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Introduction
Classical mobile robots are designed to be adaptive to dif-
ferent navigation environments by in-situ adjustment of the
underlying navigation system, such as by sensor calibration
(Xiao et al. 2017) or by parameter tuning (Xiao et al. 2020).
However, without adjustment from expert knowledge, the
untuned system may repeat the same mistakes (e.g. stuck
in the same bottleneck) even though it has navigated in the
same environment multiple times.

Recent success in using machine learning for mobile
robot navigation indicates the potential of improving nav-
igation performance from a robot’s past experience in the
same environment (Kahn et al. 2018). When facing different
navigation environments, however, learning methods cannot
generalize well to unseen scenarios: They must re-learn to
navigate in the new environments. More importantly, the
learned system is prone to catastrophic forgetting, which
causes the robot to forget what was learned in previous en-
vironments (French 1999).

This paper introduces a Lifelong Learning for Navigation
(LLfN) framework that addresses the aforementioned chal-
lenges: Instead of learning from scratch, the navigation pol-
icy is initialized through a classical navigation algorithm,
whose navigation performance does not improve with in-
creasing experience. The robot is able to identify its sub-
optimal actions and learn from them. The navigation per-
formance then improves in a self-supervised manner. When
facing different navigation environments, the navigation pol-
icy is able to learn to adapt to new environments, while not
forgetting how to navigate in previous ones. LLfN is imple-
mented entirely onboard a physical robot with limited mem-
ory and computation, and demonstrated to allow the robot to
navigate in three different environments (Figure 1). Links to
the video and the full version of the paper are provided.12

Lifelong Navigation Problem
Under the lifelong navigation problem, a mobile robot will
sequentially navigates m environments {Ei}mi=1. Whenever
the robot advances to Ek, it no longer has access to {E}k−1i=1 .
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1Video at https://tinyurl.com/lifelonglearningfornavigation.
2Paper at https://arxiv.org/pdf/2007.14486.pdf.

Figure 1: Three navigation environments: An initial navi-
gation policy navigates well most of the time (green), but
occasionally behaves suboptimally (e.g. moving extremely
slowly or getting stuck). Lifelong Learning for Navigation
learns a complementary policy deployed in conjunction with
the initial policy, which gradually eliminates the suboptimal
behaviors in the current environment while not diminishing
performance in previous environments. During deployment,
the learned policy is mostly used in the red segments.

Within the environment Ek, the agent, at each time step t,
computes a motion command at ∈ A ∼ πθ(st), where
st ∈ S is the agent’s state and πθ is a policy parameterized
by θ. The goal is learn the best policy πθ that can navigate
all m environments after visiting them in the sequence. The
key challenge is caused by the catastrophic forgetting prob-
lem of typical learning methods, which means learning in
new environment will downgrade the performance in previ-
ous environments. Specifically, we constrain that the robot
has a small fixed-size memory buffer to store any data.

Gradient Episodic Memory
Gradient Episodic Memory (GEM) (Lopez-Paz and Ran-
zato 2017) prevents forgetting by ensuring each learning
update in new environment will not increase the loss on
previous tasks. Specifically, assume the agent has already
seen environments up to Ek−1 and the learned policy is
πθk−1

. GEM assumes the agent keeps a small memory buffer
B = {Mi}i<k that, for each previous environment Ei, stores
a few exemplary data points Mi. GEM then optimizes the
following objective:

min
θ
`(πθ, Ek), s.t. `(πθ,M) ≤ `(πθk−1

,M), ∀M ∈ B,
(1)



where `(π,X) is the loss function that evaluates perfor-
mance of π on data/environmentX . For instance, if we store
past state-action pairs (s, a) as demonstrations and use be-
havior cloning to maintain the performance on those states,
then `(π,X) = E(s,a)∼X ||πθ(s)− a||2. To efficiently solve
the above optimization, GEM observes that the constraints
are satisfied as long as 1) the new θ is initialized from θk−1,
and 2) at each optimization step, the loss on previous tasks
does not increase. Assume the optimization steps are small,
we can determine whether a new update increases the loss
on a previous task by computing the inner product between
the gradients on the current and previous tasks. The opti-
mization problem then becomes

min
θ
`(πθ, Ek), s.t. 〈∂`(πθ, Ek)

∂θ
,
∂`(πθ,M)

∂θ
〉 ≥ 0, ∀M ∈ B.

(2)
In practice, GEM solves the above optimization efficiently
by solving its dual problem using a quadratic program
solver. GEM can maintain the learned knowledge well by
only storing a few data points from the past tasks, which is
particularly suitable for lifelong navigation of mobile robots.

Lifelong Learning for Navigation
We propose the Lifelong Learning for Navigation frame-
work (LLfN) to tackle the lifelong navigation problem.
Specifically, LLfN interleaves between a classical sampling
based planner π0 and a learnable planner πθ. During exe-
cution, LLfN records any state (e.g. s) where sub-optimal
navigation behavior occurs (e.g. moving too slowly or doing
recovery behavior). Then it uses π0 to sample motion com-
mands until it goes through the difficulty at s. LLfN then
looks for an action a from the trajectory nearby s that pos-
sibly leads to its success and records (s, a) into the mem-
ory buffer. Finally, πθ learns from (s, a) while using GEM
to maintain previously learned behaviors. Specifically LLfN
has the following components:
• An initial sampling-based navigation planner π0 and a

learnable policy πθ, parameterized by θ.
• A scoring function D : S × A → R that evaluates

how good an action a is at the state s, i.e. larger D(s, a)
indicates a is a better action at s. In practice, we use
D(s, a) = av where av is the velocity.

• A streaming memory buffer Bstream that stores the past T -
step trajectory, i.e. Bstream = {sj , aj}tj=t−T+1.

• A per-environment memory Mk : |Mk| = n/k (n is
the memory budget) that stores the exemplar training data
(self-generated data that are worth learning from) from
environment Ek. The entire memory before entering Ek is
therefore a set of sets: B = {Mi}i<k.

• An algorithm Acorrect that given a recent suboptimal be-
havior (s, a) ∈ Bstream, finds exemplar training data
(s′, a′) ∈ Bstream such that learning from (s′, a′) improves
the navigation performance at s.

• A continual learning algorithm Acl (e.g. GEM) that up-
dates πθ givenMk and B. Acl should retain performance
on previous environments.

The LLfN algorithm is summarized in Algorithm 1.

Algorithm 1 Lifelong Learning for Navigation (LLfN)

1: Inputs: π0, πθ, D, Acorrect, Acl, Emk=1, and a threshold η.
2: B ← ∅, Bstream ← ∅, and initialize θ0 randomly
3: // Training
4: for environment k = 1 : m do
5: Mk ← ∅
6: while navigating in Ek do
7: progress to state st and generate at ∼ π0(st)
8: execute at and update Bstream with (st, at)
9: let p = bt− T/2c and select (sp, ap) ∈ Bstream

10: if D(sp, ap) < η then
11: (s′, a′) = Acorrect(sp,Bstream)
12: updateMk with (s′, a′)
13: end if
14: end while
15: θk ← Acl(πθk−1

,Mk,B) . Lifelong learning
16: Shrink B to size (n− |Mk|) and B = B ∪ {Mk}
17: end for
18: // Execution
19: while navigating in E do
20: progress to state st
21: generate a0 ∼ π0(st), â ∼ πθk(st)
22: execute at = argmaxa∈{a0,â}D(st, a)
23: end while

Conclusion
We present the lifelong navigation problem and propose
Lifelong Learning for Navigation framework (LLfN) as a
solution. Specifically, LLfN enables a mobile robot to con-
tinually learn across environments without forgetting in a
fully self-supervised fashion.
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