Making 360° Video Watchable in 2D: Learning Videography for Click Free Viewing

Yu-Chuan Su and Kristen Grauman
The University of Texas at Austin
http://vision.cs.utexas.edu/projects/watchable360

1. Pano2Vid Problem
 - **Motivation:** Help 360° video viewer determine where to look
 - **Input:** 360° video
 - **Output:** “Natural-looking” normal-field-of-view (NFOV) video

2. Our Approach: AutoCam
 - **Idea:** Learning generic virtual camera control from unlabeled human-captured NFOV video with minimal assumptions.

 Learn Capture-worthiness (training)
 - Spatio-Temporal Glimpses
 - Render NFOV Video
 - Human-captured NFOV videos (“HumanCam”)
 - Similar? Spatio-Temporal Sample
 - FOV Overlap

 Human-Cam

 Dataset
 - 360° Videos
 - HumanCam
 - HumanEdit (for eval.)
 - 86 videos / 7.3 hr
 - 9,171 videos / 343 hr
 - 480 trajectories / 12 hr

 Example Glimpse Predictions
 - Capture-worthy
 - Not Capture-worthy

3. Generate Diverse Outputs for Each 360° Video
 - **Multimodal Nature of Pano2Vid**
 - Multiple events / interesting objects in the same scene
 - Personal preference of different viewers
 - **Diverse Trajectory Search**
 - Generate trajectories iteratively
 - New trajectory must differ from previous ones within a time window

 Construct Camera Trajectory (testing)
 - 1. Densely Sample & Score ST-Glimpses
 - 2. Find Smooth Trajectories with Maximum Accumulated Score
 - Impose smoothness by limiting camera motion magnitude

 Qualitative Results

4. Enable Zooming in Virtual Camera Control
 - 1. Better video presentation
 - 2. Improve quantitative metrics by up to 43% Performance on Video

5. Reduce Computational Cost
 - **Bottleneck:** Evaluating capture-worthiness for sampled glimpses
 - **Coarse-to-fine Trajectory Search**
 - Avoid processing all candidate glimpses
 - First construct trajectory over coarsest sampled glimpses
 - Refine the trajectory over densely sampled glimpses

 Evaluation Metrics
 - HumanCam – does the video look human-captured?
 - HumanEdit – are the algorithm choices similar to human editors’?

 Quantitative Results
 - Reduce computational cost by 84%