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Introduction
Reinforcement Learning (RL) robotics projects require mas-
sive amounts of computing power for both training and ex-
perimentation. Moreover, it is likely that large-scale com-
puting clusters may not have the required software to run
experiments for certain projects, e.g. Robot Operating Sys-
tem (ROS) (Quigley et al. 2009). To remedy this, contain-
ers, such as Docker (Merkel 2014) and Singularity (Kurtzer,
Sochat, and Bauer 2017), have been used to package all the
necessary software needed to run experiments for RL. In ad-
dition, the use of a container improves reproducability since
the container can be built into an image file and shared very
easily.

While these containers can be built from scratch based
on each case, the code to create the container, run exper-
iments, and collect data is quite general. There are guides
on how to build containers; however, there is no clear guide
that exists for creating and implementing these containers
for large scale RL robotics tasks on computer clusters. In
this paper, we present our Parallelized Containers for Re-
inforcement Learning (PCRL) framework which provides a
general foundation to carry out large scale RL robotics tasks.
Moreover, we present an example of this framework being
applied to a mobile robot navigation task.

Our PCRL framework methodology is specific to the
actor-critic RL algorithms as well as the HTCondor sched-
uler and Singularity containers; however, this framework can
be easily extended to use other RL algorithms, container
methods, and schedulers.

Methodology
Building the Container
PCRL depends on a pre-built container for the learning task
of interest, which works as a containerized black box with
specifically designed input and output interfaces and can be
further parallelized on large computer clusters. Singularity
is becoming increasingly common for High Performance
Computing (HPC). Moreover, many computer clusters only
support Singularity due to its superior safety features com-
pared to other container solutions, such as Docker (Merkel
2014). Therefore, we choose Singularity and present how
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to create a Singularity container with the required software,
e.g. ROS, as opposed to other container methods.

The Actor-Critic Framework
Actor-Critic (AC) framework is one of the most popular RL
framework, which is adopted by many state-of-the-art algo-
rithms, such as TD3 (Fujimoto, van Hoof, and Meger 2018)
and SAC (Haarnoja et al. 2018). The PCRL framework uses
the AC framework by making the critic and all the actors as
instances of a Singularity container: one for each actors. All
container instances are created based on the same Singular-
ity container image, with specific parameterization from a
central node, i.e. the critic. When the container instances are
submitted to the cluster, each compute node runs the actor
algorithm inside the instance of the Singularity image spe-
cific to that node. To simultaneously share the experience
generated by the actor and the policy updated by the critic, a
buffer folder B on the host folder, which maintains the pol-
icy πp for the actors, is mounted to the buffer folder B∗ on
each of the actor nodes. Figure 1 shows the structure of such
a file system. As it describes in algorithm 1, the container in-
stance in a actor node rollouts the experiences based on the
latest policy and write experiences into B∗. The critic then
collects the experiences from B at a constant frequency, up-
dates the policy, and places the new policy into B for the
actors in the containers to use, as in algorithm 2. Both the
actor containers and the critic on the host node run in paral-
lel.

Figure 1: Depiction of the movement of data between the
container and the host node



Algorithm 1 Running Actors with Containers

Require: Container with Actor network as well as a buffer
folder B∗, Buffer folder on the host node B containing
policy πp.

1: B is bound to B∗.
2: Submit a job consisting of the Actor container
3: while Training not ended do
4: // In container
5: Run the policy from the mounted folder.
6: Save experiences into the B∗ folder.
7: end while

Algorithm 2 Running Critic on the Host Node

Require: Number of updates, Critic Network, Buffer folder
on the host node B containing policy πp

1: for each update step do
2: //On host node
3: Gather experiences from B
4: Update πp with the experiences in B
5: Place updated πp into B
6: end for

HTCondor (Tannenbaum et al. 2001)
Our PCRL framework is primarily specific to the HTCondor
scheduler for large computing clusters. HTCondor takes in
submission files, which contains commands and keywords
to direct the queuing of jobs. In this submission file, Con-
dor finds everything it needs to know about the job, such as
the name of the executable to run, the initial working direc-
tory, and command-line arguments to the program. HTCon-
dor then locates a machine in the cluster, packages up the
job, and ships it off to be run by the machine. A Singular-
ity universe job instantiates a Singularity container from a
Singularity image, with parameterization specified for that
actor. HTCondor manages the running of that container as
an HTCondor job.

Example
We use the Adaptive Planner Parameter Learning from Rein-
forcement (APPLR) (Xu et al. 2020) as an example1 of using
PCRL. In APPLR, the RL agent learns a parameter policy,
which adjusts the parameters of a robot navigation system to
optimize navigation performance in obstacle-occupied envi-
ronments.

Using PCRL, APPLR is trained on 300 Gazebo worlds.
Singularity containers were used over Docker containers be-
cause our Mastodon computing cluster did not have Docker
installed due to a couple of reasons. Firstly, for all practi-
cal purposes, Docker grants superuser privileges, something
that is not recommended in multi-user settings like a com-
puting cluster. Secondly, the Mastodon cluster uses the HT-
Condor scheduler, and users submit jobs with CPU, mem-
ory, and time requirements. The Docker command is just an

1PCRL Implementation for APPLR: https://github.com/
dgauraang/APPLR-1

API that talks to the Docker daemon, so the resource re-
quests and actual usages do not match. Singularity, on the
other hand, runs container processes without a daemon, so
all jobs are just run as child processes.

Since we were using the Clearpath Jackal ground robot for
all of our experiments, our Singularity container contained
not only ROS Melodic but also all the packages required for
the Jackal robot, such as jackal simulator and jackal desk-
top. Singularity builds containers from definition files: .def
files that contain all the packages and installations that are
required for the experiments. Once the container is built, we
wrote a shell script to bind a folder on the host node to a
folder in the container, so the experiences of the actors are
saved into the folder on the host node and not lost. We then
wrote a script to automatically create and submit the HT-
Condor submission jobs based on the number of actors we
needed. Code for the .def file and script to generate and sub-
mit the submission files are provided 1.

Conclusions
In this abstract, we present a framework for using contain-
ers on large computing clusters for RL training and testing.
More specifically, we detail the use of Singularity contain-
ers and HTCondor scheduler on large computing clusters to
carry out training and testing of Actor-Critic algorithms. Our
PCRL framework provides a way to make distributed train-
ing and testing easier using containers and holds three major
benefits: (1) a generic parallelized RL training framework
that is compatible with different RL algorithms; (2) can eas-
ily be applied to different robotic projects with unsupported
software stack in the cluster; (3) inherit the reproducibility
and distributability of the container.
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