investigate various
design choices of history-dependent architectures and history
lengths.

(D2) safety. Even though in some cases deep RL methods
achieve comparable performance to classical navigation, they
still suffer from poor explainability and do not guarantee
collision-free navigation. The lack of safety guarantee is a
major challenge preventing RL-based navigation from being
used in the real-world. Prior works have addressed this
challenge by formalizing the navigation as a multi-objective
problem that treats collision avoidance as a separate objective
from reaching the goal and solving it with Lagrangian or
Lyapunov-based methods [4]. In this study, we investigate
how efficiently these multi-objective methods improve safety
in autonomous navigation tasks.

(D3) learning from limited trial-and-error data. Al-
though alleviating roboticists from extensive engineering
effort, a large amount of data is still required to train a
typical deep RL agent. However, autonomous navigation data
is usually expensive to collect in the real-world. Therefore,
data collection is usually conducted in simulation, e.g., in
the Robot Operating System (ROS) Gazebo simulator, which
provides an easy interfaces with real-world robots. However,
simulating a full navigation stack from perception to actu-
ation is more computationally expensive compared to other
RL domains, e.g., MuJuCo or Atari games [22], [23]. This
property presents a high requirement for sample efficiency.
Most prior works have used off-policy RL algorithms to
improve sample efficiency with experience replay [24], [25].
In addition, model-based RL methods can explicitly improve

sample efficiency, and are widely used in robot control
problems. In this study, we compare two common classes
of model-based RL method [11], [12] combined with an off-
policy RL algorithm, and empirically study to what extent
model-based approaches improve sample efficiency when
provided with different amounts of data.

(D4) generalization to diverse and novel environments.
The ultimate goal of deep RL approaches for autonomous
navigation is to learn a generalizable policy for all kinds
of navigation environments in the real-world. However, this
goal is challenging due to the limited number of navigation
environments seen during training. A simple but effective
strategy is to train the agent in many diverse navigation
environments, but it is still unclear what is the necessary
number of training environments to achieve good gener-
alization. Utilizing the large-scale navigation benchmark
proposed in this paper, we empirically study the dependence
of generalization on the number of training environments.

III. Preliminaries

In Sec. III-A, a brief review of Reinforcement Learning
(RL) and Markov decision processes (MDPs) is provided.
Then, Sec. III-B describes the studied techniques and how
they can potentially achieve the desiderata from Sec. II.

A. RL and MDPs

In RL, an agent optimizes its discounted cumulative
return thorugh interactions with an environment, which is
formulated as an MDP. Specifically, an MDP is a 5-tuple
(S , A,T, γ,R), where S , A are the state and action spaces,
T : S ×A −→ S is the transition kernel that maps the agent’s
current state and its action to the next state, γ is a discount
factor and R : S × A −→ R is the reward function. The
overall objective is for the agent to find a policy function
π : S −→ A such that its discounted cumulative return is
maximized: π∗ = arg maxπ Est ,at∼π

[∑∞
t=0 γ

tR(st, at)
]

[26].
MDPs assume the agent has access to the world state s

which encapsulates sufficient information for making op-
timal decisions. However, in real applications, the agent
often only perceives part of the state s at any moment.
Such partial observability leads to uncertainty in the world
state and the problem becomes a Partially Observable
Markov decision process (POMDP). A POMDP is a 7-
tuple (S , A,O,T, γ,R,Z). In addition to the elements of an
MDP, O denotes the observation space and Z : S −→ O
is an observation model that maps the world state to an
observation. For instance, at each time step t, the agent
receives an observation ot ∼ Z(· | st). In general, solving
a POMDP optimally requires taking the entire history into
consideration, which means the objective is then to find a
policy that maps its past trajectory τt = (o0, a0, . . . , ot) to an
action at such that maxπ Eτt∼π

[∑∞
t=0 γ

tR(st, at)
]
.

B. Studied Techniques

In this section, we introduce the four types of techniques
we implement to potentially achieve the desiderata in Sec.
II.



Memory-based Neural Network Architectures (D1).
Due to the uncertainty from partial observations (e.g. caused
by dynamic obstacles or imperfect sensory inputs), a mobile
agent often needs to aggregate the information along its
trajectory history for successful navigation. When using a
parameterized model as the policy, recurrent neural networks
(RNNs) such as those incorporating Long-Short Term Mem-
ory (LSTM) [27] or Gated Recurrent Units (GRUs) [28]
are widely adopted for solving POMDPs [13], [14]. More
recently, transformers, a type of deep neural architecture
that use multiple layers of attention mechanism to pro-
cess sequence data, have been proposed. Transformers have
demonstrated superior performance over RNN-based models
in vision and natural language applications [29]. In this work,
we consider both GRU and transformers as the backbone
model for the navigation policy. The reason for choosing
GRU over LSTM is due to the fact that GRU has a simpler
architecture than, but performs comparably with, LSTM in
practice [28].

Safe RL (D2). According to Definition 1, successful
navigation involves both navigating efficiently towards a user
specified goal and avoiding collisions. While most prior RL-
based navigation approaches design a single reward function
that summarizes both objectives, it is not clear whether
explicitly treating the two objectives separately will have
any benefits. Specifically, assume the reward function R
only rewards the agent for making progress to the goal.
Additionally, a cost function C : S ×A −→ R+ maps a state s
and the agent’s action a to a penalty c. Then the navigation
problem can be transformed into a constrained optimization
problem with 2 objectives [30]:

max
π

Est ,at∼π

[ ∞∑
t=0

γtR(st, at)
]

s.t. Est ,at∼π

[ ∞∑
t=0

γtC(st, at)
]
≤ ϵ.

(1)
Here ϵ ≥ 0 is a threshold that controls how tolerant we
are of the risk of collision. By formulating the navigation
problem in this way, existing constrained optimization tech-
niques can be applied for solving (1). One of the most
common approaches in constrained optimization is using a
Lagrangian multiplier, which transforms the constraint into
a penalty term multiplied by a Lagrangian multiplier λ ≥ 0.
Specifically, the objective becomes

max
π

Est ,at∼π

[ ∞∑
t=0

γtR(st, at)
]
+ λ
(
Est ,at∼π

[ ∞∑
t=0

γtC(st, at)
]
− ϵ
)
.

(2)
To solve (2), one can either manually specify a λ based
on prior knowledge or optimize λ simultaneously [31]. In
this work, we perform a grid search over λ but fix it during
learning.

Model-based RL (D2, D3). Given an accurate model,
model-based RL often benefits from better sample effi-
ciency compared to model-free methods [32]. In addition
to improved sample efficiency, prior work on model-based
RL also reported that planning with a learned model can
improve the agent’s safety [5]. Therefore, we investigate

whether these claims also hold for autonomous navigation
if the agent learns a transition model T̂ from its interaction
with the world. Although the reward model R can also be
learned, as the structure of the reward function is usually
designed manually, we let the agent take advantage of the
known reward function. In this work, we consider two ways
of using a learned model: a Dyna-style method [33] and
model-predictive control (MPC) [34]. Specifically, assume
the agent’s rollout trajectories are saved into a replay buffer
B in the form of transition tuples: B = {(st, at, st+1, rt)}t.1

Then model-based methods assume the agent also learns a
model T̂ : S × A −→ S that approximates T . A common
learning objective of T̂ is to minimize the mean-square-error
between T̂ ’s and T ’s predictions on transitions:

T̂ = arg min
T ′

E(s,a,s′,r)∼B

∣∣∣∣∣∣T ′(s, a) − s′
∣∣∣∣∣∣2

2. (3)

Once T̂ is learned, given a transition pair (s, a) ∼ B, the
Dyna-style method samples additional s′ ∼ T̂ (s, a) to enrich
the replay buffer that can potentially benefit the learning of
the value function. MPC, on the other hand, first uses T̂ to
form samples of future trajectories, then it outputs the first
action corresponding to the trajectory that has the highest
return.

Domain randomization (D4). A direct deployment of a
policy trained in limited training environments to unseen tar-
get environments is usually formalized as a zero-shot transfer
problem, where no extra training of the policy is allowed in
the target environments. One promising approach for zero-
shot transfer has been Domain Randomization (DR) [10]. In
DR, the environment parameters (i.e. obstacle configurations)
in predefined ranges are randomly selected in each training
environment. By randomizing everything that might vary in
the target environments, the generalization can be improved
by covering target environments as variations of random
training environments.

IV. Navigation Benchmark

This section details the proposed navigation benchmark
for RL-based navigation systems, which aims to provide a
unified and comprehensive testbed for future autonomous
navigation research. In Sec. IV-A and IV-B, the navigation
task is formally defined and formulated as a POMDP. Then
Sec. IV-C describes the procedures to generate three types
of navigation environments that benchmark different aspects
of navigation performance.

A. Navigation Problem Definition

Building from the informal Definition 1, a navigation
problem can be formally defined as follows:

Definition 2 (Robot Navigation Problem (Formal)):
Situated within a navigation environment e which includes
information of all the obstacle locations at any time t, a start
location (xi, yi), a start orientation θi, and a goal location
(xg, yg), the navigation problem Te is to maximize the

1Having a replay buffer is a commonly used technique to learn the value
function (critic) in reinforcement learning.



probability p of a mobile robot reaching the goal location
from the start location and orientation under a constraint
on the number of collisions with any obstacle C < 1 and a
time limit t < Tmax.
Given the current location (xt, yt), the robot is considered to
have reached the goal location if and only if its distance to
the goal location is smaller than a threshold, dt < ds, where
dt is the Euclidean distance between (xt, yt) and (xg, yg), and
ds is a constant threshold.

B. POMDP Formulation

In accordance with the definition of POMDPs from Sec.
III-A, a navigation task Te can be formulated as a POMDP
represented by a 7-tuple (S e, Ae,Oe,Te, γe,Re,Ze) condi-
tioned on the navigation environment e. In this POMDP,
the state st ∈ S e is a 5-tuple (xt, yt, θt, ct, e) with xt, yt, θt
the two-dimensional coordinates and the orientation of the
robot at time step t, ct a binary indicator of whether a
collision has occurred since the last time step t − 1, and e
the navigation environment. The action at = (vt, ωt) ∈ Ae is a
two-dimensional continuous vector that encodes the robot’s
linear and angular velocity. The observation ot = (χt, x̄t, ȳt) ∈
Oe is a 3-tuple composed of the sensory input χt from
LiDAR scans and the relative goal position (x̄t, ȳt) in the
robot frame. The observation model Z depends on the model
of the LiDAR and the physical geometry of the LiDAR and
the robot. The reward function for this POMDP is defined
as follows:

Re(st, at) = +b f · 1(dt < ds) + bp · (dt−1 − dt) − bc · ct, (4)

where 1(dt < ds) is the indicator function of reaching
the goal location, dt is the Euclidean distance to the goal
location, and b f , bp, bc are the coefficient constants. In this
reward function, the first term is the true reward function
that assigns a positive constant b f for the success of an
agent, which matches with the objective of the navigation
task in Definition 2. The second and third terms are auxiliary
rewards that facilitate the training by encouraging local
progress and penalizing collisions.

We perform a grid search over different values of the
coefficients in this reward function, and the result shows
that the auxiliary reward term (dt−1 − dt) is necessary for
successful training, and a much smaller coefficient bp relative
to b f can achieve a better asymptotic performance. The agent
can learn without the penalty reward for collision (bc = 0),
but a moderate value of bc can improve the asymptotic
performance and speed up training. For all the experiments
in this paper, we fix the coefficients as b f = 20, bp = 1 and
bc = 4.

In our experiments, the RL algorithm solves a multi-
task RL problem where the tasks are randomly sampled
from a task distribution Te ∼ p(Te). Here the task dis-
tribution p(Te) := U({ei}

N
i=1) is a uniform distribution on

a set of N navigation environments {ei}
N
i=1. To extend the

objective defined in Sec. III-A, the overall objective of this
multi-task RL problem is to find an optimal policy π∗ =
maxπ ETe∼p(Te)[Eτt∼π

[∑∞
t=0 γ

tRe(st, at)
]
]

Fig. 1: Three types of navigation environments: (a) static, (b)
dynamic box and (c) dynamic wall. The red squares mark
the obstacle fields, and the yellow circles mark the start and
goal locations. In figure (a), the green (blue) arrows indicate
the case when the two walls are moving apart (together). In
figure (c), the red arrows indicate the velocities of obstacles.

C. Simulation Specifications and Navigation Environments

The navigation is performed by a ClearPath Jackal
differential-drive ground robot in navigation environments
simulated by the Gazebo simulator. The robot is equipped
with a 720-dimensional planar laser scan with a 270◦ field
of view, which is used as our sensory input χt in Sec. IV-B.
We preprocess the LiDAR scans by capping the maximum
range to 5m which to covers the entire obstacle field. The
goal location (x̄t, ȳt) is inquired directly from the Gazebo
simulator.

The RL agent navigates the robot through a 10m naviga-
tion path that passes through a highly constrained obstacle
field. Walls are placed in the environment so that passing
through the obstacle field is the only path to the goal location
(see Fig. 1). Three types of environment are presented in
this benchmark: static, dynamic box, and dynamic wall
environments. In the remaining part of this section, we detail
the procedures of generating these environments.

Static environments. We use the 300 static environ-
ments from the BARN dataset [35]. The obstacle fields
in these environments are represented by a 30×30 grid,
which corresponds to an area of 4.5m×4.5m (see Fig.
1(b)). The grid cells are either kept empty or filled with
cylinders using Celluar Automata. Details can be found in
the BARN dataset [35]. Among 300 static environments,
we randomly select 50 environments as the test set, which
we denote as static-test. We then randomly select 5,
10, 50, 100, and 250 of the remaining environments as
the training sets of different sizes. We denote them as
static-train-5, static-train-10, static-train-50,
static-train-100, and static-train-250 respectively.



Dynamic box environments. These environments are
13.5m × 13.5m obstacle fields (larger than the static envi-
ronments) that give the agent more time to respond to the
moving obstacles (see Fig. 1(c)). The obstacles are randomly
generated without any manually designed challenging scenar-
ios. Each obstacle is a w×l×h box with its width w and length
l randomly sampled from a range of [0.1m, 0.5m] and a
height h = 1m. The obstacles start from a random position on
the left edge of the obstacle field with a random orientation
and a constant linear velocity. The magnitude of the velocity
is randomly sampled from a range of [1m/s, 1.5m/s], and
the direction of the velocity is randomly sample from all
the possible directions pointing into the obstacle field. Each
obstacle repeats its motion once it moves out of the obstacle
field. A dynamic environment has 10 to 15 such randomly
generated obstacles. We randomly generate 100 instances of
such dynamic box environments with 50 as the training set
and the remaining 50 as the test set, which we denote as
dynamic-box-train and dynamic-box-test respectively.

Dynamic wall environments. These environments are
4.5m×4.5m, with two long parallel walls moving in opposite
directions with their velocities perpendicular to the start-goal
direction (see Fig. 1(a)). The walls are long enough so that
the robot can only pass when the two walls are moving
apart. This manually designed navigation scenario requires
the agent to maintain a memory of past observations and
actions, and estimate the motion of obstacles. To challenge
the agent, we add small variances so that each wall’s length,
tilting angle, and magnitude of the velocity are randomly
sampled from the ranges of [3.5m, 4.5m], [−10◦, 10◦] and
[1m/s, 1.4m/s] respectively. 100 instances of such parallel
wall environments are generated with 50 as the training
set and the remaining 50 as the test set, which we denote
as dynamic-wall-test and dynamic-wall-train respec-
tively.

V. Experiments

In this section, we present experimental results of each
studied technique to achieve the proposed desiderata in Sec.
II. Unless otherwise specified, all the experiments mentioned
in this section use a distributed TD3 RL algorithm (similar
to [20]) combined with the corresponding techniques, and
all the 40 data points presented are averaged over three
independent runs.

A. Memory-based Neural Network Architectures (D1)

To benchmark the performance of different neural network
(NN) architectures, deep RL policies represented by archi-
tectures of Multilayer Perceptron (MLP), One-dimensional
Convolutional Neural Network (CNN), Gated Recurrent
Units (GRU), and Transformer with history length of 4
and 8 are trained in static-train-50, and the two
types of dynamic environments dynamic-box-train and
dynamic-wall-train from Sec. IV-C. After training, the
policies are tested in their corresponding test sets. In addition,
MLP with history length of one is added as a memory-
less baseline. Table I shows the success rates of policies

History length 1 4 8

MLP 65 ± 4% 57 ± 7% 42 ± 2%
GRU - 51 ± 2% 43 ± 4%
CNN - 55 ± 4% 45 ± 5%
Transformer - 68 ± 2% 46 ± 3%

History length 1 4 8

MLP 67 ± 7% 72 ± 1% 69 ± 4%
GRU - 82 ± 4% 78 ± 5%
CNN - 63 ± 3% 43 ± 3%
Transformer - 33 ± 28% 15 ± 13%

TABLE I: Success rate of policies trained with different
neural network architectures and history lengths in static
(top) and dynamic-wall (bottom) environments.

with different architectures and history lengths evaluated
in the static-test (top) and dynamic-wall-test (bot-
tom) respectively. While we do not present test results
of dynamic-box in Table I, no significant difference is
observed between different NN architectures and history
lengths in this environment set.

Memory-based NNs do not improve navigation per-
formance in static environments. In Table I, the policy
represented by Transformer with a history length of 4 shows
the best success rate of 68%, however a similar success rate
is achieved by the MLP baseline within the error of standard
deviation. Additionally, a monotonic decrease in success rate
with increasing history length is observed in each tested NN
architecture. For example, a 32% drop in the success rate of
Transformer is shown by increasing the history length from 4
to 8. One possible explanation is that, if only the current one
single observation is useful to make the decision, including
past observations will make it more difficult to extract useful
information.

Memory only matters when possible catastrophic fail-
ures will happen by making the wrong long-term de-
cisions. Memory usually matters for dynamic environments
when a single time frame is not sufficient to estimate the
motion of obstacles. Surprisingly, in dynamic-box where
the dynamic obstacles are completely random, the memory-
based NN architectures do not outperform the memory-less
baseline. In addition, unlike static, the performances does
not drop by increasing the history length. On the other
hand, in dynamic-wall with a manually designed dynamic
challenge, the best success rate of 82% is observed in GRU
with a history length of 4, which improves about 15% over
the non-memory baseline. During our deployment of the
policies, we observe that, in dynamic-box even though the
memory-less agent does not estimate the motion and adjust
its plan in advance, it tends to perform safely and avoids the
obstacles when they get close enough. This simple strategy
works surprisingly well and achieves similar success rate
as the memory-based policies. However, this strategy does
not work in the manually designed dynamic challenges like
dynamic-wall where the agent has to estimate the motion



Safe-RL method MLP Lagrangian MPC DWA

Success rate 65 ± 4% 74 ± 2% 70 ± 3% 43%
Survival time 8.0 ± 1.5s 16.2 ± 2.5s 55.7 ± 4.9s 88.6s
Traversal time 7.5 ± 0.3s 8.6 ± 0.2s 24.7 ± 2.0s 38.5s

TABLE II: Success rate, survival time and traversal time of
policies trained with different safe-RL methods, MPC with
probabilistic transition model and DWA.

of the obstacles to pass safely.

B. Safe RL (D2)

To investigate to what extent safe RL methods can help
to improve safety, a TD3 agent with the Lagrangian-based
safe RL method (Eq. 2) is trained in static-train-50, and
then tested in static-test. The policy is represented by a
MLP with its input containing only one history length. Table
II shows the success rate, average survival time, and average
traversal time of safe RL agents, a vanilla MLP agent. We
define survival time as the time cost of an unsuccessful
episode either collided or timeout. Traversal time, instead,
is the time cost of a successful episode. With the same
level of success rate, a longer survival time means that the
agent tends to, at least, avoid collisions if it can not succeed.
To compare the safe RL methods with classical navigation
systems which are believed to have better safety, we also
add evaluation metrics from a classical navigation stack with
Dynamic Window Approach (DWA) [2] local planner.

Safe RL methods reduce the gap between training
and test environments. Our experiments indicate that even
though both the vanilla MLP and the safe RL method achieve
about 90% success rate in the training environments, the safe
RL method has a better success rate in the test environments.
We hypothesize that the safety constraint applied by the safe
RL methods forms a way of regularization, and therefore,
improves the generalization to unseen environments.

Safe RL methods increase the average survival time in
failed episodes. As expected, the safe RL method increases
the average survival time by 8.2s compared to the vanilla
MLP at a cost of 1.1s longer average traversal time. However,
such improved safety are still much worse than the classical
navigation systems given the best survival time of 88.6s
achieved by DWA.

C. Model-based RL (D2 and D3)

We study two major model-based RL methods: Dyna-
style and MPC. Dyna-style methods intend to improve sam-
ple efficiency by simulate transition samples with learned
transition models. Instead, MPC methods utilize the models
to plan for a fixed future time horizon and select the best
actions to execute. MPC methods usually enable a more
efficient exploration by selecting promising actions, and also
potentially improve the asymptotic performance with the
help of model predictions.

To explore how these model-based approaches help with
the autonomous navigation tasks, we implement both Dyna-
style and MPC methods, and evaluate the methods in static

environments. The transition models are either represented
by a deterministic NN or a probabilistic NN that predicts
the mean and variance of the next state. During the training
in static-train-50, the policies are saved when 100k,
500k and 2000k transition samples are collected, then tested
in static-test. The success rates of these policies are
reported in Table III.

Model-based methods do not improve sample effi-
ciency. As shown in the second and third columns in Table
III, better success rates of 13% and 58% are achieved by
the vanilla MLP method provided by limited 100k and 500k
transition samples respectively. In addition, Higher success
rates at 500k transition samples are observed in probabilistic
models compared to their deterministic counterparts, which
indicates a more efficient learning with probabilistic transi-
tion models.

Model-based methods with probabilistic dynamic mod-
els improve the asymptotic performance. In the last
column of Table III, both Dyna-style and MPC with proba-
bilistic dynamic models achieve slightly better success rates
of 70% compared to 65% in the vanilla MLP method
when sufficient transition samples of 2000k are given to the
learning agent.

The MPC policy performs conservatively when de-
ployed in unseen test environments and shows a better
safety performance. The safety performances of MPC poli-
cies with probabilistic dynamic models are also tested (see
Table II). We observe that the agents with MPC policies
navigate very conservatively with an average traversal time of
24.7s, which is about two times more than the MLP baseline.
In the meantime, MPC policies achieve improved safety with
the best survival time of 55.7s among the RL-based methods.

D. Domain Randomization (D4)

To explore how the generalization depends on the
degree of randomness in the training environments,
baseline MLP policies with one history length are
trained in the environment sets with four different sizes:
static-train-5, static-train-10, static-train-50
and static-train-100. The trained policies are tested in
the same static-test environments. Table IV shows the
success rate of policies trained with different number of
training environments.

The performance gap between training and test en-
vironments gradually shrinks and finally saturates with
increasing number of training environments. As shown in
Table IV, a large performance gap of around 56% percentage
is shown in 5 training environments. Even though this gap
gradually decreases to 15% in 100 training environments,
further increasing the number of training environments to
250 does not significantly reduce the gap anymore.

VI. Discussion and Conclusion

In this paper, we identify four desiderata for RL-based
navigation systems, and evaluate four classes of commonly
used learning techniques that are promising for achieving the
desiderata with a novel large-scale navigation benchmark.



Transition samples 100k 500k 2000k

MLP 13 ± 7% 58 ± 2% 65 ± 4%
Dyna-style deterministic 8 ± 2% 30 ± 10% 66 ± 5%
MPC deterministic 0 ± 0% 21 ± 10% 62 ± 3%
Dyna-style probabilistic 0 ± 0% 48 ± 4% 70 ± 1%
MPC probabilistic 0 ± 0% 45 ± 4% 70 ± 3%

TABLE III: Success rate of policies trained with different
model-based methods and different number of transition
samples.

Environments 5 10 50 100 250

Success rate 43 ± 3% 54 ± 8% 65 ± 4% 72 ± 6% 74 ± 2%

TABLE IV: Success rate of policies trained with different
different number of training environments.

In this section, we point out potential future directions to
fully achieve all desiderata and to build a robust RL-based
navigation system that is deployable in the real-world.

(D1) reasoning under uncertainty of partially observed
sensory inputs might not be so important in static envi-
ronments, and even in very random dynamic environments.
Our results indicate that roboticists should consider the
characteristics of the deployment environment to determine
if history is really necessary. Even though the benefit of
memory is demonstrated in one specially designed dynamic
challenge where correct long-term decision making is essen-
tial, this one single challenge does not cover all the possible
challenging dynamic navigation scenarios in the real-world.
To further demonstrate and evaluate the ability of memory-
based systems to reason under uncertainty, more diverse but
also challenging dynamic environments will be needed in the
future.

(D2) safety is improved by both safe RL and model-based
MPC methods. However, classical navigation systems still
achieve the best safety performance at a cost of very long
traversal time and relatively low success rate. Whether RL-
based navigation systems can achieve similar level of safety
guarantee as classical navigation systems and whether safety
can be improved without significantly sacrificing the traversal
time and success rate are still open questions.

(D3) the ability to learn from limited trial-and-error
data is not improved by the proposed model-based methods.
However, our implementation is based on an off-policy TD3
algorithm which already ensures a relatively good sample
efficiency. Since we did not include on-policy RL algorithms
in this study, it is still unclear whether model-based methods
combined with on-policy RL algorithms can achieve better
sample efficiency or not.

(D4) the generalization to diverse and novel envi-
ronments is improved by increasing the randomness of
training environments. However, a noticeable gap of about
10% between training and test environments can not be
eliminated by further increasing the randomness. Some re-
cent advances in open-ended curriculum learning [36] are

reported to more actively improve the generalization by
using teachers to control the environment generation process
and propose novel environments to train RL agents, which
forms promising future directions to further improve the
generalization performance reported in this paper.

To conclude, we introduce a new open-source large-
scale navigation benchmark for RL-based navigation systems
that contains a variety of challenging navigation environ-
ments, and report on a detailed comparison between different
navigation systems. Additionally, we identify four major
desiderata for RL-based navigation systems and compare the
effectiveness of four major classes of learning techniques
at achieving the desiderata using the proposed navigation
benchmark.
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