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Introduction

Mobile robot navigation has been studied by the robotics
community for decades (Fox, Burgard, and Thrun 1997).
In relatively controlled and uniform environments, e.g., in-
door laboratories, existing navigation systems can produce
robust navigation behaviors with verifiable guarantees that
the robot will not collide with obstacles while moving.

However, when facing the variety of navigation environ-
ments encountered during deployment in the wild, exist-
ing navigation systems require robotics experts to make in-
situ adjustments to adapt systems through sensor calibration
(Xiao et al. 2017) or parameter tuning (e.g. maximum speed,
sampling rate, inflation radius)) (Zheng 2017). This depen-
dency on expert roboticists onsite during deployment makes
it difficult for non-expert users to successfully deploy mo-
bile robots in the wild.

On the other hand, these non-expert users often are able
to have valuable interactions with the platform that could
be used to teach robots to adapt to a variety of deployment
scenarios. For example, non-expert users can provide a tele-
operated demonstration to show the robot the desirable nav-
igation behaviors, intervene when the robot performs subop-
timally, or simply give evaluative feedback, from which the
robot can learn.

To this end, we have proposed Adaptive Planner Param-
eter Learning (APPL), which utilizes different interaction
modalities with non-expert users to learn adaptive plan-
ner parameters and enable desirable navigation behaviors
in the wild. We have introduced a suite of APPL methods
that utilize human demonstration (APPLD), corrective inter-
vention (APPLI), evaluative feedback (APPLE), and unsuper-
vised reinforcement learning (APPLR). In contrast to end-
to-end learning for navigation, the APPL paradigm inherits
the benefits from classical navigation approaches, e.g. safety
and explainability, and simultaneously enjoys the flexibility
and adaptivity of learning methods (Xiao et al. 2020b; Liu,
Xiao, and Stone 2021). All these methods are tested on the
Robot Operating System move base navigation stack with
a physical mobile robot in the real world.
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Adaptive Planner Parameter Learning (APPL)
We present four APPL methods to enable desirable naviga-
tion behaviors in the wild, which are based on a parameter
library or a parameter policy learned from different non-
expert human interaction modelities.

APPL from Demonstration (APPLD)1

While they may not be able to perform expert-level system
tuning, non-expert users can typically provide a teleoperated
demonstration to show the robot the desirable navigation be-
havior during deployment in the wild (Xiao et al. 2020a).
The overview of APPLD is shown in Fig. 1.
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Figure 1: APPLD. Human demonstrations are segmented into
different contexts, for each of which a set of parameters θ∗k
is learned via behavior cloning. During deployment, the sys-
tem parameters are dynamically selected from the learned
parameter library using an online context predictor.

APPL from Interventions (APPLI)2

In many places, the default navigation system performs well
(shown in green in Fig. 2), but it may fail (red) or suffer from
suboptimal behavior (yellow) in others. The robot learns

1https://www.youtube.com/watch?v=u2xxPTZA0DY
2https://www.youtube.com/watch?v=aRAJ1Dl69gI&t=10s



Figure 2: APPLI. Human interventions in places where fail-
ure (Type A) and suboptimal navigation (type B) occur are
used to learn adaptive planner parameters and, based on a
confidence measure, select them during deployment.

new parameters from the interventions provided by the non-
expert users at these challenging places and applies them in
similar scenarios based on a confidence measure during de-
ployment (Wang et al. 2021).

APPL from Evaluative Feedback (APPLE)
In cases for which non-expert users are unable to pro-
vide teleoperated demonstrations or corrective interventions,
robot performance can still be improved using APPL with
interactions that are easier to provide, e.g., evaluative feed-
back. APPLE uses either discrete feedback (the robot’s action
is good or bad, i.e. {−1, 1}) to select a parameter set from
a pre-built parameter library, or learns a parameter policy
(explained in detail in the following paragraph) from contin-
uous feedback (e.g. a score within the range [−1, 1]).

APPL from Reinforcement (APPLR)3

In contrast to all aforementioned APPL variants, APPLR (Xu
et al. 2021) does not require any human interactions and is
pre-trained before any deployment. APPLR learns a parame-
ter policy (Fig. 3) that is trained using reinforcement learn-
ing in the simulated Benchmark for Autonomous Navigation
(BARN) dataset (Fig. 4) (Perille et al. 2020) to make planner
parameter decisions in such a way that allows the system to
take suboptimal actions at one state in order to perhaps per-
form even better in the future. For example, while it may be
suboptimal in the moment to slow down or alter the plat-
form’s trajectory before a turn, doing so may allow the sys-
tem to carefully position itself so that it can go much faster
in the future than if it had not.

Conclusions
In this abstract, we present an overview of APPL, which
provides a suite of methods to enable non-expert users to
deploy mobile robot with desirable navigation behaviors in
the wild. APPL inherits benefits from classical planning ap-
proaches and also enjoys adaptivity from machine learning.
Video links of the physical experiments of the APPL methods
are provided, along with references to the detailed papers.

3https://www.youtube.com/watch?v=JKHTAowdGUk&t=134s

Figure 3: APPLR’s Parameter Policy vs. Classical RL’s Mo-
tion Policy

Figure 4: APPLR Training in BARN Dataset
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