The University of Texas at Austin x A
Computer Science IEWS

Overview of Robot Decision Making

Prof. Yuke Zhu

Fall 2020

CS391R: Robot Learning (Fall 2020) 1

Today’'s Agenda

e \What is Robot Decision Making?
e Mathematical Framework of Sequential Decision Making

e | earning for Decision Making

o reinforcement learning (model-free vs. model-based)

o imitation learning (behavior cloning, DAgger, IRL, and adversarial learning)
e Research Frontiers

o compositionality, learning to learn, ...

CS391R: Robot Learning (Fall 2020) 3

Robot Learning is to close the perception-action loop.

Perceive Perceive
Act

Perceive

[Sa et al. IROS 2014] [Levine et al. JMLR 2016] [Bohg et al. ICRA 2018]

CS391R: Robot Learning (Fall 2020) 4

What is Robot Decision Making”

Choosing the action a robot should perform in the physical world...

Assistive Robots (Companions) Outer Space (Explorers) Autonomous Driving (Transporters)

CS391R: Robot Learning (Fall 2020) 5

What is Robot Decision Making”

Choosing the action a robot should perform in the physical world...

+ Behaviors can't be easily programmed
* Imperfect sensing and actuation

« Safety and robustness under uncertainty

[Source: Boston Dynamics]

CS391R: Robot Learning (Fall 2020)

Robot Decision Making vs. Playing Games

Robot decision making is embodied, active, and environmentally situated.

[Source: Boston Dynamics] [Source: DeepMind’s AlphaGo]

CS391R: Robot Learning (Fall 2020) 7

Before We Dive In...

® This lecture is intended to provide a high-level, bird-eye

view on (robot) decision making.

® The goalis not to go through all technical details:

o We will re-visit them through paper reading in the following weeks.

O Study the parts that you are less familiar with from online resources.

® T[ake related courses and read textbooks to learn this

subject in depth (see the last slide).

CS391R: Robot Learning (Fall 2020) 8

Mathematical Framework: Markov Decision Processes

A Markov Decision Process is defined by a tuple M = (S, A, P, R,~)

S state space (s¢ € S)
A : action space (a; € A) > Agent |
g Uity
P transition probability P, = Pr[sii1 | s¢, a¢] Stf;“e ;?Wa“’
. ’ R, (
R reward function r(s,a) = Elrii1|s = s¢,a = ay] 5. | Environment]4—

7 - a discount factor ¥ € [0, 1]

CS391R: Robot Learning (Fall 2020)

action
A

Mathematical Framework: Markov Decision Processes

A Markov Decision Process is defined by a tuple M = (S, A, P, R,~)

A policy maps states to actionsm: S — A

" A

. . .| Agent |

Goal of (robot) decision making)

state reward action
Choose policy that maximizes cumulative reward o s R A
<= Environment]4—
" = arg maXE[Z vir (s, m(st))]
" t>0

CS391R: Robot Learning (Fall 2020)

Mathematical Framework: Markov Decision Processes

We define two functions given a policy 7 Pi*(als) = arg max_a Q*(s, a)
V*(s) = max_a Q*(s, a) > Pi*
Value function: the expected cumulative
discounted reward when acting according to VT(s) =E[) _y'r(se,m(s:))] s0 = s]
t=0

the policy from a given state

Q function: the expected cumulative
discounted reward when acting according to
0 0 Q" (s,0) = r(s,0) +7 3 P(s']s,a)V™(s)

the policy from a given state and taking a oS

given action

CS391R: Robot Learning (Fall 2020)

Solving MDPs with Known Models

When we know the model of the MDP M = (S, A, P, R,~)

Use ideas from

Value lteration Policy lteration Dynamic Programming
1. Estimate optimal value function 1. Start with random policy
2. Compute optimal policy from optimal value function 2. lteratively improve it until convergence to optimal policy
Initialize V (s) to arbitrary values Initialize a policy 1" arbitrarily
Repeat Repeat
Forallse S ™ — 1
Forallae A Compute the values using 1 by
Q(s,a) — E[r|s,al +y Sges P(s'|s,a)V(s") solving the linear equations
Until V(s) converge Improve the policy at each state
' (s) — argmax, (E[r|s,al + y D.gesP(s'|s,a)VT(s"))

Until T = 1’

CS391R: Robot Learning (Fall 2020) 12

Solving MDPs with Known Models

When we know the model of the MDP M = (S, A, P, R,~)

Optimal Control (LQR) Sampling-based Planning

Assume linear transitions and quadratic reward functions Evaluate outcomes of sampled actions with models

A special case: exact solution 7" is easily to solve Choose the action that leads to the best (predicted) outcome

Linear transition Str1 = A¢sy + Bray e ol e

. x x Monte-Carlo T
Quadratic reward 7(s¢,ar) = —s; Ups; — a; Wiay /7 N\ g onterario Tree
T R 2RR :Mi Search (MCTS) for

always negative -4, 'I' ’ Tic-Tac-Toe

Extensions: LQG (Gaussian noise), iLQR (non-linear transition)

CS391R: Robot Learning (Fall 2020) 13

A key role of learning in model-
based approaches

Solving MDPs with Learned Models

Model is known in restricted domains: games, simuiated robots, simple mechanics

When model is not known, we can learn the model from data.

agent’s experience |:> learned model : D

A

T ={(s4,a4,7;)|1=0,...,H} B
Use planning and
del-based Can be represented by optimization methods
moael- .
RL Gaussian Processes, Neural for known models
Networks, GMMSs, etc.

(previous two slides)

CS391R: Robot Learning (Fall 2020)

Solving MDPs with Learned Models

System Identification Sensor-Space Model
Week 12 Tue Week 8 Tue

ERRR = rames etal A Emﬂ
P(SimParameters) v | UAU - ﬂ ﬂ ﬂ
Prior ’ " o o ‘ v

[Finn et aI ICRA 17]

p(SlmParameters | RealData)
Posterior

) RealData

17 o

Model structure is known (e.g., simulator). We tune

some model parameters (e.g., mass and friction). Predicting future raw sensory data

Pr(u | D] f(st41]st, ar)

CS391R: Robot Learning (Fall 2020)

Latent-Space Model
Week 8 Tue

o

v, a, V,’ a;

[Hafner et al. ICLR’20]

Learn behavior in imagination

Predicting future latent state

he = g(s¢)

f(hegr | he,aq)

Examples of Model-Based Reinforcement Learning

Kinect2 Sensor c~p(c)) LT e ~flsa)
boa~g(lscz) |

j Meta-Dynamics | Action Generator | | Dynamics

Goal Position

“Dynamics Learning with Cascaded Variational Inference for Multi-Step Manipulation.” Fang, Zhu, Garg, Savarese, Fei-Fei, CoRL 2019

CS391R: Robot Learning (Fall 2020) 16

Solving MDPs without Models

When model is unknown and hard to estimate, we can learn policy directly from

the agent’s trajectories 7 from interacting with an MDP.

agent’'s experience :> optimal policy
T ={(s4,a4,7;)|1=0,...,H} model-free T = arg mng[; Vi (sy, m(s¢))]
RL -

CS391R: Robot Learning (Fall 2020) 17

Solving MDPs without Models

Deep Q-Network (DQN):

Represent Q with neural networks
Optimality condition (Bellman equation)

* — E., *(s' a * — * /
Model-free Q"(s,a) =7(s,0) + 7By 5,0 max Q" (s', a')] " (als) = argmax Q" (s, a’)

Value-based RL
Q-learning rule (temporal different learning)

Week 7 Thu 1
ea.rnei value
Q(stya1) «+ (1 —a) - Q(s,ar) + o . (re + vy . max Q(s¢11,a))
—_—— ~~ ~~ a
old value learning rate reward discount factor

estimate of optimal future value

CS391R: Robot Learning (Fall 2020) 18

Solving MDPs without Models

Model-free
Policy-Gradient RL

Week 7 Thu

CS391R: Robot Learning (Fall 2020)

policy parameterized by @ Total reward of trajectory
Obijective Function J(H) —]ETNp(Tle) [7“(7‘)]
oolicy gradient trajectories under
theorem policy T

VoJ(0) =E.[Q7(s,a)Vglogmg(als)]

Different ways of computing the Q values lead to different PG variants: Monte-Carlo estimates
(REINFORCE), learning value functions (Actor-Critic)

Solving MDPs without Models

VE; [r(7)] = V/W(T)T(T)dT

Model-free
Policy-Gradient RL - /VW(T)T(T)dT
Week 7 Thu = / m(7)Vlog w(7)r(r)dr

CS391R: Robot Learning (Fall 2020)

Examples of Model-Free Reinforcement Learning

[Replay Buffers

> off-poli
O e off-policy Bellma&U‘pdater]ﬂ
580K grasps | _ B on-cokoy g I

QT-Opt: Scalable Deep Reinforcement Learning : ti'

[Training Worker Eq.(1)

", Cross Entropy Method
3 m(s) = argmax, Qj(s,a)

Qo(s,a)

Model weights

for Vision-Based Robotic Manipulation

“QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation.” Kalashnikov et al. CoRL 2018

Week 13 Thu, Nov 19

CS391R: Robot Learning (Fall 2020) 21

Solving MDPs without Models

Model-free Value-based RL Model-free Policy-Gradient RL

Can learn Q function from any interaction
‘/ data, not just trajectories gathered using the
current policy (“off-policy” algorithm)

J Learns policy directly — often more stable

s/ Works for continuous action spaces

s/ Relatively data-efficient (can reuse old interaction data)
x Needs data from current policy to compute policy

radient (“on-policy” algorithm) — data inefficient
x Need to optimize over actions: hard to apply g (poticy”ald)

to continuous action spaces
x Gradient estimates can be very noisy

x Optimal Q function can be complicated, hard
to learn

CS391R: Robot Learning (Fall 2020) 22

Mathematical Framework: Markov Decision Processes

Reinforcement learning optimizes policy by trial and error in an MDP.
Goal:

S state space (st € S)

A : action space (a; € A)

P transition probability P2, = Pr[si11 | ¢, at]

R : reward function 7(s,a) = E[rii1|s = s¢,a = a4

7 - a discount factor ¥ € [0, 1]

Fundamental assumption of RL: reward function

CS391R: Robot Learning (Fall 2020)

Mathematical Framework: Markov Decision Processes

Imitation learning optimizes policy by imitating the expert in an MDP.
Goal:
S state space (st € S)
A : action space (a; € A)
P transition probability P2, = Pr[si11 | ¢, at]
= =Sttt
e

D : set of demonstrations drawn from the expert policy Tg

CS391R: Robot Learning (Fall 2020)

Mathematical Framework: Markov Decision Processes

Imitation learning optimizes policy by imitating the expert in an MDP.

Goal:

Two basic ideas

» Direct estimation of the expert policy from expert data

 Reconstruct a reward function and then learn
a policy from the reward

CS391R: Robot Learning (Fall 2020)

Imitation as Supervised Learning

Idea 1: Direct estimation of the expert policy from expert data Week 8 Thu

This can be cast as a supervised learning problem, called

action from expert policy
7" = arg min E L(W(St),ﬂ'E(St)>
T

Distance metric that measures the
discrepancy between the expert action
and the policy action (e.g., KL-divergence)

CS391R: Robot Learning (Fall 2020) 26

Imitation as Supervised Learning

Idea 1: Direct estimation of the expert policy from expert data Week 8 Thu

This can be cast as a supervised learning problem, called

Expert trajectory What can go wrong?

Learned Policy
}/
o — .
>< o e compoun din g errors
No data on /
how to recover % (I @

How to fix: Asking expert for more data

CS391R: Robot Learning (Fall 2020) 27

Examples of Supervised Imitation Learning

Learner

|
| | |
| | |
camera ! VR I'| RCtransmitter }
: - |
i
|
|

Safety control

e ———

troll !
B ||| SORFIONET !'| Run/Stop button
sensor l I l_
G — = i
| |
| (ML state | . pop-mpc | |
: GPS estimator :
— | I
. - = . |
Agile Autonomous Driving using i dynamics cost !
End-to-End Deep Imitation Learning EE . model function | |
xper

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan |t et
Evangelos Theodorou and Byron Boots

Georgia Institute of Technology

"Agile Autonomous Driving using End-to-End Deep Imitation Learning"
Pan, Cheng, Saigol, Lee, Yan, Theodorou, Boots. RSS 2018

CS391R: Robot Learning (Fall 2020) 28

Inverse Reinforcement Learning Week 9 Tue

Idea 2: Reconstruct a reward function and then learn a policy from the reward

* Collect expert demonstrations: D = {7y, 7, ..., Ti} To solve efficiently, IRL methods often assume:
e Inaloop:

o Learn reward function: ry(s;, a;) % Known dynamics (for comparing wand 7"

o Given the reward function 1y, learn policy using RL efficiently)

o Compare with T (expert’s policy) . ' -

o STOP if 7 is satisfactory % Linear reward function r(s,a) = w ' ¢(s)

Problem: IRL is generally ill-posed — many reward functions under which the expert policy is optimal.

How can we address it?

CS391R: Robot Learning (Fall 2020) 29

Examples of Inverse Reinforcement Learning

The Journal of OnlineFirst, on June 23, 2010 as doi:10.1177/0278364910371999

‘The International Journal of
Robotics Research
000(00) 1-31

Autonomous Helicopter Aerobatics through © The Auhor 2010
Reprints and permission:

Apprenticeship Learning St oo
ijr.sagepub.com

©SAGE
Pieter Abbeel!, Adam Coates® and Andrew Y. Ng2

Abstract
Autonomous helicopter flight is widely regarded to be a highly challengmg control problem. Despite this fact, human
experts can reliably fly helicopters through a wide range of luding aerobatic at the edge of
the helicopter’s capabilities. We present apprenticeship learning algurlthms, which leverage expert demonstrations to
fficiently learn good llers for tasks being demonstrated by an expert. These apprenttceshlp learning algorithms
have enabled us to significantly extend the state of the art in ics. Our experimental
results include the first autonomous execution of a wide range of maneuvers, mcludmg but not llmtted to in-place flips,
in-place rolls, loops and hurricanes, and even auto-rotation landings, chaos and tic-tocs, which only exceptional human
pilots can perform. Our results also include complete airshows, which require autonomous transitions between many of
these maneuvers. Our controllers perform as well as, and often even better than, our expert pilot.

CS391R: Robot Learning (Fall 2020)

Adversarial Imitation Learning Week 9 Thu

> D¢(St)

discriminator

CS391R: Robot Learning (Fall 2020)

generated demonstration
trajectories trajectories
policy environment

discriminator objective

D,, predicts 0 if policy and 1 if demo

IL reward: TIL(St, at) = — log(l - Dw(st))

H
~
c‘% strong discriminator
% bad policy | weak discriminator
;I . @uannnnnttt good pO“Cy
¢

D, score on policy

[Goodfellow et al. 2014; Ho & Ermon, 2016]

31

Adversarial Imitation Learning Week 9 Thu

> D¢(St)

discriminator

generated
trajectories

demonstration
trajectories

policy

CS391R: Robot Learning (Fall 2020)

environment

discriminator objective

D,, predicts 0 if policy and 1 if demo

ILreward: 7r1L(s¢,ar) = —log(1l — Dy (s¢))

s Represent complex reward function by neural networks

% More iterative approaches to update reward and policy (no

need to run full RL before updating the reward function)

< We don't know the dynamics but have access to a

. . *
simulator to compare with Tand 77 .

[Goodfellow et al. 2014; Ho & Ermon, 2016]

Ky

Examples of Adversarial Imitation Learning

3D motion controller physics engine real environment
Fin Fin fn P ‘
phy P el e
AEaAE =
i ﬁ i imitation sim2real i *
L]]
Collecting human Training in Running on
demonstrations simulation real robot

“Reinforcement and Imitation Learning for Diverse Visuomotor Skills.” Zhu et al. RSS 2018

CS391R: Robot Learning (Fall 2020) 33

Robotics and Decision Making: Landscape Week 7 Thu

model-free
reinforcement learning

learn
model?

have

model?
yes

reward Week 8 Tue
function .
optimal control model-based
*—' . .
& planning reinforcement learning
learning
SOUree Week 8 Thu
estimate ® imitation as
? no . .
expert reward supervised learning Week 9 Tue
demonstration . . .
yes inverse reinforcement learning
yes
known Week 9 Thu
no
dynamics? adversarial imitation learning

CS391R: Robot Learning (Fall 2020) 34

Robotics and Decision Making: Frontiers

Learning from rich data sources Efficient learning of new tasks Safety and robustness
Language, preferences, instruction Fast learning from limited experience. Probabilistic and formal guarantees
videos. Suboptimal demonstrations. Representing and transferring past of the robot behaviors during learning
Object variations and long-horizon tasks. knowledge. and inference

Week 11 (Tue, Thu): Week 10 (Tue, Thu):
Compositionality Learning to Learn

CS391R: Robot Learning (Fall 2020) 35

Resources

Related courses at UTCS
e (S342: Neural Networks

» (CS394R: Reinforcement Learning: Theory and Practice

Other Course Materials and Textbooks
« UCL Course on RL by David Silver

» Berkeley CS 294: Deep Reinforcement Learning

* Reinforcement Learning: An Introduction, Sutton and Barto

» Reinforcement Learning and Optimal Control, Bertsekas

CS391R: Robot Learning (Fall 2020) 36

https://philkr.github.io/cs342
http://www.cs.utexas.edu/~pstone/Courses/394Rfall19/
https://www.davidsilver.uk/teaching/
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/
http://incompleteideas.net/book/the-book-2nd.html
https://web.mit.edu/dimitrib/www/RLbook.html

