The 3 R's of Learning for Autonomy

Adrien Gaidon

Head of Machine Learning Research Toyota Research Institute (TRI), CA, USA

adriengaidon.com

Machine Learning Research @ TRI

No real labels (semantic or depth) were used

Scene Understanding

Self-Supervised Learning

Simulation & Auto-labeling

Behavior Modeling & Prediction

Learning for Planning & Control

ML Publications (cumulative)

Cutting Edge Research & Transfer

Anatomy of Autonomy

Conway's Law (paraphrased)

A system's design is isomorphic to the structure of the field.

Leaky Abstraction Law

All non-trivial abstractions, to some degree, are leaky.

Corollary: The Arrows are Performance Bottlenecks.

Do we even need to bother with modularity?

Demonstrations (good or bad): *trillions* of km/year! Imitation Learning: simple, scalable, end-to-end

Exploring the Limitations of Behavior Cloning for Autonomous Driving, F. Codevilla, E. Santana, AM. Lopez, A. Gaidon, ICCV'19 (oral)

Bigger models, pretraining, more data helps... but

Dataset Biases & Variance issues + Causal Confusion (de Haan el, NeurIPS'19)

No shortcuts: need intermediate representations

Does computer vision matter for action? Zhou *et al*, Science Robotics 2019 **Driving Through Ghosts: Behavioral Cloning with False Positives**, Bühler *et al*, IROS'20

3 R & 3 P of Autonomy

Robustness in Perception Randomness in Prediction Risk-awareness in Planning

3 R & 3 P of Autonomy

Robustness in Perception

Randomness in Prediction

Risk-awareness in Planning

Robustness in Perception: Data

Assumption: no expectation for a *robot* to

recognize something completely new.

Domain Coverage: World-scale Fleet Learning

Problem: cannot be supervised (too much data)

Supervised Learning

Self-Supervised Learning

Pseudo-LiDAR / Monocular Depth Estimation

Single RGB Image

Predicted Depth Image

MonoDepth Network

Self-Supervised Structure-from-Motion (SfM)

ESEARCH INSTITUTE

Why Monocular Depth? (Driving, Robotics)

1 camera = cheapest sensor suite, most common

Complex sensor suites: wide baseline, redundancy

Monocular Depth = main bottleneck for 3D detection

Robust 3D Vision thanks to Large-Scale Self-supervision?

Robustness in Perception: Data

Self-Supervised Learning: Geometry as Supervision

<u>SuperDepth</u> @ ICRA'19, <u>Robust Semi-Sup. monodepth</u> @ CoRL'19, <u>Two-Stream Networks for Self-Sup.</u> <u>Ego-Motion</u> @ CoRL'19, <u>Semantically-Guided monodepth</u> @ ICLR'20, <u>Packnet-SfM</u> @ CVPR'20 (oral), <u>Neural</u> <u>Ray Surfaces</u> @ 3DV'20 (oral), <u>Monodepth for Soft Visuotactile Sensors</u> @ Robosoft'21, <u>Packnet-SAN</u> @ CVPR'21, <u>Geometric Unsup. Domain Adaptation</u> @ ICCV'21, pre-training for 3D detection @ ICCV'21, ...

$$\hat{I}_t(p_t) = I_s(p_s) \quad p_s \sim K \hat{T}_{t \to s} \hat{D}_t(p_t) K^{-1} p_t$$

https://github.com/TRI-ML/packnet-sfm

Robustness in Perception: Data

Analysis by Synthesis: Vision as Inverse Graphics via Differentiable Rendering

<u>ROI-10D</u> @ CVPR'19, <u>SDFLabel</u> @ CVPR'20 (oral), <u>MonoDR</u> @ ECCV'20, <u>DR Survey</u> @ arxiv'20, <u>Single Shot Scene Reconstruction</u> @ CoRL'21

ΤΟΥΟΤΑ

RESEARCH INSTITUTE

Single-Shot Scene Reconstruction

Sergey Zakharov, Rares Andrei Ambrus, Dennis Park, Vitor Campagnolo Guizilini, Wadim Kehl, Fredo Durand, Joshua B. Tenenbaum, Vincent Sitzmann, Jiajun Wu, Adrien Gaidon, **CORL'21** (paper)

Fully editable and *re-renderable model* of a 3D scene from a *single image*

Decompose the scene into *object instances* and *background*

2D/3D optimization based on differentiable rendering

Robustness in Perception: Data

Beware of Bias: Adaptive Regularization of the Long Tail

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss, K. Cao et al, **NeurIPS'19** Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization, K. Cao et al, **ICLR'21**

Robustness in Perception: Data

Provable Guarantees for Self-Supervised Deep Learning with Spectral

Contrastive Loss, Jeff Z. HaoChen, Colin Wei, Adrien Gaidon, Tengyu Ma - NeurIPS'21 (oral)

Self-supervised Learning is More Robust to Dataset Imbalance, Hong Liu, Jeff Z.

HaoChen, Adrien Gaidon, Tengyu Ma, arxiv'21

SEARCH INSTITUTE

Robustness in Perception: Redundancy

Redundancy: sensors lie (Byzantine Generals)

→ Combine Radar + Lidar + Cameras + IMU + ...
Bottleneck: 3D Detection with Cameras (< Lidar)</p>

Approach:

- Cross-sensor Auto-Labeling (2D-3D)
- Self/Semi-Supervised "pseudo-lidar" <u>Robust Semi-Sup. monodepth</u> @ CoRL'19, <u>SDFLabel</u> @ CVPR'20 (oral), <u>Packnet-SAN</u> @ CVPR'21, <u>Full Surround Monodepth</u> @ arxiv'21

PackNet-SAN

Robustness in Perception: Efficiency

Many sensors + complex online fusion

→ Deployment challenges (runtime, energy, stability...)

Efficiency: Core to Robustness!

- Hardware optimization
- Sharing Computations

<u>Real-Time Panoptic Segmentation from Dense Detections</u>, R. Hou, J. Li et al, **CVPR'20 (oral)**, <u>Hierarchical Lovász Embeddings for</u> <u>Proposal-free Panoptic Segmentation</u>, Kerola et al, **CVPR'21**

3 R & 3 P of Autonomy

Robustness in Perception

Data + Redundancy + Efficiency

Randomness in Prediction

Risk-awareness in Planning

3 R & 3 P of Autonomy

Robustness in Perception Randomness in Prediction

Risk-awareness in Planning

Randomness in Prediction: Intent

Human Intent: latent yet governs Action

Approach: infer from Interactions and Context

Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction, RA-L & ICRA'20

STIP: Stanford-TRI Intent Prediction

http://stip.stanford.edu/

Randomness in Prediction: Multi-Modality

Contingency: Predict *Distribution* over *Plausible* Futures

Structure Prediction like Human Decision-Making Process

It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction, K. Mangalam, H. Girase, S. Agarwal, K-H. Lee, E. Adeli, J. Malik, A. Gaidon, **ECCV 2020 (oral)**

Learn distribution of plausible destinations (intents) Condition trajectory forecasting on sampled endpoints Plan following social norms

Randomness in Prediction: Uncertainty

 \bigcirc

Probabilistic Robotics: Every State is a Distribution!

Modular System: Uncertainty Must Propagate *Throughout*

Predicting Uncertainty: typically the main focus of research

Open challenge: *using* Uncertainty Upstream *and* **Downstream**

Heterogeneous-Agent Trajectory Forecasting Incorporating Class Uncertainty (**HAICU**), Ivanovic *et al*, <u>arxiv:2104.12446</u>

PUP: new dataset of driving logs with <u>Perceptual Uncertainty</u> (in challenging scenes for tracking) for <u>Prediction</u>

PUP (Ours) Lyft Level 5 S_{probs} Class Num. (%) Sprobs Num. (%) bicycle 1.2k(0.8)0.1M(0.4)0.091.605.0M (24.5) 117k (81.9) 1.100.00 car 18k (12.4) 1.30largevehicle motorcycle 0.5k(0.3)1.571.44 0.7M(3.3)0.01pedestrian 6.3k(4.4)14.6M (71.8) unknown 0.2k(0.1)0.050.00

$$S_{\text{probs}} = -\sum_k P(C_i = k) \log P(C_i = k)$$

For reference, the maximum possible entropy for the PUP dataset is $\ln(11) \approx 2.40$ (uniform class probabilities)

 $\ensuremath{\textcircled{}^{\circ}}$ 2021 Toyota Research Institute. Confidential. Do not distribute. $\ensuremath{\textcircled{}^{\circ}}$ 2020 Toyota Research Institute. Public.

Uncertainty Representation for Control

MATS: An Interpretable Trajectory Forecasting Representation for Planning and Control, B. Ivanovic, A. Elhafsi, G. Rosman, A. Gaidon, M. Pavone, **CoRL'20**

$$\mathbf{s}_{z}^{(t+1)} = A_{z}^{(t)}\mathbf{s}_{z}^{(t)} + B_{z}^{(t)}\mathbf{u}_{R}^{(t)} + \mathbf{c}_{z}^{(t)} + Q_{z}^{(t)}\mathbf{w}^{(t)}$$

$$\overset{\text{scene}}{\overset{\text{ego control}}{\underset{\text{offect}}{\text{scene}}} \underset{\text{inearization}}{\overset{\text{scene}}{\underset{\text{uncertainty}}{\text{scene}}} \overset{\text{ego control}}{\underset{\text{offect}}{\text{scene}}}$$

Blue = Dynamics, Green = Learned

Control-Aware Prediction Objectives (CAPO)

 \bigcirc

Objective Mismatch: forecasting metrics are unaware of their use

CAPO: weight prediction metrics by their effect on control

- Cross-attention weighting [Mercat et al, ICRA'20]
- Counterfactual weighting: Action Discrepancy based on resampling

Improves forecasting where it matters most (potential collisions)

Control-Aware Prediction Objectives for Autonomous Driving Rowan McAllister, Blake Wulfe, Jean Mercat, Logan Ellis, Sergey Levine, Adrien Gaidon (soon on arxiv) 3 R & 3 P of Autonomy

Robustness in Perception

Randomness in Prediction

Intent + Multi-modality + Uncertainty

Risk-awareness in Planning

3 R & 3 P of Autonomy

Robustness in Perception

Randomness in Prediction

Risk-awareness in Planning

Risk-awareness in Planning

Perception / Prediction: always stochastic Basis for *Safety-critical* Decisions in *Real-time*? Safe Autonomy requires *Risk-Awareness*

Risk-awareness in Planning: Safety

Risk-Sensitive Sequential Action Control with Multi-Modal Human Trajectory Forecasting for Safe Crowd-Robot Interaction, H. Nishimura, B. Ivanovic, A. Gaidon, M. Pavone, M. Schwager, IROS'20

Risk-awareness in Planning: Safety

RESEARCH INSTITUTE

Risk-awareness in Planning: Safety

Game-Theoretic Planning for Risk-Aware Interactive Agents, M. Wang, N. Mehr, A. Gaidon, M. Schwager IROS'20 RAT iLQR: A Risk Auto-Tuning Controller to Optimally Account for Stochastic Model Mismatch, Nishimura et al, RA-L/ICRA'21

OYOTA

RESEARCH INSTITUTE

Risk-awareness in Planning: Causality

Decision-making: beyond pure data \rightarrow Causal Inference Counterfactuals in sim: find planner bugs and fixes

Behaviorally Diverse Traffic Simulation via Reinforcement Learning, S. Maruyama et al, IROS'20

Discovering Avoidable Planner Failures of Autonomous Vehicles using Counterfactual Analysis in Behaviorally Diverse Simulation, D. Nishiyama et al, **ITSC'20**

Risk-awareness in Planning: Near-Accidents

Imitation in Near-Accidents? Phase Transitions

Reinforcement Learning based Control of Imitative Policies for Near-Accident Driving, Z. Cao, E. Biyik, W. Z. Wang, A. Raventos, A. Gaidon, G. Rosman, D. Sadigh, RSS'20

RL to switch between basic IL policies

Risk-awareness in Planning: Near-Accidents

Imitation in Near-Accidents? Phase Transitions

Reinforcement Learning based Control of Imitative Policies for Near-Accident Driving, Z. Cao, E. Biyik, W. Z. Wang, A. Raventos, A. Gaidon, G. Rosman, D. Sadigh, RSS'20

RL to switch between basic IL policies

Less collisions + human-like

ESEARCH INSTITUTE

3 R & 3 P of Autonomy

Robustness in Perception

Randomness in Prediction

Risk-awareness in Planning

Uncertainty + Safety + Causality

Robot = Complex Sensorimotor Loop

Law of Arrows: In a modular sensorimotor system, the performance bottlenecks are at the *interface* between modules.

Work on the Arrows!

Code & Data: <u>https://github.com/TRI-ML</u> Blog posts: <u>https://medium.com/toyotaresearch/</u> Twitter: <u>https://twitter.com/ToyotaResearch</u>

tri.global/careers

898 886

