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Abstract— This paper presents a formal definition and ex-
plicit representation of robot motion risk. Currently, robot
motion risk has not been formally defined, but has already
been used in motion and path planning. Risk is either im-
plicitly represented as model uncertainty using probabilistic
approaches, where the definition of risk is somewhat avoided,
or explicitly modeled as a simple function of states, without a
formal definition. In this work, we provide formal reasoning
behind what risk is for robot motion and propose a formal
definition of risk in terms of a sequence of motion, namely path.
Mathematical approaches to represent motion risk are also
presented, which is in accordance with our risk definition and
properties. The definition and representation of risk provide
a meaningful way to evaluate or construct robot motion or
path plans. The understanding of risk is even of greater
interest for the search and rescue community: the deconstructed
environments cast extra risk onto the robot, since they are
working under extreme conditions. A proper risk representation
has the potential to reduce robot failure in the field.

I. INTRODUCTION

Safety, security, and rescue applications are example do-
mains where robots are used to substitute human agents to
undertake risk in dangerous, dirty, and dull (DDD) environ-
ments [1]. While guaranteeing safety by projecting human
presence, the robots must also ensure their own safety at all
times, in lieu of mission-critical or economic considerations.
This becomes challenging in unstructured or confined spaces,
such as after-disaster deployments, when robots need to
work under extreme conditions. Therefore, it is necessary
for the robots to locomote in a risk-aware manner in those
deconstructed environments to maximize the possibility of
safe mission completion.

Mission risk exists due to a variety of reasons, e.g.,
structural collapse after an earthquake or flooding after a
major hurricane. However, a significant portion of risk during
mission execution under extreme conditions is caused by
the locomotion of the robot, from both the robot’s internal
components and external interaction with the deconstructed
environments. During mission planning and execution, risk
caused by motion could be actively controlled and mitigated
by the robot, unlike other risk sources. Therefore reasoning
about motion risk could help the robot to conduct safe and
trust-worthy motion in those challenging scenarios.

However, to our best knowledge, a formal definition of
motion risk does not exist. Although risk-aware planning
has assumed risk in the form of various cost functions or
probabilistic sensor or action models, a formal definition and
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Fig. 1: Motion Risk in Terms of Path: executing a sequence
of motion, namely path, inherently entails taking risk. Al-
though starting and ending at same locations, taking different
paths put the robot at different risk levels.

a general representation of motion risk is still missing. In this
work, we provide formal reasoning behind robot motion risk
and propose a formal definition of risk in terms of a sequence
of motion, i.e. path (Fig. 1), along with general mathematical
approaches to explicitly represent motion risk. Based on our
risk definition and representation, different robot paths could
be evaluated and compared using the same metric. Planners
can use this general risk representation to plan risk-aware or
risk-averse path, which could reduce robot mission failure,
especially in deconstructed and extreme work envelope.

The rest of the paper is organized as follows: Sec. II gives
related work about robot motion risk in the literature. Sec.
III formally defines and explicitly represents motion risk in a
general and comprehensive way. Sec. IV presents quantitative
motion risk representation results on a particular robot plat-
form and visualizes path examples with their corresponding
risk. Discussions on the risk definition and representation are
also provided. Sec. V concludes the paper.

II. RELATED WORK

Although researchers have investigated risk-aware plan-
ning from a variety of directions, including Partially Ob-
servable Markov Decision Process (POMDP) with negative
reward as risk penalty [2], constrained POMDP [3], or risk
allocation [4], the definition of risk was always taken for
granted and only based on the ad hoc applications.

A large body of work implicitly treated risk as model
uncertainty. Risk was not explicitly defined or represented,
but embedded in certain probabilistic models. The rationale
behind this was that in a perfectly known world where
the robot sensor and transition model is deterministic, the
robot is not facing any motion risk at all. With this implicit
risk representation, the following planning was conducted
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in belief space [5], [6], [7]. In this approach, however, the
definition of risk is avoided using probabilistic models, which
is difficult to convincingly acquire for field robotics. The
hidden risk definition and representation is neither illustrative
nor intuitive for reasoning.

Researchers have looked at explicit representation of risk
as well, although a formal definition of risk is still lacking.
[8] proposed risk as an accumulative parameterized function
based on distance to threats. A similar approach was taken
by [9], where a risk map was generated based on ground
orography and the risk of each location could be looked up
from the map. Those works based risk only on the distance
to some ad hoc hazards. [10] further represented risk of
navigating in construction sites in terms of not only distance
to hazard zones but also visibility value as a function of state.
All those approaches treated risk as a function of state (or
location) on the path, and the total motion risk of executing
that path was simply the summation of all states’ risk (Fig.
1b). This only focused on one very specific form of risk,
neglecting other more general forms.

It seems reasonable that risk associated with each individ-
ual step should be fully embedded in the state. However,
it overlooked the fact that the path which are composed
of states in terms of a sequence of Cartesian waypoints
is only a projection of the true motion trajectory in a
lower dimensional space, i.e., higher order derivatives are
neglected. More specifically, given any type of locomotive
system, its true motion trajectory could be expressed by its
dynamic model in the state space.{

xt+1 = f(t,xt,ut)
zt = g(t,xt,ut)

(1)

where xt ∈ Rn, zt ∈ Rm, ut ∈ Rp are the state
vector, output vector, and input vector, respectively. The
functions f(·, ·, ·) and g(·, ·, ·) describe the system and
output dynamics over time. For the scope of this research, we
focus on discrete locomotion systems and it is assumed that
the state vector xt is directly observable, therefore the output
vector zt is ignored. Ideally, the state vector x captures
necessary information at time step t to determine the risk
the locomotive system is facing at this point, as a function
R : x 7→ ri, where ri ∈ R is the risk index for that particular
state vector.

However, in robotic path and motion planning, planning
in the full dimensional state space is not always computa-
tionally feasible. Therefore the controls over higher order
of derivatives of the state vector is usually assumed to
be handled separately in the form of low level feedback
or feedforward based controllers: the state of the robot of
interest is hence represented in a much lower dimensional
space (<< n). For example, path planning assumes the full
trajectory is only in a three dimensional Cartesian space and
the acceleration or even the velocity are ignored in the plan-
ner, assuming the low-level controllers are able to drive those
high order derivatives into their desired values. This practical
approach for path or motion planning by projecting the
full dimensional state space into a computationally tractable

sub-space, however, ignores the potential information for
planning from those reduced dimensions, e.g., executing
those high order derivatives may inherently entail taking risk
or other system states could also introduce risk. The practical
dimensionality reduction techniques exclude the possibility
of these information being considered for further purposes,
such as risk representation or planning.

This work firstly presents a formal definition of motion
risk in general. It still works on the reduced state space,
but takes into account the entire path leading to a state,
instead of only the state by itself, to incorporate as much
missing information as possible into a more comprehensive
risk representation.

III. EXPLICIT RISK REPRESENTATION
This section presents the explicit risk representation pro-

posed in this research. It starts with a formal definition of
risk in terms of path as in a practical low dimensional space
for robotic path and motion planning. Due to the missing
history information given only one single state in the reduced
state space, we present approaches to augment the low
dimensional path and incorporate “path-level” information
in order to compensate the missing dimensionality. Then
risk caused by different aspects of the augmented space is
represented in a quantitative manner, which observes the
formal definition of risk.

A. Risk Definition

Risk is one embodiment of uncertainty. We propose one
possible way of defining risk in terms of a sequence of mo-
tion, namely path: risk is the relative likelihood of the robot
not being able to finish the path. It is a relative measurement
of certain relevant features of paths with respect to a certain
robot. The two components of the definition will be formally
defined as well.

1) Relative Likelihood: In this definition, Relative Likeli-
hood gives the relative order of the likelihood of some event
happening, e.g., the robot not being able to finish the path.
The order is reflected by a numerical value proportional to
the likelihood. This numerical value is called risk index. This
risk index is to be distinguished from other uncertainty mea-
surements such as probability or possibility, as they already
have their own strict mathematical definitions. Our risk index
only gives the relative order of the likelihood: a higher risk
index only means it is more likely that the robot cannot
finish the path than a lower risk index, but no conclusions
or comparison about the probability or possibility of failure
could be drawn.

2) Not Being Able To Finish The Path: We also need to
formally define not being able to finish the path. In this work,
we focus on discrete state spaces. For a discrete reduced state
space, a feasible and collision-free path could be represented
in the form of an ordered sequence of states:

P = {s0, s1, ..., sn} (2)

where si ∈ R3 (or R2 if the robot resides in 2-D
workspace) denotes the ith state on path P while s0 is the
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initial state. For the path to be feasible, two consecutive states
need to be locally connected, which is to satisfy

‖si − si−1‖2 ≤ rc,∀1 ≤ i ≤ n (3)

Here rc is the radius of connectivity, ascribing the maxi-
mum distance between two consecutive states for feasibility.
The robot’s workspace is also occupied with a set of obsta-
cles:

OB = {obi|i = 1, 2, ..., o} (4)

where obi ∈ R3 has radius robi . For the path P to be
collision-free:

∀1 ≤ i ≤ n, 1 ≤ j ≤ o, ‖si − obj‖N ≥ robj (5)

Here, the N -norm could be 1, 2, ∞, etc., depending on
the representation of the obstacle. Given a workspace, the
obstacle set OB is assumed to be constant and therefore when
being used as an argument of a function, OB is omitted.

The execution E of the planned path P is returned at a
terminal state, either reported by the robot after completion
or due to system failure such as a crash, described by another
ordered sequence of actually executed states:

E = {e0, e1, ..., em} (6)

where ei ∈ R3, e0 = s0 since the path plan should starts
at the robot’s initial position. We firstly define being able to
finish the path, whose negation is simply not being able to
finish the path: a robot is able to finish the path plan P with
path execution E if

∀0 ≤ i < n, ∃0 ≤ j1 ≤ m, ‖si − ej1‖2 ≤ rp

∧∃j1 ≤ j2 ≤ m, ‖si+1 − ej2‖2 ≤ rp
(7)

The first part of Eqn. 7 guarantees that for all positions
on the path plan, there exists at least one position in the
actual execution that is within rp distance. This makes sure
that all states on the path plan is reached by the robot. The
second part after the AND operation of Eqn. 7 guarantees
the chronological order of the states.

However, a random-walk-like execution in the free space
will possibly satisfy Eqn. 7 with arbitrarily long execution
steps. So its symmetric condition, Eqn. 8 is added in order to
guarantee the actual execution cannot be too far away from
the plan:

∀0 ≤ j < m, ∃0 ≤ i1 ≤ n, ‖ej − si1‖2 ≤ re

∧∃i1 ≤ i2 ≤ n, ‖ej+1 − si2‖2 ≤ re
(8)

Usually re ≥ rp so that the execution can deviates more
from the path than vice versa. We name Eqn. 7 reachability
condition and Eqn. 8 stability condition.

If the robot’s execution E of plan P satisfies both reach-
ability condition (Eqn. 7) and stability condition (Eqn. 8),
it is able to finish the path. Therefore, violation of any of
the conditions is defined as not being able to finish the path.

For violating reachability condition, it is possiblly because
of inappropriate interactions with the environment, e.g., the
robot collides with an obstacle and cannot continue with path
execution, or because the robot’s internal components fail
due to frequent aggressive actions along the path. So the
last executed position em only corresponds to some middle
state in P , leaving following states not reached at all and
therefore violating reachability condition. Another scenario
is that only some middle states si in P are not reached
by any ej in E. But this is less likely since the robot’s
low level navigator or controller usually makes sure that the
robot reaches a certain state si before it moves on to si+1.
Violating stability condition can be viewed as certain portion
of the execution deviates too much from the plan, e.g., due
to sharp turns, overshoot, or disturbances. If this is not the
concern, re could be set to ∞ so that Eqn. 8 becomes trivial
and the robot finishes the path as long as all states si on the
plan P is reached by some ej in execution E.

It is worth to note that this work addresses the motion
risk with respect to a path plan P , in order to predict the
relative likelihood that a a future execution E fails the path.
With this formal definition of risk, the risk index used has
the following properties:

• Non-negativity
• Monotonicity
• Additivity
As a measurement of relative likelihood, risk index should

be non-negative. With increasing states in the path plan P ,
risk index is monotonically increasing. It is trivial to show
that the risk of executing a path plan P contains the risk
of executing its sub-path, and the execution of the rest of
the path will induce extra risk due to non-negativity. Given
a path P composed of two disjoint path segments P1 and
P2, the likelihood of not being able to finish the whole path
could be interpreted as the addition of the likelihood of both
segments: ri(P1 ∪ P2) = ri(P1) + ri(P2) if P1 and P2 are
disjoint.

B. Augmented Lower Dimensional State

In a conventional state-dependent risk representation, risk
at state si is defined based on a function mapping from
one state to a risk index r : si 7→ ri and the risk of
executing a path P is a simple summation of all individual
states risk(P ) =

∑n
i=0 r(si). For a more general and

comprehensive risk representation, the function r(·) is either
not well-defined (due to the lack of history information) or
only contains a subset of all risk elements (this is simply
the subset of risk elements which are state-dependent). This
is the reason why the risk information enclosed in the high
order derivatives in the original full dimensional space is
missing.

In the proposed path-dependent risk representation, risk at
state si cannot be simply evaluated by the state alone, but
also by the path leading to si, pi = {s0, s1, ..., si}. The risk
at si is computed through the mapping R : (s0, s1, ..., si) 7→
ri. The path-level risk is relaxed from the summation of
state-dependent risk only risk(P ) =

∑n
i=0 r(si) to a more
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Fig. 2: Graphical Representation of actions, states, and paths:
arrows represent actions, transitioning from previous to next
state, shown in circle. Dashed boxes represent paths.

general representation risk(P ) =
∑n

i=0 R(pi), therefore
partially recovers the missing information due to dimension-
ality reduction.

In order to do so, we further augment the reduced state
with action and path. action is defined as the transition
between two consecutive states:

A = {ai|ai = transition(si−1, si), i = 1, 2, ..., n} (9)

The action here is different from the input vector ut

defined in Eqn. 1, but a more abstract representation of state
transition. One example of transition(si−1, si) is simply the
difference between two states ‖si − si−1‖. Exerting actions
from initial state s0 will generate an ordered sequence of
states:

S = {si|i = 0, 1, ..., n} (10)

We further conglomerate consecutive states starting from
s0 to paths:

P = {pi|pi 3 {s0, s1, ..., si}, i = 0, 1, ..., n} (11)

A graphical representation of our augmented state space
is shown in Fig. 2.

C. Risk Representation

The proposed risk representation contains potential risk
caused by all actions, states, and paths.

Executing any sequence of actions can cause potential risk,
regardless of which state the robot is in and which path it
is taking. More specifically, this could be expressed as the
difficulty of the action and difference between consecutive
actions (turn).

riska(a1, a2, ..., an) = wa1

n∑
i=1

‖ai‖+ wa2

n∑
i=2

‖ai − ai−1‖

(12)
Here, ‖ai‖ could be viewed as the difficulty of executing

ai, such as the length of the action. For example, moving in
a 8-connectivity 2-D occupancy grid may have ‖ai‖ = 1
or ‖ai‖ =

√
2. ‖ai − ai−1‖ is the difference between

consecutive actions, such as the risk of turning or change
directions. These two terms resemble the effect of first (ve-
locity) and second (acceleration) derivatives of the original
high dimensional state space. Higher order derivatives could
be approximated by more terms, such as ai, ai−1, ai−2. But

for the sake of simplicity and practicality in conventional
mobile robotic systems, we only aim at the risk induced by
first and second derivatives. wa1 and wa2 are the relative
weights of the two action-dependent risk elements.

The conventional risk representation assumes risk to be
a function of state and the function r : si 7→ ri is well-
defined and represents all necessary risk information. The
proposed explicit risk representation includes this type of
risk representation, but this only composes a subset of all
risk sources.

risks(s0, s1, ..., sn) =

n∑
i=0

rs(si) =

n∑
i=0

m∑
j=1

wsjrsj(si)

(13)
where the risk of a certain state rs(·) could be subdivided

into m state-dependent risk elements rsj(·) and wsj repre-
sents the respective weight.

The final type of risk is path-dependent. This kind of risk
is associated with the end state of a path and needs to be
evaluated based on the entire path:

riskp(p0, p1, ..., pn) =

n∑
i=0

rp(pi) =

n∑
i=0

m∑
j=1

wpjrpj(pi)

(14)
where rpj(·) is one of the m different path-dependent risk

elements and wpj is the respective weight. rp(pi) is not the
risk of executing the entire path pi, but the risk associated
with the end state of path pi, si, by taking the path pi. A
more intuitive illustration is in terms of conditions, despite
the abuse of conditional notation:

rp(pi) = r(si|s0, s1, ..., si−1) (15)

The summation of the risk of individual paths is to
guarantee the possible decrease in path-dependent risk will
not cancel the risk already caused by previous paths.

Therefore, the total risk of the path is the summation of
all the risk caused by actions, states, and paths. Normaliza-
tion or weighting may be necessary depending on different
applications.

risktotal(P ) = wariska + wsrisks + wpriskp (16)

where wa, ws, wp are the weights assigned to action-,
state-, and path-dependent risk, respectively.

IV. QUANTITATIVE EXAMPLES

In this section, we provide quantitative risk representations
using a particular robot platform as example, a tethered
Unmanned Aerial Vehicle (UAV), Fotokite Pro, which was
used as a visual assistant to pair with a tele-operated
Unmanned Ground Vehicle (UGV) for operations in after-
disaster environments, such as Fukushima Daiichi nuclear
decommisioning [11], [12]. Using the formal risk definition
and explicit risk representation discussed above, examples
of relative likelihood of the UAV not being able to finish
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Fig. 3: Tortuosity (upper left), Visibility (lower left), Tether
Length, and Number of Contacts (right): tortuosity captures
the effort of changing action directions. Visibility represents
the obstacle density of a given state. Tether length and
number of contacts depend on the path taken.

a path, namely risk, are computed by actions, states, and
paths. In the examples, the planning space is represented as
a 2-D occupancy grid for simplicity. Each risk element is
normalized to a value between 0 and 1 and all weights w
are set to 1 so all risk elements are treated equally.

Each state si is a 2-D waypoint (xi, yi), which we augment
to A, S, and P using the approach described in Sec. III.
Action-dependent risk is caused by action length ‖ai‖ and
tortuosity (Fig. 3 upper left) ‖ai − ai−1‖. Absolute value of
action length is either 1 or

√
2 in a 2-D occupancy grid with

8-connectivity. Then it is normalized to a value between 0
and 1. Tortuosity is originally defined as number of turns
needed to traverse unit distance, but here it is abstracted to
a high-level effort in changing action directions and normal-
ized between 0 and 1. For state-dependent risk, distance to
closest obstacle and visibiity (Fig. 3 lower left) [13] are used.
Both are normalized using membership function in fuzzy
logic. The tethered UAV is a good example to illustrate path-
dependent risk. Fig. 3 right shows that by taking different
paths, reaching the goal may have different path-dependent
risk. [14], [15] show that longer tether length and more
number of contacts in path 1 will introduce more uncertainty,
and therefore more risk (state-dependent risk for path 1 may
be actually lower since the distance to closest obstacle and
visibility are larger). Tether length and number of contacts are
also normalized using the potential maximum values given
the map size and obstacle density at hand (here, 20 unit
length for tether length and 10 for number of contacts).

For the two example paths shown in Fig. 1a, risk is quan-
tified using the proposed risk definition and representation.
In Fig. 4, red cells represent obstacles and map edges are
also treated as obstacles. Arrows connect from start to goal
location. Black lines denote tether configuration at each step.
It is assumed that tether reel center coincides with the start
location. Contacts with the obstacles could be seen as the
kinks on the tether. A color map from green to red represents
the risk level from low to high. Risk caused by actions,
states, and paths are further normalized between 0 and 1
again, resulting a total summation between 0 and 3 for each
step on the path. The colors of the arrows denote the risk

(a) Path 1 (b) Path 2

Fig. 4: Quantitative Risk Representation of Paths in Fig. 1a

index of taking that step, computed by the risk representation
described in Sec. III. Due to the additivity property of the
proposed risk definition, the motion risk of the entire path is
the summation of all subpaths, i.e. individual steps. In Fig.
4a, the straight path comes with a straight tether without
any contacts. The risk caused by changes of actions is
zero. The risk is low at the very beginning, and increases
due to higher state-dependent risk when approaching the
narrow gap between the two obstacles. The risk decreases
after coming out of the gap. But path-dependent risk caused
by longer tether length adds up moving away from tether
reel. On the other hand (Fig. 4b), the path circumvents
the narrow gap between obstacles and goes through wide
open spaces to approach the same goal location. Using
conventional state-based risk representation, this path may be
safer since most states are far away from obstacles and have
higher visibility. However, extra maneuvers to go around the
obstacles (actions), longer tether, and contact points (path)
induce more risk to this path. Total risk of path 2 (15.3) is
higher than that of path 1 (8.8), meaning that the relative
likelihood of the robot not being able to finish path 2 is
higher than that of path 1. Previously neglected aspects of
risk is now considered by the proposed representation.

Another set of examples are shown in Fig. 5, as the
quantitative results of the example in Fig. 1b. Tether reel
locates at the upper left corner of the map. With regular
state-based approach, path 2 maneuvers through a series of
“safe” states (as shown in the blue risk values in Fig. 1b),
while states on path 1 have higher risk (orange values in Fig.
1b). However, risk caused by the actions to maneuver the
tortuous path is not considered by the traditional approach.
These actions could be risky due to frequently aggressive
rotor thrusts, extra disturbances for sensing and controls,
etc. Path-level risk is also overlooked, since the tortuous
path requires longer tether length on average. All these risk
elements could be properly incorporated into the total motion
risk by the proposed risk representation: the total risk of path
2 (21.1) is actually higher than that of path 1 (15.8).

It is worth to note that this work does not claim to establish
an unanimous measurement of risk, but only provides a
formal definition and an approach to explicitly represent
motion risk as a relative likelihood. In the quantitative
examples, it is assumed that all weights are 1 and all risk
elements are normalized to 0 and 1. This treats all risk
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(a) Path 1 (b) Path 2

Fig. 5: Quantitative Risk Representation of Paths in Fig. 1b

elements identically in terms of their contribution to the final
path risk. No prioritization of certain risk elements exists in
the examples. When using the proposed risk representation
on specific robots, however, prioritization in the combination
is necessary depending on the characteristic of that particular
robot. Vehicle-, environment-, and mission-dependent criteria
need to be considered. For example, risk of turning for holo-
nomic vehicles (vehicle-dependent) is trivial, so importance
of risk caused by difference in consecutive actions (wa2 in
Eqn. 12) could be reduced, and vice versa for nonholonomic
vehicles. The vehicle’s motion or perception accuracy also
needs to be considered. When facing large disturbances
(environment-dependent), state-dependent risk (ws in Eqn.
16) needs to be prioritized, since larger safety margin is
necessary. Environment semantics, or consequences of im-
proper interactions with the environment (for example, lethal
physical damage or only deterioration of perception), also
determine which risk elements should carry more weight.
Safety- or stability-oriented missions (mission-dependent)
play a role in prioritization as well. Therefore, we are not
saying path 1 is safer in general than path 2 in Fig. 4 and
Fig. 5. A robot with low perception and actuation accuracy
working under large disturbances may make path 2 safer
in Fig. 4 and Fig. 5. Our risk definition and representation
provide a general framework to incorporate more relevant
factors into motion risk, which is otherwise impossible with
conventional state-dependent approaches only. Therefore the
proposed paradigm is more comprehensive and general.

V. CONCLUSIONS

Robot motion risk is formally defined as the relative
likelihood of the robot not being able to finish the path. The
relative likelihood is ordered by a numerical value, called
risk index, which is non-negative, monotonic, and additive.
Not being able to finish the path is also formally defined
mathematically. Working on paths in a reduced dimensional
space (2-D or 3-D) without higher order derivatives or
other information, an explicit risk representation approach
is presented based on augmentation of the original path in
Cartesian space into actions, states, and paths. Risk caused
by those are represented explicitly by risk index. Examples of
quantitative risk representation are provided with respect to a
tethered UAV. The new representation enables the inclusion
of previously impossible aspect of risk, such as risk caused

by actions and paths, in particular, action length, tortuosity
and tether length, number of contacts, respectively. Although
this work does not aim at an unanimous measurement of
motion risk, the proposed paradigm provides a more com-
prehensive and general approach to reason about motion risk.
Future work will focus on applying the proposed approach
to a variety of mobile robot platforms and validating the
representation using physical experiments. It will also be
combined with new planners in order to plan risk-aware path
in a more broad sense.
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