
Xuesu Xiao

Research Statement

Mobile robots have the unrealized potential to assist or substitute for human rescuers after disasters
during initial response, restoration, reconstruction, and betterment. My research is motivated by the goal
of enabling robots to dramatically improve our ability to mount such after-disaster missions quickly and
safely, so as to maximize our ability to save victims, restore basic facilities, reconstruct infrastructures, and
improve preparedness for future disasters, while minimizing the risk to rescuers. To accomplish this objective,
future mobile robots need to be (1) highly capable of reliably moving through those challenging and most
likely adversarial environments, and (2) highly intelligent so that involvement of human rescuers, both
physically and intellectually, can be effectively minimized. I envision future after-disaster missions to be
efficiently conducted by fully autonomous robots, which are aware of the risk and constraints from the field,
collaborative with other robotic (or human) teammates, adaptive and robust when facing new scenarios, and
eventually achieve high performance in real-world autonomous deployment.

However, current disaster robots still lack such capabilities. For example, the ongoing decommissioning in
response to the Fukushima Daiichi nuclear disaster still completely relies on teleoperation: Multiple human
rescuers have to slowly and cautiously drive a robot due to mobility and manipulation challenges. To make
matters worse, this practice even requires a second teleoperated visual assistant robot to give the operators a
better external viewpoint, causing problems such as difficulty in coordination between teleoperators and
manually-chosen suboptimal viewpoints. These current practices are inefficient and require extensive human
involvement.

Disaster is among many of the potential applications of mobile robots, which also include automated
agriculture, infrastructure inspection, and scientific exploration. Motivated by all these applications and the
current status of how robots are being used, my research goal is to develop highly capable and intelligent
mobile robots that are robustly deployable in the real world with minimal human supervision. As a roboti-
cist with unique expertise evenly grounded in motion planning and machine learning, and vast experience
working on real-world problems in the field with disaster responders, I build advanced robot platforms,
develop complex sensing and actuation systems, design sophisticated motion planning algorithms, and set
up standardized testbeds and metrics in order to create highly capable and intelligent robots to locomote on
land, in air, and at sea.

Risk-Aware, Constraint-Oriented, Collaborative Robotics Deployed in Humanitarian Crises (Pre-Doctoral)

Achieving my research goal first requires creating physical robots with advanced intelligence and locomo-
tion capabilities which can reason about real-world challenges and adversaries, address constraints imposed
by real-world applications, and cooperate with robot teammates with different motion and sensing modalities.
These research topics have been addressed by my Ph.D. thesis and other pre-doctoral research.

Fig. 1: Tethered Risk-Aware Visual
Assistance in Disaster Environment

Aiming at automating and robustifying the aforementioned teleoper-
ated visual assistance in the Fukushima Daiichi nuclear decommissioning,
my Ph.D. thesis was to develop a robot motion risk reasoning framework
for unstructured or confined spaces, a risk-aware motion planner, and
an entire motion suite for a tethered aerial visual assistant under chal-
lenging motion constraints (Fig. 1). At least two challenges prevent an
autonomous aerial visual assistant from being applied in Fukushima: (1)
flying in those unstructured or confined spaces entails extensive motion
risk, which most existing robots do not have the ability to reason about,
and (2) energy considerations and safety precautions for such mission-
critical tasks require tethered flight (tethered to the primary robot), as a
real-world constraint imposed on existing free-flying robots. To address
(1), I used propositional logic and probability theory to derive a reasoning
framework for risk-awareness and discovered that the risk a moving robot faces is not simply a function of
where the robot is, but also depends on its entire motion history [9]. This discovery contradicts most existing
simplified motion risk/cost assumptions and makes the risk-aware planning problem PSPACE-complete. I
also developed a risk-aware motion planning paradigm that can effectively trade off risk history and com-
putation. Not only suitable for the visual assistance problem in Fukushima, the risk-awareness framework
and risk-aware planner is also general to most mobile robots working in unstructured or confined spaces
in the real world. To address (2), I developed a full motion suite for tethered aerial robots flying in cluttered
spaces [6], including tether-based localization [13], motion primitives [7], tether contact planning [15], and
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visual servoing [8]. This tethered motion suite opens up a new regime for resilient indoor aerial locomotion
under energy and safety constraints stemming from real-world applications.

Fig. 2: UAV/USV Team in Hur-
ricane Harvey Deployment

During my time as a Ph.D. student at Texas A&M University, I also developed
other robotic technologies that were directly deployed in real-world search and
rescue missions, including Hurricanes Harvey and Irma, the Greece refugee
crisis, and other emergency response exercises world-wide. At the Center
for Robot-Assisted Search and Rescue, I developed cooperative motion plan-
ning techniques for a heterogeneous Unmanned Aerial/Surface Vehicle team
(UAV/USV), in which a USV can fully autonomously navigate to drowning vic-
tims [17] with the overheard visual guidance from a UAV using motion-based
viewpoint stabilization [1] (Fig. 2). The UAV/USV team has been deployed for
marine mass casualty incident response in search and rescue exercises con-
ducted by the United States Coast Guard and Galveston Fire Department during Summer Institute 2016 in
Galveston, TX; Italian Coast Guard during 2016 exercise in Genoa, Italy; Brazos County Fire Department and
Grimes County Emergency Management during Brazos Valley Search and Rescue Exercise 2017 in Gibbons
Creek, TX; Los Angeles County Fire Department Lifeguards during 2017 exercise in Los Angeles, CA; and
Department of Homeland Security during 2017 CAUSE V exercise in Bellingham, WA.

In the early stages of my research career at Carnegie Mellon University, I investigated ground vehicle
energetic models for long-range missions in remote spaces under real-world energy constraints [3, 4]. I
also researched locomotive reduction techniques for hyper redundant locomotors so that a snake robot
with 16 Degrees of Freedom (DoFs) can be effectively controlled as a 2-DoF differential drive car to reach
constrained spaces inaccessible to humans and conventional wheeled or treaded robot platforms [14]. The
mechatronics background acquired through my undergraduate studies, where I built several robotics systems
from scratch, has also given me the mindset of a problem-solver that can apply scientific research to address
real-world mechatronics or robotics problems.

Machine Learning for Adaptive and Robust Autonomy with Minimal Human Involvement (Post-Doctoral)

After developing several highly capable mobile robots to reduce physical involvement of human rescuers
in challenging or adversarial tasks, my real-world deployment experiences suggest that most mobile robots
still lack sufficient intelligence to minimize human’s intellectual involvement during deployment. To adapt
to various deployment scenarios and to achieve robust performance, robots still require extensive expert
knowledge in the form of manual teleoperation, parameter tuning, or human supervision as a “safety officer”.
I see potential in the state-of-the-art machine learning techniques, which can be used on top of the well-
engineered systems so that modern robots can actively learn, instead of being passively engineered, to be
robustly deployable in the real world. My post-doctoral research at the University of Texas at Austin therefore
focuses on using machine learning techniques in conjunction with classical motion planners to improve
autonomous robot locomotion through the combination of the best of both worlds, rather than creating
pure engineering or end-to-end learning solutions. Classical methods enhanced with learning enjoy crucial
benefits such as safety and explainability, both of which are important properties for mobile robots interacting
with the real world.

Fig. 3: APPLD on Two Robots

Adaptive Planner Parameter Learning (APPL) is one
contribution of my post-doctoral research, in which I used
machine learning to create highly intelligent robots and
therefore to reduce human involvement during deploy-
ment. Most classical motion planners are capable of mov-
ing robots from one point to another in a safe and explain-
able manner. However, when facing new environments,
the planner parameters (e.g. maximum speed, sampling
rate, inflation radius) need to be properly fine-tuned by
a robotics expert. Therefore human expert knowledge is
required onsite during deployment. In this line of work, I
devised learning components, which interact with an underlying classical motion planner through auto-
matic parameter tuning. These learning components are able to learn how to dynamically adjust planner
parameters based on the current situation through a non-expert human demonstration (APPLD, Fig. 3) [12] or
even a small amount of interventions (APPLI) [5] through Imitation Learning. Furthermore, I proposed the
concept of a parameter policy, which works in a meta-environment composed of both the physical world and
the underlying classical planner under a Markov Decision Process framework. I used Reinforcement Learning
to train the parameter policy so it can select appropriate planner parameters at each time step and reason
about the future consequences of using these parameters (APPLR) [18]. These variants of the APPL paradigm
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have been implemented on different classical navigation planners on different ground mobile robots and
have achieved better navigation performance than pure classical and end-to-end learning approaches. From
simply requiring a non-expert demonstration (APPLD), to needing only four human interventions (APPLI), to
finally not relying on any human interaction at all (APPLR), APPL is a general paradigm to combine the benefits
of emerging learning and classical planning approaches to gradually minimize human involvement.

Another research thrust in minimizing human involvement by combining classical planning with learning
is to use learning to enable performance improvement from past (suboptimal) experiences achieved by
classical motion planners. Improvement from experience is not possible for most classical approaches,
especially without expert knowledge, so they tend to repeat the same mistake, regardless of how many times
they have executed the same suboptimal motion in the same situation. I developed a Lifelong Learning
for Navigation (LLfN) framework [2] that allows mobile robots to achieve self-supervised in-environment
improvement (with their own unsupervised experience), and cross-environment adaptation (without the
notorious catastrophic forgetting for many learning systems). LLfN is able to self-identify suboptimal
motion plans and gradually eliminate those plans through learning from similar self-supervised experience.
In contrast to learning an end-to-end motion planner from scratch with hours of training time and millions of
training data/steps, LLfN leverages classical motion planners and is therefore extremely efficient. It is the
first learning for navigation approach that is completely implemented onboard a mobile robot with very
limited onboard memory and computational resources during deployment. By allowing robots to improve
from their own mistakes and experiences in and across different environments, human involvement is no
longer necessary when robots encounter problems during deployment.

The aforementioned postdoctoral research work exposed the limitations of many classical motion planners.
To outperform what classical motion planners can achieve, I formulated a novel “dual” problem of motion
planning called hallucination: instead of finding the optimal motion plan for a given obstacle configuration,
the robot can easily hallucinate obstacle configurations, where a certain motion plan is optimal. Solving this
relatively easier “dual” problem allows us to generate a lot of training data for learning algorithms and creates
a new Learning from Hallucination (LfH) paradigm [16, 10] to learn high-performance motion planners. One
conundrum of learning safe motion planners is that in order to produce safe motions in obstacle-occupied
spaces, a robot needs to first learn in those dangerous spaces without the ability of planning safe motions.
Therefore, it either requires a good demonstration (e.g. from a classical planner or a human), or exploration
based on trial-and-error, both of which become costly in highly-constrained and therefore dangerous spaces.
LfH addressed this problem by allowing the robot to safely explore in a completely open environment without
any obstacles, and to hallucinate the obstacle configurations to the robot perception, where the motions
executed in the open training environment are optimal. In this way, a lot of training data can be generated
from which a motion planner can be effectively learned. The learned motion planner is combined with
classical global planning and model predictive collision checking to assure safety during deployment. It can
produce agile maneuvers in highly-constrained spaces without slowing down or requiring extra computation,
as most classical motion planners do. In addition to minimizing human involvement during deployment, LfH
further reduces engineering effort during development by allowing the robot to learn a motion planner in a
safe manner all by itself.

Despite roboticists’ devotion to developing fully autonomous robots, most state-of-the-art robots still
require human supervision, i.e. a human “safety officer” during real-world deployment. From my point of view,
the best remedy for this lack of confidence in deploying fully autonomous robots in the real world is through
extensive testing. Therefore, I am an advocate for creating standardized testing methods and metrics to
objectively benchmark robot performance and research progress. Although the ultimate touchstone for
good robotics research is the challenging and adversarial real world without any human supervision, e.g.
remote areas, inaccessible environments, and search and rescue scenarios, an intermediate testbed for the real
world is a general, comprehensive, and systematic benchmark with a set of unbiased metrics, motivated by the
real-world use case. With my experience on snake robots, I conducted a survey on current (ad hoc) testbeds
for snake robot locomotion and provided recommendations for building a general-purpose testbed [11]. I also
built a suite of 300 (simulated) navigational environments to benchmark ground navigation capabilities, which
is publicly available for use by the whole research community. Since these benchmarks and metrics serve as
an accurate proxy for the real world and are independent of specific robot platforms and motion planners,
robots performing well on these tests come closer to adaptive and robust autonomy during deployment.

Reliable, Resilient, Task-Efficient Robots towards Full Autonomy (Future Research Agenda)

Building upon my past research experience, my future work will be continually driven by my research goal
to develop highly capable and intelligent mobile robots that are robustly deployable in the real world with
minimal human supervision. Although my previous research on risk-aware, constraint-oriented, collaborative
robots and machine learning for adaptive robust autonomy has led to many robots that have already been
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deployed in disaster applications, most robots are still at the “proof-of-concept” stage and are therefore
far from being a mature solution to improving human capabilities in real-world missions. I posit three
major reasons that currently preclude wide adoption of autonomous robots in dirty, dull, and dangerous
environments: unreliability, inefficiency, and human-dependency. These three problems are the driving
forces for my future research.

First, most autonomous robots are still not reliable in the field, in contrast to the controlled lab envi-
ronments where these robots are developed. This unreliability is not only due to hardware or engineering
challenges, but also due to a lack of consideration and quantification of real-world challenges and adversaries,
and more importantly, a lack of resilience to problems or failures when they occur. My previous work on
risk reasoning only scratched the surface of how to consider and quantify those challenges and adversaries.
Furthermore, only reasoning about risk is not enough. One must also consider how to minimize risk (partially
addressed by my previous risk-aware planning work) and what to do after a risky event actually happens.
While my constraint-oriented tethered motion suite represented a groundbreaking advance with respect to
resilient indoor flight, it only aimed to achieve the most rudimentary level of resilience: to manually retrieve
the UAV using the teleoperated ground robot after a crash. A truly resilient tethered UAV should be able to
bootstrap the tether to recover from a collision or even a crash. My future research will be geared towards
developing hardened, reliable, and resilient robots, both in terms of hardware and algorithms, that can
reason about real-world challenges and adversaries, make intelligent decisions to reliably conduct their
missions, and withstand and then recover quickly from difficult conditions. I will continue to adopt a similar
field methodology to that of my pre-doctoral research to identify problems or failures robots encounter in the
field, create resilient mechatronics solutions including novel perception, actuation, control, and mechanisms,
and develop corresponding intelligence adaptive to the underlying robotic systems and real-world challenges
and adversaries. Developing such reliability will be the first step towards creating mature and trustworthy
robotic solutions for real-world missions.

Second, most autonomous robots are still inefficient at the task-level, in contrast to the mobility-level. My
previous work has enabled a fleet of versatile mobile robots, which can achieve “faster, higher, and stronger”
locomotion performance compared to human rescuers, or even reach places inaccessible to humans. However,
creating high-performance locomotors is not the final goal of developing intelligent robots: they need to
utilize their superior mobility to eventually accomplish different tasks. Currently, most autonomous task
execution is still less efficient than manual teleoperation. Building upon the high mobility developed in my
previous work, my future research will focus on how to create highly capable and intelligent robots that are
efficient at the task-level. I will investigate task-level efficiency metrics beyond mobility, the relationship or
trade off between task-execution and locomotion, as well as planning and learning techniques to achieve
overall mission success. In addition to the traditional motion planning used in my previous work, I plan to
utilize multi-model motion planning and task and motion planning to improve task-level efficiency. Notably,
many of these tasks vary in different deployments, and my research will also create robots that are adaptive to
different tasks by exploiting machine learning.

Third, most autonomous robots are still heavily dependent on human. For example, most robotic deploy-
ment still requires extensive setup, adjustment, tuning, or even teleoperation from humans onsite. I envision
that in future robot deployments, a human will only need to “press a button and walk away”, while the robot
can conduct its mission “out-of-the-box” in a reliable and efficient manner. To approach this vision, my
previous APPL line of work investigated how human-dependency can be minimized through machine learning
to achieve high mobility performance during deployment. In my future work, I plan to investigate methods
that most efficiently utilize different modalities of human interactions under a Cycle-of-Learning scheme
to gradually achieve full autonomy. Teleoperation, expert tuning, human demonstration, corrective inter-
ventions, and evaluative feedback should not target separated deployment scenarios, while reinforcement
learning through trial-and-error should not be isolated from different modalities of human interactions either.
An intelligent robot that aims at eventually achieving full autonomy without any human-dependency needs
to effectively utilize every piece of precious human interaction along the way towards full autonomy and learn
from it to benefit all future deployments. The learned knowledge can take the form of an expanding library of
parameters, an increasing set of motion primitives, an improving motion or parameter policy, or a task-level
knowledge graph. I will investigate a systematic methodology to leverage every single human interaction
and a comprehensive knowledge representation to improve capability and intelligence towards achieving full
autonomy with techniques such as continual/lifelong learning, transfer learning, curriculum learning, and a
combination of imitation with reinforcement learning.

In summary, I see myself as a robotics researcher who uses scientific approaches to solve real-world
robotics problems, in order to push the boundary of how robots can be used to work in the real world
on behalf of human. Building on the history of my past achievements, I am looking forward to pursuing
the numerous goals I laid out for future research in collaboration with other roboticists from Mechanical,
Electrical, Aerospace Engineering, and Computer Science.
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