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Abstract— While current systems for autonomous robot nav-
igation can produce safe and efficient motion plans in static
environments, they usually generate suboptimal behaviors when
multiple robots must navigate together in confined spaces. For
example, when two robots meet each other in a narrow hallway,
they may either turn around to find an alternative route or
collide with each other. This paper presents a new approach
to navigation that allows two robots to perform hallway
passing without colliding, stopping, or waiting. Our approach,
Perceptual Hallucination for Hallway Passing (PHHP), learns to
synthetically generate virtual obstacles (i.e., perceptual halluci-
nation) to facilitate narrow hallway passing for multiple robots
that utilize otherwise standard autonomous navigation systems.
Our experiments on physical robots in different hallways show
improved performance compared to multiple baselines.

I. INTRODUCTION

One of the grand goals of the robotics community is to
safely and reliably deploy fully-autonomous mobile robots
in common environments over extended periods of time.
Indeed, many researchers have moved toward this vision and
reported hundreds of hours of unsupervised, collision-free
navigation of a single robot [1], [2].

However, long-term deployment of multiple autonomous
robots in common spaces still remains a difficult task. One
reason for this difficulty is that conventional navigation
systems are good at handling static environments, but their
performance deteriorates in the presence of dynamic obsta-
cles, e.g., other moving robots. While some solutions to this
problem have been explored in the community, they typically
come with unrealistic requirements such as a perfectly-
controlled space (e.g., a warehouse) or perfect sensing, and
cannot guarantee safety in novel environments without time-
consuming movement schemes such as one robot halting
while another moves past. To the best of our knowledge,
there are no reports that claim long-term deployment of
multiple autonomous robots in uncontrolled spaces without
human supervision.

Separately, recent work in the navigation community
leveraging the concept of perceptual hallucination [3]–[5]
has demonstrated impressive results in allowing robots to
navigate highly constrained spaces successfully. Perceptual
hallucination refers to the technique of introducing vir-
tual obstacles to the robot’s perception so that a motion
plan executed with these obstacles exhibits certain desired
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behaviors and also acts as a blindfold for the sensor to
conceal unnecessary (or even distracting) information. To
date, however, perceptual hallucination has not been applied
in the context of multiple robots or dynamic obstacles.

In this paper, we hypothesize that perceptual hallucination
can be used to improve conventional navigation systems in
multi-robot and confined settings. In particular, we posit that,
by using hallucination to obscure the presence of moving
objects that would otherwise result in suboptimal behavior
(e.g., turning around), we can enable multi-robot navigation
in confined spaces such as a narrow hallway. By using
perceptual hallucination, we can still solve the multi-robot
navigation problem using conventional navigation systems
that have been thoroughly tested to be stable in static
environments.

To investigate this hypothesis, we introduce and evaluate
Perceptual Hallucination for Hallway Passing (PHHP), a
hallucination-based approach to improve a given navigation
policy in the setting of multi-robot navigation in narrow hall-
ways. PHHP uses experience gathered in domain-randomized
simulation episodes in order to learn the proper size and
placement of virtual obstacles so as to enable successful
navigation. We investigate the performance and robustness
of using PHHP in a narrow hallway with both simulation
and real-world experiments, and we find that it can achieve
similar performance compared to a widely known method,
Optimal Reciprocal Collision Avoidance (ORCA) [6], while
avoiding its assumption of perfect sensing. We further show
that, compared to a rule-based right-lane-following method,
PHHP reduces the average delay by 58.54%. Finally, we show
that PHHP is sufficiently robust against the sim-to-real gap,
different speeds, detection ranges, hallway widths, and even
different underlying navigation systems.

II. RELATED WORK

One of the ultimate goals in the autonomous robotic
navigation community is the long-term deployment of mobile
robots in shared spaces without human supervision. Khandel-
wal et al. [2] and Biswas et al. [1] reported that their robots
successfully navigated hundreds of hours with conventional
navigation systems [7], [8].

Despite the successes of the conventional navigation sys-
tems for single robots, their degraded performance in the
presence of the other robots inhibits the safe deployment
of multiple robots in confined spaces. One solution is to
use a centralized control system. For example, Kiva Systems
(now Amazon Robotics) shows a very large-scale deploy-
ment of warehouse robots [9] with centralized control and



fixed lanes. Similarly, Jiang et al. [10] introduced Iterative
Inter-Dependent Planning to avoid potential conflict at the
planner level. However, the centralized method will not apply
anymore when the density of robots in the shared space
increases or objects that do not follow centralized control,
e.g., people, exists.

Hence, there are attempts to replace conventional navi-
gation systems with new motion planners focused on multi-
robot applications. The family of velocity obstacle algorithms
tries to find optimal steering commands by considering
motion in the velocity space. Fiorini et al. [11] first introduce
the concept of reciprocal collision avoidance and Van den
Berg et al. [6] present the ORCA algorithm which finds an
optimal reciprocal collision avoidance behavior. However,
this family of velocity obstacle approaches heavily relies
on perfect sensing and holonomic systems. There is some
research that tries to relax these conditions [12], [13], but it
is still sensitive to sensor noise and requires heavy parameter
tuning for every new environment.

Inspired by the recent successes of machine learning, there
exists a trend to solve the multi-robot navigation problem
with neural networks. Long et al. [14] show that multilayer
perceptrons can successfully map motion commands from
noisy sensor readings to mimic the behavior of ORCA. Long
et al. [15] further improve their method with reinforcement
learning. Lin et al. [16] present how to learn swarm behavior
with centralized learning and decentralized execution. Tan
et al. [17] incorporate synchronized location map of other
agents to further improve the performance. However, these
neural-network-based policies are vulnerable to unseen envi-
ronments and often suffer from a lack of safety guarantees,
e.g., they do not prevent collisions in highly constrained
narrow hallways.

There have been some attempts to combine the advantages
of conventional navigation systems and machine learning.
Fan et al. [18] develop a switching policy that uses PID
control in simple scenarios, reinforcement policy in complex
ones, and a safe policy in dangerous ones. They successfully
eliminate unsafe behaviors of the reinforcement-based policy,
but the greedy behavior makes it hard to deploy in complex
indoor environments. Park et al. [19] developed a method
that finds a rest spot on the fly right after a robot detects the
presence of another robot. The halting robot will park at the
rest spot until the other passes and then resume traveling to
its goal. This halting behavior is very time-consuming and
hard to extend to multiple robots.

On the other hand, the concept of hallucination has
emerged to address navigation in highly-constrained spaces.
Xiao et al. [3] introduced the concept of learning from
hallucination (LfH). They record random maneuvers at an
open space and convert them into agile maneuvers in the
most cluttered environment by adding hallucinated obstacles.
They then trained the policy to learn agile maneuvers in
cluttered environments with that data. Xiao et al. [4] and
Wang et al. [5] further improved this idea by finding a
minimal hallucination set and learning to generate obstacle
configurations from a given robot’s trajectory. Despite these

successes, the idea of hallucination has not previously been
applied to dynamic scenarios, including multiple robots.

III. APPROACH

In this section, we first formulate the multi-robot hallway
passing problem. We then describe our solution, Perceptual
Hallucination for Hallway Passing (PHHP).

A. Problem Formulation

We consider here the specific scenario in which two robots
moving in opposite directions must pass each other in a
hallway that is narrow, but also wide enough to allow the two
robots to simultaneously pass each other. In this scenario,
let p⃗1 and p⃗2 denote the two-dimensional positions of the
first and second robot, and let c⃗ denote the position of the
center of the hallway, respectively. Additionally, we assume
that each robot is equipped with a two-dimensional LiDAR
scanner, and the LiDAR measurements obtained by each
robot at time t are denoted as l1t and l2t . Finally, we assume
that both robots are using an existing autonomous navigation
system (e.g., ROS move base [20]).

In this paper, we seek to investigate whether perceptual
hallucination can improve (i.e., reduce collisions and increase
the speed and smoothness of navigation) the existing naviga-
tion system in the scenario described above. Mathematically,
we use h to denote the hallucination function, i.e., the sensor
reading lH = h(l,H) is modified by transforming a LiDAR
scan l such that it appears as if virtual obstacles specified
an obstacle field H were added to the current environment.
Importantly, lH only contains additional obstacles, i.e., to
compute the depth value at any particular bearing, k, the
minimum value between the real scan, lk, and a virtual
scan corresponding to only obstacles in H, vkH, is chosen.
Additionally, we assume that positional information about
each obstacle in H is specified relative to the pose of the
particular robot that is hallucinating.

In order to use perceptual hallucination for our hallway
passing problem, we must determine what each robot should
use for its hallucinated obstacle field H (i.e., the shape
and location of hallucinated obstacles) to enable smooth
interaction. In general, each H could consist of an arbitrary
number of obstacles, each with arbitrary shape. However,
in order to make this problem tractable, we consider here
only obstacle fields that contain a single object, where that
object is a rectangle with rounded sides. We denote such
obstacle fields as Hθ, where the parameter θ = (r, l, dx, dy)
has components representing the radius, length, and the x-y
coordinate of the center of the rounded rectangle relative to
the hallway center c⃗, respectively. We found that a rectangle
with rounded corners provides two advantages for the hall-
way passing problem considered here: (1) the rounded sides
prevent the motion planner from generating sharp turning
trajectories near the boundaries of the obstacle, and (2)
the flat sides lead to stable lane-keeping-like behavior. Our
method requires that each robot use the same Hθ. However,
note that, since each robot has a different starting pose (in
particular, facing each other), each robot will still hallucinate



Fig. 1: Overview of Perceptual Hallucination for Hallway Passing: (top) multi-robot hallway passing scenario with an
existing navigation system, (bottom) how PHHP improves the navigation system with hallucinated sensor readings. The color
represents the ID of each robot. When one robot detects the other, the virtual obstacle installation module generates a virtual
obstacle, Hθ, in the global coordinate system defined with respect to the the center of the hallway and orientation of the
robot. How θ specifies the obstacle shape here is shown in the bottom right. The hallucination function, h(·) computes the
depth value of hallucinated readings by taking the minimum value between the real scan and the virtual scan. The robots
use their existing navigation system with hallucinated sensor readings lH to pass each other in the narrow hallway.

its own unique obstacle placed at a different location in the
environment. An overview of the hallway passing scenario
and how perceptual hallucination is applied is illustrated in
Figure 1.

In order to understand which Hθ is best for hallway
passing, we define a hallway-passing cost function. For
a given hallway passing scenario, we define this cost to
encourage both fast and safe passing, i.e.,

C(Hθ) =
TTD1(Hθ) + TTD2(Hθ)

2
+ ccoll ∗ Icoll(Hθ) , (1)

where TTDi(Hθ) denotes the amount of time (seconds) it
takes for robot i to reach their goal with virtual obstaccle
Hθ, Icoll(Hθ) is an indicator function that is 1 if a collision
occurred (and 0 otherwise), and we set the collision penalty
ccoll to 100. With this setup, the problem of finding the
best obstacle to hallucinate for the hallway passing problem
becomes one of finding the θ that minimizes this cost, i.e.,

θ∗ = argmin
θ

C(Hθ) . (2)

B. Optimal Hallucination

We solve Equation (2) and find θ∗ using the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES) [21]
algorithm, a population-based, black-box optimization that
selects and evaluates successive generations of samples. In
each generation, the mean of the next distribution is calcu-
lated by the weighted sum of samples (Θ) where the sample
with the lower result has a larger weight. The new samples
are collected from the normal distribution with measured

mean and covariance and tested until the search distribution
become small enough. At this point, the minimum-cost
sample across all generations is returned as θ∗.

For each sample θ, we measure the value of C(Hθ)
by executing an hallway passing episode with perceptual
hallucination in simulation. More specifically, the episode
is initialized such that the two robots face one another,
and each is given a navigation goal corresponding to the
starting position of the other robot. Then each robot begins
navigating using its existing navigation system (here, the
ROS navigation stack). The robots detect one another when
they are within a certain range and, when this happens, they
employ hallucination (i.e., they begins using lHθ,t as the
LiDAR readings supplied to the navigation system). The
episode ends when both robots get sufficiently close to their
respective goal locations. The amount of time it takes each
robot is recorded as TTDi. Collision is defined as any contact
between robots or robot and walls.

In order to ensure θ∗ is robust to differences between
conditions in simulation and those in the real world, we
further employ domain randomization [22], [23]. That is, we
compute the CMA-ES objective for each sample by averaging
costs obtained over several simulation episodes, each with
randomized starting delay ti and detection range Di.

The pseudocode of the perceptual hallucination for hall-
way passing (PHHP) is given in Algorithm 1.

IV. EXPERIMENTS
We now seek to characterize the efficacy of Perceptual

Hallucination for Hallway Passing (PHHP). In particular, we



Algorithm 1 Find optimal Hallucination with CMA-ES

Require: r0, l0, x0, y0
CMAES.initialize(r0, l0, x0, y0)
min cost ←∞
θ∗ ← None
while σ ≥ threshold do

Θ ← CMAES.generate samples()
for k← 1 to N do

θ ← Θ[k]
t1, t2 ← U[0,tmax],U[0,tmax]

D1, D2 ← U[dmin,dmax],U[dmin,dmax]

TTD1, TTD2, Icoll ← episode(θ, t1, D1, t2, D2)
cost[k] ← TTD1+TTD2

2 + 100 · Icoll
if min cost ≥ min(cost) then

min cost ← min(cost)
θ∗ ← θ

end if
end for
CMAES.optimize(samples, costs)
σ ← CMAES.evaluate()

end while
return θ∗

evaluate: (1) the amount of delay PHHP incurs during the
multi-robot hallway passing scenario compared to a single
robot in the equivalent episode, (2) the extent to which PHHP
suffers from collisions or planning failures, and (3) whether
PHHP is robust enough to generalize to various environments
in simulation and real-world deployment.

We compare PHHP to three alternative methods: a rule-
based, right-lane-following baseline; ORCA [6]; and our prior
approach, which we refer to here as the halting method [19].
1 The explanation of each method is in Sec. IV-C.

We evaluate the performance of each method using the
following metrics:

• ∆t: The amount of delay compared to a single robot
traversing the same hallway.

• Pcollision: The probability of collision.
• Pfailure: The probability that the navigation system

fails to generate a plan, which typically manifests as
the robot turning around.

∆t, or delay, is measured by the amount of TTD incurred in
the episode compared to the time it takes for a single robot to
travel between exactly the same start and end points without
the presence of the other robot.

A. Platform

We evaluate PHHP using BWIBots [24], a custom
differential-drive robot atop a Segway base. A single BWIBot
is 65cm wide, and has a maximum linear velocity of 1.0 m/s.
The BWIBot is equipped with a front-facing Hokuyo LiDAR
sensor with a 170-degree field of view and a maximum range
of 20m. For the embedded navigation system, the BWIBot
uses the E-Band planner [7] as the local planner, which

1The method was originally called the “adaptive method” in the paper.

Fig. 2: The optimization curve of CMA-ES in simulation.
The system finds approximated solutions after only 50 gen-
erations. The best configuration is marked as a red dot.

continually generates a sequence of motion commands over
a 4m horizon.

B. Training

We train PHHP using the widely-used Gazebo [25] simu-
lator since it provides safe and fast ways to collect realistic
data. The simulated training hallway is 1.6m wide, where
the two BWIBots can barely pass each other. Training
episodes proceed as described in Section III-B, where the
robots spawn at either end of the hallway, 17m apart from
one another. For domain randomization, we sample starting
delays uniformly over the interval [0, 5]s, and detection
ranges uniformly over the interval [6, 10]m for each episode.

We use PHHP to find the optimal virtual obstacle for
four different hallways ranging from 1.6m to 2.8m in
0.4m intervals. To accelerate the CMA-ES search, we used
(r, l, dx, dy) = (1.0, 2.0, 1.0, 1.0) as an initial hypothesis,
which, intuitively, represents a virtual obstacle that entirely
blocks the left half of the hallway from the robot’s per-
spective. For each run of CMA-ES, a total of approximately
500 generations occur before the standard deviation of all
samples in a generation becomes less than our selected
threshold of 0.001. A single generation contains 8 sample
configurations, and each configuration is evaluated by the
average cost in Eq. 1 averaged over 16 domain-randomized
episodes. The learning curve of CMA-ES in the narrowest
hallway (1.6m wide) is shown in Figure 2, where it can
be seen that an approximate solution is found after 50
generations. The optimized configurations of virtual obstacle
in all four hallways are presented in Table I.

TABLE I: Optimal configuration of virtual obstacle in vari-
ous hallways.

width radius length dx dy
1.6 0.437 1.739 0.8595 0.491
2.0 1.650 0.041 0.254 1.998
2.4 4.804 0.378 0.323 5.181
2.8 5.317 1.257 0.4475 5.819

C. Alternative Approaches

We compare PHHP with three alternative methods; a right-
lane-following baseline, ORCA, and the halting method. The
right-lane-following baseline, or simply baseline, is inspired
by the US traffic standard. It is a rule-based algorithm
that, upon detection of the other robot, moves the robot



Fig. 3: The average delay of each policy at a 1.6m-wide
hallway in (a) simulation and (b) actual deployment. The
left and right bar of the Halting method represents the
performance of the halting / non-halting robot, respectively.
Note that NH ORCA results in the smallest delay, but it
also records 71.4% of the collision rate in the real-world
deployment.

into a human-annotated right lane and proceeds in that lane
there until the two robots pass one another. ORCA uses the
velocity-obstacle field to indicate whether the goal-directed
velocity is safe to execute. If not, it finds maximum possible
collision avoidable velocity assuming that the opponent will
do the same. While ORCA provides excellent performance
(we consider it to be an upper bound), it also requires
complete knowledge of surroundings—including the precise
position and velocity of the other robot–which limits the
situations in which it can be applied. In the simulation, this
information is easily accessible, but robots have to use com-
munication to share their location and velocity in the real-
world experiment. Hence, whenever the channel becomes
noisy, ORCA have a risk of collision. This contrasts with
PHHP, which only needs to observe the presence of the other
robot once. Finally, the halting method is a system designed
for hallway passing in which, when a halting robot detects
a potential collision, that halting robot immediately moves
to the nearest, safe parking spot until the non-halting robot
completely passes then resumes. It is a general approach but,
due to the halting behavior, the average delay is high.

D. Comparison vs. Alternative Approaches

First, We evaluate the performance of PHHP by comparing
it with the baseline, ORCA, and halting methods. The exper-
iments are conducted in simulations and the real world. The
result is shown in Fig. 3.

Fig. 3 shows the performance of each method in the
most constrained hallway (1.6m wide). Notice first that the
baseline requires a fairly sizeable average delay of 13.5 /
18.4 seconds, which arises because the E-Band local planner
used in this experiment attempts to stay away from walls,
causing the robot to use two slow, right-angle turns to enter
the lane. In contrast, PHHP uses virtual obstacle with a

learned shape and placement that more gradually narrows the
hallway, which allows the E-Band planner to find smoother
trajectories, and ultimately reduces the average delay by
59.93 / 58.54 % relative to the baseline.

The two bars corresponding to the halting method repre-
sent the average ∆t for the halting robot (left) and the non-
halting robot (right). Notice that, while the halting method
results in relatively little delay for the non-halting robot, it
results in a large delay time for the halting robot. PHHP, on
the other hand, does not require either robot to halt, resulting
in an overall delay of only about 2-4 seconds more than the
non-halting robot.

Finally, the performance and safety of PHHP are compared
to the optimal policy ORCA in the hallway passing scenario.
While ORCA represents a performance upper bound, it also
assumes that it has access to each robot’s true position
and velocity, which is a difficult assumption to satisfy in
a real-world setting. Therefore, unlike the simulation, we
observed 5 collisions among 7 experiments in the real robot
deployment. We did not perform further experiments with
ORCA in real robot deployment due to hard crashes. The
major reason for this catastrophic failure is because of the
noisy communication channel, not the algorithm itself, but
still, ORCA is not applicable to real-robot deployment. PHHP,
on the other hand, provides a solution with 3.3s to 4.1s
additional delay while preserving perfect safety. One reason
for the stability of PHHP is because it only needs to observe
the presence of the other robot once when they are at a
reasonable distance. (6-10m).

E. Robustness Analysis

We investigate the robustness of PHHP in terms of sim-to-
real transfer, different environments, and different character-
istics of the robot (i.e., different detection ranges, velocities,
or even different base navigation systems). The test setup
is as follows. In simulation, 1,000 experiments each are
conducted in simulated hallways ranging in width from the
most constrained (1.6m-wide) hallway to a relatively wide
(2.8m-wide) hallway in 0.4m intervals. In the real world,
we define several particular conditions, each with specific
environment and robot parameters, and we run 30 continuous
experiments per condition. Note that the speed of the robot
in real-world deployments is limited to 0.75m/s for safety
reasons unless specified. The robots report their locations
to each other through wireless communication once they
are within detection range. Also, there is about 50cm of
uncertainty in the reported location due to communication
delay and localization error. The detail of each real-robot
deployment condition is given in Table II, and the result
of each experiment is shown in Figure 4. Importantly, no
collision or turnaround was observed during the entire set
of simulation and real experiments. The results indicate
that PHHP is robust to overcome sim-to-real gap since we
directly deploy a policy optimized in simulation without any
changes.

Simulation results and Wide w experiment in actual de-
ployment indicate that PHHP trained on the most constrained



Fig. 4: The average delay of PHHP in (a) simulation and (b)
real-world deployment. PHHP is tested in different widths
of the hallway in simulation and the various conditions in
the real-world experiment. The detailed condition of each
experiment in (b) is provided in Table. II.

1.6m-wide hallway is remarkably robust to hallways of
any wider widths. The robot with most constrained PHHP
(Orange) successfully pass each other with only 2.1s to
3.0s additional delay in unseen environments compared to
the optimal PHHP (Blue) trained on that environment. The
optimal configuration of virtual obstacles in each simulated
hallway is described in Table. I.

Additionally, the real-world results show that PHHP trained
in simulation is robust to other factors such as detection
range (D) and speed (vi). Like the simulation results, no
collision or turnaround was observed during real-world
deployment. We find it interesting that the average delay of
PHHP increases as the velocity increases or the detection
range decreases. If robots use faster linear velocity or a
shorter detection range, the virtual obstacle created by PHHP
appears at a closer distance. As a result, it incurs a sharp turn-
ing trajectory with more rotational movement and increases
the average delay. Lastly, robustness to different control
systems is studied. The experiment was conducted 100 times
in simulation with two robots using E-band [7] and DWA [8]
planners, respectively, in the 1.6m-wide hallway. The average
delay of the robot using the E-Band planner is 5.91 seconds.
This delay is similar to that of the homogeneous control
system experiment. Within 100 episodes, no collisions or
turnaround is observed. Therefore, PHHP is robust to the
changes in detection range and velocity, and even base
control systems show that PHHP can be applied to the robots
with heterogenous control systems without any finetuning.

In this section, we reported a total of 7,100 simulation
episodes along with 180 real robot episodes. The results
confirmed that PHHP could operate robustly regardless of the
sim-to-real problem, the hallway’s width, different detection
ranges, velocity, or even with a different base navigation
system.

TABLE II: The configuration used in real world experiments.

name Base Low D Low v Mix v High v Wide w
D 8.0 6.5 8.0 8.0 8.0 8.0
V1 0.75 0.75 0.75 0.75 1.2 0.75
V2 0.75 0.75 0.75 1.2 1.2 0.75
w 1.6 1.6 1.6 1.6 1.6 1.8

Fig. 5: The two hallways in which we performed the real-
world PHHP experiments. The hallway shown in (left) is 1.6m
in width, while the hallway shown in (right) is 1.8m wide.

V. CONCLUSIONS

In this paper, we presented Perceptual Hallucination for
Hallway Passing (PHHP), a new method that enables multi-
robot navigation in constrained spaces. We showed how
to find the best obstacle for PHHP to hallucinate for a
given environment and navigation policy using CMA-ES.
The simulation and real-world deployment results indicate
that PHHP achieves comparable performance against ORCA,
while removing the assumption that the robot has continuous
access to the other robots’ position and velocity. Moreover,
PHHP outperforms both a right-lane-following baseline and
our prior work, the halting method, in terms of delay.
Additionally, real-world deployment results experimentally
confirm that PHHP, which is trained in simulation, can
successfully be deployed in a wide variety of real-world
settings, including those in which the size of the hallway
has changed, the robots move with different velocities, their
perception system exhibits a different detection range, or
their underlying navigation system has changed. Despite the
successes we presented, PHHP has only been developed and
evaluated here in a two-robot, straight-hallway setting, and
we have only explored using a single static obstacle in the
hallucinated obstacle field. Therefore, an important direction
for future work is to investigate how to expand PHHP to work
with multiple, arbitrarily shaped obstacles in a wider variety
of settings.
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