

CS391R: Robot Learning

Perception and Decision Making: Architectures, Algorithms, and Applications

Prof. Yuke Zhu

Fall 2021

Traditional form of automation

Today's Agenda

- What is Robot Learning?
- Why studying Robot Learning now?
- Course content overview
- Logistics
- Student introduction

Special-Purpose Robot Automation

custom-built robots

human expert programming

special-purpose behaviors

General-Purpose Robot Autonomy

general-purpose robots

general-purpose behaviors

Special-Purpose Robot Automation

custom-built robots

human expert programming

special-purpose behaviors

General-Purpose Robot Autonomy

general-purpose robots **Robot Learning**

general-purpose behaviors

General-Purpose Robot Autonomy: Imaginations

Unimate - The First Industrial Robot British TV (1968)

General-Purpose Robot Autonomy: Challenges

DARPA Robotics Challenge (2015)

"The Moravec's paradox"

General-Purpose Robot Autonomy: Progress

We will learn the algorithms and techniques behind the latest progress.

Grasping (DexNet 4.0; 2019)

Locomotion (ANYmal; 2020)

Manipulation (OpenAI; 2019)

What is **Robot Learning**?

Definition #1

The study of machine learning algorithms and principles with their applications to robotics problems

Definition #2

The study of methods and principles that make robots learn from data

Definition #3

The research field at the intersection of machine learning and robotics (copied from Wikipedia)

When **NOT** to Make Robots Learn?

Learning is not a solution to every problem in robotics.

Harnessing the priors and structures of a problem goes a long way...

Learning is most effective when used in conjunction with modeling.

When to Make Robots Learn?

Learning is critical for taking robots to the real world.

object variation

environment uncertainty

adaptation

Now is the best time to study and work on Robot Learning.

Recent breakthroughs in machine learning and computer vision, e.g., deep learning (Turing awards 2018)

Computing Power

Your smartphone is millions of times more powerful than all of NASA's combined computing in 1969.

Robot Hardware

More reliable and affordable cobot hardware that costs around annual salary of American workers

Now is the best time to study and work on Robot Learning.

Positive and negative societal impacts of robot learning research is an important part of our in-class discussions.

Coronavirus: Will Covid-19 speed up the use of robots to replace human workers?

By Zoe Thomas Technology reporter

① 19 April 2020

Coronavirus pandemic

KAI-FU LEE BACKCHANNEL 85.22.2828 87:88 AM Covid-19 Will Accelerate the AI Health Care

Revolution

= WIRED

ILLUSTRATION: BETH HOLZER

Disease diagnosis, drug discovery, robot delivery-artificial intelligence is already powering change in the pandemic's wake. That's only the beginning.

Machines were supposed to take over tasks too dangerous for humans. Now humans are the danger, and robots might be the solution

https://www.therobotreport.com/tag/coronavirus/

Robot Learning as a Growing Research Community

Conference on Robot Learning is 4 years old.

Growth of "Robot Learning" Publications

[Source: Google Scholar]

Course Content We review the Robot Learning literature in these topics.

Part I: Robot Perception

Topic 1-10

seeing and understanding the physical world

Part II: Robot Decision Making

Topic 11-20

planning and control of robot behaviors

Prerequisite: coursework / experience in AI and Machine Learning

Course Content We review the Robot Learning literature in these topics.

Part I: Robot Perception

Topic 1-10

seeing and understanding the physical world

Part II: Robot Decision Making

Topic 11-20

planning and control of robot behaviors

Prerequisite: coursework / experience in AI and Machine Learning

Robot Perception

2D object detection

multimodal understanding

synthetic data for robot perception

3D data processing

self-supervised visual learning

implicit neural representations

interactive perception

recursive state estimation

Measurement 🍠

update

Observation

Error

14

14

200

Gradient

attention architectures

Course Content We review the Robot Learning literature in these topics.

Part I: Perception

Topic 1-10

seeing and understanding the physical world

Part II: Decision Making

Topic 11-20

planning and control of robot behaviors

Prerequisite: coursework / experience in AI and Machine Learning

Robot Decision Making

model-free RL

inverse RL

model-based RL

adversarial IL

imitation as supervised learning

hierarchical policy & neural programming

Learning Objectives

- understand the potential and societal impact of general-purpose robot autonomy in the real world, the technical challenges arising from building it, and the role of machine learning and AI in addressing these challenges;
- get familiar with a variety of **model-driven** and **data-driven principles** and **algorithms** on robot perception and decision making;
- be able to evaluate, communicate, and apply **advanced AI-based techniques** to robotics problems.

... through literature reviews, research presentations, and course projects

Learning Objectives

Get a taste of Robot Learning research in the full circle

Lectures

Time: 9:30-11:00am CT, Tuesdays and Thursdays

Location: Online or in-person (Zoom links on Canvas)

Office Hours

Instructor: 3-4pm Mondays (GDC 3.422) or by appointment

TA: 4-5pm Wednesdays (GDC 3.516)

Instruction Modality

Now to September 17

Online lectures + in-person office hours

After September 17

Adjusting plans based on university policy

In-Person Experiences

Office hours, instructor/TA meetings by appointment, GDC 4.302

	Part I: Robot Perception		
Week 2 Tue, Aug 31	Lecture Overview of Robot Perception • The Limits and Potentials of Deep Learning for Robotics. Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, Peter Corke (2018) • A Sensorimotor Account of Vision and Visual Consciousness. Kevin O'Regan and Alva Noë (2001)		Instructor Lectures overview of research topics
Week 2 Thu, Sept 2	 2D Object Detection Mask R-CNN. Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick (2017) You Only Look Once: Unified, Real-Time Object Detection. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi (2015) CornerNet: Detecting Objects as Paired Keypoints. Hei Law, Jia Deng (2018) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun (2015) 		Student Presentations presentation of research papers
Week 3 Tue, Sept 7	 3D Data Processing PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas (2017) Dynamic Graph CNN for Learning on Point Clouds. Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon (2018) PointCNN: Convolution On X-Transformed Points. Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, Baoquan Chen (2018) 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. 		Final Project Spotlights
Week 15 Tue, Nov 30 Week 15 Thu, Dec 2	Christopher Choy, JunYoung Gwak, Silvio Savarese (2019) Spotlight Final Project Spotlights I Spotlight Final Project Spotlights II	Video Due Nov 29	spotlight talks of course projects
Week 16 Fri. Dec 10	No Class	Final Report Due	

	Part I: Robot Perception		
Week 2 Tue, Aug 31	Lecture Overview of Robot Perception • The Limits and Potentials of Deep Learning for Robotics. Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, Peter Corke (2018) • A Sensorimotor Account of Vision and Visual Consciousness. Kevin O'Regan and Alva Noë (2001)		Required Readings (No Review) overview or survey papers with lectures
Week 2 Thu, Sept 2	2D Object Detection Mask R-CNN. Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick (2017) You Only Look Once: Unified, Real-Time Object Detection. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi (2015) CornerNet: Detecting Objects as Paired Keypoints. Hei Law, Jia Deng (2018)		 Required Readings key papers that will be discussed in class Optional Readings
Week 3 Tue, Sept 7	 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun (2015) 3D Data Processing PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas (2017) 	0	
	 Dynamic Graph CNN for Learning on Point Clouds. Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon (2018) PointCNN: Convolution On X-Transformed Points. Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, Baoquan Chen (2018) 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. Christopher Choy, JunYoung Gwak, Silvio Savarese (2019) 		recommended papers for in-depth reviews
Week 15 Tue, Nov 30	Spotlight Final Project Spotlights I	Video Due Nov 29	
Week 15 Thu, Dec 2	Spotlight Final Project Spotlights II		
Week 16 Fri, Dec 10	No Class	Final Report Due	

Grading Policy

Student presentation (20%)

Paper reviews (30%)

Course project (40%)

In-class participation (10%)

20% each

- At least **one presentation** for each student (chances to do more)
- Length: 20min (± 2min) + 3min Q&A
- Format: problem formulation, technical approach, results, ... (see slide template for more details)
- Followed by 5-10min in-class discussions
- Email the slides to the TA and the instructor seven days (EOD) prior to the presentation date
- Presentation recordings posted in Canvas (protected under FERPA)
- Breakout rooms and in-class discussions will NOT be recorded.

Grading Policy

Student presentation (20%)

Paper reviews (30%)

Course project (40%)

In-class participation (10%)

2% each x 15 reviews

- Due by **9:59pm** the previous night of each student presentation
- Write a review for **one paper** from the required readings (2 choices for each class)
- Online review form in R:SS format

CS391R: Paper Review Form

This form is used for CS391R (Fall 2020) students to submit the paper reviews. The paper reviews must be submitted by 11:59pm the previous night for each class of student presentations in order to receive a grade.

- No late date but more than 15 presentation classes (feel free to skip some)
- Have energy to do more? Top-scored 15 for grading
- Class attendance and participation is required for review grades

plazza

2% each x 15 reviews

- Due by **9:59pm** the previous night of each student presentation
- Write a review for **one paper** from the required readings (2 choices for each class)
- Online review form in R:SS format

CS391R: Paper Review Form

This form is used for CS391R (Fall 2020) students to submit the paper reviews. The paper reviews must be submitted by 11:59pm the previous night for each class of student presentations in order to receive a grade.

- No late date but more than 15 presentation classes (feel free to skip some)
- Have energy to do more? Top-scored 15 for grading
- **Class attendance and participation** is required for review grades

Grading Policy

Student presentation (20%)

Paper reviews (30%)

Course project (40%)

In-class participation (10%)

40%

- Project Proposal (5%). Due Thu Sept 16.
- Project Milestone (5%). Due Thu Oct 21.
- Final Report (25%). Due Fri Dec 10.
- Spotlight Talk (5%). Week 15.

Hands-on experience of robot learning research

Grading Policy

Student presentation (20%)

Paper reviews (30%)

Course project (40%)

In-class participation (10%)

project platform: robosuite (robosuite.ai)

Tutorials, computing resources, project instructions, ...

Alternative projects require instructor approval.

Grading Policy

Student presentation (20%)

Paper reviews (30%)

Course project (40%)

In-class participation (10%)

Tell Us About Yourself

Robotics beyond CS391R

Be part of the Robotics + AI revolution.

UT Robot Perception & Learning Lab

Mission: Building General-Purpose Robot Autonomy in the Wild

TEXAS Robotics

https://robotics.utexas.edu/

